FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000393dd

Title: Using a Financial Training Criterion Rather than a Prediction Criterion
Authors: Bengio, Yoshua
Issue Date: 1998-06
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);98s-21
Scientific series (CIRANO);98s-21
Abstract: Ce rapport présente une application des algorithmes d'apprentissage aux séries chronologiques financières. L'approche traditionnelle est basée sur l'estimation d'un modèle de prédiction, qui minimise par exemple l'erreur quadratique entre les prédictions et les réalisations de la variable à prédire, ou qui maximise la vraisemblance d'un modèle conditionnel de la variable dépendante. Nos résultats sur des séries financières montrent que de meilleurs résultats peuvent être obtenus quand les paramètres du modèles sont plutôt choisis de manière à maximiser le critère financier voulu, ici les profits en tenant compte des pertes attribuables aux transactions. Des expériences réalisées avec 35 titres canadiens sont décrites.

The application of this work is to decision taking with financial time-series, using learning algorithms. The traditional approach is to train a model using a prediction criterion, such as minimizing the squared error between predictions and actual values of a dependent variable, or maximizing the likelihood of a conditional model of the dependent variable. We find here with noisy time-series that better results can be obtained when the model is directly trained in order to maximize the financial criterion of interest, here gains and losses (including those due to transactions) incurred during trading. Experiments were performed on portfolio selection with 35 Canadian stocks
URI: http://www.cirano.qc.ca/pdf/publication/98s-21.pdf
https://depot.erudit.org/id/000393dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

98s-21.pdf (Adobe PDF ; 523.79 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016