FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000876dd

Title: Approximating the Probability Distribution of Functions of Random Variables: A New Approach
Authors: Eriksson, Anders
Forsberg, Lars
Ghysels, Eric
Issue Date: 2004-05
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);2004s-21
Scientific series (CIRANO);2004s-21
Abstract: Nous introduisons une nouvelle méthode pour approximer la distribution de variables aléatoires. L'approximation est basée sur la classe de distribution normale inverse gaussienne. On démontre que la nouvelle approximation est meilleure que les expansions Gram-Charlier et Edgeworth.

We introduce a new approximation method for the distribution of functions of random variables that are real-valued. The approximation involves moment matching and exploits properties of the class of normal inverse Gaussian distributions. In the paper we examine the how well the different approximation methods can capture the tail behavior of a function of random variables relative each other. This is done by simulate a number functions of random variables and then investigate the tail behavior for each method. Further we also focus on the regions of unimodality and positive definiteness of the different approximation methods. We show that the new method provides equal or better approximations than Gram-Charlier and Edgeworth expansions.
URI: http://www.cirano.qc.ca/pdf/publication/2004s-21.pdf
https://depot.erudit.org/id/000876dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

2004s-21.pdf (Adobe PDF ; 640.15 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016