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Abstract:  
We determine whether there is an endogenous Hidden Markov Regime (HMR) in 
the operational loss data of banks from 2001 to 2010. A high level regime is 
marked by very high loss values during the recent financial crisis. There is 
therefore temporal heterogeneity in the data. If this heterogeneity is not 
considered in risk management models, capital estimations will be biased. Levels 
of reserve capital will be overestimated in periods of normal losses, 
corresponding to the low level of the regime, and underestimated in periods of a 
high regime. Variation in capital can go up to 30% during this period of analysis 
when regimes are not considered. 
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1 Introduction 

 

Since the inception of operational risk modeling, authors have regularly highlighted the fact 

that the amount of reserve capital calculated is very fragile, even unstable. Ames, Schuermann 

and Scott (2014) clearly show this fragility with operational loss data related to the recent 

financial crisis that began in 2007. 

 

Before that, Neslehová, Embrechts and Chavez-Demoulin (2006) had affirmed the risk of 

working with “extreme value” distributions when preliminary estimates tend to exhibit an 

infinite mean or variance for the data (see also Dahen et al, 2010). These studies argue for more 

conventional base models to better estimate the distributions and consider the presence of 

switching regimes in the data endogenously. In this paper, we build on the scaling model of 

Dahen and Dionne (2010) by detecting and incorporating endogenous Hidden Markov regimes 

for losses of one million dollars and more. 

 

We show that the operational loss data of American banks are indeed characterized by a 

Hidden Markov switching model. The distribution of monthly losses is asymmetric, with a 

normal component in the low regime and a Skew t type 4 component in the high regime. 

Statistical tests do not allow us to reject this asymmetry. We then introduce the regimes 

obtained in the estimation of operational losses and verify that their presence significantly 

affects the distribution of losses in general. These results are particularly important for some 

operational losses, particularly those linked to financial product pricing errors, over which 

several large banks have been sued during and after the recent financial crisis. We also analyse 

the scaling of the data to banks of different sizes and risk exposures, and present the results of 

backtesting of the model in different banks. 
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The general message of our contribution is that there is temporal heterogeneity in the data. If 

this heterogeneity is not considered in the risk management models, capital estimations will be 

biased. Levels of reserve capital will be overestimated in periods of normal losses 

corresponding to the low level of the regime, and underestimated in a high regime period. 

Overall banks used too much capital for operational risk when the regimes are not considered 

in our period of analysis. 

 

In Section 2, we present the database used. Section 3 discusses identification models of regimes 

and presents their estimation. Section 4 measures the effect of regimes detected on the 

estimation of the distribution of operational losses, and Section 5 proposes a backtest of 

estimated parameters. A short conclusion ends the article. 

 

2 Data 

 
We use the Algo OpData Quantitative Database for operational losses of $1 million and more 

sustained by US banks. The study period is from January 2001 to December 2010. We examine 

the operational losses of US Bank Holding Companies (BHC) valued at over $1 billion. The 

source of information on these banks is the Federal Reserve of Chicago. Statistics on the sample 

built from the two databases are summarized in three Tables: 1, 2, and 4. 

 
Table 1 presents the size distribution of banks with $1 billion or more in assets that sustained 

operational losses of $1 million or more during the study period. We note a major increase in 

the mean size of banks during this period; maximum size has also grown significantly. Table 2 

shows that the largest banks accumulated the largest losses. Table 3 presents the Event Types 

and Business Lines codes subject to operational losses, as defined for the Basel regulation. 

Table 4 is a cross-loading table linking Event Types and Business Lines. We note that the largest 

mean losses are in Corporate Finance, Retail Brokerage and Trading and Sales for Business 

Lines, and in Clients, Products and Business Practice, Damage to Physical Assets, and Execution 

Delivery and Process Management for Event Types. 
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Table 1: Number of BHC banks per year and their assets 

Assets (in billions $) 

Year Median Mean Max Sd Number 

2001 2.1 19.7 944.3 82.3 356 

2002 2.1 19.5 1,097.2 84.8 378 

2003 2.0 20.3 1,264.0 93.0 408 

2004 2.0 25.4 1,484.1 122.1 421 

2005 2.0 24.4 1,547.8 121.9 445 

2006 2.1 26.0 1,884.3 140.5 461 

2007 2.1 28.9 2,358.3 168.1 460 

2008 2.0 28.5 2,251.5 182.5 470 

2009 2.1 33.8 2,323.4 190.6 472 

2010 2.1 34.7 2,370.6 198.3 458 

Note: Sd is for standard deviation. 

Table 2: Operational losses of BHC banks with bank asset in deciles 

Asset deciles 
(in billions $) 

Loss (in millions $) 

Min Max Median Mean Sd Number 

2,022.7 to 2,370.6 1.0 8,045.3 26.3 265.9 1,129.5 51 

1,509.6 to 2,022.7 1.0 8,400.0 14.0 268.3 1,207.5 49 

1,228.3 to 1,509.6 1.0 2,580.0 7.5 94.5 357.8 53 

799.3 to 1,228.3 1.0 3,782.3 24.0 199.8 610.7 48 

521.9 to 799.3 1.0 8,400.0 7.4 218.9 1,156.4 53 

1,247.1 to 521.9 1.1 210.2 7.2 17.0         31.1 50 

98.1 to 247.1 1.0 663.0 6.0 45.3 115.4 51 

33.7 to 98.1 1.0 775.0 10.2 55.2 152.8 51 

8.31 to 33.7 1.1 691.2 8.6 32.2         98.6 51 

0.96 to 8.31 1.0         65.0 4.3 9.9         14.5 51 

All 1.0 8,400.0 8.6 120.1 680.7 508 

Note: Sd is for standard deviation. 

 
Table 3: Nomenclature of Event Types and Business Lines codes 

Variables Codes 

Event Types  

  Clients products and business practice CliPBP 

  Business disruption and system failure BusDSF 
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  Damage to physical asset DamPA 

  Employment practices and workplace safety EmpWS 

  External fraud EF 

  Internal fraud IF 

  Execution delivery and process management ExeDPM 

  

Business Lines  

  Retail brokerage RBr 

  Payment and settlement PayS 

  Trading and sales TraS 

  Commercial banking ComB 

  Retail banking RBn 

  Agency services AgnS 

  Corporate finance CorF 

  Asset management AssM 
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Table 4: Cross-loading table of types of losses and business lines 

Business 
lines 

 CliBP BusDSF DamPA EmpPWS EF IF ExeDPM All 

Rbr Mean 
Sd 

Sum 
Count 

28.6 
89.7 

1,030.3 
36 

 
 

0.0 
0 

 
 

0.0 
0 

18.7 
33.8 

149.7 
8 

78.8 
 

78.8 
1 

8.0 
8.3 

103.5 
13 

2.8 
1.9 
5.7 

2 

22.8 
71.1 

1,367.9 
60 

PayS Mean 
Sd 

Sum 
Count 

62.4 
85.7 

873.7 
14 

19.2 
24.2 
57.6 

3 

743.0 
 

743.0 
1 

 
 

0.0 
0 

23.9 
4.6 

47.8 
2 

18.7 
16.6 
56.1 

3 

11.1 
8.8 

44.6 
4 

67.5 
150.0 

1,822.7 
27 

TraS Mean 
Sd 

Sum 
Count 

91.6 
195.8 

3,756.1 
41 

 
 

0.0 
0 

55.0 
 

55.0 
1 

6.9 
8.5 

34.7 
5 

18.0 
 

18.0 
1 

130.7 
228.9 

1,437.5 
11 

139.1 
286.6 

1,113.0 
8 

95.7 
202.6 

6,414.4 
67 

ComB Mean 
Sd 

Sum 
Count 

45.4 
65.5 

1,045.3 
23 

 
 

0.0 
0 

1.0 
 

1.0 
1 

16.0 
18.1 
80.1 

5 

18.6 
28.5 

725.7 
39 

22.1 
26.8 

309.4 
14 

36.7 
29.0 

147.0 
4 

26.8 
42.2 

2,308.5 
86 

RBn Mean 
Sd 

Sum 
Count 

369.8 
1,531.0 

21,819.8 
59 

2.0 
 

2.0 
1 

1.0 
 

1.0 
1 

7.3 
9.9 

58.8 
8 

17.8 
49.9 

604.6 
34 

11.0 
20.9 

505.4 
46 

29.4 
30.9 

264.3 
9 

147.2 
946.8 

23,255.9 
158 

AgnS Mean 
Sd 

Sum 
Count 

85.2 
138.2 
681.7 

8 

 
 

0.0 
0 

 
 

0.0 
0 

 
 

0.0 
0 

5.5 
6.5 

16.5 
3 

3.6 
 

3.6 
1 

 
 

0.0 
0 

58.5 
117.2 
701.9 

12 

CorF Mean 
Sd 

556.5 
1,473.2 

 
 

 
 

 
 

 
 

56.2 
77.0 

9.6 
13.4 

441.4 
1,311.7 
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Sum 
Count 

21,148.3 
38 

0.0 
0 

0.0 
0 

0.0 
0 

0.0 
0 

449.5 
8 

28.7 
3 

21,626.5 
49 

AssM Mean 
Sd 

Sum 
Count 

75.3 
153.3 

3,012.2 
40 

 
 

0.0 
0 

 
 

0.0 
0 

 
 

0.0 
0 

95.0 
128.7 
189.9 

2 

61.6 
94.1 

184.9 
3 

37.4 
50.0 

149.4 
4 

72.2 
141.8 

3,536.5 
49 

All Mean 
Sd 

Sum 
Count 

206.1 
941.9 

53,367.3 
259 

14.9 
21.5 
59.6 

4 

200.0 
362.9 
800.0 

4 

12.4 
21.0 

323.3 
26 

20.5 
42.3 

1,681.4 
82 

30.8 
88.0 

3,049.9 
99 

51.6 
143.2 

1,752.8 
34 

120.1 
680.7 

61,034.3 
508 

Note: Loss amounts are in millions of dollars. 
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3 Identification of regimes 

 

We assume that there are regimes in operational loss data. To support this assertion, we 

present Figures 1, 2, and 3. The hatched area in Figure 1 identifies the dot-com recession in 

2001 and the recent recession corresponding to the financial crisis that began in 2007. We also 

note that the number of operational losses increased significantly during the last financial crisis, 

which did not occur during the 2001 recession. We observe another spike in the number of 

losses in 2010, one year after the recession ended. The losses in 2010 may be explained by 

delays linked to lawsuits. Indeed, several banks were sued after the financial crisis for having 

marketed complex financial products that were poorly structured, with incorrect prices and 

dubious ratings. Figure 2 presents similar evolutions in loss volatility. Figure 3 shows that the 

trend for number of losses of one million dollars and more is a sawtooth, but there is no major 

increase during and after the financial crisis. The year 2003 exhibits the highest frequencies. 

 
 

Figure 1: Changes in monthly mean operational losses 

1
2

3
4

5
6

7

mois

m
o

y
e

n
n

e
s
 m

e
n

s
u

e
ll
e

s
 d

e
s
 p

e
rt

e
s
 o

p
. 

(e
n

 l
o

g
)

200101 200203 200303 200403 200504 200605 200705 200805 200905 201005

month 

m
o

n
th

ly
 m

ea
n

 o
p

er
at

io
n

al
 lo

ss
es

 (
in

 lo
g)

 



9 
 

 
 

Figure 2: Changes in monthly variance of operational losses 

 

 
 

Figure 3: Changes in number of operational losses 
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3.1 Markov Switching Regimes  

3.1.1 Literature 

 

Several researchers have attempted to detect the presence of unobservable regimes by using a 

Markov process (Hamilton, 1989; Rabiner, 1989). Since then, increasingly rich developments of 

the model have emerged in all fields of research. Siu (2007) shows the advantage of applying 

this methodology in finance and actuarial science to better price insurance products. 

Korolkiewicz and Elliott (2007) propose a credit rating model based on the concept of Markov 

Switching. Siu and Yang (2007) model the Conditional Value at Risk (CVaR) advantageously for 

market and credit risk models using a complete procedure. Liechty (2013) presents another 

example of Markov Switching as a risk management tool. The origins of HMM (Hidden Markov 

Modeling) date back to the 1960s, with Baum and Petrie (1966) and Baum et al. (1970). 

Hamilton (1989) made a dual contribution: he paved the way for the use of HMM in economics 

and finance, and developed his own estimation method called the Hamilton Filter. This method 

is very useful in cases where different levels of the regime are modeled with normal 

distributions.  

 

The Hamilton Filter implicitly supposes that observations come from distributions with a 

sufficient number of draws to notably consider that the initial conditions describing the system 

at starting time t = 1 has only a small effect on its evolution. This hypothesis has been studied in 

depth by Psaradakis and Sola (1998), who show that one would need a sample of at least 400 

observations to guarantee that the estimate works well, especially in the presence of known 

fat-tailed data. For this reason, we use the Baum-Welch algorithm, which we describe below, to 

estimate our model. As Mitra and Date (2010) and Bulla (2011) showed, this algorithm does not 

use a priori assumptions of distributions. 

 

3.1.2 Markov Switching Model 
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The basic idea behind this model is intuitive. We suppose that the data under study represent a 

system that possesses n possible distinct states. At any given moment, the system may be in 

either state. For a given state, the system can move to another state or remain in place. There 

are two probabilities that describe each state. Given that states are not observable, the model 

is called a Hidden Markov Model, or HMM. For our data, the objective is to identify and 

characterize “high loss” periods (state 2, for example) and separate them from “normal loss” 

periods endogenously (state 1). We inject information of loss severity and frequency that 

comes uniquely from the data, such that the model will show the unobservable underlying 

dynamics. We also analyse a three-state application in the robustness section of the paper. 

 

3.1.3 Estimation of the HMM with the Baum-Welch method 

 

To develop the estimation, we follow Zucchini and MacDonald (2009), Mitra and Date (2010), 

and Visser and Speekenbrink (2010). We now define the necessary notations. The variables are 

indexed by time   1,2,..., 1,t T T . Observations are noted as tx . The sequence of 

observations from   to t a b  is noted as    : 1 1, ,..., , , 1 to a b a a b bx x x x x a b T . The variable ts  

represents the state where the system is situated at time  , 1,...,tt s n . We suppose that n 

states exist. Similarly,  : 1 1, ,..., ,a b a a b bs s s s s  is the sequence of states of the system in the time 

interval a to b. The estimation will give a vector of the parameters  . The model is supposed to 

depend on the covariables noted as tz . According to Proposition 2 of Mitra and Date (2010), a 

HMM is well defined when the parameters  , ,A B   are known, A being the transition matrix 

n n  whose elements are written as  1ij t t ta Pr s j s i ,z ,   , B is a diagonal matrix whose 

elements    i t t t tb x Pr x s ,z ,  are written according to the densities that describe tx  when 

the system is in the state i = 1 to n, and π is a row vector  1 n  of the probabilities related to 

each state at  

1t  ,  1i tPr s i z ,   ,  1 i n,..., ,...,    . To simplify the presentation, we examine the 

case of two states  2n  , 1f  being the density function of a normal law for the low loss regime 
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(state 1), 2f  being the density function of the Skew t-distribution type 4 representing the high 

loss regime (state 2). The choice of this mixture of distributions will be justified at the end of 

this section. For now, note that 
 

 
1

2

0

0
t

t
t

f x
B

f x

 
  
 

 such that: 

    
2

1
1 1 2 2

1 1

1

2 2
t

t

x
f x exp,


 

  

 
  

  

 (3.1) 

where 1 0   and 1  . 

 

The Skew t-distribution type 4, noted as ST4, is defined as in Rigby et al (2014):  

      
 

 
 

 

 

2 21 12 2

2 2
2 22 2 22 2

2 2 2

1 1t t
t t

c x x
f x I I x, , , x

 

 
    

  

        
       

        

 (3.2) 

where 

   
11 2 1 2

2 20 2 1 2 2 1 2 2, , , ,c B , B ,       


      . 

B is the beta function        B a,b a b a b     where   is the gamma function. 

 

Concerning the matrix 
 

 
1212

2222

1

1t

aa
A

aa

 
  

 
, the elements ija  will be modeled according to the 

m  independent covariables  1 m
t t t

z z ,...,z . We posit that: 

  ij tij
za logistic    (3.3) 

 

where  logistic  is the logistic function 
 

 
 0 01

ij , ij ,k ij ,mij ij ,

exp
,..., ...,, ,

exp
   

 
  

 is a constant 

and ij ,k  is the coefficient to estimate for the kth covariable k
tz  relative to the conditional 

probability ija . Regarding the initial distribution  , a priori, it may depend on 1 1tz z  . 

However, below we will estimate   as a vector of constants. We can separate the   

parameters into three independent parts. Accordingly, we rewrite  0 1 2, ,     where 0 1,   
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and 2  are, respectively, the parameters to estimate for the initial distribution  , the 

parameters related to matrix A and those concerning matrix B representing the conditional 

densities if . We now write the probability of jointly observing the sequence of observations 

1:Tx  and that of the states of the system 1:Ts . 

 

        1 1 1 1 1 0 2 1 1 1 1 2
T T

:T :T :t t t t t t t t tPr x ,s z , Pr s z , Pr s s ,z , Pr x s ,z ,          (3.4) 

        1
1 1 1 1 1 0 1 1 1 1 2

T T
:T :T :t t t t t t t t tlogPr x ,s z , logPr s z , logPr s s ,z , logPr x s ,z ,   

      (3.5) 

 

Given that equation 3.5 is formed of a sum of three independent quantities, the maximum 

probability can be estimated for each of the vectors of parameters 0 1,   and 2  separately. In 

addition, if we consider that the initial distribution is independent from 1z , we can estimate the 

n probabilities of the vector  1 n,...,    as constants   0 1 n,...,   . 

 

Note that the probability function to maximize depends on the sequence 1:Ts  which is not 

observable. Our objective is to extract it from the sequence 1:Tx . One technical solution is to 

use the EM (Expectation Maximization) concept, which is better known as the Baum-Welch 

algorithm in the HMM context. We start with a vector of initial arbitrary values  0 . EM is an 

iterative process. Each loop is made up of two steps, E and M. For each loop  k , step E is to 

calculate a function Q defined as the mathematical expectation of the log probability, if we 

know the sequence 1:Tx  and using the value of the parameters  k  such that: 

         
1 1 1 1k

kk
:T :T :T :T

Q E logPr x ,s z , x ,, 
       . (3.6) 

 

Then, in step M, we look for the value of the vector   that maximizes   kQ ,  . This gives us a 

new set of parameters to find, namely: 

     1k kargmaxQ .,


  
    (3.7) 
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 1k 
 will be compared with  k  to verify the convergence criteria. In the absence of 

convergence,  1k  will serve as an entry for the following loop 1k  , and so on. The Baum-

Welch algorithm has been shown to always converge (Rabiner, 1989). 

 

Because it is a mathematical expectation, the quantity Q corresponds to computing a weighted 

sum of all of the possible probabilities for each of the three members to the right of equation 

(3.5). This gives: 

      

   

   

1 1 1 1 0

2 1 1 1 1 1

1 1 2

nk
j

T n n
t j k t t t t

T n
t j t t t t

Q logPr s j z ,j,

logPr s k s j ,z ,j ,k

logPr x s j ,z ,j

  

 

 



    

 

 

     

  

 

where functions t  and t  represent the weights to calculate the mathematical expectation. 

Using the notation   1
k

:TM z ,  to simplify the expressions, these weights t  and t  are 

written as: 

    1 1t t t :TPr s k,s j x ,Mj ,k     (3.8) 

    1t t :T tPr x s i ,Mj    (3.9) 

 

To calculate the probabilities t  and t , let us define two probabilities t  and t  such that for 

all 1i   to n regimes): 

    1t :t tPr x ,s ii M    (3.10) 

    1t t :t tPr x ,s i ,Mi    (3.11) 

 

In the literature, t  is called a forward probability because of the relationship of recurrence 

     1i t ijt j t
a f x .j i      Similarly, t  is called a backward probability because of the 

relationship: 

     1 1j t ijt j ta f xji   
     with   1T ii   . 
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The derivation of these relationships with vector notation is almost immediate, as in Zucchini 

and MacDonald (2009), by writing the probability function: 

   1 2 21 1T t t T T:TL Pr B A B ...A B ...A B 'x M   . (3.12) 

 

By cutting the cross-product of equation 3.12 at time t, we have 1 2 2t t tB A B ...A B   and 

1 1 1t t t T TA B ...A B '    (with 1'
T '  ). Hence 1t t t tA B     and 1 1 1t t t tA B     , which is the 

equivalent, in matrix notation, of the preceding forward and backward recurrence 

relationships. Now that our vectors t  and t  have been calculated, we can calculate the 

weight t  given that        1 1 1t t k t t jk Tf x a 'j ,k j k         as derived here: 

 t j ,k   1 1t t :TPr s k,s j x ,M    

    1 1 1t t :T :TPr s k,s j ,x Pr xM M    (3.13) 

  1 1 2 1 1:t t t :T t t :T TPr x ,x ,x ,s k,s j ,x LM      (3.14) 

    1 1 2 1 1:t t t t :T t :t t TPr x ,s j Pr x ,x ,s k x ,s j ,M LM        (3.15) 

  1:t tPr x ,s j M   (3.16) 

  1 2 1 1t t :T t :t tPr x x ,s k,x ,s j ,M      (3.17) 

  2 1 1t :T t :t tPr x s k,x ,s j ,M     (3.18) 

  1 1t :t t TPr s k x ,s j ,M L    (3.19) 

      1 1 1t k t t jk Tf x a 'j k        (3.20) 

 

Equation (3.13) is obtained by simple application of Bayes’ theorem. In (3.14) the sequence 1:Tx  

is cut into three pieces: from 1 1 1:t t :tx ,x    and 2t :Tx   using  1T :TL Pr x M  defined in (3.12). 

Equation (3.15) and equations (3.16) to (3.19) also use the Bayes model. Equation 3.16 is the 

direct expression of  t j . Equation (3.17) is simplified to  1 1t tPr x s 
 because 1 1t tx s   is 

known independently from 2t :Tx   and from ts  (by the very construction of the HMM). In 

equation (3.18), the sequence 2 1t :T tx s   is independent from 1:tx  and from ts . Lastly, on line 
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(3.19), because 1t ts s  do not depend on 1:tx  , the expression is reduced to 

 1t tPr s k s j ,M    which is equal to jka  in (3.20). It now remains to be shown that 

  1T j T TL ' .j    Based on definition (3.10) applied to    1T :T Tt T , Pr x ,s ii M   , the 

sum of  T i  on all i possible states must give the probability  1:TPr x M , because the system 

is necessarily and exclusively in one or the other of the i states. The same reasoning permits us 

to find  t j  in function of t  noticing that  

   11 1t k t t:T :TPr s j Pr s k,s jx ,M x ,M    . 

Hence, 

    t t
k

j j ,k  .  (3.21) 

 

To summarize the construction of probabilities t  and t , we first calculate t  which in turn 

yields t . From this point, we can calculate the function   kQ ,   to find  k   which 

maximizes Q. This advances the EM process until convergence to obtain the vector   of the 

final application parameters of the HMM. For our estimation, we have used the functions 

available in the package depmixS4 (Visser and Speekenbrink, 2010) with the Skew t type 4 

function of the gamlss package (Rigby et al, 2014), in R language by r-project.org. 

 

Concretely, we construct the sequence 1:Tx  from monthly mean losses (in log). We already 

know that the means are far from following a normal distribution. We consequently use a 

mixture where the first “normal” state will be modeled by a normal distribution and the second 

state of the high regime (abbreviated as HR) will be represented by a Skew t-distribution type 4 

(ST4). We want to capture the asymmetry and thickness of the distribution tail during this state. 

We also use the number of losses per quarter. To do so, we create a variable called lc123 as a 

natural logarithm of the number of losses announced during the three previous months. The 

idea is to capture whether the number of losses announced affects the intensity of transitions 

of the regime from one level to the other. Because the transition matrix is not constant, our 

model can be called non homogeneous. In short, we use four distributions as follows: 
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  (3.22) 

 

Lastly: 

     12 0 12 1 22 0 22 10 11 1 1 2 2, , , , 2n
, , ,,  and =,..., , , , , ,              . 

 

3.1.4 Results and discussion 

The results of the estimation of the model are presented in Table 5. We begin with the 

parameters of the two distributions that we use. The Normal distribution, which models phases 

of low losses, has a mean of 2.4172 and a standard deviation of 0.7653. The two corresponding 

coefficients are very significant at all degrees of confidence chosen. Regarding the Skew-t type 

4, its mean is estimated at 3.7872, whereas its standard deviation can be considered equal to 1 

(its log can be considered statistically null because it is non-significant). In a high regime, we 

therefore have a significant and simultaneous increase in the mean and an increase in the 

standard deviation. In addition, the asymmetry of the Skew-t type 4 is confirmed by the 

log(Shape.nu) coefficient significant at 10%. We will return to the validation of these 

distributions below by performing a robustness analysis of our statistical results. 

 

Table 5: Estimation of the Hidden Markov Model 

Variable  Coefficient 

Probability of transition to High Regime 
 

Intercept 
lc123 

0.9772 
-1.7371*** 

Probability of staying in High Regime Intercept 
lc123 

-25.7285*** 
11.7434*** 

Estimation of Normal distribution mu 
sigma 

2.4172*** 
0.7653*** 
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Estimation of ST4 distribution mu 
log (sigma) 
log(shape.nu) 
log(shape.tau) 

3.7872*** 
-0.0415 
2.7734* 
0.9492 

Estimation of HMM model Log max likelihood 
AIC criteria 
Number of  
  observations 

-148.838 
319.677 

 
120 

       Note: *indicates significant at 10% and *** indicates significant at 1%. 

 

Figure 4: Markov transition probabilities 
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Figure 5: Markov Regimes detected from January 2001 to December 2010 

 

The estimation of Table 5 gives a value of   2 1670 7734exp ..    and 

  2 5840 9492exp . ,.    which measures a very large thickness of ST4 distribution tails. 

Nonetheless, given that the estimation of  log   in Table 5 is not significant,  log   can be 

considered null, therefore 1.   The right distribution tail would be thicker in this sense. Given 

these estimated two degrees of freedom markedly below 30, this is confirmation that we are 

far from a normal law where 30   and 30  .  

 

We now discuss the stages of the transition probability in Table 5. The coefficient of the 

variable lc123 is very significantly negative. This means that the larger the number of losses, the 

lower the probability of starting from a high regime, which would be a bit odd. To understand 

what is happening, we draw in Figure 4 the curves of the two transition functions: move to or 

stay in a high regime. Note that the number of losses is historically limited to between 7 and 20 

per quarter (where lc123 is included between 2 and 3). In this case, in Figure 4, the section to 

the left of the point lc123 = 2 would be meaningless, and was therefore cut from the figure. The 

part to the right of this point presents a barely declining curve, nearly parallel with the X axis, 
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with a value of about 5% as a probability of moving to a high regime (HR). We can reasonably 

assume that the number of loss announcements does not play a role in predicting movement to 

a HR, nor does the increase (or not) in operational losses. Consequently, by reformulating the 

foregoing in statistical terms, we have found evidence to support the hypothesis of 

independence of distributions of frequencies and severities, which is an important contribution 

of this research. To continue with the probability of remaining in a high regime, if the number 

of loss announcements is between 7 and 12 per quarter, the mean probability of staying is 

about 50%. At between 12 and 24 mean quarterly losses, the probability of remaining in a high 

regime state is practically 99%.  

 

Let us now consider Figure 5, which shows the Markov switching states detected. Three facts 

emerge from the figure. First, there was almost no reaction for the recession of 2001 (2001-03 

to 2001-11), and only a few fluctuations in probability transition around 2003-2005. In contrast, 

there is indeed a high regime detected during the recession starting in 2007 (2007-12 to 2009-

06), with a first impetus lasting one month in December 2007, followed by two other variations. 

The first lasts five months, from July to November 2008 inclusively, and the second lasts six 

months, from August 2009 until January 2010 inclusively. The latter happens after the end of 

the recession. 

 

It is interesting to document this fact by analyzing what happened for the two variations. To do 

so, we take the individual losses at the largest amounts, which represent at least 80% of the 

total lost during each period analyzed. We obtained information on what happened for these 

losses by gathering comments inserted in the loss database, which includes the Bloomberg and 

SEC (U.S. Securities and Exchange Commission) sites. As reported in Table 6, there were two 

losses of $8.4 billion each for the first variation. This amount is an all-time record for 

operational losses of BHC banks. The first loss was incurred by Wachovia Bank in July 2008. It 

comprises a series of final writedowns linked to mortgages. The class action suit filed in federal 

court in California on June 6, 2008 alleges that the bank distorted its standards for underwriting 

option adjustable rate mortgages (ARMs), with payment structures that lacked the usual 
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guarantees that were nonetheless stipulated in the contracts. This is a CliPBP type loss. The 

second loss, for the same amount, i.e. $8.4 billion, concerns CFC of Bank of America. In October 

2008, it was accused of illegal practices concerning products related to bank loans; 400,000 

buyers were affected. CFC had to agree to settle the lawsuits filed against it by a group of 

attorneys general in 11 states, including California, Florida, Illinois, Connecticut, and 

Washington. The two losses represent over 81% of the $20.6 billion lost during this first 

variation from July to November 2008. Both cases pertain to problems related to subprime 

loans. In addition, both banks agreed to settle the class-action suits without waiting for a 

decision from the courts. There was thus no gap between the time the problems were observed 

and the date the losses were reported. We will see that this is not the case for most of the large 

losses in the period of the second variation, from August 2009 to January 2010. 

 

Table 7 shows six major losses for this period, which account for more than 80% of the total 

losses. We begin with Citigroup, which announced a loss of $840 million in January 2010. This 

loss results from an accounting error related to the way the bank calculated its CVA (Credit 

Value Adjustment). The bank claimed that this correction should reduce the earnings 

announced in the previous quarters, without specifying which. This implies that the decision is 

linked to credit problems that occurred during the 2008 crisis. The second loss concerns 

Discover Financial Services, which announced on February 12, 2010, that it would pay its former 

parent corporation Morgan Stanley $775 million to settle a breach of a contractual agreement. 

The case started in October 2008, when Morgan Stanley filed a complaint against Discover 

Financial Services concerning the distribution of proceeds from the resolution of antitrust 

litigation against rival issuers of Visa and MasterCard credit cards. 

 

The third loss is $722 million. On November 4, 2009, the SEC announced a settlement whereby 

JP Morgan Securities paid a fine of $25 million to the SEC, and $50 million to Jefferson County, 

and dropped its claim for $647 million in termination fees linked to bonds and interest rate 

swaps. This settlement follows the sentencing of a former civil servant for accepting bribes. 

Originally, Jefferson County was verging on bankruptcy in February 2008. The $3 billion 
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refinancing of its sewage system collapsed during the credit crisis. JPMorgan was the leader in 

banking transactions.  

 

Fourth, in February 2010, the SEC and the Massachusetts authorities announced that the State 

Street Bank and Trust agreed to pay damages and fines under a judgment following allegations 

that the bank had misled some bonds investors about "Limited Duration Bond Fund" in 2007. 

The SEC also accused the bank of having provided information on these funds internally, which 

would have let some investors redeem the bonds early to the detriment of others who did not 

have this information. According to the SEC, the State Street Bank and Trust began to market 

the Limited Duration Bond Fund, which it described as "enhanced cash," in 2002. Many 

investors saw it as an interesting alternative to the money market. The problem was that in 

2007, these funds were almost entirely invested in subprime residential securities and 

derivatives, which is much riskier than what the bank suggested in its communications. 

 

For the fifth loss, according to the SEC, Bank of America omitted to accurately report to 

shareholders the losses on Merrill Lynch’s books before the final ratification vote of the 

acquisition of Merrill Lynch. Bank of America was ordered to pay $150 million. The sixth and 

final loss occurred in September 2009: a businessman pled guilty and was sentenced to 12 

years in prison for defrauding Bank of America ($142 million), Citigroup ($75 million) and HSBC 

($75 million), a case of external fraud totaling more than $292 million. Apart from this case, the 

losses cited are linked to problems with information disclosure or errors related to risk 

management of financial products, particularly pricing, during the financial crisis. All of these 

losses were subject to varying delays due to lawsuits. Consequently, the second peak 

fundamentally consists of a series of problems that arose during the financial crisis. The gap in 

time between the two variations seems to stem uniquely from legal procedures. 

 

Further, credit risk always exists, and is highly influenced by Shadow Banking. Largely 

comprising false declarations and improper transactions, Shadow Banking is quite prominent in 

credit portfolios. Over $500 billion in credit “left” the banks’ balance sheets and somehow 
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transformed into Asset-Backed Commercial Papers between 2004 and 2007. This new way of 

skirting capital regulation, which bankers found too costly, reached a total of $1.3 trillion in July 

2007 (Kroszner and Strahan, 2013; Acharya, Schnabl, and Suarez, 2013). Kindelberger and Aliber 

(2005) argue that "... as the monetary system gets stretched, institutions lose liquidity and 

unsuccessful swindles are about to be revealed, the temptation to take the money and run 

becomes virtually irresistible." 

 

We now examine more losses from the 2008 crisis. Citigroup paid a total of $8.045 billion in 

March 2008 for the Enron scandal. Earlier, in October 2007, CFC lost $1.2 billion following the 

first waves of default in the subprime market. Bank of America intervened and ultimately 

bought out CFC. To continue this historical review, Goldman Sachs sustained a loss of $768 

million in August 2008 concerning ARS (Auction Rate Securities). This bank was obliged to buy 

back 1.5 billion of these market instruments and paid penalties on this transaction. In another 

case of CliPBP, Bank of America had the same experience on a larger scale, and bought back 4.5 

billion in ARS, for a total loss of $720.7 million in January 2009. OpVar categorizes the latter two 

losses as Trading and Sales business, which represents most CliPBP cases with Corporate 

Finance business. 

 

In conclusion, in 90% of cases of operational losses, credit is pivotal to a history of improper 

transactions, along with Corporate Finance, Trading and Sales and/or Retail Banking. 80% of the 

amounts in question are attributable to two (Table 6) to six (Table 7) cases. In addition, it is 

often the same banks that are involved. Note that these historical spotlights were done by 

following “special” periods underscored by the regime shift detected. In other words, the 

regime detected seems to concern a set of banks in particular. We have documented 80% of 

the severity of operational losses by about only 20 cases, involving less than eight banks. 
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Table 6: Summary of losses of BHC banks from July 2008 to November 2008  

 Bank Loss EventType BusLine Date % Loss 

1 Wachovia Bank 8.4 billion CliPBP RBn 2008-07-21 40.73 

2 CFC – Bank of America 8.4 billion CliPBP RBn 2008-10-06 40.73 

 Others (< 80%) 3.4 billion 30 losses    

 All 20.6 billion 32 losses    

 

 
Table 7: Summary of losses of main BHC banks from August 2009 to February 2010 

 Bank Loss EventType BusLine Date % Loss 

1 Citibank N.A. 840 million ExeDPM TraS 2010-01-19 20.77 

2 Discover Financial Service 775 million CliPBP RBn 2010-02-12 19.16 

3 JP Morgan Securities Inc. 722 million CliPBP CorF 2009-11-04 17.85 

4 State Street Global Advis 663 million CliPBP AssM 2010-02-04 16.39 

5 Merrill Lynch and Company 150 million CliPBP CorF 2010-02-22 3.71 

6 Bank of America Corporation 142 million EF ComB 2009-09-21 3.51 
       

 Others (< 80%) 753 million 21 losses    

 All 4.05 billion 27 losses    

 

 

3.1.5 Specification Test of the Hidden Markov Model 

 

We now statistically test the validity of the HMM specification for our data. To do so, we follow 

Zucchini and MacDonald (2009). In general, if a random variable y follows a law   whose 

cumulative function is F, the random variable defined by  u F y  must follow a uniform law 

 0 1U , . By noting as   the cumulative function of the normal law, we should then have: 

        1
0 1 0 1y u F U NFy y, ,

   . 

The variable obtained by   1z F y  is called a pseudo-residual. If the specification   suits 

the data, the pseudo-residuals should follow a normal distribution. 
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In our case, the vector of the pseudo-residuals of our Hidden Markov Model can be calculated 

with    1
1 1 0 1t t t t tz Pr y y y y z N .,



 
       For details, we refer to Zucchini and 

MacDonald (2009). 

 

Figure 6 shows the following points. The distribution of the monthly losses (in log) is 

asymmetrical (upper panel). The Skew t type 4 component is situated to the right of the mean 

to take this asymmetry into account (middle panel). The distribution of pseudo-residuals looks 

quite close to normal (bottom panel). This will be confirmed by the statistical tests. We now 

consider the statistical results in Table 8. We use three tests—Kolmogorov-Smirnov, Anderson-

Darling and Shapiro-Wilk—, to ensure the normal distribution of the pseudo-residuals. For 

comparison purposes, Table 8 shows the result of the same tests done on the series of monthly 

mean losses (monthly losses, in log). Because of high asymmetry, the three tests reject 

normality at 10% for this series of losses, as expected.  

 

As for our model (pseudo-residuals), the Anderson-Darling test gives a p-value of 0.0682. This 

rejects normality even if this p-value is not far from 10%. Conversely, the Kolmogorov-Smirnov 

and Shapiro-Wilk tests do not allow us to reject the normality of these pseudo-residuals with p-

values of 0.1540 and 0.1560 respectively. This seems to show that despite a problem of a fat-

tailed distribution demonstrated by the Anderson-Darling test, we can validate our Hidden 

Markov specification given the two other tests and especially the Shapiro-Wilk test, which 

measures the global probability relative to a normal distribution. 

 

Table 8: Statistical tests  

 Test Monthly losses Pseudo-residuals 

       Statistic      p-value      Statistic      p-value 

1 Kolmogorov-Smirnov 0.1035 0.0039 0.0718 0.1540 

2 Anderson-Darling 0.3101 0.0020 0.6940 0.0682 

3 Shapiro-Wilk 0.9331 0.0000 0.9831 0.1560 
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Figure 6: Histograms of monthly losses and pseudo-residuals 

 

4 Measuring the effect of regimes detected  

 

We start with the loss estimation model of Dahen and Dionne (2010): 

    log log BusinessLines EventTypesLoss Assets       . (4.1) 

 

The dependent variable is log(Loss). The independent variables are log(Assets), category 

variables Business Lines, BL, and category variables EventTypes, ET. The fixed time effects are 

years. 
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The regressions results are presented in Table 9. Model (1a) is the reference model. To simplify 

the presentation of the estimates, we do not report the coefficients of the year fixed effects 

(Year FE), because they are not pertinent to the discussion. A “yes/no” indication for their 

presence is presented in the table. We add the variable of the HMM regime only in model (2a) 

and its cross-loadings (interaction) with Business Lines and Event Types in (3a). 1 All standard 

deviations and p-values are robust to the presence of heteroskedasticity and clustering in the 

sense of White (1980). 

 

Table 9: Effect of regimes detected on log(Loss) 

 
(1a) 

Reference model 

(2a) 
Adding HMM 

regime 

(3a) 
Adding HMM 
regime and 
crossings 

Intercept -0.297 
(0.433) 

-0.260 
(0.446) 

-0.160 
(0.436) 

Log(Assets) 0.139*** 
(0.037) 

0.139*** 
(0.038) 

0.126*** 
(0.036) 

High Regime  0.977*** 
(0.331) 

1.538* 
(0.791) 

Paymt and Settlmnt 1.261*** 
(0.438) 

1.199*** 
(0.438) 

1.196** 
(0.466) 

Trading and Sales 1.104*** 
(0.290) 

1.026*** 
(0.304) 

0.906** 
(0.372) 

Comm. Banking 1.182*** 
(0.167) 

1.117*** 
(0.164) 

1.159*** 
(0.172) 

Retail Banking 0.930*** 
(0.207) 

0.867*** 
(0.207) 

0.827*** 
(0.171) 

Agency Services 1.223*** 
(0.413) 

1.161*** 
(0.435) 

1.532*** 
(0.443) 

Corp. Finance 2.056*** 
(0.237) 

2.063*** 
(0.250) 

1.999*** 
(0.294) 

Asset Mngmt 1.358*** 
(0.274) 

1.321*** 
(0.254) 

1.307*** 
(0.283) 

Bus.Disrup. syst.Fail. -1.080 
(0.687) 

-0.926 
(0.569) 

-0.878 
(0.630) 

                                                 
1
 The model has also been estimated using Heckman’s model to consider potential endogeneity of firms that 

sustained losses, as in Dahen and Dionne (2010). The results are available from the authors. They indicate that the 
inverse Mills ratio is not significant in the second step; the other results remain comparable to those in Table 9. 



28 
 

Damage Phy.Assets -0.086 
(1.925) 

-0.044 
(1.923) 

0.047 
(1.953) 

Employ.Prac.Wrkplac.Saf. -0.676*** 
(0.252) 

-0.622** 
(0.254) 

-0.476** 
(0.224) 

External Fraud -0.502*** 
(0.157) 

-0.489*** 
(0.161) 

-0.433** 
(0.170) 

Internal Fraud -0.593*** 
(0.227) 

-0.524** 
(0.226) 

-0.304 
(0.211) 

Exer. Deliv. Proc. Mnmt -0.214 
(0.228) 

-0.217 
(0.230) 

-0.130 
(0.256) 

High Regime   
Employ.Prac.Wrkplac.Saf. 

  -2.321*** 
(0.513) 

High Regime   External Fraud   0.120 
(1.088) 

High Regime   Internal Fraud   -3.314*** 
(0.547) 

High Regime   Exec. Deliv. Proc. Mnmt   0.115 
(1.228) 

High Regime   Paymt and Settlmnt   -0.561 
(1.584) 

High Regime   Trading and Sales   0.317 
(1.248) 

High Regime   Comm. Banking   -1.511 
(1.266) 

High Regime   Retail Banking   0.401 
(1.075) 

High Regime   Agency Services   -4.491*** 
(1.114) 

High Regime   Corp. Finance   0.645 
(1.565) 

High Regime   Asset Mngmt   -0.249 
(0.963) 

Year FE yes yes yes 

Adj. R2 0.170 0.186 0.223 

AIC 1993.5 1985.2 1978.04 

Log Likelihood 
p-value Chi2 

-971.8 -966.6 
0.001 (2a vs 1a) 

-952.0 
0.002 (3a vs 2a) 

Num. obs. 508 508 508 
 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Clients products and business practice and retail brokerage are 
the omitted categories for Event Types and Business Lines, respectively. 

 



29 
 

The variable log(Assets) is very significant, which is consistent with this type of model. The 

coefficient tends to keep the same magnitude in all regressions. The coefficient of the high 

regime variable is very significant at 1% in model 2a but less significant in model 3a, where it is 

significant at 10%. In contrast, three interaction variables are significant at 1%. The presence of 

year fixed effects does not prevent the regimes from being significant. This suggests that the 

regimes detected cannot be explained by time. Comparison of the adjusted R2
 of the models 

shows an advantage in injecting the high regime variable in 2a or cross-loaded in 3a. The AIC 

statistic and the Log Likelihood ratio test also confirm the superiority of model 3a. That being 

said, we must perform backtesting on these models to evaluate their validity and calculate the 

reserve capital. Note that in the loss database there were no observations concerning BusDSF 

or DamPA where the Markov regime is high. This is why the coefficients corresponding to the 

cross-loadings are not presented in column 3a. 

 

We must measure the effect of the regime levels on the loss frequencies to perform the 

backtest. We build the model around the zero-inflated negative binomial as in Dahen and 

Dionne (2010). Let Y  be a random variable that follows a negative binomial law with average   

and the dispersion parameter  . If NBf  is the probability mass function of this law, then the 

probability that Y  is equal to a value k is written as: 

    
 

 

1

1 1
, , ,

! 1 1 1
NB

k
Pr Y k f k

k

 
   

  

     
  

        
 (4.2) 

where  0,1,2,...,k     designates the conventional gamma function. Note that 0   and that 

the negative binomial converges toward a Poisson law when 0   (Dionne, 1992). When 

there are reasons to think that there are too many 0 values relative to a negative binomial, we 

should envision a model with a negative zero inflated binomial law. Let Yij be a variable 

representing the number of losses sustained by bank i for the year j. If ijY  follows a zero-inflated 

negative binomial law, we can write: 
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where ij  is the mean and   is the dispersion parameter of the basic negative binomial law, 

and ijq  represents the proportion of zeros that would be too many relative to a negative 

binomial law. Conditionally on the explanatory variables chosen, the regression component of 

the negative binomial model ij , and ijq  are estimated using the two following equations: 

 
   0 1 2 3

4 5_ _

ij ij

ij ij

Assetslog log RegimeHMM GDP

Bank Cap Mean Salary

    

 

   

 
 (4.4) 

  0 1 2 3 4 _ .
1
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q
Assetslog log RegimeHMM GDP Mean Salary

q
    

 
     

 
 (4.5) 

 
The last formula is equivalent to the modeling of ijq  using the logistic distribution. The variable 

log(Assets) is the total assets of the bank (in log) and the variable HMM is for the High Regime. 

Mean-Salary is the mean salary paid in the bank, Bank_Cap is the bank capitalization and GDP is 

Gross Domestic Product during the period. 

 
The estimates are presented in Table 10. The dependent variable is the number of annual 

losses. In (1b) we present the benchmark model to compare the effect of adding regimes: 4,329 

observations from January 2001 to December 2010, as documented in Table 1. We want to 

measure the effect of the HMM (high) regime in both the counting and zero parts. The idea is 

that during high regimes, we want to see whether inflated zeros are more numerous or not. 

Model (2b) adds this dimension in both parts. Its coefficient is negative and significant at 10% in 

the count, and very significantly positive for zeros. Apparently, during high levels of the Markov 

regime, losses would be less numerous because the zeros come more from the inflation of the 

zeros (outside the negative binomial). The variable GDP is also very significant to explain excess 

zeros. We want to measure whether deflation of zeros provides statistical value. To do so, we 

compare this deflation model with the base model 1b. Knowing that they are embedded, we 

can test it with the likelihood ratio whose results appear below in the same table. The 

likelihood ratio test of model 2b versus 1b is conclusive, with a statistic of 46.53 and a p-value 

of almost 0. Model 2b using the Markov regime seems to provide more information than the 

reference model (1b) given the substantial decrease in the AIC criterion and the result of the 
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likelihood ratio test. A final comment concerns the values of the log theta dispersion parameter 

of the negative deflated binomial model. Starting with a value of 2.097 in model 1b, we reach 

1.085 for 2b, which is a clear improvement in the specification in the sense that there is less 

unobserved heterogeneity in 2b. We can proceed to the backtesting of the model. 

 

Table 10: Effect of regimes on frequencies 

 (1b) 
Reference model 

(2b) 
Adding HMM regime 

Count model   

  Intercept -10.969*** 
(0.741) 

-11.370*** 
(0.424) 

  Log(Assets) 0.885*** 
(0.053) 

0.916*** 
(0.034) 

  High Regime  -0.531* 
(0.291) 

  GDP 0.018 
(0.034) 

0.011 
(0.039) 

  Bank Cap 4.428*** 
(0.933) 

4.103*** 
(0.705) 

  Mean Salary -0.751 
(0.913) 

-1.642* 
(0.841) 

  Log(theta) 2.097*** 
(0.634) 

1.085*** 
(0.417) 

Zero model   

  Intercept 1.176 
(1.681) 

-4.580* 
(2.712) 

  Log(Assets) -0.176 
(0.120) 

-0.149 
(0.202) 

  High Regime  7.888*** 
(2.502) 

  GDP 0.001 
(0.109) 

2.734*** 
(0.787) 

  Mean Salary 1.466 
(2.569) 

-48.468** 
(23.625) 

AIC 1640.089 1597.558 

Log Likelihood -810.044 -786.779 

Log-Likelihood ratio test   
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- Statistic 

- p.value 

46.530 
0.000 

Number of observations 4329 4329 
 

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. 

 

 

5 Backtesting 

5.1 Operational loss capital 

 

This section has a dual objective. First we want to construct a backtesting procedure for our 

models with regimes to determine their validity. We also want to measure the extent that 

ignoring the existence of regimes in our operational loss data biases calculation of reserve 

capital if this reality is not formally considered. The period selected to calculate coverage is 

January 2010 to December 2010. This period will be designated by Couv0. The regime is high for 

the month of January and low for the 11 other months. We number our three models as 

follows: #1 base model; #2 Markov regime; #3 Markov regime + cross-loading with Business 

Lines and Event Types. To extend Dahen and Dionne (2010), we construct our backtesting by 

taking into account regimes detected. There will be an In-Sample backtesting calculation, in the 

sense that the history will include the period Couv: from January 2001 to December 2010 

(called Hist1). Further, by definition, Out-of-Sample backtesting does not include the period 

covered in the history, and will last from January 2001 to December 2009 (designated by Hist2). 

For each model, the data from the periods Hist1, Hist2 and Couv are scaled according to the 

estimated coefficients in Table 9. For a given bank, scaling is based on the mean value of 

log(Assets) of the bank during the period Couv. Once scaled for a given bank, the historical 

losses (Hist1 or Hist2) can be considered to follow a lognormal distribution. If we consider the 

bank U.S. Bancorp (Table 11), the Kolmogorov-Smirnov test gives a statistic of D = 0.1328 and p-

value = 0.1979. Because the lognormal law is the null hypothesis, the test does not allow us to 

reject it. Given the linearity in log(Assets) of the three models, we can conclude that the 

lognormal is valid for all banks in our BHC sample. We estimate the frequency according to 
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Table 10. We performed 200,000 observations from the lognormal in question, for which we 

calculate the convolution for 2,000 numbers drawn from the negative binomial of the 

corresponding frequency model. This gives us a distribution for which we calculate the reserve 

capital for four degrees of confidence: 95%, 99%, 99.5% and 99.9%. The 99.5% degree of 

confidence lets us evaluate the thickness of the distribution tail, and gives us an idea of what is 

happening in the case where the VaR at 99.9% is not exceeded.  

 

Regarding statistical tests for the VaR, we performed the Kupiec (1995) test, which evaluates 

the number of values in excess of VaR, followed by the DQ test by Engle and Monganelli (2004) 

to measure the independence of number of such values; and lastly the Christoffersen (1998) 

test, which helps us determine the conditional simultaneous coverage of frequency and 

independence of the values in excess of VaR. This gives us a complete and robust view of the 

validity of our backtesting. To provide figures, we have 445 losses recorded for the period Hist1 

and 63 for the period Cov, which gives us 508 = 445 + 63 losses for Hist2. We must calculate the 

probable losses that a given bank incurs during the period Couv. To do so, the 63 losses of Couv 

are scaled to the size of the bank, and each loss is multiplied 56 times by the scaling of the 

models to simulate all 8 BusinessLines and 7 possible EventTypes according to the Basel 

nomenclature (see Table 3). This lets us manage operational risk in all possible cases. The 63 

losses therefore generate 3,528 possible losses, on which we perform statistical backtesting. 

Note that the scaling will cover all historical losses of Hist1 (in-sample) or Hist2 (out-of-sample) 

and all possible losses during the period Couv. Consequently, the model that passes backtesting 

is automatically that which successfully allows simultaneous scaling of all the loss observations 

in question. 

 

We perform the calculations for two banks. The first is U.S. Bancorp (as in Dahen and Dionne, 

2010). Table 11 indicates that the Kupiec test rejects the VaR at 95% in in-sample for base 

model #1 (no regime). The reason for this is that the excess values observed are too few, at 

3.4% versus 5% theoretical. For the rest of the degrees of confidence of model #1 for in-sample 

and out-of-sample, all seems to function properly. The same pattern is seen regarding 
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independence of the values in excess of VaR except for the VaR at 99.5% in out-of-sample, 

where the DQ test rejects the validity at 5%, whereas the Christoffersen test still does not allow 

us to reject it at 5%. Capital at 99.9% is $2,957.4 million. The bank’s total assets are $290.6 

billion, and reserve capital represents 1.02% of assets. Model #2 shows a weakness in the 

frequency of values in excess of VaR at 95% and 99.5% in in-sample, and VaR at 95% in out-of-

sample. We observe the same weaknesses in model #3 concerning VaR at 95%, 99.5% in in-

sample, and 99% in out-of-sample. For the independence of draws, the DQ test is rejected at 

5% for VaR at 99.5% in-sample, and all else is correct at 5%. The Christoffersen test shows the 

same weakness in in-sample for VaR at 5% and at 99.5%, and the rest is correct at 5%. 

Concerning the reserve capital calculated, it is lower than for benchmark model #1, with 

$2,480.5 million and $2,060.7 for VaR at 99.9% in model #2 and model #3 respectively. 

 

We conclude with two important remarks. The first is that all capital calculated is below that 

calculated for model #1, which does not take into account the existence of regimes. This finding 

supports what we said at the beginning of the paper: that there is an endogenous Hidden 

Markov regime in our data and that ignoring it amounts to injecting a positive bias to calculate 

capital when the regime is at a low level. Conversely, a negative bias increases the risk of 

underestimating the reserve capital required when the regime level is high. Using the 

calculation of model #3, this bias for U.S. Bancorp is (2957.4-2060.7)/2957.4, which is 30.3% too 

high. The second comment is that the various weaknesses shown by the tests above seem to 

mainly arise in VaR at 95%, and always concern excess (very high) reserves. We thus consider 

that models #2 and #3 are validated by backtesting. In addition, model #3 stands out from the 

others by allowing considerable savings in capital. 

 

As further proof, we do the same process for a second BHC bank: Fifth Third Bancorp (Table 

12). Its size is $111.5 billion. We obtain largely the same pattern. Model #3 is still the least 

capital expensive. Note this time that models #2 and #3 do not pass the Kupiec test in out-of-

sample at 99.9%. The same comment can be made for the DQ and Christoffersen tests. 

However, VaR at the intermediate level of 99.5% seems to respond well in the same tests. Note 
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that model #1 is also at the limit of rejection at 5% for the same VaR at 99.9% in out-of-sample 

with a p-value of 0.0506. If we consider model #3 valid, the savings in reserve capital at 99.9% 

would be (1722.6-1291.5)/1722.6 = 25%. Further, the cross-loading of regimes with business 

lines and event types seems to capture the fact that these variables do not have the same 

effects during different phases of the regimes. Consideration of Markov regimes thus provides 

an irrefutable improvement. 

 

5.2 Number of states in HMM model 

 

To further backtest own research, we raise two questions. The first would be whether we can 

statistically justify that a combination of two normals, instead of one normal and an ST4, would 

have been insufficient. The second question is to ask whether the regime should have three 

levels rather than two. A three-level regime would be a mixture of two normals plus an ST4 

(Skew-t type 4). To summarize, we want to compare our model N+ST4 to two other models: 2N 

and 2N+ST4. The estimates imply that we would not have a better specification than N+ST4. We 

tested the normality of the pseudo-residuals of the three models as shown in Table 13. First, 

concerning the model 2N with two levels, all three p-values are below 10%. The data clearly 

show that this model is not adequate. Regarding the three-level model 2N+ST4, we have p-

values of 0.0559, 0.0678 and 0.1863 for Kolomogorov-Smirnov, Anderson-Darling and Shapiro-

Wilk respectively. If we reason at 10%, we have two tests that reject normality whereas only 

Anderson-Darling showed a problem for the two-level N+ST4, as seen above. In addition, the 

value of the AIC criterion of the model 2N+ST4 is 325.59 versus 321.93 for our two-level model 

N+ST4, which indicates deterioration in performance. This deterioration is more evident when 

we use the criterion BIC, which becomes 380.66 for the three-level, whereas it was 352.22 for 

the model N+ST4. We therefore reject the three-level model 2N+ST4 at a level of confidence of 

10%. Consequently, we definitively retain the two level specifications with a normal law and 

one Skew t type 4 for our extreme observations. 
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Another comment is necessary. A priori, if the data allow a sufficient number of observations 

and quality, we should have a better goodness of-fit if we increase the degrees of freedom of a 

given model. In our case, according to Figure 3.6, there are 18 observations representing high 

loss regime. The addition of a third level would have divided up these 18 observations into two 

levels. The three resulting levels would be "normal losses,” "large losses" and "very large 

losses.” However, the 18 observations are too few to model two distinct levels. In addition, very 

few periods start from the ST4 level, which makes this level non-significant.  Lastly, in this case 

it is as if we had a first level represented by a normal, followed by a second with a second 

normal. This three-level model is therefore effectively reduced to two-level regime with two 

normals only, because the ST4 level is not representative. Hence the p-values of the three-level 

regime let us reject the three-level model, together with the two-level model built with two 

normal distributions. 
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Table 11: Backtesting of U.S. Bancorp bank 

Backtesting Model α (Frequency) 
VaR 

Kupiec test DQ of E-M Christoffersen 

Reference model Theoretical Observed Stat. p.value Stat. p.value Stat. p.value 

In-Sample 1 0.050 0.034 269.7 11.039 0.0009 10.246 0.0365 11.797 0.0027 

 1 0.010 0.009 842.3 0.233 0.6292 5.129 0.2744 0.233 0.8899 

 1 0.005 0.004 1289.7 0.116 0.7334 0.208 0.9949 0.116 0.9436 

 1 0.001 0.002 2957.4 1.991 0.1583 2.751 0.6063 1.991 0.3696 

Out-of-Sample 1 0.050 0.043 269.7 1.760 0.1846 2.359 0.6701 2.550 0.2795 

 1 0.010 0.012 842.3 0.479 0.4887 1.404 0.8434 0.479 0.7869 

 1 0.005 0.008 1289.7 2.385 0.1225 14.792 0.0052 5.027 0.0810 

 1 0.001 0.002 2957.4 1.991 0.1583 2.751 0.6003 1.991 0.3696 

HMM regimes          

In-Sample 2 0.050 0.036 230.1 8.755 0.0031 9.183 0.0567 8.812 0.0122 

 2 0.010 0.010 712.1 0.000 1.0000 4.229 0.3759 1.775 0.4118 

 2 0.005 0.009 1067.3 5.659 0.0174 8.089 0.0884 5.659 0.0590 

 2 0.001 0.002 2480.5 0.666 0.4145 0.826 0.9349 0.666 0.7169 

Out-of-Sample 2 0.050 0.039 230.1 4.538 0.0332 5.253 0.2623 4.541 0.1033 

 2 0.010 0.012 712.1 0.479 0.4887 3.802 0.4334 0.479 0.7869 

 2 0.005 0.004 1067.3 0.484 0.4867 0.511 0.9724 0.484 0.7851 

 2 0.001 0.002 2480.5 1.991 0.1583 2.751 0.6063 1.991 0.3696 

HMM regimes and interactions          

In-Sample 3 0.050 0.035 209.0 9.483 0.0021 8.768 0.0672 9.520 0.0086 

 3 0.010 0.011 619.3 0.217 0.6416 6.884 0.1421 1.653 0.4376 

 3 0.005 0.010 913.6 6.999 0.0082 10.165 0.0377 6.999 0.0302 

 3 0.001 0.001 2060.7 0.425 0.5146 0.357 0.9859 0.425 0.8086 

Out-of-Sample 3 0.050 0.043 209.0 1.760 0.1846 3.430 0.4886 1.844 0.3977 

 3 0.010 0.016 619.3 5.730 0.0167 9.258 0.0550 5.730 0.0570 

 3 0.005 0.004 913.6 0.116 0.7334 0.208 0.9949 0.116 0.9436 

 3 0.001 0.002 2060.7 0.666 0.4145 0.826 0.9349 0.666 0.7169 
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Table 12: Backtesting of Fifth Third Bancorp bank 

Backtesting Model α (Frequency) 
VaR 

Kupiec test DQ of E-M Christoffersen 

Reference model Theoretical Observed Stat. p.value Stat. p.value Stat. p.value 

In-Sample 1 0.050 0.028 115.0 20.948 0.0000 18.955 0.0008 21.130 0.000 

 1 0.010 0.008 430.7 0.972 0.3241 1.161 0.8844 0.972 0.6150 

 1 0.005 0.007 689.8 0.909 0.3403 1.334 0.8556 0.909 0.6346 

 1 0.001 0.002 1722.6 1.991 0.1583 2.751 0.6063 1.991 0.3696 

Out-of-Sample 1 0.050 0.038 115.0 5.590 0.0181 7.547 0.1097 5.816 0.0546 

 1 0.010 0.007 430.7 1.553 0.2127 1.614 0.8063 1.553 0.4600 

 1 0.005 0.004 689.8 0.484 0.4867 0.511 0.9724 0.484 0.7851 

 1 0.001 0.003 1722.6 3.822 0.0506 5.812 0.2137 3.822 0.1479 

HMM regimes          

In-Sample 2 0.050 0.032 100.4 13.629 0.0002 17.235 0.0017 17.030 0.0002 

 2 0.010 0.008 377.0 0.972 0.3241 1.161 0.8844 0.972 0.6150 

 2 0.005 0.004 592.2 0.484 0.4867 0.511 0.9724 0.484 0.7851 

 2 0.001 0.002 1522.9 0.666 0.4145 0.826 0.9349 0.666 0.7169 

Out-of-Sample 2 0.050 0.042 100.4 2.415 0.1202 4.089 0.3941 2.536 0.2814 

 2 0.010 0.010 377.0 0.000 1.0000 0.564 0.9670 0.000 1.0000 

 2 0.005 0.009 592.2 4.439 0.0351 6.256 0.1808 4.439 0.1087 

 2 0.001 0.005 1522.9 14.599 0.0001 29.515 0.0000 14.599 0.0007 

HMM regimes and interactions          

In-Sample 3 0.050 0.031 94.4 15.532 0.0001 16.867 0.0021 17.537 0.0002 

 3 0.010 0.008 338.1 0.972 0.3241 1.161 0.8844 0.972 0.6150 

 3 0.005 0.004 522.6 0.484 0.4867 0.511 0.9724 0.484 0.7851 

 3 0.001 0.002 1291.5 0.666 0.4145 0.826 0.9349 0.666 0.7169 

Out-of-Sample 3 0.050 0.042 94.4 2.783 0.0953 4.984 0.2889 2.804 0.2461 

 3 0.010 0.013 338.1 1.829 0.1762 3.369 0.4980 1.829 0.4007 

 3 0.005 0.007 522.6 1.570 0.2102 2.205 0.6981 1.570 0.4562 

 3 0.001 0.003 1291.5 6.057 0.0138 10.012 0.0402 6.057 0.0484 
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Table 13: Statistical tests on pseudo-residuals presuming the existence of three-level model 

 (1) 3-level model (2) 2-level model (3) 2-level model 

 2 Normals + 1 ST4 1 Normal + 1 ST4 2 Normals 

1   Kolmogorov-Smirnov 0.0819 0.0559 0.0718 0.1540 0.0849 0.0408 

2   Anderson-Darling 0.6950 0.0678 0.6940 0.0682 0.7873 0.0400 

3   Shapiro-Wilk 0.9839 0.1863 0.9831 0.1650 0.9790 0.0678 

 

 

Conclusion 

 

In this article, we analyze the effect of business cycles in operational loss data on optimal 

capital of banks. We show that considering business cycles can reduce capital for operational 

risk by redistributing it between high regime and low regime states. The variation of capital is 

estimated to be in the range of 25% to 30% in our period of analysis. We also demonstrate that 

court settlements significantly affect the temporal distribution of losses. Several large losses 

were reported after the financial crisis of 2007-2009 owing to these delays. This phenomenon is 

not new; it is also observed for significant losses sustained by insurance companies whose 

settlement payments are often determined by the courts.  

 

Several extensions of our study are possible. The most promising would be to verify the stability 

of the results using different regime detection methods (Maalaoui, Chun et al., 2014). How can 

an approach to detect regimes in real time improve the results, and in particular take the 

asymmetry detected in this article into account?  The value of this approach is that it allows 

separate analysis of level and volatility regimes. 

 

Another possible extension is to use a different approach than that of scaling of operational 

losses to generate a larger number of observations at each bank. Some banks use the Change of 

Measure Approach proposed by Dutta and Babbet (2013). This method combines scenario 

analysis with historical loss data. It would be interesting to examine whether the results of this 
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approach can remain stable by introducing cycles in the data. It would also be worth extending 

the analyses to stress testing of models. 
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