FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000079dd

Title: Metric-Based Model Selection For Time-Series Forecasting
Authors: Bengio, Yoshua
Chapados, Nicolas
Issue Date: 2003-05
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);2003s-24
Scientific series (CIRANO);2003s-24
Abstract: Les méthodes métriques, et qui utilisent des données non-étiquetées pour détecter les différences brutes pour les comportements loin des pointes d'entrainement, ont été récemment introduites pour la sélection de modèles, apportant une amélioration dans beaucoup de cas (incluant la validation croisée). Nous présentons des prolongements à ces méthodes qui prennent avantage du cas particulier des séries temporelles pour lesquelles la tâche consiste en une prédiction avec un horizon "h". Les idées sont (i) d'utiliser au temps "t" les "h" exemples non-étiquetés qui précèdent "t", et (ii) profiter des différentes distributions d'erreur de validation croisée et de méthodes métriques. Des résultats expérimentaux établissent l'efficacité de ces prolongements dans le contexte de la sélection d'un sous-ensemble de caractéristiques.

Metric-based methods, which use unlabeled data to detect gross differences in behavior away from the training points, have recently been introduced for model selection, often yielding very significant improvements over alternatives (including cross-validation). We introduce extensions that take advantage of the particular case of time-series data in which the task involves prediction with a horizon "h". The ideas are (i) to use at "t" the "h" unlabeled examples that precede "t" for model selection, and (ii) take advantage of the different error distributions of cross-validation and the metric methods. Experimental results establish the effectiveness of these extensions in the context of feature subset selection.
URI: http://www.cirano.qc.ca/pdf/publication/2003s-24.pdf
https://depot.erudit.org/id/000079dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

2003s-24.pdf (Adobe PDF ; 384.47 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016