FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000264dd

Title: Properties of Estimates of Daily GARCH Parameters Basaed on Intra-Day Observations
Authors: Galbraith, John
Zinde-Walsh, Victoria
Issue Date: 2001-02
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);2001s-15
Scientific series (CIRANO);2001s-15
Abstract: Nous considérons les estimés des paramètres des modèles GARCH pour les rendements financiers journaliers, qui sont obtenus à l'aide des données intra-jour (haute fréquence) pour estimer la volatilité journalière. Deux bases potentielles sont evaluées. La première est fondée sur l'aggrégation des estimés quasi-vraisemblance-maximale, en profitant des résultats de Drost et Nijman (1993). L'autre utilise la volatilité integrée de Andersen et Bollerslev (1998), et obtient les coefficients d'un modèle estimé par LAD ou MCO; la première méthode résiste mieux à la possibilité de non-existence des moments de l'erreur en estimation de volatilité. En particulier, nous considérons l'estimation par approximation ARCH, et nous obtenons les paramètres par une méthode liée à celle de Galbraith et Zinde-Walsh (1997) pour les processus ARMA. Nous offrons des résultats provenant des simulations sur la performance des méthodes en échantillons finis, et nous décrivons les atouts relatifs à l'estimation standard de quasi-VM basée uniquement sur les données journalières.

We consider estimates of the parameters of GARCH models of daily financial returns, obtained using intra-day (high-frequency) returns data to estimate the daily conditional volatility.Two potential bases for estimation are considered. One uses aggregation of high-frequency Quasi- ML estimates, using aggregation results of Drost and Nijman (1993). The other uses the integrated volatility of Andersen and Bollerslev (1998), and obtains coefficients from a model estimated by LAD or OLS, in the former case providing consistency and asymptotic normality in some cases where moments of the volatility estimation error may not exist. In particular, we consider estimation in this way of an ARCH approximation, and obtain GARCH parameters by a method related to that of Galbraith and Zinde-Walsh (1997) for ARMA processes. We offer some simulation evidence on small-sample performance, and characterize the gains relative to standard quasi-ML estimates based on daily data alone.
URI: http://www.cirano.qc.ca/pdf/publication/2001s-15.pdf
https://depot.erudit.org/id/000264dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

2001s-15.pdf (Adobe PDF ; 679.52 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016