FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000153dd

Title: Valorisation d'options par optimisation du Sharpe Ratio
Authors: Bardou, Olivier
Bengio, Yoshua
Chapados, Nicolas
Ducharme, Réjean
Issue Date: 2002-05
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);2002s-47
Scientific series (CIRANO);2002s-47
Abstract: Les travaux précédents sur la valorisation des options entraient en gros dans deux catégories : ou bien ils étaient basés sur de fortes hypothèses distributionnelles ou économiques, ou bien ils essayaient d'imiter la formule de Black-Scholes par des modèles statistiques entraînés à approximer les prix de marché quotidiens à l'aide d'information disponible le jour même. Le travail présenté ici se rapproche plus de la deuxième catégorie mais son objectif est différent : prédire les prix futurs d'une option, et établir sa valeur courante à l'aide d'un scénario de transactions. Ce travail innove donc de deux façons : premièrement, il propose une méthode empirique et sans hypothèse pour comparer différents systèmes de valorisation d'options (en transigeant contre lui-même ou contre le marché) et deuxièmement, il utilise ce critère pour entraîner un modèle statistique non-paramétrique (utilisant dans ce cas-ci des réseaux de neurones) pour estimer un prix pour l'option qui maximise l'utilité espérée lorsque l'on transige contre le marché. À noter que les prix dépendront de la fonction d'utilité ainsi que du portefeuille (i.e. des risques courants) de la personne qui transige. Des résultats préliminaires sur des options d'achat du S&P 500 sont présentés.

Prior work on option pricing falls mostly in two categories: it either relies on strong distributional or economical assumptions, or it tries to mimic the Black-Scholes formula through statistical models, trained to fit today's market price based on information available today. The work presented here is closer to the second category but its objective is different: predict the future value of the option, and establish its current value based on a trading scenario. This work thus innovates in two ways: first it proposes an empirical and hypothesis-free method to compare different option pricing systems (by having trade against each other or against the market), second it uses this criterion to train a non-parametric statistical model (here based on neural networks) to estimate a price for the option that maximizes the expected utility when trading against the market. Note that the price will depend on the utility function and current portfolio (i.e. current risks) of the trading agent. Preliminary experiments are presented on the S&P 500 options.
URI: http://www.cirano.qc.ca/pdf/publication/2002s-47.pdf
https://depot.erudit.org/id/000153dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

2002s-47.pdf (Adobe PDF ; 115.74 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016