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Abstract:   
We study some recent developments and challenges in the empirics of the effects of 
social networks. We focus in particular on researchers’ ability to make policy 
recommendations based on a standard linear econometric model. We examine the 
potential compatibility between this type of econometric model and a microeconomic 
theoretical approach based on fundamentals, such as preferences, technology and 
decision processes. We discuss sources of identification for the social multiplier as well 
as for the identity of the key player. We study the possibility of testing endogeneity in 
network formation. We analyse the use of proxy variables and their impact for the causal 
interpretation of the peer effect coefficients. Our analysis suggests that greater care 
should be taken in grounding econometric network models to sound and credible 
theoretical underpinnings. 
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1. Introduction

Aristotle, the Greek philosopher, writes "Man is by nature a social animal... He who

lives without society is either a beast or God"(Politics, Book I, Part II). In economics, the

importance of social interactions outside the market is now well recognized. Individuals

share information, learn from others and influence each other in many contexts. This point

is particularly important for policy evaluation. To estimate the overall effect of a social

intervention, it is crucial to account not only for its direct impact on the treated but also its

indirect impact on their peers (Manski, 2013). Recently, a growing literature has attempted

to investigate social interactions at the theoretical, empirical and econometric levels using

the social network approach.

At the theoretical level, social network theory has developed as a rigorous language to

analyse social interactions (Jackson, 2011). This theoretical framework explores in partic-

ular 1) how social networks influence outcomes and 2) how this in turn affects network

formation (Jackson, 2010).

At the empirical level, while the literature on the formation of social networks is limited

but burgeoning (Fafchamps and Gubert, 2007; Comola, 2008; Mayer and Puller, 2008;

Christakis et al., 2010; Mele, 2013; Boucher, 2014b),1 applications on the effects of social

networks on outcomes is vast and expanding at a rapid pace. To name a few, we can

mention Bertrand et al. (2000) on welfare participation, Cassar (2007) on coordination and

cooperation, Patacchini and Zenou (2008) on criminal activity, Trogdon et al. (2008) on

obesity, Karlan et al. (2009) on risk-sharing, and Calvó-Armengol et al. (2009) on education.

Moreover, some recent papers attempt to simultaneously evaluate network formation and

network effects (Conti et al., 2012; Hsieh and Lee, 2011; Goldsmith-Pinkham and Imbens,

2013; Badev, 2013; Boucher, 2014a).

At the econometric level, a rich literature has emerged focusing on issues raised by iden-

1 See also the survey of Chandrasekhar in this Handbook.
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tification of peer effects in econometric models of social networks (Manski, 1993; Bramoullé

et al., 2009; Lee et al., 2010; Blume et al., 2013). Also, issues of estimation have been

addressed either using experimental data and most often based on a reduced form ap-

proach (Sacerdote, 2001; Barrera-Osorio et al., 2011) or using non-experimental data (Lin,

2010; Card and Giuliano, 2013). In the latter case, a number of studies have been in-

spired by the spatial econometric literature (Bramoullé et al., 2009; Lee et al., 2010; Lin,

2010). Distribution-free methods such as generalized two-stage-least squares and GMM, or

approaches involving more structure such as (quasi-)maximum likelihood with or without

autoregressive disturbances have been proposed.

As pointed out by Blume et al. (2013), the theoretical, empirical and econometric litera-

ture on social networks lack integration. Regarding the integration between theoretical and

empirical social network approaches, the so-called identifiability problem (Chiappori and

Ekeland, 2009) is rarely addressed. For instance, assume a non-cooperative (Nash) game

over networks in which each individual maximizes his utility, given his characteristics and

the behaviours and characteristics of his reference group. In this case, the identifiability

problem is whether the individual best response (or reaction) functions can be uniquely ra-

tionalized by a microeconomic theoretical model based on fundamentals, such as the utility

parameters characterizing private and social preferences. As we will show, a positive answer

to this question may help the researcher to simulate overall (direct plus indirect) impact of

hypothetical alternative policy reforms, such as a higher taxes on tobacco or an increase in

penalties on crime, as long as he has full information on the best response functions. This

issue is related to the measurement of the so-called social multiplier.

Regarding the integration of empirical and econometric approaches, a crucial issue deals

with the possibility of recovering the (stochastic) best response functions from some a priori

knowledge of the data-generating process, that is, the identification problem. Assume a

standard linear-in-means model where the outcome of each individual depends linearly on

his own characteristics, on the mean outcome of his reference group (endogenous peer effect)
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and on its mean characteristics (contextual peer effects). Assume also that the outcome is

continuous.2 Identifying the best response functions involves specific econometric problems,

such as 1) the reflection problem (as one’s own behaviour depends on peer behaviour, which

itself simultaneously depends on one’s own behaviour), 2) the presence of correlated effects

(e.g., due to endogeneity of network formation or network-invariant unobservables), and

3) incomplete information (e.g., due to partial knowledge of networks’ architecture and

individual outcomes). When individuals interact in groups3 and the group sizes are the

same, Manski (1993) shows that the reflection problem makes the best response model

unidentified.4 However, Bramoullé et al. (2009) shows that there is no reflection problem

when individuals do not interact through groups, which is most likely to be the case.

Therefore, two basic issues remain as related to the identification problem: the endogeneity

of network formation5 and problems of information. Problems of information happen either

because the game played by the individuals is a game of incomplete information (Blume

et al., 2013; Yang and Lee, 2014) or because the econometrician has only partial knowledge

of the network (Chandrasekhar and Jackson, 2013) or of the characteristics and behaviours

of the individuals (Liu et al., 2013a; Boucher et al., 2014). One important issue related

with the latter point is whether the use of proxy variables (e.g., Cooley Fruehwirth, 2013),

such as hours of work or body mass index as proxies for work effort or healthy life habits,

may allow us to identify peer effects in the structural econometric model.

In this chapter, we focus on some issues associated with the identifiability and the

identification problems in the social network approach. In particular, we put the accent on

four aspects that we think are crucial for policy analysis and on which the chapter makes

2 A discrete outcome generally helps to identify the model but may be the source of multiple equilibria
(Brock and Durlauf, 2007).

3 This means that the population is partitioned into groups, and that individuals are affected by all
others in their group and by none outside of it.

4 Manski implicitly assumes that the size of groups is infinite, which is akin to assuming that they are
the same.

5 The presence of network-invariant unobservables can be treated by introducing network fixed effects
into the model (Bramoullé et al., 2009; Lee et al., 2010).
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a number of contributions.

To give a broad perspective on the relevant literature, we first provide a discussion of

recent empirical contributions of research on the effects of social networks on outcomes with

a focus on their implications for policymaking. We insist, in particular, on the importance

of the social multiplier and key player concepts to understand the role of the network

structure in evaluating the impact of policy interventions on aggregate outcomes.

Second, we show that the presence or absence of a social multiplier crucially depends

on the source of social interactions (complementarity vs. pure conformity). We prove that

the social multiplier is generally not identified even when the peer effects can be recovered

(identifiability problem). However, we also show that information on isolated individuals

within the network generally allows us to identify this effect.

Third, we extend our analysis to the case where the structure of a network, as sum-

marized by the social interaction matrix,6 is not fixed but stochastic. In this context, two

scenarios can be obtained depending on whether this matrix is exogenous, that is, not

correlated with the random term, or endogenous. When the social interaction matrix is

exogenous, it may depend on some individual variables. In that case, we show that it is

important to account for the effect of a policy shock on the matrix when evaluating the

impact of a policy. Also, we discuss the ability to test for the endogeneity of the network

structure (identification problem).

Finally, we focus on issues of identification of the best response functions when the

econometrician does not observe the true interaction variable but only a proxy (identifica-

tion problem). We insist on the importance of developing a microeconomic model based

on sound and credible theoretical underpinnings to determine the parameters of the best

response functions that are identified.

This chapter mostly focuses on the standard linear-in-means model. Most papers on

social interactions have considered the econometric framework since it is naturally related

6 Its mathematical definition is given in section 3.1.
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to the standard simultaneous linear model. Nonetheless, the essence of most of our results

and discussions extends to other linear models such as in Blume et al. (2013), Boucher

(2014a) and Liu et al. (2014), as well as to non-linear models of social interactions.

The remainder of the chapter is organized as follows. Section 2 provides a survey of

the recent contributions on the effects of networks on outcomes with an emphasis on their

policy implications. Section 3 discusses the concept of social multipliers and presents our

basic results as related to its identifiability. Section 4 discusses various types of network

structures. We introduce the notion of stochastic network structure and discuss the cases

where the network is exogenous or endogenous. Section 5 analyses identification issues

when the right interaction variable is unobservable and a proxy variable is used. Section 6

concludes.

2. What Has Been Learned About the Effects of Social Networks on Policy

Outcomes ?

One important interest of using the social network framework is for policy analysis

purposes. This section considers a number of concepts with applications illustrating various

types of peer effects and other externalities that can be fruitfully investigated in a network

setting.

One of the central concepts in social networks related to policy analysis involves social

multipliers (Glaeser et al., 2003). It arises when a change in a common (policy) shock exerts

both a direct effect on individual action, and an indirect effect through social influence. The

social multiplier can be defined as the ratio of the total (direct plus indirect) effect to the

direct effect, and therefore exceeds 1 (around a stable equilibrium) under the assumption

of positive spillovers or complementarity within the network.7 The relevance of social

multipliers in policy analysis stems from the fact that the impact of a (small) intervention

7 This result is formally proven in section 3.1.
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may be strongly amplified at the aggregate level when social interactions across individuals

are large.

Using social multipliers, policymakers can obtain information on the impacts of shocks

on various networks and involving different types of externalities, such as academic perfor-

mance at school (Graham, 2008), labour participation of mothers (Maurin and Moschion,

2009), tax evasion among small businesses and professionals (Galbiati and Zanella, 2012),

and fast food consumption among teenagers in schools (Fortin and Yazbeck, 2014). Im-

portantly, in many papers, the social multiplier in a linear-in-means model is computed

as 1/(1 − δ),8 where δ is the endogenous peer effect, that is, the impact of the individual

reference group’s mean outcome on his/her own outcome. However, we show in section 3.1

that this equality does not always hold and that the social multiplier depends on the mech-

anisms of social interactions (e.g., complementarity vs. conformity). We also show that

those mechanisms may be hard to identify in the linear-in-means model even if peers effects

are identified. However, identification may be possible when there are isolated individuals

in the network (see section 3.2).

While social multipliers apply to a common policy shock, it may be the case that the

policy intervention directly affects only a subset of the social network. This point was dis-

cussed, among others, in Moffitt (2001) and empirically analysed in Babcock and Hartman

(2010) and Dieye et al. (2014), using a treatment evaluation approach. For instance, let

us suppose that a fraction of students are given free textbooks to learn the material pre-

sented in class. This intervention will not only influence their academic performance but

may also indirectly affect the performance of those who did not receive a textbook, through

social interactions. This suggests that when one’s treatment status influences the actions

of others, experimental data are not generally sufficient to identify a causal treatment im-

pact. A social network setting can be useful to provide an adequate analysis of this type of

8 There is a natural analogy between this formula and the standard Keynesian multiplier.
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intervention (Dieye et al., 2014).9

Related to the previous point, one may ask which individuals in the class should be given

a textbook to maximize the overall impact of the intervention on academic performance

(for a given budget). This normative issue has been called the key-player problem in the

social network literature (Borgatti, 2006). At the econometric level, it has been addressed

in a number of papers (e.g., Ballester et al., 2006; Liu et al., 2014) that have been surveyed

by Zenou in this Handbook. In section 3.3 we provide a simple approach that shows how

to determine the key player in a linear-in-means model.

Up to now, it has been assumed that the shock does not influence the structure of

the network. In contrast, Comola and Prina (2013) propose an approach in which the

social network can be influenced by the exogenous shock. They apply it to experimental

data collected to evaluate the impact of a new savings technology in Nepal. Their analysis

accounts for the change in the network of financial exchanges between all villagers before

and after the shock. According to their results, a non-negligible share of the peer effect in

savings comes from the change in the structure of the network. In section 4.1, we provide

an analysis of peer effects when the network architecture is exogenous, but stochastic, i.e.,

it may be affected by changes in exogenous variables.

One of the most difficult problems arising when using network data for policy analyses

involves the structure of the network. It is likely to be stochastic endogenous, at least

when no experimental data are available.10 For instance, individual preferences within

a friendship network are likely to be similar. Thus, one should expect to observe the

presence of homophily on unobserved individual characteristics, that is, the tendency of

9 Moffitt (2001) points out that this intervention also helps with the identification in a linear-in-means
model when individuals interact in groups and the size of groups is very large. The reason is that the policy
introduces an exclusion restriction in the model since the students who do not receive a textbook are not
directly affected by the intervention.

10 Using experimental data also raises its own problems such as external validity and the use of an
incomplete network. See Blume et al. (2011) for a critical analysis of identification problems when using
experimental data.
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friends to link with similar other individuals. This source of spurious correlation between

friends’ outcomes may generate a serious identification problem and produce potentially

large biases in the estimators of the structural econometric model.

Recently, some researchers (Conti et al., 2012; Hsieh and Lee, 2011; Goldsmith-Pinkham

and Imbens, 2013; Badev, 2013; Boucher, 2014a) have made attempts to develop economet-

ric models allowing for the joint estimation of network formation and network interactions.

However, empirical results using Add Health data and focusing on outcomes such as smok-

ing, sleep behaviour and academic performance among students at the secondary level in

the U.S. do not seem to detect much difference in peer effects when networks are assumed

exogenous and when they are allowed to be endogenous. Among the many reasons which

could explain this is the fact that the Add Health database includes a very large number

of observable characteristics that can be introduced in the econometric model (Liu et al.,

2013a). Another explanation is that, although statistically significant, the explanatory

power of the individual characteristics on the probability that two individuals are friends

is extremely small (Boucher, 2014a). However, as noted by Badev (2013), even with this

absence of bias on the estimated parameters, the endogeneous nature of the network struc-

ture may still strongly affect the impact of policy shocks.11 In section 4.1, we show that

this argument holds even when the network is exogeneous. In section 4.3, we provide a dis-

cussion on how to test for network endogeneity in a particular class of models (latent space

models) where the probability of a relation between individuals depends on their positions

in a partially observed “social space” (Hoff et al., 2002).

As stressed by Manski (1993), one key issue faced by a researcher who studies social

networks is: Who interacts with whom? Except for cases when data from highly con-

trolled field or lab experiments are available (e.g., Mas and Moretti (2009) and Beugnot

et al. (2014), in experiments on work effort), problems such as incomplete information on

11 Badev (2013) finds that neglecting the endogeneity of the friendship network leads to a downward bias
of 10% to 15% on the predicted impact of public policies.
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the structure of networks or partial observability of outcomes are ubiquitous. Davezies

et al. (2009) has provided a simple solution to the latter issue when individuals interact

through a group. Boucher et al. (2014) has implemented their approach to estimate peer

effects in academic achievements in Canadian secondary schools. The former issue is much

more severe when individuals interact through more complex social networks and networks

architecture is only partially known. Chandrasekhar and Lewis (2011) have developed a

generalized instrumental approach that yields consistent estimators of the best response

functions when the researcher observes only a sample of the network. Liu et al. (2013a)

study the special case where the network is fully observed, but the outcome variable is only

observed for a subset of the individuals.

A related important observability issue arises when some crucial variables of the model

of social interactions are not available. For instance, in the literature on the social epidemic

of obesity (Christakis and Fowler, 2007; Trogdon et al., 2008; Cohen-Cole and Fletcher,

2008), the variable of an individual’s effort to maintain a normal weight is usually not

available. Therefore, researchers often regress the individual’s BMI on his peers’ average

BMI and other variables to estimate peer effects. Does this approach allow to identify true

peer effects? In section 5, we show that the answer to this question crucially depends on the

nature of the microeconomic model incorporating both the technical relationship between

the individual’s weight and his effort, and the individual’s utility function.

Up to now, the discussion has focused on models with linear social interactions. How-

ever, as stressed by a number of researchers (Sacerdote, 2011), the standard linear model

may hide large heterogeneity in the effects experienced by different types of individuals. For

instance, in the education sector, Sacerdote (2011) reports that when one uses nonlinear

models, one prevalent finding is larger peer effects in which high ability students benefit

from the presence of other high ability students. Also, when the outcome of interest is

discrete (e.g., smoking, marijuana use, criminality among teenagers), the network model

becomes intrinsically nonlinear. This raises the problem of multiple equilibria (Brock and
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Durlauf, 2001; Card and Giuliano, 2013; Lee et al., 2013; Badev, 2013).

3. Social Multiplier in Networks

As discussed in the previous section, one major policy implication of the peer effect

literature is the potential presence of a social multiplier. In this section, we discuss the

researcher’s ability to identify the presence or not of a social multiplier from the structural

econometric model.

3.1. A negative identification result

This sub-section provides a negative result regarding the identification of the primitive

preferences parameters (the fundamentals of the microeconomic model). We assume that

the individual strategy within a network obeys a linear structure as it is commonly assumed

in the literature and that no individual is isolated.12 We show that it is not possible to

recover the social multiplier even when peer effects are identified.13

To see why, let us focus on a simple static model inspired by Bramoullé et al. (2009)

and Blume et al. (2013). Assume workers with size n are interacting through a network

within a firm and are producing an output. The n×n network adjacency matrix A is such

that aij = 1 if the worker i is influenced by the worker j and = 0, otherwise. We assume

the links do not differ in strength. Worker i’s reference group with size ni is the set of other

workers by which he is influenced. For the remainder of this subsection, we assume that

the social interaction matrix G represents a row-normalization of the adjacency matrix A

such that rows of G sum to 1. This implies that there are no isolated workers. Therefore

gij = 1/ni if i is influenced by j, and 0 otherwise. Suppose that G is a non-stochastic (or

fixed) and known social interaction matrix.

12 This assumption is relaxed in the next section.
13 Blume et al. (2013) provides a similar negative result on the identification of preferences but does not

discuss its link with the social multiplier.
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Consider the following quadratic utility functions:14

ui(y, c0) = (c0 + xiβ + εi)yi −
y2i
2

+ αyigiy (1)

vi(y, c0) = (c0 + xiβ + εi)yi −
y2i
2
− λ

2
(yi − giy)2 (2)

where xi is the vector of individual i’s observable characteristics and εi is a random term

representing his unobservable characteristics. One assumes that xi are strictly exogenous,

and that α ∈ [0, 1) and λ ≥ 0.15 Both utility functions are separable into two compo-

nents: a private and a social sub-utility. The first two expressions on the right-hand side of

these equations are the same and correspond to the private sub-utility. The third expres-

sion, which describes the social sub-utility, features social interactions and differs across

equations.

Preferences given by these utility functions come from two alternative sources of social

interactions: complementary and pure conformity. A worker whose preferences are given

by ui could be selecting his production, yi, taking into account the benefit received per unit

produced, c0 + xiβ + εi, the cost of producing, y2i /2, and the synergy created by working

with his co-workers, αyigiy.16 The latter expression, which reflects the social sub-utility of

ui, means that an increase in the average co-workers’ production, giy, positively influences

his marginal productivity (complementary).17Alternatively, a worker whose preferences are

given by vi could be also choosing his production taking into account the benefit received

from unit produced, c0 + xiβ + εi, and the cost of producing, y2i /2. However, in this case

14 To simplify the discussion, we ignore contextual peer effects. Including the latter would not change
the basic argument.

15 Those conditions on α and λ imply that the set of best response functions is a contraction, which
implies the existence of a unique Nash equilibrium of the game.

16 Calvó-Armengol et al. (2009) took this approach in modeling peer effects in academic achievement.
17 Note that substitutability in social interactions (with α < 0), where the average peers’ production

reduces a worker’s utility, is also possible as long as |α| < 1.
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there is no complementarity. Rather, his social sub-utility is positively affected by the

degree to which he conforms with his peers’ level of production, −λ
2 (yi − giy)2. This refers

to pure conformity due, for instance, to social norms or emulation between workers.18

Note that even if the utilities ui and vi represent different sources of social interactions,

they lead to observationally equivalent sets of reduced form models:19

yu(c0) = (I− αG)−1 (c01 +Xβ + ε) (3)

yv(c0) = (I− α̃G)−1 (c̃01 +Xβ̃ + ε̃) (4)

where α̃ = λ/(1 + λ), β̃ = β/(1 + λ), c̃0 = c0/(1 + λ) and ε̃ = ε/(1 + λ) and where 1 is

the vector of 1s of dimension n. This is important as only the model with complementarity

features a social multiplier!

In other words, the presence (or not) of a social multiplier cannot be identified from the

agents’ decisions. Formally:

Proposition 1. Let c1 = c0 + c, then ∆yu = c
1−α1 and ∆yv = c1,

with ∆yu = yu(c1)− yu(c0) and ∆yv = yv(c1)− yv(c0).

Suppose that the change (∆) from c0 to c1 is a policy shock represented by the intro-

duction of a wage subsidy. Consider first a worker whose preferences are represented by ui.

Without social interactions (α = 0), this leads to a change in the production of any worker

by c. With social interactions, however, a worker also indirectly benefits from the other

workers’ change in pay so the overall impact of the change is larger: |c|/(1 − α) > |c|. In

this case, the social multiplier is 1/(1− α), which is strictly greater than 1.

18 As is well-known, the literature on game theory associates the expression strategic complementarity
or supermodularity to the case where an increase in a player’s outcome increases the marginal utility (or
payoff) of the other player’s outcome. Here it is easy to show that both complementarity (as we define it)
and pure conformity generate strategic complementarity.

19 These restricted reduced forms of equations correspond to the (unique) Nash equilibrium implied by
the set of best-response functions for the two models.
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Now consider a worker whose preferences are represented by vi. In that case, there is no

social multiplier (it is equal to 1), that is, the impact of the wage subsidy on his production

is not amplified by his peers’ mean production. The basic intuition is that the subsidy

induces the same direct effect (i.e., without social interactions) on a worker’s production

and on that of his peers. Therefore, the gap between these variables, or (yi − giy)2, is

not influenced by the policy shock. As a result, in this pure conformity model, social

interactions between individuals will generate no indirect effect.

Note that it is possible that a worker’s social utility has both complementary and

pure conformity features. For instance, a worker may be affected both by the synergy in

productivity from his co-workers and by his incentives to imitate their behaviour.20 In that

case, the corresponding social multiplier will be equal to 1
1−α and is independent of the

parameter λ reflecting pure conformity.

In this situation, the best-response functions, obtained from maximizing each worker’s

utility with respect to his own production, given the others’ production, are given by:

y = c̃01 +Xβ̃ + δGy + ε̃ (5)

where δ = α+λ
1+λ . In (5), the parameters β̃ capture the individual effects and δ captures the

endogenous peer effect. When individuals do not interact through groups, the parameters

of the linear-in-means model (5) are identified.21 However, the parameters α and λ defining

δ are not identified. Again, this shows that the social multiplier as well as the sources of

social interactions are not identified.

Our analysis also shows the importance of providing the micro foundations (e.g., in

terms of preferences, technology and decision process) of a social interactions model to

fully address the identifiability problem, as was carefully done for instance by Blume et al.

20 In that case, the worker’s utility function is given by: (c0 +xiβ+ εi)yi − y2i
2

+αyigiy− λ
2

(yi − giy)2.
21 The parameters are also identified when individuals interact through groups and there are at least

three groups with different sizes (Davezies et al., 2009).
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(2013). Thus, focusing the analysis only on the linear-in-means structural model does not

allow to derive any identifiability result on the social multiplier.22

3.2. Room for identification when some individuals are isolated

The argument developed up to now depends on one important assumption: no individual

is isolated. This implicitly follows from the assumption that the social matrix interaction G

is row-normalized. This assumption is usually made to obtain identification results in the

presence of correlated effects due to fixed network unobservables (Bramoullé et al., 2009;

Lee et al., 2010; Kwok, 2013). It is usually assumed that removing those individuals from

the database can be done without any great loss of generality because, by definition, they

do not affect the correlation structure of the network game. However, we will see that those

isolated individuals provide identifiability conditions for the presence of a social multiplier

as well as the source of social interactions.

Suppose now that the firm is also composed of isolated workers (referred to by ˇ ).

Since their preferences do not include any social sub-utility component, their corresponding

utilities are given by:

ǔi(yi, c0) = (c0 + xiβ + εi)yi −
y2i
2

(6)

v̌i(yi, c0) = (c0 + xiβ + εi)yi −
y2i
2

(7)

For those workers, both complementary and pure conformity models lead to the same best-

response functions:

y̌ = c01 +Xβ + ε (8)

22 This point was also made in Liu et al. (2013b) where they present a model featuring both comple-
mentarity and pure conformism. They provide a test for distinguishing between what they call the local
aggregate (complementarity) and the local average (pure conformism). Their test relies on the fact that
their local aggregate effect is defined on the non-normalised adjacency matrix. Our point is stronger: re-
stricting the analysis to row-normalized matrices, the econometric model does not allow to identify the
source of the interaction (pure conformity or complementarity).
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where β and c0 are identified when X is full rank and can be estimated by a simple OLS.

We argue that isolated workers allow to test for the presence of a social multiplier. To

see why, consider (5), where both sources of social interactions are potentially present, as

well as (8) for isolated individuals. Since β is identified from (8) and β̃ is identified from

(5), λ is identified.23 Also, since δ is identified from (5), the identification of λ is sufficient

for the identification of α.24 Then, all the parameters are identified, which is sufficient to

test for the presence of a social multiplier.25

This argument, however, relies on the researcher’s ability to distinguish between isolated

and non-isolated individuals, which is strongly dependent on the observation of the exact

network structure. Specifically, if some links are unobserved, one may incorrectly infer that

an individual is isolated. In that case, the estimated parameters are likely to be biased and

researchers should proceed to robustness checks, for instance using simulations.

Here an important remark is in order. In some cases, as for example when the network

structure is endogenous (see section 4.2), one may want to estimate the model with the

full network matrix. Let G be such a matrix, where rows of isolated individuals sum to 0,

while the other rows sum to 1.26 Consider the following model:

y = c01 +Xβ + αGy + ε

With this specification, and since G includes isolated and non-isolated individuals, the

model imposes that the individual effects are the same for every individual. This implies

that the economy has to feature a social multiplier. The model is then incompatible with

preferences such as vi and the social interaction parameter should not (unless explicit pref-

erences are specified) be interpreted as an effect of conformism.27

23 Recall that β̃ = β/(1 + λ).
24 Recall that δ = (α+ λ)/(1 + λ).
25 Recall that the social multiplier is equal to 1

1−α .
26 This definition of the interaction structure is used, among others, by Bramoullé et al. (2009).
27 When the interaction matrix G is not row-normalized, however, the full model may not be incompatible
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3.3. Social multiplier or key player?

In the previous sections, we have defined the social multiplier as the impact of a common

shock (i.e., the wage subsidy). However, even when social interactions do not lead to the

presence of a social multiplier, the policymaker may want to know which individuals to

target (e.g., Ballester et al., 2006; Graham, 2014). Suppose that the policymaker wants

to affect only a subset I ⊂ N of individuals. Which ones should he target in order to

maximize the overall impact? Which criminals, once put in jail, generate the highest

possible reduction in aggregate crime levels (Liu et al., 2014)? In this section, we briefly

describe the identity of those key-players.28

Consider the following model where G is row-normalized:

y = τ (I− δG)−1 (c01 +Xβ + ε)

where δ ∈ (0, 1) and τ = 1
1+λ , with λ ≥ 0. Remark that this specification includes the

models of complementarity (λ = 0 and δ = α) and pure conformity (λ > 0 and δ = λ
1+λ)

as special cases. The overall impact of a shock c on all individuals i ∈ I is given by:

τc1′ (I− δG)−1 eI

where eI is a vector taking 1 at the i’th position for all i ∈ I and 0 elsewhere. Letting

b = (I− δG′)−1 1, this is equivalent to τcb′eI = τc
∑

i∈I bi. The vector b is a well-

known measure of centrality called the PageRank (Brin and Page, 1998) and is equal to

the Katz-Bonacich centrality for the transpose of G (Calvó-Armengol et al., 2009). Then,

the policymaker should target the most central individuals. Note that the identity of those

individuals strongly depending on δ (b is a function of δ), but not on τ and c, which only

with conformism. See, for example, Boucher (2014a) where the interaction matrix is given by the Laplacian
matrix of the network.

28 For a complete survey, see the chapter of this Handbook by Zenou.

16



affect the magnitude of the shock. To know the identity of the key players, the source of

social interaction (complementarity or pure conformity) is then irrelevant, as long as δ is

precisely estimated.

4. Types of Network Structures

Networks are convenient to represent the structure of interactions between individuals.

Interactions of different natures lead to different types of network structures. Despite the

important differences between those types (see below), the literature rarely distinguishes

between them. In this section, we distinguish between three types of network structures:

non-stochastic network structures, stochastic exogenous network structures and stochas-

tic endogenous network structures. We also discuss the problem of identification of the

structural econometric model in these three cases.

For the remaining of this section, we assume that the interaction matrix G represents

a row-normalization of the adjacency matrix A such that rows for non-isolated individuals

sum to 1 while the other rows are 0. To clarify the exposition, we assume that there are no

endogenous effects and that the structural econometric model is given by:

y = Xβ +GXγ + ε (9)

where εi ∼iid N(0, σ).

4.1. Exogenous or non-stochastic?

Let’s assume that the network structure G is non-stochastic. Prominent economic

examples of such network structures include group interactions (Lee, 2007; Boucher et al.,

2014), provided that groups are non-stochastic, as well as panel data models. As discussed

in Bramoullé et al. (2009), panel data models represent a special case of network interactions

when individual i at time t has only one peer: himself at time t− 1. Econometric methods
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based on non-stochastic network structures include for instance Lee et al. (2010).29 When

G is non-stochastic, parameters in (9) are identified as long as matrix X is of full rank and

E(ε|X) = 0. Moreover, they can be estimated by OLS.

Now, assume that G is stochastic, that is, the observed network G is the realisation of

a random variable. Assume also that G is exogenous in the sense that E(ε|X,G) = 0. For

example, G could represent the (row-)normalization of the adjacency matrix A, defined as

follows:

aij = l(r(xi,xj) + νij > 0)

for some function r and where l(B) is an indicator function where l(B) = 1 if B is true

and l(B) = 0 if B is false, and where νij ∼iid N(0, 1). In that example, we immediately see

that E(ε|X,G) = 0, so the parameters in (9) can again be estimated by OLS.

Assuming that the network is non-stochastic or (stochastic and) exogenous therefore

has the same implication for the identification and the estimation of the model. However,

the impact for the interpretation, and related policy recommendations, of the model are not

the same. For example, suppose that (9) represents workers’ productivity, y, as a function

of the workers’ network G within a firm, and their individual characteristics X, which may

include, for instance, wages. Now, suppose that the government introduces a wage subsidy

(i.e., a shock on X). That policy may also influence the structure of the workers’ network

within the firm. This must be taken into account in the evaluation of the impact of the

policy on the workers’ productivity. In general, for exogenous networks, one cannot predict

the impact of a policy shock without imposing assumptions on the process generating the

network.

This might seem like a simple remark. However, very few models of peer effects include

a description of network formation process. When they do, the emphasis is placed on

whether or not the network is endogenous (i.e., whether or not E(ε|X,G) = 0 holds). Our

29 Note that despite the fact that Lee et al. (2010) considers non-stochastic network structures, the
method has been applied in practice to cases where the network is explicitly stochastic.
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point is different: for policy’s sake, any model of social interactions based on a stochastic

network structure should include a description of the network formation process. This does

not mean that researchers should always provide an explicit network formation process,

but they should at least discuss the expected impact of their proposed policy shocks on the

structure of the interaction network.

The distinction between stochastic and non-stochastic network structures is crucial in

order to describe the impact of a policy shock. In the next section, we discuss the third

type of network structure, which is when the network is stochastic and endogenous (i.e.,

when E(ε|X,G) 6= 0). Specifically, we discuss our ability to test for the endogeneity of the

network structure.

4.2. Testing for network endogeneity in latent space models

Assume that the model in (9) can be decomposed as follows:

y = Xβ +GXγ + ρν + ξ︸ ︷︷ ︸
ε

(10)

where ξ is an exogenous error term. Assume also that the network structure is stochastic

and that G is the (row-)normalization of the adjacency matrix A defined as follows:

aij = l{κ− φ|xi − xj | − µ|νi − νj |+ ηij > 0)} (11)

where ηij is an exogenous error term. The network formation processes characterized by

(11), where the likelihood of a link between i and j can be represented as a function of the

agents’ individual characteristics, are called latent space models in the statistical literature

(Hoff et al., 2002) and have been recently used in economics by Goldsmith-Pinkham and

Imbens (2013) and Graham (2014). When φ and µ are greater than zero, this indicates the

presence of homophily, that is, the closer two individuals are in terms of their observable

and unobservable characteristics, the higher is the probability that they are linked.
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Here, the network structure is endogenous due to the fact that the econometrician does

not observe the relevant variable ν, which enters both the outcome equation (10) and the

network formation equation (11). Note that this is different from the endogeneity that

would result from self-selection on the outcome variable y, as in Badev (2013) and Boucher

(2014a). Unless ρ = 0 or µ = 0, the outcome structural equation is unidentified due to the

endogeneity created by ν. This makes it impossible to obtain consistent estimates of its

parameters. Goldsmith-Pinkham and Imbens (2013) discusses the possibility of testing for

this particular problem. The idea is the following.

Suppose that ρ 6= 0 and µ > 0. Let âij be the predicted value of aij assuming that

µ = 0 (that is, for a consistent estimator of κ and φ, conditional on µ = 0). Similarly, let

ε̂ij = |ε̂i − ε̂j | where ε̂i is the residual from yi − ŷi, again assuming ρ = 0.

Now, consider the set of pairs such that aij = 0 (no link). Suppose that, for some pair

of individuals (i, j), âij is “high” compared with the predicted value for the other linkages.

This suggests that the link between i and j was more likely to be created than the other

links (but is not linked in the data). Then, if µ > 0, this implies that the value of ε̂ij should

be relatively large. Put differently, if the predicted value of the link is large, but no link is

created, it implies that the unobserved shock on the link is strongly negative. If the model

features homophily, this implies that the distance in the unobservables is large (e.g., strong

difference in preferences).

To our knowledge, no formal test of endogeneity exists which fully exploits the infor-

mation in âij and ε̂ij . In practice, researchers have used the fact that if the network is

endogenous, “low-values” of âij should be correlated with ε̂ij (Liu et al., 2013a). However,

as discussed above, this is far from exploiting all the information provided by âij and ε̂ij .

Also, if ρ = 0 or µ = 0, the errors should not only be uncorrelated, but independent.

Nonetheless, the same intuition holds. If ρ = 0 or µ = 0, the residuals ε̂ij from (10) should

not provide any information on the probability that a link is created (conditional on the

observables).
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To explore further the empirical content of the model, we present numerical simulations.

We show results for simple correlation tests, as well as for the Hilbert-Schmidt Independence

Criterion tests.30 Note also that this “test” is only valid when the network formation process

is given by (11), i.e., when the utility of the network is separable across links (Bramoullé

and Fortin, 2010). However, we suspect that the same principle could be applied to more

general models of network formation such as in Hsieh and Lee (2011), Mele (2013) or

Chandrasekhar and Jackson (2013).

4.2.1. Simulations

We provide an example using Monte Carlo simulations for the model in (10), assuming

that:

aij = l{κ− φ|xi − xj | − µ|ν̃i − ν̃j |+ ηij > 0)} (12)

We use two specifications of the model. An “exogenous” version where ν and ν̃ are two

independent and identically distributed variables, and an “endogenous” version where ν = ν̃

(i.e. the same variable as in (10)).31

We let x, ν, ν̃, ε, η ∼ N(0, 1). Parameters are fixed such that φ = 0.5, β = 2, γ = 10,

κ = 4, µ = 6 and ρ = 20. Parameters are chosen so as to facilitate the visual representation.

We simulate 100 groups of sizes drawn from an uniform (10, 50). The total population is

comprised of 2,944 individuals and 49,304 within-group pairs.

We first regress the predicted value of the link (i.e., âij) on the distance in the residuals of

the outcome equation (i.e., ε̂ij), and on the distance between the residuals when individuals

are linked (i.e., ε̂ij ∗ aij) and on the status (linked or not) of the pair (i.e.,aij). If the

30 The Hilbert-Schmidt Independence Criterion is a kernel-based independence test. It tests whether the
(Hilbert-Schmidt) norm of the cross-covariance operator is equal to zero. For generic kernels, the Hilbert-
Schmidt Independence Criterion between two random variables is equal to zero if and only if the variables
are independent. See Gretton et al. (2005) for details. We computed the Hilbert-Schmidt Independence
Criterion using Arthur Gretton’s (2007) hsicTestGamma.m function. See http://people.kyb.tuebingen.
mpg.de/arthur/indep.htm.

31 This strategy is used so that the distribution of the unobservables in (10) and (12) will be the same,
which facilitates the visual representation (see Figures 1-4).
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network structure is exogenous, the only predictor of âij should be aij . Looking at Table 1

(endogenous version), we see that we reject the null hypothesis that the network is exogenous

since we measure a significant correlation between ε̂ij and âij . This result is confirmed by

looking at Table 2 (exogenous version), where no correlation is measured.

The endogeneity created by the omitted variable ν can also be seen by looking at

the conditional joint densities in Figures 1-4. If the network structure is exogenous, the

realized network, (i.e., the set of pairs of individuals that are actually linked or not) should

not affect the joint distribution of ε̂ij and âij . When the network is endogenous, we see a

large difference between the joint density for linked pairs (Figure 1), and the joint density of

unlinked pairs (Figure 2). When the network is exogenous, we do not (and should not; see

Figures 3 and 4). This visual analysis is confirmed by the Hilbert-Schmidt independence

test in Table 3.

Since there exists no formal test exploiting all the empirical content of the model, we

suggest that, in practice, researchers should proceed to a visual inspection of the conditional

joint densities (as in Figures 1 and 2) and that they perform non-parametric independence

tests such as the Hilbert-Schmidt Independence Criterion. Note that the visual inspection

of the joint densities may provide more information as it gives an idea of the importance of

the endogeneity. If joint densities are relatively similar, we can expect the bias due to the

endogeneity to be small, even if evidence of endogeneity is found.

5. Using Proxy Variables

As in many economic applications, the researcher does not always observe the “true”

variable and must sometimes use a proxy. In the peer effects literature, prominent examples

are the use of student achievement as a proxy for effort, or time studying (Sacerdote, 2011),

and body mass index (BMI) as a proxy for effort, or healthy life habits (Yakusheva et al.,

2014). In this section, we use the example of BMI and present two model specifications.

Since BMI is not directly transmitted from an individual to another nor can it be directly
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chosen by the individuals, peer effects will take source in the unobserved individual effort.

As we will see, this distinction is important as it deeply affects the causal interpretation of

peer effects.

We assume that individual’s i’s BMI (denoted by yi) is linked to his observable charac-

teristics, xi, his effort, ei, and a random term, νi, in a linear way. The set of equations are

given by:

y = Xψ + %e + ν (13)

where % < 0. We also assume that preferences are as follows:

ui(e,y) = −(x′iβ + εi)yi −
e2i
2

+ αeigie (14)

The individual suffers a (linear) cost of being overweight (provided that x′iβ+εi is positive)

as well as a (quadratic) cost of making an effort. However, assuming complementarity, the

cost of effort is lower if the individual’s peers are also exerting effort (α > 0).

Replacing (13) in (14) and solving for the first order conditions leads to: e = −%Xβ +

αGe− %ε. Note that this model only features endogenous interactions. Again, using (13),

we can rewrite the model as:

y = Xθ + αGy − αGXψ − η (15)

where θ = [ψ − %2β] and η = ν − αGν − %2ε.

This model is then a special case of Lee et al. (2010) so all the parameters are identified,

with the exception of % and β. This reflects the loss of information due to the fact that the

econometrician does not observe the effort.

Remark that (15) results from a model with an endogenous peer effect on the effort only.

There is no direct contribution of the peers’ characteristics on the optimal level of effort

(that is, no contextual effects). This is fundamental for the economic interpretation of the

composite parameter αψ. It is usually interpreted as a peer effect coefficient capturing the
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direct impact of the individuals’ characteristics on the outcome. Here, however, it is simply

a residual of the “true” social interaction parameter α, and not a second source of social

interaction. The same reasoning holds for models of conformism.

5.1. Exogenous effect

Consider the following alternative model:

ui(e,y) = −(x′iβ + εi)yi −
e2i
2
− λ

2
(yi − giy)2 (16)

Again, the individual suffers a cost of being overweight as well as a cost of making an effort.

The individual also suffers a conformity cost on physical appearance. By substituting (13)

in (16) and solving for the optimal choice of effort, we have:

e = Xζ + λ̃Gy + η

where ζ = −%
1+λ%2

[β + λψ], λ̃ = λ%
1+λ%2

, and η = −%
1+λ%2

[ε + λν]. We see that the optimal

effort exerted by the individuals is a function of their peers’ appearance. Rewriting the

model in terms of the individual’s BMI, we have:

y = Xζ̆ + λ̆Gy + η̆

where ζ̆ = −1
1+λ%2

[%2β−ψ], λ̆ = λ%2

1+λ%2
, and η̆ = −1

1+λ%2
[%2ε−ν]. Here, remark that the main

parameter of interest, λ, is not identified. Identification results for linear models imply

that %2β+ψ
1+λ%2

and λ%2

1+λ%2
are identified, but it is not possible to recover λ from those two

expressions. This is important for the interpretation of the model in terms of causal impact

of social interactions. The correlation between yi and giy (given by λ%2

1+λ%2
) does not have

an interpretation in terms of peer effects as it also captures the impact of the individual’s
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effort on his BMI.32 This point is related to Angrist’s criticism (Angrist 2014), where the

author is highly sceptical about the causal interpretation of the “peer effect” parameter λ̆.

Angrist’s argument (see in particular section 6) partly relies on the fact that one can always

build a microeconomic model, free of any peer interaction, that will lead to a positive λ̆,

casting doubts on the causal interpretation of this parameter in terms of peer effects. Here,

we argue that models of social interactions accounting for unobserved effort choices (as was

carefully done by Cooley Fruehwirth (2013) for instance), brings credibility to the causal

interpretation of the “social interaction” parameters.

6. Conclusion

In this chapter, we first present a survey of recent developments and challenges in the

empirics of social networks as they are related to policy analysis. We then discuss the

concept of social multiplier (Glaeser et al., 2003). We show that in the standard linear-in-

means model the social multiplier is generally not identified except if we impose structure

on the mechanisms of the social interactions (e.g., complementarity vs pure conformity).

We show that the presence of isolated individuals in the network helps to identify the social

multiplier. However, we prove that estimating the linear-in-means model while including

isolated individuals in the network will lead to biased estimators of peer effects when at

least part the source of social interactions comes from conformity. We also provide a brief

analysis of the key player (Borgatti, 2006; Ballester et al., 2006) and how one can identify

him/her within a network.

We then discuss three types of social networks: non-stochastic (or fixed), stochastic

exogenous and stochastic endogenous networks. We show that assuming that the network

is non-stochastic or stochastic and exogenous has the same implication for the identification

and the estimation of the model. However, the impact for the interpretation and policy

32 Note that testing λ̆ = 0 allows to test for the presence of peer effects as λ̆ is proportional to the peer
effect λ (assuming % < 0). However, λ̆ does not provide an estimate of the size of the peer effect.
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recommendations flowing from the model are not the same. The reason is that when

the network is stochastic and exogenous, an exogenous policy intervention may affect the

structure of the network. This must be taken into account in the evaluation of the effect of

the policy. As far as endogenous networks are concerned, we suggest performing a Hilbert-

Schmidt Independence Test to check the exogeneity in the network formation.

Finally, we analyse situations where some choice variables of the model are unobserv-

able to the researcher (e.g., healthy life habits), although proxy variables such as body mass

index are observable. We show that, in this case, the issue of identifiability of the param-

eters crucially depends on the specification of the fundamentals of the model (preferences,

technology, decision processes).

One basic message of our chapter is that in networks econometric studies, more care

should be taken in developing a microeconomic model based on sound theoretical under-

pinnings to determine the fundamentals that are identified. This theoretical identifiability

problem (Chiappori and Ekeland, 2009) is as important as the standard statistical identifi-

cation problem (Manski, 1993; Bramoullé et al., 2009; Blume et al., 2013) in order to verify

whether estimated peer effects can be interpreted as true causal effects.

Further research is needed to determine the conditions under which one can recover the

fundamentals of the social network microeconomic model from its corresponding structural

econometric model. Indeed, knowledge of the fundamentals is required in order to allow the

researcher to simulate the impact of hypothetical reforms on individual outcomes within

the network. Moreover, our chapter shows the crucial importance of advancing research on

testing for network endogeneity.
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Figure 1: Kernel density estimates, endogenous model, linked
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Figure 2: Kernel density estimates, endogenous model, no link
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Figure 3: Kernel density estimates, exogenous model, linked
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Figure 4: Kernel density estimates, exogenous model, no link
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Table 1: Regression on predicted value of link (âij): endogenous version

Variable Coefficient (Std. err.)
ε̂ij 0.301∗∗ (0.028)
ε̂ij ∗ aij 1.898∗∗ (0.145)
aij 5.228∗∗ (0.736)
Intercept 310.639∗∗ (0.471)
Joint test for [ε̂ij ] = [ε̂ij ∗ aij ] = 0: F (2.52385) = 177.45

Table 2: Regression on predicted value of link (âij): exogenous version

Variable Coefficient (Std. Err.)
ε̂ij 0.035 (0.024)
ε̂ij ∗ aij -0.028 (0.042)
aij 7.187∗∗ (0.617)
Intercept 301.958∗∗ (0.342)
Joint test for [ε̂ij ] = [ε̂ij ∗ aij ] = 0: F (2, 49300) = 1.15

Table 3: Hilbert-Schmidt Independence Criterion
Test Stat. Thresh(0.025) φc = 0.05

Exogenous (hij = 0) 0.3237 0.7434 0.6732
Exogenous (hij = 1) 0.3918 0.7367 0.6636
Endogenous (hij = 0) 1.2885 0.7925 0.7391
Endogenous (hij = 1) 1.3692 0.6557 0.5823

Note: For computational reasons, tests are performed on a 10% sub-sample.
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Appendix

Proof (of Proposition 1). Using the fact that (1 + αG)−1 =
∑∞

k=0 α
kGk, we have:

yu(c1) = yu(c0) + c
∑∞

k=0 α
kGk1 and yv(c1) = yv(c0) + c

1+λ

∑∞
k=0 α̃

kGkl.

Since 1 is an eigenvector of G associated with the eigenvalue 1, this leads to yu(c1) =

yu(c0) + c
∑∞

k=0 α
k1 = yu(c0) + c

1−α1 and yv(c1) = yv(c0) + c
1+λ

∑∞
k=0 α̃

k1 = yv(c0) + c1,

or ∆yu = c
1−α1 and ∆yv = c1.

35


	Introduction
	What Has Been Learned About the Effects of Social Networks on Policy Outcomes ?
	Social Multiplier in Networks
	A negative identification result
	Room for identification when some individuals are isolated
	Social multiplier or key player?

	Types of Network Structures
	Exogenous or non-stochastic?
	Testing for network endogeneity in latent space models
	Simulations


	Using Proxy Variables
	Exogenous effect

	Conclusion

