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Properties of Estimates of Daily GARCH Parameters
Based on Intra-Day Observations*

John W. Galbraith†, Victoria Zinde-Walsh‡

Résumé / Abstract

Nous considérons les estimés des paramètres des modèles GARCH pour
les rendements financiers journaliers, qui sont obtenus à l'aide des données intra-
jour (haute fréquence) pour estimer la volatilité journalière. Deux bases
potentielles sont evaluées. La première est fondée sur l'aggrégation des estimés
quasi-vraisemblance-maximale, en profitant des résultats de Drost et Nijman
(1993). L'autre utilise la volatilité integrée de Andersen et Bollerslev (1998), et
obtient les coefficients d'un modèle estimé par LAD ou MCO; la première
méthode résiste mieux à la possibilité de non-existence des moments de l'erreur en
estimation de volatilité. En particulier, nous considérons l'estimation par
approximation ARCH, et nous obtenons les paramètres par une méthode liée à
celle de Galbraith et Zinde-Walsh (1997) pour les processus ARMA. Nous offrons
des résultats provenant des simulations sur la performance des méthodes en
échantillons finis, et nous décrivons les atouts relatifs à l'estimation standard de
quasi-VM basée uniquement sur les données journalières.

We consider estimates of the parameters of GARCH models of daily
financial returns, obtained using intra-day (high-frequency) returns data to
estimate the daily conditional volatility.Two potential bases for estimation are
considered. One uses aggregation of high-frequency Quasi- ML estimates, using
aggregation results of Drost and Nijman (1993). The other uses the integrated
volatility of Andersen and Bollerslev (1998), and obtains coefficients from a
model estimated by LAD or OLS, in the former case providing consistency and
asymptotic normality in some cases where moments of the volatility estimation
error may not exist. In particular, we consider estimation in this way of an ARCH
approximation, and obtain GARCH parameters by a method related to that of
Galbraith and Zinde-Walsh (1997) for ARMA processes. We offer some
simulation evidence on small-sample performance, and characterize the gains
relative to standard quasi-ML estimates based on daily data alone.
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1. Introduction

GARCH models are widely used for forecasting and characterizing the conditional
volatility of economic and (particularly) �nancial time series. Since the original contribu-

tions of Engle (1982) and Bollerslev (1986), the models have been estimated by Maximum

Likelihood (or quasi-Maximum Likelihood, `QML') methods on observations at the fre-
quency of interest. In the case of asset returns, the frequency of interest is often the daily

uctuation.

Financial data are often recorded at frequencies much higher than the daily. Even
where our interest lies in volatility at the daily frequency, these data contain informa-
tion which may be used to improve our estimates of models at the daily frequency. Of
course, following Andersen and Bollerslev (1998), higher-frequency data may also be used
to estimate the daily volatility directly.

The present paper considers two possible strategies for estimation of daily GARCH
models which use information about higher-frequency 
uctuations. The �rst uses the
known aggregation relations (Drost and Nijman, 1993) linking the parameters of GARCH
models of high-frequency and corresponding low-frequency observations. When such esti-
mates are based on QML estimates for the high-frequency data, however, relatively strin-
gent conditions are required, which may not be met in (for example) asset-return data.

The second potential strategy is to use the observation of Andersen and Bollerslev
(1998) that the volatility of low-frequency asset returns may be estimated by the sum
of squared high-frequency returns. While the resulting estimate may be used directly to
characterize the process as in Andersen and Bollerslev or Andersen et al. (1999), it is

also possible to use the sequence of low- (daily-) frequency estimated volatilities to obtain
estimates of conditional volatility models such as GARCH models, explicitly allowing for
estimation error in the estimated daily volatility. The resulting models may be estimated
by a variety of techniques (including LS); by using the Least Absolute Deviations (LAD)
estimator, it is possible to obtain consistent and asymptotically normal estimates under
quite general conditions (in particular, without requiring the existence of moments of the

returns). We are then able to obtain estimates of GARCH parameters using an estimator

related to that of Galbraith and Zinde-Walsh (1997) for ARMA models.

In section 2 we describe the models and estimators to be considered and give some
relevant de�nitions and notation. Section 3 provides several asymptotic results, while
section 4 presents simulation evidence on the �nite- sample performance of regression
estimators relative to that of standard GARCH estimates based on the daily observations
alone.

2. GARCH model estimation using higher-frequency data

2.1 Processes and notation

We begin by establishing notation for the processes of interest. Consider a driftless
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di�usion process fXtg such that

Xt = X0 +

Z t

0

�sXsdWs;

where fWtg is a Brownian motion process and �2s is the instantaneous conditional variance.

This is a special case of the structure used by, e.g., Nelson (1992), Nelson and Foster (1994).

The process is sampled discretely at an interval of time ` (e.g., each minute). We

are interested in volatility at a lower-frequency sampling, with sampling interval h` (e.g.,

daily), so that there are h high-frequency observations per low-frequency observation.
De�ne one unit of time as a period of length `:

We index the full set of observations by � and the lower-frequency observations by
t; so that t = fh; 2h; : : : ; hTg: The size of the sample of low-frequency observations is
therefore T; and of the full set of high-frequency observations is hT: Following Andersen
and Bollerslev (1998), estimate the conditional volatility at t as the estimated conditional
variance

�̂2t =
ihX

j=(i�1)h+1

r2j ; (2:1:0)

with r2j = (xj � xj�1)
2; xj indicating the discretely-sampled observations on the process

X: See Andersen and Bollerslev on convergence of �̂2t to
R t
t�1

�2sds:

Now consider ARCH and GARCH models at the lower-frequency observations:

�2t = ! +

qX
i=1

�i"
2
t�i; (2:1:1)

�2t = ! +

qX
i=1

�i"
2
t�i +

pX
i�1

�i�
2
t�i; (2:1:2)

where "t = yt � �t for a process yt with conditional mean �t; or in the driftless case

"t = xt: So E("
2
t j t�i) � �2t : Models in the form (2.1.1), (2.1.2) are directly estimable if,

as in Andersen and Bollerslev, we have measurements of �2t : We return to this point in
Section 2.3 below.

Finally, we will refer below to the de�nitions of Strong, Semi-strong andWeak GARCH
given in Drost and Nijman (1993). In strong GARCH, f"tg is such that zt � "t=�t �

IID(0; 1); semi-strong GARCH holds where f"tg is such that E["tj"t�1; : : :] = 0 and

E["2t j"t�1; : : :] = �2t ; weak GARCH holds where f"tg is such that P ["tj"t�1; : : :] = 0 and

P ["2t j"t�1; : : :] = �2t ; where P ["
2
t j"t�1; : : :] denotes the best linear predictor of "2t given a

constant and past values of both "t and "
2
t :
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2.2 Estimation by aggregation

Drost and Nijman (1993) showed that time-aggregated weak GARCH processes lead
to processes of the same class, and gave deterministic relations between the coe�cients
(and the kurtosis) of the high frequency process and corresponding time-aggregated (low-

frequency) process for the weak GARCH (1,1) case. As Drost and Nijman noted, such
relations can in principle be used to obtain estimates of the parameters at one frequency
from those at another. In this section we examine the strategy of low-frequency estimation
based on prior high-frequency estimates. Time aggregation relations of course di�er for
stock and 
ow variables; here we treat 
ows, such as asset returns.

Consider the high-frequency GARCH(1,1) process

�2� = ! + �1"
2
��1 + �1�

2
��1; (2:2:1)

if "(h)t =
Pth

j=t(h�1)+1 "j is the aggregated 
ow variable, then its volatility at the low

frequency follows the weak GARCH(1,1) process

�2(h)t = �0 + �1"
2
(h)t + �1�

2
(h)t�1; (2:2:2)

with �0; �1; �1 given by the corresponding formulae (13-15) for  ;�; � in Drost and Nijman

(1993), adjusting for notation. To obtain consistent estimation by QML of the high-
frequency model, it will be necessary that the process is semi-strong GARCH: the standard
Quasi-ML estimator of the GARCH model will in general be inconsistent in weak GARCH
models (as noted by Meddahi and Renault 1996, 2000 and Francq and Zako��an 1998; see
the latter reference for an example and M-R 2000 for a Monte Carlo example on samples
of 80 000 { 150 000 simulated low frequency observations).

We will show that the mapping

0
@�0
�1
�1

1
A =  

0
@ !
�1
�1

1
A (2:2:3)

provided by the Drost-Nijman formulae is a continuously di�erentiable mapping; it is also
analytic over the region where the parameters are de�ned.

This implies that any consistent estimator of the high-frequency parameters (!;�1; �1)

leads to a consistent estimator of the low-frequency parameters (�0; �1; �1); and simi-
larly that an asymptotically Normal estimator of the high-frequency parameters results in
asymptotic Normality of the low-frequency parameters.

Denote the vector

0
@ !
�1
�1

1
A by � and, correspondingly, let � =

0
@�0
�1
�1

1
A : Then  (�) = �:
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Now denote by 
 2 R3 the region


 = f(!;�1; �1) 2 R
3j ! > 0; �1 � 0; �1 � 0; �1 + �1 < 1g;

that is, the region for which the GARCH(1,1) process is de�ned (see, e.g., Bollerslev 1986).

Theorem 1. For any estimator �̂ of � such that (i) �̂
p
!�; (ii) �̂

a
�N (�; V (�)), the

estimator �̂ =  (�̂) is such that for �̂ satisfying (i),

�̂
p
!�;

and for �̂ satisfying (ii),

�̂
a
�N(�; V (�̂));

where the asymptotic covariance matrix is V (�̂) = @ 

@�0
V (�)@ 

0

@�
:

Proof. It follows from (i) and consequently also from (ii) that since � 2 
;

P (�̂ 2 
) ! 1: Consider now the formulae for � =  (�) over 
 in Drost and Nijman

(1993). From (15) of D-N we can obtain �1 from a solution to a quadratic equation of the

form Z2 � cZ + 1 = 0; where

c = c(!;�1; �1; �) (2:2:4)

is obtained from the expression in (15) of D-N. For � 2 
 it follows that c > 2 and

therefore �1 =
c
2 �

�
( c2)

2 � 1
� 1
2 is such that 0 < �1 < 1: Moreover, it can be shown that

�1 < (�1 + �1)
h and so �1 obtained from (13) in D-N also lies between 0 and 1.

The transformation  

0
@ !
�1
�1

1
A can be written as

 

0
@ !
�1
�1

1
A =

0
BB@

h! 1�(�1+�1)
h

1�(�1+�1)

(�1 + �1)h �
c
2 +

�
( c2)

2 � 1
� 1
2

� c
2 +

�
( c2 )

2 � 1
�1
2

1
CCA ;

where c is given by (2.2.4); it is de�ned and di�erentiable everywhere in 
: .

Note that (as follows from Drost and Nijman 1993), even if �1 = 0; �1 is non-

zero as long as � > 0: As h increases, �1 and �1 decline; given �1 and �1; conditional
heteroskedasticity vanishes for su�ciently large h: Therefore, for substantial conditional
heteroskedasticity to be present in the low-frequency (aggregated) 
ow process, �1 + �1
must be close to unity.
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Suppose now that a standard quasi-Maximum Likelihood estimator is used with semi-
strong GARCH high-frequency data to obtain estimates of �: Its asymptotic covariance

matrix is V [�̂QML] = [W 0W ]�1B0B[W 0W ]�1; where

W 0W =
hX
�=1

T

�
g�
�2�

� �
g�
�2�

�
0

and B0B =
TX
�=1

�
"2�
�2�
� 1

�2 �
g�
�2�

� �
g�
�2�

�
0

;

with g� = @�2
�

@�
=

0
@ 1
"2��1
�2��1

1
A : The asymptotic variance of the estimator �̂ based on 
ow

aggregation is then

@ 

@�0
[W 0W ]�1B0B[W 0W ]�1

@ 0

@�
: (2:2:5)

If �̂QML is the MLE this reduces to

@ 

@�0
[W 0W ]�1

@ 0

@�
: (2:2:6)

Example 1. Let the high-frequency process be ARCH(1); aggregation then leads to a

weak GARCH(1,1) process for the low-frequency data. However, the asymptotic covariance

matrix for the estimator �̂ is of rank 2 rather than 3, since the middle part in (2.2.5) or

(2.2.6) is of dimension 2 � 2: This indicates that there are cases where �̂ is clearly more

e�cient than �ML (or �QML) based on low-frequency data alone, with covariance matrix

of rank 3.

While estimation is feasible by this method, the requirements of this strategy, even
for consistent estimation, are fairly severe. In particular, the potential inconsistency of
QML estimation when only weak GARCH conditions apply means that we must assume
semi-strong GARCH at the high frequency if estimation is by QML. This is, however, an
arbitrary speci�cation; if the high frequency data are themselves aggregates of yet higher
frequencies, the semi-strong conditions do not follow. While consistent estimation of weak
GARCH models is in principle possible (see Francq and Zako��an 1998), the QML estimator
does not accomplish this.

More generally, estimation based on aggregation presumes knowledge of the high-
frequency structure, and requires the computation of di�erent aggregation formulae for
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each model form to be estimated. For these reasons, we will proceed to investigate esti-
mators based on the integrated volatility, which do not presume knowledge of the high-
frequency process beyond the conditions necessary for consistency of the daily volatility
estimate.

2.3 Estimation by regression using integrated volatility

As noted above, models of the form (2.1.1) and (2.1.2) are directly estimable if we have

estimates of the conditional variance of the low-frequency observations, �2t ; for example

from the daily integrated volatility, as in Andersen and Bollerslev.1 However, we will not
follow Andersen and Bollerslev in treating the observation as exact. Instead, we introduce

into the model the measurement error arising in estimation of �2t from the daily integrated

volatility (2.1.0), a speci�cation also employed by Maheu and McCurdy (2000). Let

�̂2t = �2t + et; (2:3:1)

properties of fetg follow from (2.1.0) and will be considered below.
The ARCH and GARCH models become

�̂2t = ! +

qX
i=1

�i"
2
t�i + et; (2:3:2)

�̂2t = ! +

qX
i=1

�i"
2
t�i +

pX
i=1

�i�̂
2
t�i �

pX
i=1

�iet�i + et: (2:3:3)

Both (2.3.2) and (2.3.3) are in principle estimable as regression models. The model

(2.3.3) has an error term with an MA(s) form; the coe�cients of this moving average

process are subject to the constraint embodied in (2.3.3) that they are the same (up

to sign) as the coe�cients on lagged values of �̂2t : Estimation of these models by LS or
QML does however require relatively strong moment conditions to hold on the regressors
and the volatility estimation errors fetg; note that this is unlike the standard GARCH
model estimated by QML where conditions are usually applied to the rescaled squared
innovations.

Maheu and McCurdy (2000) �nd good results using the constrained model, estimated

by QML, on foreign exchange returns. Bollen and Inder (1998) estimate a model similar

to (2.3.3) by standard QML methods (without accounting for the error autocorrelation

structure), using intra-day data to obtain estimates of an unobservable sequence related
to daily volatility. This approach requires consistency of the estimates of the unobservable

1Since we will be discussing low-frequency parameters hereafter, we no longer need to

distinguish from high-frequency and will omit the `bar' in symbols, referring to �2; �; �;

etc. for the low-frequency values.

6



sequence as the number of intra-day observations per day increases without bound, to
obtain consistency of the estimator; Bollen and Inder �nd good results on a sample of S
& P Index futures with a large number of observations per day.

Here we will consider estimation of models having the ARCH model (2.3.2), followed by
computation of GARCH parameters from the ARCH approximation. The method that we
will use should produce estimates which are relatively insensitive to the error distribution
and to existence of moments of the errors, which is particularly advantageous in �nancial
data. This strategy also has the advantage of producing immediately an estimated model
which is directly useable for forecasting, and of allowing computation of parameters of any
GARCH(p; q) model from a given estimated ARCH representation. Su�cient conditions
for consistent and asymptotically normal estimation are given in Section 3 below; it is not
necessary that the number of intra-day observations per day (h) increase without bound.

To obtain estimates of GARCH parameters from the ARCH representation we pursue
an estimation strategy related to that of Galbraith and Zinde-Walsh (1994, 1997), in which
autoregressive models are used in estimation of MA or ARMA models. Here, a high-order
ARCH model is used, and estimates of GARCH (p; q) parameters are deduced from the
patterns of ARCH coe�cients. This is another example of what Galbraith and Zinde-
Walsh (2001) refer to as `analytical indirect inference', in that a method analogous to

indirect inference (Gouri�eroux et al. 1993) is used, but where the mapping from estimates
of the auxiliary model to the model to be estimated is obtained analytically, rather than
by simulation.

Consider �rst a case of known conditional variance �t: The GARCH process (2.1.2)

has a form analogous to the ARMA(p; q); using standard results on representation of an

ARMA (p; q) process in MA form (see, e.g., Fuller 1976), we can express (2.1.2) in the
form

�2t = �+

1X
`=1

�`"
2
t�`; (2:3:4)

with �0 = 0 and

�1 = �1

�2 = �2 + �1�1

...

�` = �` +

min(`;p)X
i=1

�i�`�i; ` � q;

�` =

min(`;p)X
i=1

�i�`�i; ` > q;

(2:3:5)
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and �nally

� = (1� �(1))�1! =

 
1�

pX
i=1

�i

!
�1

!: (2:3:6)

Giraitis et al. (2000) give general conditions under which the ARCH(1) representa-

tion is possible for the strong GARCH(p; q) case; only the existence of the �rst moment

and summability of the coe�cients �` (in our notation) are required for the existence of a

strictly stationary ARCH(1) solution as given in (2.3.4).

To estimate the model using a truncated version of this ARCH(1) representation, we

use the estimated low-frequency conditional variance from (2.1.0), de�ning the estimation

error as in (2.3.1) and substituting into (2.3.4) to obtain

�̂2t = �+
kX
`=1

�`"
2
t�` + et: (2:3:7)

The truncation parameter k must be such that k!1; k=T ! 0 for consistent estimation
of the GARCH model.

The model (2.3.7) may be estimated by LS or, to obtain results robust to less restrictive
conditions on the volatility estimation errors, LAD. Asymptotic properties of the LAD
estimator are considered in Section 3. Estimation proceeds by �rst obtaining estimates of
� = (�1; �2; : : : ; �p) from (2.3.5) for ` > q; followed by estimation of the q parameters of �

from the �rst q relations of (2.3.5), and of ! from (2.3.6).
Begin by de�ning

v(0) =

2
664
�q+1
�q+2
...
�k

3
775 ; and v(�i) =

2
664
�q+1�i
�q+2�i

...
�k�i

3
775 : (2:3:8)

Next de�ne the (k � q)� p matrix V = [v(�1)v(�2) : : : v(�p)] =

2
664

�q �q�1 : : : �q�p+1
�q+1 �q : : : �q�p+2
...

...
�k�1 �k�2 : : : �k�p

3
775 :

where �r = 0 for r � 0: It follows from (2.3.5) that v(0) = �0V:

The p� 1 vector of estimates �̂ is de�ned by

�̂ = (V̂ 0V̂ )�1V̂ 0v̂(0); (2:3:9)

8



where the circum
ex indicates replacement of �` with the OLS-estimated values �̂` in the
de�nitions above. An estimate of � can then be obtained using the estimate of � and the
relations (2.3.5): that is

�̂1 = �̂1

�̂2 = �̂2 � �̂1�̂1

...

�̂q = �̂q �

min(q;p)X
i=1

�̂i�̂q�i:

(2:3:10)

Finally,

!̂ = �̂(1� �̂(1)) = �̂

 
1�

pX
i=1

�̂i

!
:

The covariance matrix of the estimates can be obtained easily from the estimates
of the representation (2.3.7) and the Jacobian of the transformation. Let the parameter

vector be � = (!; �; �); and let  2 be the variance of the noise et in (2.3.1). Then

var(�) = J 0(var�̂)J;

where �̂ is the vector of estimated ARCH parameters and J is the Jacobian of the trans-
formation (2.3.9)-(2.3.10). Computation of the covariance matrix of the LAD parameter
vector is discussed in section 3.

3. Asymptotic properties of the integrated volatility{regression estimates

In this section we discuss conditions for consistent and asymptotically Normal estima-
tion of the integrated volatility{regression model of Section 2 by LAD. Results for QML
estimation of the ARCH model were established by Weiss (1986), using the assumption of

�nite fourth moments of the unnormalized data. Lumsdaine (1996) established consistency
and asymptotic Normality of the QMLE for GARCH models by imposing conditions on the
re-scaled data, zt = "t=�t; including the IID assumption and the existence of high-order

moments. Lee and Hansen (1994) generalized these results to fztg which are not IID, but
simply strictly stationary and ergodic.

Recall that the ARCH(k){type model (2.3.7) is a regression model, and consider for

each T the �� �eld Ft generated by the regressors f("2t ; "
2
t�1; : : : ; "

2
t�k); t = k+1; : : : ; T:g:

Denote by WT the symmetric matrix with elements wij = T�c(
PT

t=1 "
2
t�i"

2
t�j); and let

VT =W
1

2

T :

Assumption 1. There exists some c such that

wij = Op(1); W�1
T = Op(1); (T�

c

2 ) max "2t = op(1):

9



The assumption is trivially satis�ed with c = 1 if "2 possesses a su�cient number of

moments, but the assumption does not require the existence of moments.2

Next consider an assumption on the daily volatility estimation error,

et = �̂2t � �2t : (3:1:1)

The following assumption embodies both the Error Assumption of Pollard (1991, p.189)
and the additional assumption of Pollard's Theorem 2 that the realizations of the process
and the errors (here, volatility estimation errors) are assumed independent.

Assumption 2. The volatility estimation errors fetg are IID with median 0 and a continuous

positive density f (:) in the neighbourhood of zero. The sequences of errors fetg and of

realizations of the process f"tg are independent.

Theorem 2. Consider the model (2.3.7),

�̂2t = �+
kX

`=1

�`"
2
t�` + et;

and suppose that Assumptions 1 and 2 are satis�ed. Then if �̂ = (�̂; �̂1; : : : ; �̂k) is the the
LAD-estimated parameter vector,

2f (0)VT (�̂ � �)
D
!N(0; Ik+1):

Proof. Follows from Pollard (1991, Theorem 2 and Example 1) for c = 1; can be

extended to any c: Assumption 1 satis�es the conditions (ii)-(iv) of Theorem 2 of Pollard

(1991), and combined with Assumption 2 provides all of the conditions (i)-(iv) for the
asymptotic distribution to hold.

4. Simulation evidence

In this section we present evidence primarily on the �nite-sample performance of the
regression estimator of Section 2.3 using the daily integrated volatility, and for compar-
ison the standard Quasi-ML estimator based on daily data alone. The QML procedure

2As an example of the former point, consider a case where the eighth unconditional moment

of "t exists. Then (i) is satis�ed for c = 1 by the WLLN, T�1(
PT

t=1 "
2
t�i"

2
t�j)

p
!E("2t�i"

2
t�j):

At the same time, if we re-write the ARCH(k) model (2.3.7) as a stationary AR(k) model

by de�ning wt = "2t � �2t (note that E(wtj"
2
t ; "

2
t�1; : : :) = 0 and var(wt) <1); we obtain

"2t = �+
Pk

`=1 �`"
2
t�`+wt: Following example 2 of Pollard (1991) (generalizing to AR(k)),

it follows that max "2t = op(T
1=2): Of course, Assumption 1 can also hold in cases where

moments do not exist.
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described and implemented by Aptech Systems (1998) is used for the standard estimates.

The regression estimator uses (2.1.0) for a daily volatility estimate, followed by estimation

of (2.3.7) by OLS or LAD, and transformation to GARCH parameter estimates via (2.3.9)-

(2.3.10).

In the �rst set of simulation exercises, low-frequency (daily) data alone are simulated.
The innovations are Normal, leading to a strong GARCH model estimated by a true ML
estimator. These cases are therefore as favourable as possible for the QML estimator. The
low-frequency sample size T is set at f200; 600g and the number of replications is 2000 for
each experiment. Although the �rst set of experiments uses simulated low-frequency data
only, the parameter values are chosen for compatibility with the later experiments; the
four sets of parameter values used result from the aggregation of high-frequency GARCH
processes having parameters f!;�; �g equal to (.01, .018, .98), (.01, .05, .945), (.01, .08,

.89) and (.01, .10, .85). The corresponding low-frequency parameters are computed from

the aggregation formula of Drost and Nijman (1993) for the GARCH (1,1) 
ow case; the

values are (6.102, .0555, .8957), (5.889, .1371, .7450), (4.442, .0736, .3934), and (3.613,

.0540, .2234).

In a second set of simulations, for the same sample sizes and number of replications, the
high-frequency GARCH process is simulated directly as in the �rst experiments, (strong

GARCH, with normal errors) and aggregated to form a (weak GARCH) low-frequency

(daily) returns process. Estimates of the daily GARCH parameters on these daily data
are obtained by QML and the regression estimator.

As just indicated, the `true' daily parameters are computed from the aggregation
formula of Drost and Nijman (1993), for comparison with the estimates from each method.
Note that QML applied directly to the daily data is now technically inconsistent because
only the weak GARCH conditions can be guaranteed to apply. For the regression estimates,
the a daily volatility estimate has a noise variance implied by the number of observations
per day, h; which in these examples is set at 25 to keep overall sample sizes manageable.
This number, while modest, is compatible with the suggestions of the more recent literature
on integrated volatility (Andersen et al. 1999) which suggests that the optimal frequency
to use in estimation of daily volatility is not necessarily the highest frequency available.
A small value, representing a relatively noisy estimate of daily volatility, is in general less
favourable for the relative performance of the regression estimator.

Because the QML and LAD-ARCH estimators are evaluated here using di�erent in-
formation sets{the LAD-ARCH uses the higher-frequency data, while QML does not{
the outcome of any comparison depends upon the information content of the additional
(intra-day) data. The comparison here is made on parameter values that appear to be
representative of empirical outcomes, and uses a relatively modest information content of
intra-day data. Nonetheless, such a comparison can only be viewed as illustrative. In
experiments of the type performed here, using Normal innovations, QML or LAD-ARCH
can dominate the other in a �nite sample as the estimates of realized volatility become
(respectively) relatively noisy or relatively precise. Of course, very heavy-tailed or skewed
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error distributions will tend further to favour the LAD-ARCH estimator.
Results from the �rst set of simulations are contained in Figure 1a/b Results for the

second set of simulations are reported in Figure 2a/b and 3a/b. With the second set of
simulations we also report a forecast comparison of 1-step-ahead out-of-sample conditional
volatility forecasts from each estimation method, evaluated by RMS forecast error.

Begin by comparing corresponding quadrants of Figure 1a with those of Figure 2a,
and of 1b with 2b. The QML estimator's performance is little di�erent between these
two cases, despite the fact that the Figure 1 cases are in fact true ML estimators, and
that the Figure 2 cases show QML in a weak GARCH case where the estimator is not
in general consistent. However these results, in line with those mentioned by Drost and
Nijman (1993, p. 922), suggest that the QMLE may be converging to values quite close to
the true parameter values.

Nonetheless the �nite-sample performance of the QML estimator in these cases shows
problems which are of a fairly standard type, not speci�c to GARCH estimation. The
QMLE's concentration of probability mass near the boundaries of the identi�cation region
are typical of the `pile-up' problems familiar from cases such as ML estimation of MA
parameters; here the QMLE performs poorly when � is near zero. Estimates of � are
particularly poor in these examples, showing large probability masses in the vicinity of
0.9 regardless of the true value of �; in each of the three cases where � < 0:1: Where
� = 0:1373; by contrast, estimates of � are concentrated near the true value, particularly
at the larger sample size. Of course, QMLE performance improves in general for larger
values of �; as we move away from the boundary of the identi�cation region; the values
chosen here, however, are typical of those appearing in the empirical literature.

Figure 3 contains results for the LAD-ARCH estimator in corresponding cases, for
h = 25 : that is, using the relatively low high-frequency information content noted above.
Nonetheless, additional information is being exploited, and we might expect that the es-
timator should perform relatively well. This expectation is borne out in Figure 3a, where
LAD-ARCH estimates of � show much better conformity with the Normal and smaller
dispersion, as well as less pile-up near zero.

In Figure 3b, we see less dramatic gains in estimation of �; conformity with the Normal
is improved realtive to corresponding Figure 2a cases, but there remains substantial pile-up
at � = 0 and again we see dispersion of the estimates across much of the [0; 1] interval.
However, the large spurious peak in the density near 0.9 is eliminated. Conformity with
the Normal is markedly improved at T = 600: These cases, embodying Normal errors
in the simulation DGP, do not o�er the most favourable circumstances for comparison
of LAD-ARCH; with substantially skewed error distributions, we would expect to see the
traditional advantage of LAD estimation in robustness to skewness and heavy-tailed errors.
However, the estimator does o�er clear gains nonetheless.

5. Concluding remarks

Estimation of GARCH models via integrated volatility is feasible even with a modest
number of intra-day observations. Such estimates have a number of apparent advantages
over those obtained from standard QML estimates, which can be quite erratic in small
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samples. The use of integrated volatility in this way also opens up other avenues for

estimation, including estimation of quantiles of volatility other than the median.3

3This has been investigated for ARCH models estimated with standard (single-frequency)

data by Koenker and Zhao (1996).
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