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Abstract:  
Sequential Monte Carlo (SMC) methods are widely used for non-linear filtering 
purposes. Nevertheless the SMC scope encompasses wider applications such as 
estimating static model parameters so much that it is becoming a serious alternative to 
Markov-Chain Monte-Carlo (MCMC) methods. Not only SMC algorithms draw posterior 
distributions of static or dynamic parameters but additionally provide an estimate of the 
marginal likelihood. The tempered and time (TNT) algorithm, developed in the paper, 
combines (off-line) tempered SMC inference with on-line SMC inference for drawing 
realizations from many sequential posterior distributions without experiencing a particle 
degeneracy problem. Furthermore, it introduces a new MCMC rejuvenation step that is 
generic, automated and well-suited for multi-modal distributions. As this update relies on 
the wide heuristic optimization literature, numerous extensions are already available. 
The algorithm is notably appropriate for estimating Change-point models. As an 
example, we compare Change-point GARCH models through their marginal likelihoods 
over time. 
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1 Introduction

Sequential Monte Carlo (SMC) algorithm is a simulation-based procedure used in Bayesian

framework for drawing distributions. Its core idea relies on an iterated application of the

importance sampling technique to a sequence of distributions converging to the distribution

of interest1. For many years, on-line inference was the most relevant applications of SMC

algorithms. Indeed, one powerful advantage of sequential filtering consists in being able to

update the distributions of the model parameters in light of new coming data (hence the term

on-line) allowing for important time saving compared to off-line methods such as the popular

Markov-Chain Monte-Carlo (MCMC) procedure that requires a new estimation based on all

the data at each new observation entering in the system. Other SMC features making it

very promising are an intuitive implementation based on the importance sampling technique

(Geweke (1989), Smith and Gelfand (1992) and Gordon, Salmond, and Smith (1993)) and a

direct computation of the marginal likelihood (i.e. the normalizing constant of the targeted

distribution, see e.g. Chib, Nardari, and Shephard (2002)).

Recently, the SMC algorithms have been applied to inference of static parameters, field in

which the MCMC algorithm excels. Neal (1998) provides a relevant improvement in this

direction by building a SMC algorithm, named annealed importance sampling (AIS), that

sequentially evolves from the prior distribution to the posterior distribution using a tem-

pered function, which basically consists in gradually introducing the likelihood information

into the sequence of distributions by means of an increasing function. To preclude particles

degeneracies, he uses MCMC kernels at each SMC iteration. Few years later, Chopin (2002)

proposes an Iterated Batch Importance Sampling (IBIS) SMC algorithm, a special case of

the Re-sample Move (RM) algorithm of Gilks and Berzuini (2001), which sequentially evolves

over time and adapts the posterior distribution using the previous approximate distribution.

Again, an MCMC move (and a re-sampling step) is used for diversifying the particles. The

SMC sampler (see Del Moral, Doucet, and Jasra (2006)) unifies, among others, these SMC

algorithms in a theoretical framework. It is shown that the methods of Neal (1998) and

Gilks and Berzuini (2001) arise as special cases with a specific choice of the ’backward kernel

function’ introduced in their paper. These researches have been followed by empirical works

(see Jasra, Stephens, and Holmes (2007), Jasra, Stephens, Doucet, and Tsagaris (2011) and

1whereas the sequence does not have to evolve over the time domain
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Jeremiah, Sisson, Marshall, Mehrotra, and Sharma (2011)) where it is demonstrated that

the SMC mixing properties often dominate MCMC methods based on a single Markov-chain.

Nowadays papers are devoted to build self-adapting SMC samplers by automatically tuning

the MCMC kernels (e.g. Fearnhead and Taylor (2013)), by marginalizing the state vector (in

a state space specification) using the particle MCMC framework (e.g. Fulop and Li (2013)

and Chopin, Jacob, and Papaspiliopoulos (2013)), to construct efficient SMC samplers for

parallel computations (see Durham and Geweke (2012)) or to simulate from complex multi-

modal posterior distributions (e.g. Herbst and Schorfheide (2012)).

In this paper, we document a generic SMC inference for Change-point models that can addi-

tionally be updated through time. For example, in a model comparison context the standard

methodology consists in repeating estimations of the parameters given an evolving number of

observations. In circumstances where the Bayesian parameter estimation is highly demanding

as it is usually the case for complex models and where the number of available observations

is huge, this iterative methodology can be too intensive. Change-point (CP) Generalized Au-

toregressive Conditional Heteroskedastic (GARCH) processes may require several hours for

one inference (e.g. Bauwens, Dufays, and Rombouts (2013)). A recursive forecast exercise on

many observations is therefore out of reach. Our first contribution is a new SMC algorithm,

called the tempered and time (TNT), which exhibits the AIS, the IBIS and the RM samplers

as special cases. It innovates by switching over tempered and time domains for estimating

posterior distributions. For instance, it firstly iterates from the prior to the posterior distri-

butions by means of a sequence of tempered posterior distributions. It then updates in the

time dimension the slightly different posterior distributions by sequentially adding new obser-

vations, each SMC step providing all the forecast summary statistics relevant for comparing

models. The TNT algorithm combines the tempered approach of Neal (1998) with the IBIS

algorithm (IBIS) of Chopin (2002) if the model parameters are static or with the RM method

of Gilks and Berzuini (2001) if their support evolves with the SMC updates. Since all these

methods are built on the same SMC steps (re-weighting, re-sampling and re-juvenating) and

the same SMC theory, the combination is achieved without efforts.

The proposed methodology exhibits several advantages over SMC algorithms that directly

iterate on the time domain (Gilks and Berzuini (2001) and Chopin (2002)). In fact, these
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algorithms may experience high particle discrepancies. Although the problem is more acute

for models where the parameter space evolves through time, it remains an issue for models

with static parameters at the very first SMC steps. To quote Chopin (2002) (p 546) :

Note that the particle system may degenerate strongly in the very early stages,

when the evolving target distribution changes the most[...].

The combination of tempered and time SMC algorithms allows for limiting this particle

discrepancy observed at the early stage since the first posterior distribution of interest is

estimated by taking into account more than a few observations. One advantage of using a

sequence of tempered distributions to converge to the posterior distribution consists in the

number of SMC steps that can be used. Compared to SMC algorithms that directly iterate

on time domain where the sequence of distributions is obviously defined by the number of

data, the tempered approach allows for choosing this sequence of distribution and for tar-

geting the posterior distribution of interest by using as many bridging distributions as needed.

Many SMC algorithms rely on MCMC kernels to rejuvenate the particles. The TNT sampler

makes no exception. We contribute by proposing new generic MCMC kernels based on the

heuristic optimization literature. These kernels are well appropriated in the SMC context as

they build their updates on particles interactions. We start by emphasizing that the DiffeRen-

tial Evolution Adaptive Metropolis (DREAM, see Vrugt, ter Braak, Diks, Robinson, Hyman,

and Higdon (2009)), the walk move (see Christen and Fox (2010)) and the stretch one (see

Foreman-Mackey, Hogg, Lang, and Goodman (2013)) separately introduced in the statistic

literature as generic Metropolis-Hastings proposals are in fact standard mutation rules of

the Differential Evolution (DE) optimization. From this observation, we propose seven new

MCMC updates based on the heuristic literature and emphasize that many other extensions

are possible. The proposed MCMC kernel is adapted for continuous parameters. Conse-

quently, discrete parameters such as the break parameters of Change-point models cannot

directly be inferred from our algorithm. To solve this issue, we transform the break param-

eters into continuous ones which make them identifiable up to a discrete value. To illustrate

the potential of the TNT sampler, we compare CP-GARCH models differing by their number

of regimes on the S&P 500 daily percentage returns.
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The paper is organized as follows. Section 2 presents the SMC algorithm as well as its

theoretical derivation. Section 3 introduces the different Metropolis-Hastings proposals which

compose what we call the Evolutionary MCMC. We then detail a simulation exercise on the

CP-GARCH process in section 4. Eventually we study the CP-GARCH performance on the

S&P 500 daily percentage returns in section 5. Section 6 concludes.

2 Off-line and On-line inferences

We first theoretically and practically introduce the tempered and time (TNT) framework. To

ease the discussion, let consider a standard state space model:

yt = f(θ, st, ωt) (1)

st = g(θ, st−1, vt) (2)

where st is a random variable driven by a Markov chain and the functions f(-) and g(-) are

deterministic given their arguments. The observation yt belongs to the set y1:T = {y1, ..., yT }
with T denoting the sample size and is assumed to be independent conditional to the state st

and θ with distribution f(yt|θ, st). The innovations ωt and vt are mutually independent and

stand for the noise of the observation/state equations. The model parameters included in θ

do not evolve over time (i.e. they are static). Let denote the set of parameters at time t by

xt = {θ, s1:t} defined on the measurable space Et.

We are interested in estimating many posterior distributions starting from π(xτ |y1:τ ), where
τ << T , until T . The SMC algorithm approximates these posterior distributions with

a large (dependent) collection of M weighted random samples {W i
t , x

i
t}Mi=1 where W i

t >

0 and
∑M

i=1W
i
t = 1 such that as M → ∞, the empirical distribution converges to the pos-

terior distribution of interest, meaning that for any π(xt|y1:t)-integrable function g : Et → ℜ
:

M∑
i=1

W i
t g(x

i
t) →

∫
Et

g(xt)π(xt|y1:t)dxt almost surely.

The TNT method combines an enhanced Annealed Importance sampling2 (AIS, see Neal

2enhanced in the sense that the AIS incorporates a re-sampling step
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(1998)) with the Re-sample Move (RM) SMC inference of Gilks and Berzuini (2001)3. To

build the TNT algorithm, we rely on the theoretical paper of Del Moral, Doucet, and Jasra

(2006) that unifies the two SMC methods into one SMC framework called ’SMC sampler’.

The TNT algorithm first estimates an initial posterior distribution, namely π(xτ |y1:τ ), by an

enhanced AIS (E-AIS) algorithm and then switches from the tempered domain to the time do-

main and sequentially updates the approximated distributions from π(xτ |y1:τ ) to π(xT |y1:T )
by adding one by one the new observations. We now begin by mathematically deriving the

validity of the SMC algorithms under the two different domains and by showing that they

are particular cases of the SMC sampler. The practical algorithm steps are given afterward

(see subsection 2.3).

2.1 E-AIS : the tempered domain

The first phase, carried out by an E-AIS, creates a sequence of probability measures {πn}pn=0

that are defined on measurable spaces {En, ξn}, where En = En+1 = E ∋ xτ , n ∈ {0, 1, ..., p}
is a counter and does not refer to ’real time’, p denotes the number of posterior distribution

estimations and πp coincides with the first posterior distribution of interest π(xτ |y1:τ ). The se-
quence distribution, used as bridge distributions, is defined as πn(xn|y1:τ ) = γ(y1:τ |xn)φ(n)f(xn)/Zn

where Zn =
∫
E γ(y1:τ |xn)φ(n)f(xn)dxn denotes the normalizing constant, γ(y1:τ |xn) and f(xn)

respectively are the likelihood function and the prior density of the model. Through an in-

creasing function φ(n) respecting the bound conditions φ(0) = 0 and φ(p) = 1, the E-AIS

artificially builds a sequence of distributions that converges to the posterior distribution of

interest.

Remark 1: The E-AIS makes up a sequence of random variables {xn}pn=0 that exhibit the

same support E also shared by xτ . The random variable xτ coincides with xp since φ(p) = 1.

The E-AIS is merely a sequential importance sampling technique where the draws of a pro-

posal distribution ηn with MCMC kernel combinations are used to approximate the next

posterior distribution πn+1, the difficulty lying in specifying the sequential proposal distri-

bution. Del Moral, Doucet, and Jasra (2006) theoretically develop a coherent framework for

3The IBIS algorithm being a particular case.
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helping to choose a generic sequence of proposal distributions.

In the SMC sampler framework, we augment the support of the posterior distribution ensuring

that the targeted posterior distribution marginally arises :

π̃n(x1:n) = πn(xn)

n∏
k=2

Lk(xk−1|xk),

=
γn(xn)

Zn

n∏
k=2

Lk(xk−1|xk),

where γn(xn) = γ(y1:τ |xn)φ(n)f(xn), Zn =
∫
E γ(y1:T |xn)φ(n)f(xn)dxn is the normalizing con-

stant, and Lk(xk−1|xk) is a backward MCMC kernel such that
∫
E Lk(xk−1|xk)dxk−1 = 1.

By defining a sequence of proposal distributions as

ηn(x1:n) = f(x1)
n∏

k=2

Kk(xk|xk−1),

where Kk(xk|xk−1) is an MCMC kernel with stationary distribution πk such that it verifies

πk(xk) =
∫
E Kk(xk|xk−1)πk(xk−1)dxk−1, we derive a recursive equation of the importance

weight :

wn(x1:n) =
γn(xn)

∏n
k=2 Lk(xk−1|xk)

Znf(x1)
∏n

k=2Kk(xk|xk−1)
,

= wn−1(x1:n−1)
Zn−1γn(xn)Ln(xn−1|xn)

Znγn−1(xn−1)Kn(xn|xn−1)
.

For a smooth increasing tempered function φ(n), we can argue that πn−1 will be close to πn.

We therefore define the backward kernel by detailed balance argument as

Ln(xn−1|xn) =
πn(xn−1)

πn(xn)
Kn(xn|xn−1). (3)

It gives the following weights :

wn(x1:n) = wn−1(x1:n−1)
Zn−1γn(xn−1)

Znγn−1(xn−1)
, (4)

∝ wn−1(x1:n−1)γ(y1:τ |xn−1)
φn−φn−1 .

The normalizing constant Zn is approximated as

Zn

Zn−1
≈

M∑
i=1

W i
n−1

γn(xn−1)

γn−1(xn−1)
,
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where W i
n−1 = wn−1(x

i
1:n−1)/

∑M
j=1wn−1(x

j
1:n−1), i.e. the normalized weight.

The E-AIS requires to tune many parameters : an increasing function φ(n), MCMC kernels

of invariant distribution πn(.), a number of particles M , of iterations p, of MCMC steps J .

Tuning these parameters can be difficult. Some guidance are given in Herbst and Schorfheide

(2012) for DSGE models. For example, they propose a quadratic tempered function φ(n). It

slowly increases for small values of n and the step becomes larger and larger as n tends to

p. In this paper, the TNT algorithm generically adapts the different user-defined parameters

and belongs to the class of adaptive SMC algorithms. It automatically adjusts the tempered

function with respect to an efficiency measure as it was proposed by Jasra, Stephens, Doucet,

and Tsagaris (2011). By doing so, we preclude the difficult choice of the function φ(n) and

the number of iteration p. The number of MCMC steps J will be controlled by the accep-

tance rate exhibited by the MCMC kernels. The choice of MCMC kernels and the number of

particles are discussed later (see section 3).

2.2 The Re-sample Move algorithm : the time domain

Once we have a set of particles that approximates the first posterior distribution of interest

π(xτ |y1:τ ), a second phase takes place. Firstly, let assume that the support of xt does not

evolve over time (i.e. xt ∈ E ∀ t). In this context, the SMC sampler framework shortly

reviewed here for the tempered domain still applies. Let define the following distributions :

πt(xt) = π(xt|y1:t),

π̃t(x1:t) = πt(xt)
t∏

k=2

Lk(xk−1|xk),

ηt(x1:t) = f(x1)
t∏

k=2

Kk(xk|xk−1),

Lk(xk−1|xk) =
πk(xk−1)

πk(xk)
Kk(xk|xk−1).

Then the weight equation of the SMC sampler are equal to :

wt(x1:t) = wt−1(x1:t−1)
πt(xt−1)

πt−1(xt−1)
, (5)
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which is exactly the weight equation of the IBIS algorithm (see Chopin (2002), step 1, page

543).

Let now consider the more difficult case where a subset of the support of xt evolves with t

such as xt = {xt−1, st} = {θ, s1:t−1, st} (see state space model equations (1),(2)) meaning that

∀t ∈ [1, T ], xt ∈ Et and Et−1 ⊂ Et. The previous method cannot directly be applied (due to

the backward kernel) but with another choice of the kernel functions, the SMC sampler also

operates. Let define the following distribution :

πt(xt) = π(xt|y1:t), (6)

π̃t(x1:t, x
∗
2:t) = πt(xt)

t∏
k=2

Lk(xk−1, x
∗
k|xk), (7)

ηt(x1:t, x
∗
2:t) = f(x1)

t∏
k=2

K̃k(xk, x
∗
k|xk−1), (8)

K̃k(xk, x
∗
k|xk−1) = q̃k(x

∗
k|xk−1)Kk(xk|x∗k), (9)

Lk(xk−1, x
∗
k|xk) = qk(xk−1|x∗k)Kk(x

∗
k|xk), (10)

Kk(x
∗
t |xt) =

πk(x
∗
k)Kk(xk|x∗k)
πk(xk)

by detailed balance argument. (11)

To deal with the time-varying dimension of xt, we augment the support of the artificial se-

quence of distributions by new random variables (see x∗2:t in equation (7)) while ensuring that

the posterior distribution of interest πt(xt) marginally arises. Sampling from the proposal

distribution ηt(x1:t, x
∗
2:t) is achieved by drawing from the prior distribution and then by se-

quentially sampling from distributions K̃k(xk, x
∗
k|xk−1), which is composed by a user-defined

distribution q̃k(x
∗
k|xk−1) and an MCMC kernel exhibiting πk(xk) as invariant distribution.

Under this framework, the weight equation of the SMC sampler becomes :

wt(x1:t, x
∗
2:t) = wt−1(x1:t−1, x

∗
2:t−1)

πt(x
∗
t )qt(xt−1|x∗t )

πt−1(xt−1)q̃t(x∗t |xt−1)
. (12)

By setting the distributions qt(xt−1|x∗t ) = δ{xt−1=θ∗,s∗
1:t−1

}, where δi denotes the probability

measure concentrated at i, and q̃t(x
∗
t |xt−1) = νt(s

∗
t |xt−1)δ{θ∗,s∗

1:t−1
=xt−1}, we recover the weight

equation of Gilks and Berzuini (2001) (see eq. (20), page 135) :

wt(x1:t, x
∗
2:t) = wt−1(x1:t−1, x

∗
2:t−1)

πt(xt−1, s
∗
t )

πt−1(xt−1)νt(s∗t |xt−1)
. (13)
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Like in Gilks and Berzuini (2001), only the distribution νt(.) has to be specified. For example,

it can be set either to the prior distribution or the full conditional posterior distribution (if

the latter exhibits a closed form).

Remark 2: The division π(xt|y1:t)
π(xt−1|y1:t−1)

appearing in weight equations ((5),(13)) can be reduced

to Zt−1

Zt
γ(yt|xt, y1:t−1)f(st|xt−1) which highly limits the computational cost of the weights.

2.3 The TNT algorithm

The algorithm initializes the M particles using the prior distributions, sets each initial weight

{W i
0}Mi=1to W i

0 = 1
M and then iterates from n = 1, . . . , p, p+ 1, ..., p+ (T − τ) + 1 as follows

• Correction step: ∀i ∈ [1,M ], Re-weight each particle with respect to the nth posterior

distribution

– If in tempered domain ( n ≤ p ) :

w̃i
n = γ(y1:τ |xin−1)

φ(n)−φ(n−1) (14)

– If in time domain ( n > p ) and the parameter space does not evolve over time (i.e.

En−1 = En) :

w̃i
n =

γ(y1:τ+n−p|xin−1)

γ(y1:τ+n−p−1|xin−1)
= γ(yτ+n−p|xin−1, y1:τ+n−p−1) (see remark 2) (15)

– If in time domain ( n > p ) and the parameter space increases (i.e. En−1 ⊂ En) :

Set xin = {xin−1, s
i
n} with sin ∼ νn(.|xin−1).

w̃i
n =

γ(y1:τ+n−p|xin)f(xin)
γ(y1:τ+n−p−1|xin−1)f(x

i
n−1)νn(s

i
n|xin−1)

(16)

Compute the unnormalized weights : W̃ i
n = w̃i

nW
i
n−1.

Normalize the weights : W i
n = W̃ i

n∑M
j=1

W̃ j
n

• Re-sampling step: Compute the Effective Sample Size (ESS) as

ESS =
1∑M

i=1(W
i
n)

2
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If ESS < κ where κ is a user-defined threshold then re-sample the particles and reset

the weight uniformly.

• Mutation step: ∀i ∈ [1,M ], run J steps of an MCMC kernel with invariant distribution

πn(xn|y1:τ ) for n ≤ p and π(xτ+n−p|y1:τ+n−p) for n > p.

Remark 3: According to the algorithm derivation, note that the mutation step is not required

at each SMC iteration.

When the parameter space does not change over time (i.e. tempered or time domains with

En−1 = En), the algorithm reduces to the SMC sampler with a specific choice of the back-

ward kernel (see equation (3), more discussions in Del Moral, Doucet, and Jasra (2006)) that

implies that πn−1(.) must be close to πn(.) for non-degenerating estimations. The backward

kernel is introduced for avoiding the choice of an importance distribution at each iteration of

the SMC sampler. This specific choice of the backward kernel does not work for model where

the parameter space increases with the sequence of posterior distributions (hence the use of

a second weighting scheme when n > p, see equation (12)) but the algorithm also reduces to

a SMC sampler with another backward kernel choice (see (10)). In empirical applications,

we first estimate an off-line posterior distribution with fixed parameters and then by just

switching the weight equation, we sequentially update the posterior distributions by adding

new observations. This two phases preclude the particle degeneration that may occur at the

early stage of the SMC algorithms that directly iterate on time such as the IBIS and the RM

algorithms. The tempered function φ(n) allows for converging to the first targeted posterior

distribution as slowly as we want. Indeed, as we are not constraint by the time domain, we

can sequentially iterate as much as needed to get rid of degeneracy problems. The choice of

the tempered function φ(n) is therefore relevant. In the spirit of a black-box algorithm as is

the IBIS one, the section 2.4 shows how the TNT algorithm automatically adapts it at each

SMC iteration.

During the second phase (i.e. updating the posterior distribution through time), one may

observe high particle discrepancies especially when the space of the parameters evolves over
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time4. In that case, one can run an entire E-AIS on the data y1:τ+n−p when a degeneracy

issue is detected (i.e. the ESS falls below a user-defined value κ1 < κ). The adaption of the

tempered function (discussed in the next section) makes the E-AIS faster than usual since

it reduces the number of iteration p at its minimum given the ESS threshold κ. Controlling

for degeneracy issue is therefore automated and a minimal number of effective sample size is

ensured at each SMC iteration.

2.4 Adaption of the tempered function

Previous works on SMC samplers usually provide a tempered function φ(n) obtained by

empirical trials5, making these functions model-dependent. Jasra, Stephens, Doucet, and

Tsagaris (2011) innovate by proposing a generic choice of φ(n) that only requires a few more

codes. The E-AIS correction step (see equation (14)) of iteration n is modified as follows

1. Find φ̄n such that

1∑M
i=1(W

i
n)

2
= 0.95ESSn−1,

where ESSn−1 refers to the Effective Sample Size of the previous SMC iteration, W i
n =

W̃ i
n∑M

j=1
W̃ j

n

is the normalized weights and the unnormalized W̃ i
n depends on φ̄n as

w̃i
n =

γ(y1:τ |xin−1)
φ̄n

γ(y1:τ |xin−1)
φ̄n−1

.

2. Compute the normalized weights {W i
n}Mi=1 under the value of φ̄n.

Roughly speaking, we find the value φ̄n that makes the ESS criterion close to the previous

one in order to keep the artificial sequence of distributions very similar as required by the

choice of the backward kernel 3.

Because the tempered function is adapted on the fly using the SMC history, the usual SMC

asymptotic results do not apply. Del Moral, Doucet, and Jasra (2012) and Beskos, Jasra, and

4Theorem 1 in Chopin (2002) ensures that with a sufficiently large number of particles M , any relative

precision of the importance sampling can be obtained if the number of observations already covered is large

enough in the IBIS context.
5a piecewise cooling linear function for Del Moral, Doucet, and Jasra (2006) and a quadratic function for

Herbst and Schorfheide (2012).
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Thiery (2013) provide asymptotic results by assuming that the adapted tempered function

converges to the optimal one (if it exists).

3 Choice of MCMC kernels

The MCMC kernel is the most computational demanding step of the algorithm and determines

the posterior support exploration, making its choice very relevant. Chopin (2002) emphasizes

that the IBIS algorithm is designed to be a true ’black box’ (i.e. whose the sequential steps

are not model-dependent), reducing the task of the practitioner to only supply the likelihood

function and the prior densities. For this purpose, a natural choice of MCMC kernel is the

Metropolis-Hastings with an independent proposal distribution whose summary statistics are

derived using the particles of the previous SMC step and the weight of the current step. The

IBIS algorithm uses an independent Normal proposal. It is worth noting that this ’black box’

structure is still applicable in this framework that combines SMC iterations on tempered and

time domains.

Nevertheless the independent Metropolis-Hastings kernel may perform poorly at the early

stage of the algorithm if the posterior distribution is well behaved and at any time otherwise.

We rather suggest using a new adaptive Metropolis algorithm of random walk (RW) type

that is generic, fully automated, suited for multi-modal distributions and that dominates

most of other RW alternatives in terms of sampling efficiencies. The algorithm is inspired

from the heuristic Differential Evolution (DE) optimization literature (for a review, see Das

and Suganthan (2011)).

The DE algorithms have been designed to solve optimization problems without requiring

derivatives of the objective function. The algorithms are initiated by randomly generating

a set of parameter values. Afterward, relying on a mutation rule and a cross-over (CR)

probability, these parameters are updated in order to explore the space and to converge to the

global optimum. The mutation equation is usually linear with respect to the parameters and

the CR probability determines the number of parameters that changes at each iteration. The

first DE algorithm dates back to Storn and Price (1997). Nowadays, numerous alternatives

based on this principle have been designed and many of them display a different mutation

rule. Considering a set of parameters {xit}Mi=1 lying in ℜd, the standard algorithm operates by

sequentially updating each parameter given the other ones. For a specific parameter xjt , the
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mutation equation to obtain a new value x̃t are typically chosen among the following ones

x̃t = xjt + F (
2∑

g=1

x
r1(g)
t −

2∑
h=1

x
r2(h)
t ), (17)

x̃t = xjt + F (xjt − xbestt ) + F (xr1t − xr2t ), (18)

x̃t = xbestt + F (
2∑

g=1

x
r1(g)
t −

2∑
h=1

x
r2(h)
t ), (19)

where i 6= r1(g), r2(h); r1(.) and r2(.) stand for random integers uniformly distributed on the

support [1,M ]−i and it is required that r1(g) 6= r2(h) when g = h, F is a fixed parameter and

xbestt denotes the parameter related to the highest objective function in the swamp. Then, for

each element of the new vector x̃t, the CR step consists in replacing its value with the one of

xjt according to a fixed probability.

The DE algorithm is appealing in MCMC frameworks as it has been built up to explore

and find global optima of complex objective functions. However, the DE method has to

be adapted if one wants to draw realizations from a complex distribution. To employ the

mutation equations (17), (18) and (19) into an MCMC algorithm, we need to insure that

the detailed balance is preserved, that the Markov-chain is ergodic with a unique stationary

distribution and that this distribution is the targeted one. To do so, we slightly modify the

mutation equations as follows

x̃t = xjt + F (δ, d)(
δ∑

g=1

xr1(g) −
δ∑

h=1

xr2(h)) + ζ, (20)

x̃t = xjt + ZW(xjt −
∑δ

g=1 x
r1(g)
t

δ
), (21)

x̃t =

∑δ
g=1 x

r1(g)
t

δ
+ ZStretch(x

j
t −

∑δ
g=1 x

r1(g)
t

δ
), (22)

in which ζ ∼ N(0, η2xI); δ ∼ U [1, 3], F (δ, d) is a fixed parameter, ZRW and ZStretch are random

variables driven by two different distributions defined below.

These three update rules (20), (21) and (22) are valid in an MCMC context and have been sep-

arately proposed in the literature. The first equation (20) refers to the DiffeRential Evolution

Adaptive Metropolis (DREAM) proposal distribution of Vrugt, ter Braak, Diks, Robinson,

Hyman, and Higdon (2009) and is the MCMC analog of the DE mutation (17). In their

paper, it is shown that the proposal distribution is symmetric and so that the acceptance

ratio is independent of the proposal density. Also, they fix ηx to a very small value (such
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as 1e-4) and F (δ, d) to 2.38/
√
2δd because it constitutes the asymptotic optimal choice for

Normal posterior distributions as demonstrated in Roberts and Rosenthal (2001).6 Since the

posterior distribution is rarely Normal, we prefer adapting it from one SMC iteration to an-

other so as the scale parameter is fixed during the entire MCMC moves of each SMC step.

The adapting procedure is detailed below. Importantly, Vrugt, ter Braak, Diks, Robinson,

Hyman, and Higdon (2009) provide empirical evidence that the DREAM equation dominates

most of the other RW alternatives (including the optimal scaling and the adaptive ones) in

terms of sampling efficiencies.

The second equation (21) is an adapted version of the walk move of Christen and Fox (2010)

and can be thought as the MCMC equivalence of the mutation (18).7 When the density gW (.)

of ZW verifies gW(−z/(1 + z)) = (1 + z)gW(z), it can be shown that the proposal parameter

x̃t is accepted with a probability given by

min{|1 + ZW|d−1π(x̃t|y1:t)
π(xjt |y1:t)

, 1}. (23)

As in their paper, we set the density to gW(z) ∝ 1/
√
1 + z if z ∈ [ −aW

1+aW
, aW] and zero

otherwise. The cumulative density function, its inverse and the first two moments of the

distributions are given by

FZW
(x) = 1− (aW + 1)1/2 − (x+ 1)1/2

(aW + 1)1/2 − (aW + 1)−1/2
,

F−1
ZW

(u) = −1 + [(aW + 1)−1/2 + u((aW + 1)1/2 − (aW + 1)−1/2)]2,

E(ZW ) =
a2W

3(aW + 1)
,

V (ZW ) = a2W
4a2W + 15aW + 15

45(aW + 1)2
.

In the seminal paper of the walk move, the parameter aW is set to 2. However, we rather

suggest solving the equation V (ZW ) = 2.38/
√
2δd in order to obtain the optimal value of

aW . Note that equation (21) is slightly different from the standard walk move of Christen

and Fox (2010) in the sense that the random parameter δ can be greater than one and that

only one realization of ZW is generated in order to update an entire new vector xjt . The

6in the sense of M → ∞

7The best particle is replaced by an average over the particles
∑δ

g=1 x
r1(g)
t

δ
which further diversifies the

proposed parameters.
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latter modification is motivated by the success of the novel MCMC based on deterministic

proposals (see the Transformation-based MCMC of Dutta and Bhattacharya (2014)) and by

the DREAM update which also exhibits one (fixed) parameter F (δ, d) to propose the entire

new vector.

Lastly, the third equation (22) corresponds to the stretch move proposed in Christen and Fox

(2010) and improved by Foreman-Mackey, Hogg, Lang, and Goodman (2013). The probability

of accepting the proposal x̃t is

min{|ZS|d−1π(x̃t|y1:t)
π(xjt |y1:t)

, 1}, (24)

when the density gS(.) of ZS verifies zgS(z) = gS(z
−1). We adopt the same density function as

in their paper which is given by gS(z) = 1/
√
z for z ∈ [1/aS , aS ], aS ∈ ℜ+ and zero otherwise.

The corresponding cumulative density function, its inverse, the expectation and the variance

are analytically tractable and given by

FZS
(x) =

√
aSx− 1

a− 1
,

F−1
ZS

(u) =
(u(aS − 1) + 1)2

aS
,

E(ZS) =
as + a−1

S + 1

3
,

V (ZS) =
(aS − 1)2(4a2S + 7aS + 4)

45aS
.

In the standard stretch move, the parameter aS is set to 2.5. Like the DREAM algorithm, the

stretch move has been proven to be a powerful generic MCMC approach to generate complex

posterior distributions. The method is becoming very popular in astrophysics (see references

in Foreman-Mackey, Hogg, Lang, and Goodman (2013)).

Once it is recognized that all these updates are also involved in the DE optimization problems,

incorporating many other techniques from the latter becomes straightforward. To highlight

the potential, we extend the DREAM, the walk and the stretch moves by proposing new

update equations that are derived from the trigonometric move, the standard DE mutation

and the firefly optimization.

In the DE literature, Fan and Lampinen (2003) suggests using a trigonometric mutation

equation based on three random parameters xr1t , xr2t , xr3t and their corresponding posterior
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density values γ(y1:t|xrit )f(xrit ) with i = 1, 2, 3. From these quantities, the new parameter is

given by

xtrigot =
3∑

i=1

xrit /3 + (p2 − p1)(x
r1
t − xr2t ) + (p3 − p2)(x

r2
t − xr3t ) + (p1 − p3)(x

r3
t − xr1t ),

in which pi ∝ γ(y1:t|xrit )f(xrit ) for i ∈ [1, 3] are probabilities such that
∑3

i=1 pi = 1. Similarly,

we can extend the DREAM, the walk and the stretch moves using the trigonometric parameter

as follows

DREAM : x̃t = xjt + ZDirF (δ = 1, d)(xtrigot − xqt ) + ζ, (25)

Walk move : x̃t = xjt + ZRW(xjt − xtrigot ), (26)

Stretch move : x̃t = xtrigot + ZStretch(x
j
t − xtrigot ), (27)

where ZDir = 1 with probability 0.5 and -1 otherwise. Note that due to the random variable

ZDir, the DREAM proposal (25) is still symmetric and therefore the acceptance ratio remains

identical to the standard RW one.

The last two extensions are adaptions only for the stretch and the walk moves (as for the

DREAM one, it does not change the initial proposal distribution). The next proposal comes

from another heuristic optimization technique. The firefly (FF) algorithm, initially introduced

in Yang (2009), updates the parameters by combining the attractiveness and the distance of

the particles. For our purpose, we define the FF update as

xFFt = xr1t + FFF (x
r1
t − xr2t ),

where FFF is a chosen constant and r1,r2 are taken without replacement in the M − 1

remaining particles. The two new moves based on the FF equation are given by

Walk move : x̃t = xjt + ZRW(xjt − xFFt ), (28)

= xjt + ZRW(xjt − xr1t ) + ZRWFFF (x
r1
t − xr2t ),

Stretch move : x̃t = xFFt + ZStretch(x
j
t − xFFt ), (29)

= xr1t + ZStretch(x
j
t − xr1t ) + (1 + ZStretch)FFF (x

r1
t − xr2t ).

We set FFF of the walk move to 2.38
E(ZRW)

√
2d

and the constant FFF of the stretch move is fixed

to E(ZStretch)
E(ZStretch)+1 .
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Regarding the last new updates, one can notice that the standard Differential Evolution

mutation can also be used to improve the proposal distribution of the stretch and the walk

moves. In particular, we consider the move of the DE optimization given by

xDE
t = xr1t + FDE(x

r2
t − xr3t ),

in which FDE is a fixed constant and r1,r2,r3 are taken without replacement in the M − 1

remaining particles. Inserting this update into the stretch and the walk moves delivers new

proposal distributions as follows

Walk move : x̃t = xjt + ZRW(xjt − xDE
t ), (30)

= xjt + ZRW(xjt − xr1t ) + ZRWFDE(x
r2
t − xr3t ),

Stretch move : x̃t = xDE
t + ZStretch(x

j
t − xDE

t ), (31)

= xr1t + ZStretch(x
j
t − xr1t ) + (1 + ZStretch)FDE [(x

r2
t − xr3t )].

Similarly to the Firefly proposal, we fix FDE of the walk move to 2.38
E(ZRW)

√
2d

and the constant

FDE of the stretch move is set to E(ZStretch)
E(ZStretch)+1 .

The standard DREAM, the walk and the stretch moves are typically used in an MCMC

context. However, when the parameter dimension d is large, many parallel chains must be

run because, as all these updates are based on linear transformations, they can only generate

subspaces spanned by their current positions. To remedy this issue in the MCMC scheme,

Vrugt, ter Braak, Diks, Robinson, Hyman, and Higdon (2009) have introduced the CR proba-

bility. Once the proposal parameter has been generated, each element is randomly kept or set

back to the previous value according to some fixed probability pCR. Eventually, the standard

MH acceptance step takes place. In contrast, these multiple chains arise naturally in SMC

frameworks since the rejuvenate step consists in updating all the particles by some MCMC it-

erations. However, the CR probability has the additional advantage of generating many other

moves of the parameters. For this reason, we also include the CR step into our MCMC kernel.

In order to test all the new move strategies, Table 1 documents the average autocorrela-

tion times over the multivariate random realizations (computed by batch means, see Geyer

(1992)), obtained from each update rule. The dimension of each distribution from which the

realizations are sampled is set to 5 and we consider Normal distributions with low and high
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correlations as well as a student distribution with a degree of freedom equal to 5. From this

short analysis, the DREAM update is the most efficient in terms of mixing. We also observe

that the additional moves perform better than the standard ones for the walk and the stretch

moves.

Stretch move Walk move DREAM

Move 5-dimension Normal distribution

with correlation of 0.5 and variances set to unity

Standard 84.99 106.19 13.79

Trigo 56.62 58.59 20.36

FF 52.21 51.75 –

DE 44.85 66.81 –

5-dimension Normal distribution

with correlation of 0.999 and variances set to unity

Standard 92.94 96.63 34.93

Trigo 63.14 82.83 23.91

FF 59.31 38.54 –

DE 70.07 61.45 –

5-dimension Student distribution

with correlation of 0.999, df = 5 and variances set to unity

Standard 104.59 75.91 23.11

Trigo 54.66 65.38 19.83

FF 38.17 35.21 –

DE 37.01 35.53 –

Table 1: Average of the Autocorrelation times over the 5 dimensions for multiple update

moves and different distributions.

As the performance of a specific Metropolis update generally depends on the distribution

that has to be drawn, we suggest to incorporate all the generic moves in combination with
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a fixed CR probability into the MCMC rejuvenation step of the SMC algorithm. In prac-

tice, at each MCMC iteration, the proposal distribution is chosen among the different update

equations ((20),(21),(22),(25),(26),(27),(28),(29),(30),(31)) according to a multinomial prob-

ability pkernel. Then, some of the new elements of the updated vector are set back to their

current MCMC value according to the CR probability. The proposal is then accepted with

probability that is defined either by the standard RW metropolis ratio or by (23) or (24)

depending on the selected mutation rule.8 By assessing the efficiency of each update equation

with the Mahalanobis distance, one can monitor which proposal leads to the best exploration

of the support and can appropriately and automatically adjust the probability pkernel at the

end of the rejuvenation step. More precisely, once a proposed parameter is accepted, we add

the Mahalanobis distance between the previous and the accepted parameters to the distance

already achieved by the selected move. At the end of each rejuvenation step, the probabilities

pkernel are reset proportionally to the distance performances of all the moves.

Two relevant issues should be discussed. First, the MCMC kernel makes interacting the

particles, which rules out the desirable parallel property of the SMC. To keep this advantage,

we apply the kernel on subsets of particles instead of on all the particles and we perform

paralelization between the subsets. Secondly and more importantly, the SMC theory derived

in Section 2 does not allow for particle interaction. Proposition 1 ensures that the TNT

sampler also works under a DREAM-type MCMC kernel.

Proposition 1. Consider a SMC sampler with a given number of particles M and MCMC

kernels allowing for interacting particles via the proposal distribution (20) or (25). Then, it

yields a standard SMC sampler with particle weights given by equation (4).

Proof. See Appendix A.

Adapting the proof for the walk and the stretch moves is straightforward as the stationary

distribution of the Markov-chain also factorizes into a product of the targeted distribution.

Adaption of the scale parameters F (δ, d), aW and aS

8Although only the chosen mixture enters in the MH acceptance ratio, the MCMC algorithm is still valid.

For further explanations, see Geweke (2005), section Transition Mixtures.
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Since the chosen backward MCMC kernel in the algorithm derivation implies that the con-

secutive distributions approximated by the TNT sampler are very similar, we can analyze the

mixing properties of the previous MCMC kernel to adapt the scale parameters γ(δ, d), aW and

aS . Atchadé and Rosenthal (2005) present a simple recursive algorithm in order to achieve a

specified acceptance rate in an MCMC framework. Considering one scale parameter (either

F (δ, d), aW or aS) generically denoted by cn−1, at the end of the n − 1 SMC step, we adapt

the parameter as follows :

cn−1 = p(cn−2 +
αn−1 − αtargeted

(n− 1)0.6
) (32)

where the function p(.) is such that p(c) = c if c ∈ [A0,+∞] and p(c) = A0 if c < A0, the

parameter αn−1 stands for the acceptance rate of the MCMC kernel of the n−1 SMC step and

αtargeted is a user-defined acceptance rate. The function p(.) prevents from negative values of

the recursive equation and if the optimal scale parameter lies in the compact set [A0,+∞],

the equation will converge to it (in an MCMC context). In the empirical exercise, we fix

the variable A0 to 1e-8 for the DREAM-type move and to 1.01 for the other updates. The

rate αtargeted is set to 1
3 implying that every three MCMC iterations, all the particles have

been approximately rejuvenated. It is worth emphasizing that the denominator (n−1)0.6 has

been chosen as proposed in Atchadé and Rosenthal (2005) but its value, which ensures the

ergodicity property in an MCMC context, is not relevant in our SMC framework since at each

rejuvenation step, the scale parameter cn is fixed for the entire MCMC move. The validity of

this adaption can be theoretically justified by Beskos, Jasra, and Thiery (2013).

When the parameter space evolves over time, the MCMC kernel can become model dependent

since sampling the state vector using a filtering method is often the most efficient technique

in terms of mixing. In special cases where the forward-backward algorithm (Rabiner (1989))

or the Kalman filter (Kalman (1960)) operate, the state can be filtered out. By doing so, we

come back to the framework with static parameter space. For non linear state space model,

recent works of Chopin, Jacob, and Papaspiliopoulos (2013) and Fulop and Li (2013) rely on

the particle MCMC framework of Andrieu, Doucet, and Holenstein (2010) for integrating out

the state vector. We believe that switching from the tempered domain to the time one as

well as employing the Evolutionary MCMC kernel presented above could even more increase

the efficiency of these sophisticated SMC samplers. For example, the particle discrepancies
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of the early stage inherent to the IBIS algorithm is present in all the empirical simulations

of Fulop and Li (2013) whereas with the TNT sampler, we can ensure a minimum ESS value

during the entire procedure.

4 Simulations

We first illustrate the TNT algorithm through a simulation exercise before presenting results

on empirical data. As the TNT algorithm is now completely defined, we start by spelling

out the values set for the different parameters to be tuned. The threshold κ is recommended

to be high as the evolutionary MCMC updates crucially depend on the diversification of the

particles to operate. For that reason we set it to 0.75M. The second threshold κ1 that triggers

a new run of the simulated annealing algorithm is chosen as 0.1M and the number of particles

is set to M = 2000. We fix the acceptance rate of the MCMC move to 1/3 and the number

of MCMC step is set to J = 90. The number of MCMC iterations amounts to 90 in order to

insure that each particle has moved away from its current position as it approximately implies

30 accepted draws. For all the simulations of the paper, Table 2 summaries these choices.

Parameters TNT algorithm

Nb. Particles M 2.000

Threshold ESS κ 0.75M

Sec. threshold ESS κ1 0.1M

Acc. rate αtargeted 1/3

Nb. MCMC J 90

Table 2: Tuned parameters for the TNT algorithm.

Our benchmark model for testing the algorithm is a Change-point Generalized Autoregressive

Conditional Heteroskedastick (GARCH) process that is defined as follows

yt = µi + ǫt with ǫt|y1:t−1 ∼ N(0, σ2
t ), (33)

σ2
t = ωi + αiǫ

2
t−1 + βiσ

2
t−1 for t ∈ ⌊τi−1 + 1, τi⌋ and t > 1, (34)

where τ1 = 0, τK = T and τi with i ∈ [2,K] denotes the observation when break i occurs.

The number K of break points are fixed before the estimation and occur sequentially (i.e.
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τi−1 < τi < τi+1 ∀i ∈ [2,K − 1]). Stationarity conditions are imposed within each regime by

assuming |αi+βi| < 1. The Table 3 documents the prior distributions of the model parameters.

We innovate by assuming that the regime durations d1 = τ1 and di = τi−τi−1 ∀i ∈ [2,K−1] are

continuous and are driven by exponential distributions. The duration parametes are therefore

identifiable up to a discrete value since they indicate at which observation the process switches

from one set of parameter to another. However it brings an obvious advantage as it makes

possible to use the Metropolis update developed in Section 3 for the duration parameters

too. Consequently, we are able to update in one block all the model parameters. The TNT

algorithm for CP-GARCH models is available on the author’s website.

Mean parameter ∀i ∈ [1,K] :

µi ∼ N(0,1)

GARCH parameters ∀i ∈ [1,K] :

ωi ∼ U [0, 1] αi|βi ∼ U [0, 1− βi] βi ∼ U [0.2, 1]

Break parameters ∀i ∈ [2,K − 1] :

d1 = τ1 ∼ Exp(λ) di = τi − τi−1 ∼ Exp(λ) λ ∼ Gamma(1, 1/T )

Table 3: Prior Distributions of the CP parameters. The distribution N(a, b) denotes the

Normal distribution with expectation a and variance b and U[a,b] stands for the Uniform

distribution with lower bound a and upper bound b. The exponential distribution with

parameter λ is expressed as Exp(λ)(with density function : f(τ |λ) = λτe−λτ ) and the Gamma

distribution is denoted by Gamma(a, b) in which a is the shape parameter and b the scale

one (with density function f(λ|a, b) = ba

Γ(a)λ
a−1e−bλ).

We generate 4000 observations from the data generating process (DGP) of Table 4. The

DGP exhibits four breaks in the volatility dynamic and tries to mimic the turbulent and quiet

periods observed in a financial index. Figure 1 shows a simulated series and the corresponding

volatility over time.

We use the marginal log-likelihood (MLL) for selecting the number of regimes by estimating

several CP-GARCH models differing by their number of regimes (see Chib (1998)). As the

TNT algorithm is both an off-line and an on-line method, we start by estimating the pos-
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µ α β σ2 τ

Regime 1 0 0.1 0.1 0.85 1250

Regime 2 0 0.3 0.03 0.95 2230

Regime 3 0 0.25 0.2 0.70 3170

Regime 4 0 0.4 0.05 0.9 —

Table 4: Data generating process of the CP-GARCH model.
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Figure 1: Simulated series from the DGP 4 and its corresponding volatility over time.

terior distribution with 3000 observations (i.e. τ = 3000) and then we add one by one the

remaining observations. For each model, we obtain 1001 estimated posterior distributions

(from π(xτ |y1:τ ) to π(xT |y1:T )) and their respective 1001 MLLs. By so doing, the evolution

of the best model over time can be observed. A sharp decrease in the MLL value means that

the model cannot easily capture the new observation. According to the DGP 4, the model

exhibiting 3 regimes should at least dominate over the first 170 observations and then the

model with 4 regimes should gradually take the lead.

Figure 3 shows the log-Bayes factors (log-BFs) of CP-GARCH models with respect to the

standard GARCH process (i.e. K = 1).9 The best model over give or take the first 300

observations is the one exhibiting three regimes. Afterward, it is gradually dominated by the

9We remind that the log-BF is computed as the difference of the MLL of two models. Following the informal

rule of Kass and Raftery (1995), if the logarithm of the Bayes factor exceeds 3, we have strong evidence in

favor of the model with the highest value.
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Figure 2: Log-BF over time of the CP-GARCH models in relation to the GARCH one. The
log-BF of the CP-GARCH model with two, three, four and five regimes are depicted in yellow,
blue, red and cyan respectively. A positive value provides evidence in favor of the considered
model compared to the GARCH one.

process with four regimes (in red). The on-line algorithm has been able to detect the coming

break and according to the MLLs, around 150 observations are needed to identify it.

Table 5 documents the posterior means of the parameters of the model exhibiting the highest

MLL at the end of the simulation (i.e. with a number of regimes equal to 4) as well as their

standard deviations. We observe that the values are close to the true ones which indicates

an accurate estimation of the model. The breaks are also precisely inferred. At least for this

particular DGP, the TNT algorithm is able to draw the posterior distribution of CP-GARCH

models and correctly updates the distribution in the light of new observations.

Eventually, one can have a look to the varying probabilities associated with each Evolutionary

update function. These probabilities are computed at each SMC iteration and are proportional

to the Mahalanobis distances of the accepted draws. Table 6 documents the values for several

SMC iterations. We observe that the probabilities highly vary over the SMC iterations.
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µ ω α β τ

Regime 1 -0.02 0.11 0.11 0.85 1253.7

(0.04) (0.04) (0.03) (0.04) (9.91)

Regime 2 0.15 0.67 0.05 0.91 2238.4

(0.13) (0.21) (0.02) (0.03) (17.42)

Regime 3 0.01 0.25 0.16 0.73 3169.4

(0.04) (0.08) (0.03) (0.05) (11.33)

Regime 4 0.06 0.61 0.07 0.85

(0.1) (0.22) (0.02) (0.04)

Table 5: Posterior means of the parameters of the CP-GARCH model with four regimes and

their corresponding standard deviations.

Moreover, the stretch move and the DREAM algorithm slightly dominate the walk update.

SMC iteration Stretch Move Walk Move DREAM Move

Trigo DE Firefly Standard Trigo DE Firefly Standard Trigo Standard

1th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10th 0.13 0.09 0.08 0.07 0.10 0.06 0.07 0.08 0.22 0.11

100th 0.14 0.11 0.13 0.13 0.11 0.04 0.06 0.16 0.09 0.04

last 0.11 0.12 0.11 0.11 0.08 0.05 0.06 0.10 0.17 0.09

Mean 0.13 0.12 0.12 0.11 0.10 0.05 0.06 0.14 0.12 0.06

Table 6: Probabilities (proportional to the Mahalabonis distance) of choosing a specific type

of Metropolis-Hastings move. Mean stands for the average over the SMC iterations.
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5 Empirical application

As emphasized in the simulated exercise, the TNT algorithm allows for comparing complex

models through marginal likelihoods. We examine the performances of the CP-GARCH

models over time on the S&P 500 daily percentage returns spanning from February 08, 1999

to June 24, 2015 (4000 observations). We estimate the models with a number of regimes

varying from 1 to 5 using the TNT algorithm and we fix the value τ = 3000 which controls

the change from the tempered to the time domain.

To begin with, Table 7 documents the MLLs of the CP-GARCH models with different number

of regimes when all the observations have been included. The best model exhibits four regimes.

# Regimes 1 2 3 4 5

MLL -5732.6 -5730.86 -5731.1 -5727.87 -5729.1

Table 7: S&P 500 daily log-returns - MLLs of the CP-GARCH models given different number

of regimes. The highest value is bolded.

Table 8 provides the posterior means and the standard deviations of the best CP-GARCH

model. Not surprisingly, the break dates occur after the dot-com bubble and at the beginning

of the financial crisis. To link the results with the crisis event, Freddie Mac company an-

nounced that it will no longer buy the most risky subprime mortgages and mortgage-related

securities in February 17th, 2007. This date sometimes refers to the beginning of the collapse

of the financial system.

We now turn to the recursive estimations of the CP-GARCH models. For the 1001 estimated

posterior distributions (from π(xτ |y1:τ ) to π(xT |y1:T )), Figure 3 shows the log-BFs of CP-

GARCH models with respect to the fixed parameter GARCH model (i.e. K = 1). The

CP-GARCH model with four regimes dominates over the entire period. The process with 5

regimes fits similarly the data but is over-parametrized compared to the same model with 4

regimes. The difference between the two models comes from the penalization of this over-

parametrization through the prior distributions.

To end this study, Table 9 delivers the probabilities associated with each Evolutionary update

function for several SMC iterations. As in the simulated exercise, the stretch move and the
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Figure 3: S&P 500 daily log-returns - log-BFs over time of the volatility models in relation
to the GARCH one. The log-BFs of the CP-GARCH models with two, three, four and five
regimes are depicted in yellow, blue, red and cyan respectively. A positive value provides
evidence in favor of the considered model compared to the GARCH one.
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µ ω α β τ

Regime 1 -0.01 0.16 0.11 0.81 25 March 2003

(0.05) (0.06) (0.03) (0.05) (74.22)

Regime 2 0.06 0.02 0.05 0.91 14 February 2007

(0.02) (0.03) (0.02) (0.05) (62.33)

Regime 3 -0.33 0.66 0.13 0.52 09 March 2007

(0.34) (0.22) (0.15) (0.20) (32.63)

Regime 4 0.08 0.02 0.12 0.86

(0.02) (0.01) (0.01) (0.01)

Table 8: S&P 500 daily log-returns : Posterior means of the parameters of the CP-GARCH

model with four regimes and their corresponding standard deviations.

DREAM algorithm slightly dominate the walk one. We also observe that the trigonometric

move exhibits good mixing properties since its associated probabilities are high, especially for

the DREAM-type update.

SMC iteration Stretch Move Walk Move DREAM Move

Trigo DE Firefly Standard Trigo DE Firefly Standard Trigo Standard

1th 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10th 0.12 0.09 0.08 0.06 0.10 0.06 0.07 0.07 0.24 0.12

100th 0.13 0.13 0.12 0.12 0.08 0.05 0.05 0.11 0.15 0.07

last 0.12 0.12 0.12 0.11 0.08 0.05 0.06 0.10 0.17 0.09

Mean 0.12 0.12 0.11 0.11 0.09 0.05 0.05 0.10 0.16 0.08

Table 9: S&P 500 daily log-returns - Probabilities (proportional to the Mahalabonis distance)

of choosing a specific type of Metropolis-Hastings move. Mean stands for the average over all

the SMC iterations. The highest probability is bolded.
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6 Conclusion

We develop an off-line and on-line SMC algorithm (called TNT) well-suited for situations

where a relevant number of similar distributions has to be estimated. The method encom-

passes the off-line AIS of Neal (1998), the on-line IBIS algorithm of Chopin (2002) and the

RM method of Gilks and Berzuini (2001) that all arise as special cases in the SMC sampler

theory (see Del Moral, Doucet, and Jasra (2006)). The TNT algorithm benefits from the

conjugacy of the tempered and the time domains to avoid particle degeneracies observed in

the on-line methods. More importantly, we introduce a new adaptive MCMC kernel based

on the Evolutionary optimization literature which consists in 10 different moves based on

particles interactions. These MCMC updates are selected according to probabilities that are

adjusted over the SMC iterations. Furthermore, the scale parameter of these updates are also

automated thanks to the method of Atchadé and Rosenthal (2005). It makes the TNT algo-

rithm fully generic and one needs only to plug the likelihood function, the prior distributions

and the number of particles to use it.

The TNT sampler combines on-line and off-line estimations and is consequently suited for

comparing complex models. Through a simulated exercise, the paper highlights that the al-

gorithm is able to detect structural breaks of a CP-GARCH model on the fly. Eventually,

an empirical application on the S&P 500 daily percentage log-returns shows that no break in

the volatility of the GARCH model had arisen from January 7th,2011 to June 24th, 2015. In

fact, the MLL clearly indicates evidence in favor of a CP-GARCH model exhibiting 4 regimes

in which the breaks occur at the end of the dot-com bubble as well as at the beginning of the

financial crisis.

We believe that the TNT algorithm could be adapted to recent SMC algorithms such as

Fearnhead and Taylor (2013) and Fulop and Li (2013) since they propose advanced SMC

samplers based on the IBIS and the E-AIS samplers. Another avenue of research could be an

application on Change-point stochastic volatility models. Indeed, the Evolutionary MCMC

kernel is potentially able to update the volatility parameters of these models without filtering

them.
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A Proof of Proposition 1

Using the notation x1:M1:n = {x11, ..., xM1 , x12, ..., x
M
n } which stands for NxM random variables

and assuming that xji ∈ E ∀i, j as in the E-AIS method (tempered domain) or the IBIS one

(time domain), we consider the augmented posterior distribution :

π̃n(x
1:M
1:n ) = [

M∏
i=1

πn(x
i
n)]

n∏
k=2

Lk(x
1
k−1|x1:Mk )

M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

If the backward kernels Lk(.|.) denote proper distributions, the product of the distribution of

interest marginally arises :

π̃n(x
1:M
n ) =

∫
[

M∏
i=1

πn(x
i
n)]

n∏
k=2

Lk(x
1
k−1|x1:Mk )

M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )dx1:M1:n−1

= [

M∏
i=1

πn(x
i
n)].

The SMC sampler with DREAM MCMC kernels leads to a proposal distribution of the form

:

ηn(x
1:M
n ) = [

M∏
i=1

f(xi1)]
n∏

k=2

Kk(x
1
k|x1:Mk−1)

M∏
q=2

Kk(x
q
k|x

1:q−1
k , xq:Mk−1)

where Kk(.|.) denotes the DREAM subkernel with invariant distribution πk(.). Sampling one

draw from this proposal distribution is achieved by firstly drawing M realizations from the
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prior distribution and then applying the DREAM algorithm (N-1)xM times. As proven in

Vrugt, ter Braak, Diks, Robinson, Hyman, and Higdon (2009) and Bauwens, Dufays, and

De Backer (2011), the DREAM algorithm leads to the detailed balance equation :

[
M∏
i=1

πk(x
i
k−1)]Kk(x

1
k|x1:Mk−1)

M∏
q=2

Kk(x
q
k|x

1:q−1
k , xq:Mk−1)

= [
M∏
i=1

πk(x
i
k)]Kk(x

1
k−1|x1:Mk )

M∏
q=2

Kk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

Using this relation, we specify the backward kernel as

Lk(x
1
k−1|x1:Mk )

M∏
q=2

Lk(x
q
k−1|x

1:q−1
k−1 , xq:Mk )

=
[
∏M

i=1 πk(x
i
k−1)]Kk(x

1
k|x1:Mk−1)

∏M
q=2Kk(x

q
k|x

1:q−1
k , xq:Mk−1)

[
∏M

i=1 πk(x
i
k)]

.

The sequential importance sampling procedure generates weights given by

w̃n(x
1:M
1:n ) ≡ π̃n(x

1:M
1:n )

ηn(x1:Mn )
= w̃n−1(x

1:M
1:n−1)

[
∏M

i=1 πn(x
i
n−1)]

[
∏M

i=1 πn−1(xin−1)]

=
M∏
i=1

wn(x
i
1:n),

resulting in a product of independent weights exactly equal to the product of SMC sampler

weights (see equation (4)).
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