FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org/id/000315dd

Title: Finite Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors
Authors: Dufour, Jean-Marie
Jasiak, Joanna
Issue Date: 2000-04
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);2000s-13
Scientific series (CIRANO);2000s-13
Abstract: Nous proposons des tests et régions de confiance exacts pour des modèles comportant des variables inobservées ou des régresseurs estimés de même que pour divers modèles estimés par la méthode des variables instrumentales. La validité des procédures proposées n'est pas influencée par la présence de problèmes d'identification ou d'instruments faibles, de sorte que la détection de tels problèmes n'est pas requise pour les appliquer. De façon plus spécifique, nous étudions deux approches différentes pour divers modèles considérés par Pagan (1984). La première est une méthode de substitution d'instruments qui généralise des techniques proposées par Anderson et Rubin (1949) et Fuller (1984) pour des problèmes différents, tandis que la seconde méthode est fondée sur une subdivision de l'échantillon. La méthode de substitution d'instruments utilise directement les instruments disponibles, plutôt que des régresseurs estimés, afin de tester des hypothèses et de construire des régions de confiance sur les paramètres structuraux du modèle. La seconde méthode s'appuie sur des régresseurs estimés, ce qui permet un gain de degrés de liberté, ainsi que sur une technique de subdivision de l'échantillon. Pour faire de l'inférence sur des transformations générales, possiblement non-linéaires, des paramètres du modèle, nous proposons l'utilisation de techniques de projection. Nous fournissons une théorie distributionnelle exacte sous une hypothèse de normalité des perturbations et de régresseurs strictement exogènes. Nous montrons que les tests et régions de confiance ainsi obtenus sont aussi (localement) asymptotiquement valides sous des hypothèses distributionnelles beaucoup plus faibles. Nous étudions les propriétés des tests proposés dans le cadre d'une expérience de simulation. En général, celles-ci sont plus fiables et ont une meilleure puissance que les techniques traditionnelles. Finalement, les techniques proposées sont appliquées à un modèle du q de Tobin et à un modèle de performance scolaire.

We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or weak instruments, so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generating regressors, in order to test hypotheses about the structural parameters of interest and build confidence sets. The second approach relies on generated regressors, which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and stricly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) asymptotically valid under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin's q and to a model of academic performance.
URI: http://www.cirano.qc.ca/pdf/publication/2000s-13.pdf
https://depot.erudit.org/id/000315dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

2000s-13.pdf (Adobe PDF ; 277,54 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2014