FrançaisEnglish

Érudit | Dépôt de documents >
CIRPÉE - Centre interuniversitaire sur le risque, les politiques économiques et l'emploi >
Cahiers de recherche du CIRPÉE >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/001094dd

Title: Theory and Inference for a Markov-Switching GARCH Model
Authors: Bauwens, Luc
Preminger, Arie
Rombouts, Jeroen V.K.
Keywords: GARCH
Markov-switching
Bayesian inference
Issue Date: 2007-10
Series/Report no.: Cahiers du CIRPÉE;07-33
Abstract: We develop a Markov-switching GARCH model (MS-GARCH) wherein the conditional mean and variance switch in time from one GARCH process to another. The switching is governed by a hidden Markov chain. We provide sufficient conditions for geometric ergodicity and existence of moments of the process. Because of path dependence, maximum likelihood estimation is not feasible. By enlarging the parameter space to include the state variables, Bayesian estimation using a Gibbs sampling algorithm is feasible. We illustrate the model on SP500 daily returns.
URI: http://132.203.59.36/CIRPEE/cahierscirpee/2007/files/CIRPEE07-33.pdf
https://depot.erudit.org/id/001094dd
Appears in Collections:Cahiers de recherche du CIRPÉE

Files in This Item:

CIRPEE07-33.pdf, (Adobe PDF ; 364.37 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016