FrançaisEnglish

Érudit | Dépôt de documents >
CIRANO - Centre interuniversitaire de recherche en analyse des organisations >
Cahiers scientifiques >

Please use this identifier to cite or link to this item:

https://depot.erudit.org//id/000426dd

Title: Seasonal Time Series and Autocorrelation Function Estimation
Authors: Bell, William R.
Ghysels, Eric
Lee, Hahn Shik
Issue Date: 1997-10
Publisher: Centre interuniversitaire de recherche en analyse des organisations (CIRANO)
Series/Report no.: Série scientifique (CIRANO);97s-35
Scientific series (CIRANO);97s-35
Abstract: Lorsqu'on calcule une fonction d'autocorrélation, il est normal d'enlever d'une série la moyenne non conditionnelle. Cette pratique s'applique également dans le cas des séries saisonnières. Pourtant, il serait plus logique d'utiliser des moyennes saisonnières. Hasza (1980) et Bierens (1993) ont étudié l'effet de la moyenne sur l'estimation d'une fonction d'autocorrélation pour un processus avec racine unitaire. Nous examinons le cas de processus avec racines unitaires saisonnières. Nos résultats théoriques de distribution asymptotique, de même que nos simulations de petits échantillons, démontrent l'importance d'enlever les moyennes saisonnières quand on veut identifier proprement les processus saisonniers.

Time series are demeaned when sample autocorrelation functions are computed. By the same logic it would seem appealing to remove seasonal means from seasonal time series before computing sample autocorrelation functions. Yet, standard practice is only to remove the overall mean and ignore the possibility of seasonal mean shifts in the data. Whether or not time series are seasonally demeaned has very important consequences on the asymptotic behavior of autocorrelation functions (henceforth ACF). Hasza (1980) and Bierens (1993) studied the asymptotic properties of the sample ACF of non-seasonal integrated processes and showed how they depend on the demeaning of the data. In this paper we study the large sample behavior of the ACF when the data generating processes are seasonal with or without seasonal unit roots. The effect on the asymptotic distribution of seasonal mean shifts and their removal is investigated and the practical consequences of these theoretical developments are also discussed. We also examine the small sample behavior of ACF estimates through Monte Carlo simulations.
URI: http://www.cirano.qc.ca/pdf/publication/97s-35.pdf
https://depot.erudit.org/id/000426dd
ISSN: 1198-8177
Appears in Collections:Cahiers scientifiques

Files in This Item:

97s-35.pdf (Adobe PDF ; 165.77 kB)

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

 

About Érudit | Subscriptions | RSS | Terms of Use | Contact us |

Consortium Érudit ©  2016