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Abstract:   
We study the long-run market configurations in a quality-ladder dynamic model. 
Specifically, we assume that the return to investment in quality differs across the firms. 
That is, for a given level of investment, one firm has a higher probability to raise the 
quality of the good it produces. We show that the model can generate five different types 
of long-run market configurations (market collapse, market collapse or monopoly, 
monopoly, duopoly and monopoly, and duopoly). A high degree of heterogeneity in the 
return to investment can mitigate the effect of highly reversible investments on the 
probability of market collapse, giving rise to non-negligible probabilities of observing a 
duopoly or even dominance of the firm with the lowest return to investment. 
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1 Introduction

The degree of differentiation among differentiated goods varies greatly among
industries. Specifically, differentiated-good markets display a wide variety of
long-run market configurations in terms of quality, and thus market shares.
For instance, markets for cars or computer processors trade highly differen-
tiated goods. On the other hand, the market for electricity is composed of
goods that are not very differentiated.1 These differences in the degree of
differentiation depend on the firms’ individual abilities (e.g., firms’ exper-
tise) and their willingness (e.g., amount invested in R&D) to improve on the
characteristics of their goods. However, it is not clear whether in a strategic
setting a firm with a higher likelihood of success of investment will always
attain a higher quality level in the long-run.

Recently, Goettler and Gordon [2011] have estimated a dynamic quality-
ladder model for the computer processors industry. They find evidence for
heterogeneity in the likelihood of success of investment, which can explain
differences in the levels of investment and ultimately differences in the levels
of quality between the goods.2 Motivated by this finding, this paper asks
the following question. What is the effect of heterogeneity in firms’ ability
to invest in quality on long-run market configurations? Specifically, under
what circumstances are we more likely to observe a situation in which goods
are quite differentiated? To answer these questions, we adapt the quality
ladder model described in Ericson and Pakes [1995] and the algorithms to
numerically solve for its equilibrium such as the one described in McGuire
and Pakes [1994] and in a particular case in Levhari and Mirman [1980] to
the case of heterogeneous likelihood of success of investment.

Our analysis shows that the dynamic quality-ladder model can generate
in the long-run five different distributions on the space of market configu-
rations (market collapse, market collapse and monopoly, monopoly, duopoly
and monopoly, and duopoly). As the investment becomes more reversible

1Although it is not possible to distinguish the different types of electricity at the mo-
ment of utilization, it is possible to distinguish the different market shares according to
the source of production: clean vs. dirty sources.

2In their adaptation of the Ericson-Pakes model, the source of this heterogeneity in
the model is twofold: specific parameters for each firm and the quality distance between
the leader and the follower. Specifically, they find a parameter value of 0.0010 for Intel, a
value of 0.0019 for AMD. The estimated parameters are different for each firm, capturing
the observed heterogeneity of firm dominance in their data.
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(i.e., higher depreciation rates), the long-run configurations containing only
duopolies become less common in the parameter space of likelihood of invest-
ment. If the investment is highly reversible, monopoly configurations become
more common but, against usual intuition, the possibility of a duopoly does
not completely go away: there is a positive probability that either of the two
firms dominates or they coexist. Interestingly, a high degree of heterogeneity
can mitigate the effect of highly reversible investments on the probability
of market collapse, giving rise to non-negligible probabilities of observing
a duopoly or even dominance of the weakest firm. We also show how usual
measures of market concentration such as the Herfindahl index cannot reflect
much of the observed variation in market structures in this model unless the
investment is highly reversible.

We restrict attention to the quality-ladder model without entry or exit.
This is not that of a strong assumption since we allow for quality levels of
zero yielding zero demand, meaning that the firm producing such good has in
exited the market. That however does not prohibit the same firm to become
active again in the market if it achieves to increase quality to a positive level.
We also note that in our motivating example in Goettler and Gordon [2011],
they do not consider entry and exit since the industry they study does not
exhibit such behavior during the time window of their data.3 In another
example of the estimation of a quality ladder model, Gowrisankaran and
Town [1997] consider the possibility of entry and exit, however all hospitals
belong to one of two firm types, and thus if all firms of one type exit, this is
equivalent to having quality zero for that type of firm in our model.4

Heterogeneity in the Ericson-Pakes dynamic models has been studied in
the context of capacity games. Besanko and Doraszelski [2004] conclude
that asymmetries of firm size can be due to the effects of price competition
leading to long run distributions that exhibit positive probabilities on the
monopoly outcomes.5 Their analysis keeps parameters symmetric across the
two firms. We also find such configurations in homogeneous cases, but those
configurations are common throughout all the parameter space we consider.
The asymmetries in price competition in their model arise because of small

3Goettler and Gordon [2011] pp. 1151.
4Gowrisankaran and Town [1997] consider two types of hospitals, for-profits and non-

for-profits and the ratio between them is endogenous in the model. The parameter govern-
ing the probability of success of investment is restricted to be the same for the two hospital
types, and yet, the observed market configurations in the data are not symmetric.

5This behavior was not found under quantity competition.
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asymmetries in capacity accumulation that occur accidentally which makes
one firm slightly dominant over the other, making the other firm to give up
if investment is highly reversible. In Borkovsky et al. [2010] and Borkovsky
et al. [2012], it is shown that the dynamic quality-ladder model can exhibit
multiplicity of equilibria even in the absence of entry or exit if the invest-
ment is highly permanent. We take a different approach and allow firms
to have different parameters in their investment success function and study
the limiting distribution over the quality space given the unique equilibrium
policies.6

The remainder of this article has the following structure. Section 2 in-
troduces the model. In Section 3 we provide computational details and the
parametrization of the model. Section 4 presents the results and Section 5
concludes.

2 Model

We introduce heterogeneity in the Ericson-Pakes dynamic quality latter model.
We restrict attention to the case of two firms and abstract from entry or exit.7

Consider a differentiated-product market in which two firms compete à
la Bertrand as well as invest to improve the quality of their products. For
j = 1, 2, let ωj ∈ {0, 1, 2, ...,M} be firm j’s quality of the product out of M
possible values. Given qualities {ω1, ω2} and prices {p1, p2}, firm j’s demand
is

D (pj, p3−j;ωj, ω3−j) = m
eg(ωj)−λpj

1 + eg(ωj)−λpj + eg(ω3−j)−λp3−j
(1)

where m > 0 is the size of the market and

g (ωj) =


−∞ ωj = 0
ωj, 1 ≤ ωj < ω∗

ω∗ + ln(2− exp(ω∗ − ωj), ω∗ ≤ ωj ≤M
(2)

6In Borkovsky et al. [2010] figure 5 they provide evidence on the existence of multiple
equilibria for depreciation rates below 0.1. Our analysis uses depreciation rates above that
level and we check for potential multiplicity of equilibria solving the game in consecutive
finite time horizons versions of the model a la Levhari and Mirman [1980].

7As discussed in the introduction, one of our two empirical examples in the literature
(Goettler and Gordon [2011]) does not consider entry or exit. Moreover, we allow for
quality levels of zero and the demand function in this case becomes null, this is equivalent
to exiting the market.
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maps firm j’s product quality into consumer’s valuation, ω∗ ∈ (0,M ]. Our
specification in (2) is similar to Borkovsky et al. (2012) in that ωj = 0 drives
firm j’s demand to zero. Although entry or exit are not explicitly modelled,
the state (ω1, ω2) = (0, 0) essentially leads to a temporary collapse of the
market.8 Firm j’s instantaneous profits are

π (pj, p3−j;ωj, ω3−j) = D (pj, p3−j;ωj, ω3−j) (pj − c) (3)

where c > 0 is the constant marginal cost of production. Because mar-
ket competition has no effect on the dynamics, the pricing game is static.
Let Π (ωj, ω3−j) be firm j’s instantaneous profit corresponding to the static
Bertrand game.9

Investment. Each period, firm j invests an amount xj ≥ 0 at unit
cost d > 0 intended to improve product quality. The process for quality
is stochastic and subject to an industry-wide shock. Specifically, firm j’s
product quality evolves stochastically as

ω̃′j|ωj = min{max{ωj + τ̃j + η̃, 1},M} (4)

where τ̃j is a firm-specific shock and η̃ is an industry-wide depreciation
shock.10 Each random variable is binary. The firm-specific shock has support
{0, 1} and depends on the amount of investment, i.e.,

Pr[τ̃j = 1|xj] =
αjxj

1 + αjxj
= φj(xj) (5)

is firm j’s probability of success conditional on investing xj ≥ 0. Here, αj > 0
is specific to firm j, which is our only source of parameter heterogeneity. The
industry-wide depreciation shock has support {−1, 0} such that

Pr[η̃ = −1] = δ ∈ [0, 1] (6)

8We call it a temporary collapse of the market since firms can still invest to go back up.
In other words, it is possible that for a particular set of parameters even if (ω1, ω2) = (0, 0),
firms’ optimal policy functions are positive at that state and they may go back into the
game.

9That is, for j = 1, 2, Π (ωj , ω3−j) = D
(
p∗j , p

∗
3−j ;ωj , ω3−j

)
(p∗j − c)

where the pair {p∗1, p∗2} is the Bertrand equilibrium defined as p∗j =

arg maxpj>0Dj

(
pj , p

∗
3−j ;ωj , ω3−j

)
(pj − c). For all {ω1, ω2}, there exists a unique

Bertrand-Nash equilibrium (Caplin and Nalebuff [1991]).
10A tilde sign distinguishes a random variable from a realization whereas a prime sign

indicates a variable in the subsequent period.
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is the probability of quality depreciation.11

Value Function. Before proceeding with the definition and characteri-
zation of the equilibrium, it is useful to write down the firm’s value function
taking as given the behavior of the other firm. Specifically, for j = 1, 2, given
x3−j, firm j’s infinite-horizon value function satisfies

vj (ωj, ω3−j) = max
xn≥0

{
Π (ωj, ω3−j)− dxj + βE[vj(ω̃

′
j, ω̃

′
3−j)|ωj, ω3−j, xj, x3−j]

}
(7)

where the expected continuation value function is written as

E[vj(ω̃
′
j, ω̃

′
3−j)|ωj, ω3−j, xj, x3−j]

= φj(xj)φ3−j(x3−j) ·
(
δvj (ωj, ω3−j) + (1− δ)vj

(
ω+
j , ω

+
3−j
))

+ φj(xj)(1− φ3−j(x3−j)) ·
(
δvj
(
ωj, ω

−
3−j
)

+ (1− δ)vj
(
ω+
j , ω3−j

))
+ (1− φj(xj))φ3−j(x3−j) ·

(
δvj
(
ω−j , ω2−n

)
+ (1− δ)vn

(
ωn, ω

+
3−j
))

+ (1− φj(xj))(1− φ3−j(x3−j)) ·
(
δvj
(
ω−j , ω

−
3−j
)

+ (1− δ)vj (ωj, ω3−j)
)

(8)

with

ω+
j ≡ min{ωj + 1,M}, (9)

ω+
3−j ≡ min{ω3−j + 1,M}, (10)

ω−j ≡ max{ωj − 1, 0}, (11)

ω−3−j ≡ max{ω3−j − 1, 0}. (12)

Given an initial state (ωj, ω3−j) , expression (8) summarizes all possible
changes in the states corresponding to investment levels (xj, x3−j).

Equilibrium. We restrict attention to Markov-perfect equilibrium (MPE)
in pure strategies. The pair {X1 (ω1, ω2) , X2 (ω2, ω1)} is an equilibrium if,
for j = 1, 2, given X3−j(ω3−j, ωj)

Xj(ωj, ω3−j) = arg max
xj≥0
{Π (ωj, ω3−j)− dxj

+βE[Vj(ω̃
′
j, ω̃

′
3−j)|ωj, ω3−j, xj, X3−j(ω3−j, ωj)]

}
(13)

11The specific values for αj we use in our simulations lie well within those in the literature
(Goettler and Gordon [2011], Gowrisankaran and Town [1997], Borkovsky et al. [2010]).
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where for any (ωj, ω3−j) ∈ {0, 1, ...,M}2, the value function satisfies

Vj (ωj, ω3−j) = Π (ωj, ω3−j)− dXj(ωj, ω3−j)

+ βE[Vj(ω̃
′
j, ω̃

′
3−j)|ωj, ω3−j, Xj(ωj, ω3−j), X3−j(ω3−j, ωj)]

where, using (9), (10), (11), and (12),

E[Vj(ω̃
′
j, ω̃

′
3−j)|ωj, ω3−j, Xj(ωj, ω3−j), X3−j(ω3−j, ωj)]

= φj(Xj(ωj, ω3−j))φ3−j(X3−j(ω3−j, ωj)) ·
(
δVj (ωj, ω3−j) + (1− δ)Vj

(
ω+
j , ω

+
3−j
))

+ φj(Xj(ωj, ω3−j))(1− φ3−j(X3−j(ω3−j, ωj))) ·
(
δVj
(
ωj, ω

−
3−j
)

+ (1− δ)Vj
(
ω+
j , ω3−j

))
+ (1− φj(Xj(ωj, ω3−j)))φ3−j(X3−j(ω3−j, ωj)) ·

(
δVj
(
ω−j , ω3−j

)
+ (1− δ)Vj

(
ωn, ω

+
3−j
))

+ (1− φj(Xj(ωj, ω3−j)))(1− φ3−j(X3−j(ω3−j, ωj))) ·
(
δVj
(
ω−j , ω

−
3−j
)

+ (1− δ)Vj (ωj, ω3−j)
)
.

(14)

The first-order condition and complementary slackness condition are used
to characterize the equilibrium. Specifically, for j = 1, 2,

Xj(ωj, ω3−j) = max


−1 +

√
1
d

√
βαj

1+α3−jX3−j(ω3−j ,ωj)

√
α3−jX3−j(ω3−j, ωj)∆j + Ψj

αj
, 0


(15)

when α3−jX3−j(ω3−j, ωj)∆j + Ψj ≥ 0 and Xj(ωj, ω3−j) = 0 otherwise. Here,
using (9), (10), (11), and (12),

∆j ≡ δ
[
Vj (ωj, ω3−j)− Vj

(
ω−j , ω3−j

)]
+ +(1− δ)

[
Vj
(
ω+
j , ω

+
3−j
)
− Vj

(
ωj, ω

+
3−j
)]
, (16)

Ψj ≡ δ
[
Vj
(
ωj, ω

−
3−j
)
− Vj

(
ω−j , ω

−
3−j
)]

+ (1− δ)
[
Vj
(
ω+
j , ω3−j

)
− Vj (ωj, ω3−j)

]
. (17)

3 Computation and Parametrization

We use the Pakes-McGuire algorithm to numerically solve for {X1 (ω1, ω2) , X2 (ω2, ω1)}
and {V1 (ω1, ω2) , V2 (ω2, ω1)}. Since firms are heterogeneous, i.e., α1 6= α2,
the algorithm consists of iterating on best response operators (Since firms
are heterogeneous) until convergence is reached. Specifically, at the initial
iteration τ = 0, we set

{X0
1 (ω1, ω2) , X

0
2 (ω2, ω1)} = {0, 0} , (18)
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with the corresponding value functions is

{V 0
1 (ω1, ω2) , V

0
2 (ω2, ω1)} = {Π (ω1, ω2) ,Π (ω1, ω2)}. (19)

For iteration τ = 1, 2, ..., given {Xτ−1
1 (ω1, ω2) , X

τ−1
2 (ω2, ω1)} and

{V τ−1
1 (ω1, ω2) , V

τ−1
2 (ω2, ω1)},

Xτ
1 (ω1, ω2) = max


−1 +

√
1
d

√
βα1

1+α2X
τ−1
2 (ω2,ω1)

√
α2X

τ−1
2 (ω2, ω1) ∆τ−1

1 + Ψτ−1
1

α1

, 0


(20)

when α2X
τ−1
2 (ω2, ω1) ∆1 + Ψ1 ≥ 0 and Xτ

1 (ω1, ω2) = 0 otherwise, and

Xτ
2 (ω2, ω1) = max


−1 +

√
1
d

√
βα2

1+α1X
τ−1
1 (ω1,ω2)

√
α1X

τ−1
1 (ω2, ω1) ∆τ−1

2 + Ψτ−1
2

α2

, 0


(21)

when α1X
τ−1
1 (ω2, ω1) ∆τ−1

2 + Ψτ−1
2 ≥ 0 and Xτ

1 (ω1, ω2) = 0 otherwise. Here,
using (), (), (9), (10), (11), and (12), for j = 1, 2,

∆τ−1
j = δ

[
V τ−1
j (ωj, ω3−j)− V τ−1

j (ωj − 1, ω3−j)
]

+ (1− δ)
[
V τ−1
j

(
ω+
j , ω3−j + 1

)
− V τ−1

j (ωj, ω3−j + 1)
]
, (22)

Ψτ−1
j = δ

[
V τ−1
j (ωj, ω3−j − 1)− V τ−1

j (ωj − 1, ω3−j − 1)
]

(23)

+ (1− δ)
[
V τ−1
j

(
ω+
j , ω3−j

)
− V τ−1

j (ωj, ω3−j)
]
. (24)

In addition to (20) and (21), the value functions are defined by

V τ
1 (ω1, ω2) = Π (ω1, ω2)− dXτ

1 (ω1, ω2) + βE[V τ−1
1 (ω̃′1, ω̃

′
2)|ω1, ω2, X

τ
1 (ω1, ω2), X

τ
2 (ω2, ω1)],

(25)

V τ
2 (ω2, ω1) = Π (ω2, ω1)− dXτ

2 (ω2, ω1) + βE[V τ−1
2 (ω̃′2, ω̃

′
1)|ω2, ω1, X

τ
2 (ω2, ω1), X

τ
1 (ω1, ω2)].

(26)

The algorithm stops when some convergence criterion for the value functions
and the policy functions are met.

In the PM algorithm, the computed levels of investment at each itera-
tion do not constitute an equilibrium since the best responses (in terms of
investment) at iteration τ are in reaction to the investments computed at
iteration τ − 1. However, stationary points of such iterations are MPEs. In
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addition to the PM algorithm, we also apply the algorithm suggested by Lev-
hari and Mirman [1980] (LM) in a resource extraction dynamic game. The
algorithm consists of computing the equilibrium for any finite horizon and
increasing the horizon (making use of the computation for shorter horizons)
until convergence is met. Unlike the PM algorithm, the levels of investment
computed under the LM algorithm at each iteration constitutes a Markov-
perfect equilibrium. In our numerical analysis, we compute the equilibrium
using both algorithms, which always lead to the same converged policy func-
tions. The algorithm that computes the limit of a finite horizon game has
been applied in the context of the Ericson-Pakes framework (Goettler and
Gordon [2011], and Rand...). A description of the LM algorithm is relegated
to the appendix. We note that the PM algorithm is much faster than the LM
algorithm. However, the LM algorithm allows us to make sure that reactions
function cross at most once.

The parameters we use are the same as in Borkovsky et al. [2010] except
that we allow for several different values of α.

Table 1: Parameter values

Parameter M m c ω∗ β λ d α
value 18 5 5 12 0.925 1 1 [0.1, 21]

We first provide evidence on the sensitivity of the model to different
values of α for each firm and then proceed with the full analysis of limiting
distributions. Figures 1 and 2 show the converged value and policy functions
for a homogeneous and a heterogeneous case for some particular parameter
values, respectively. When the likelihood of success of investment is the same
for both firms, the policy and value functions are identical. However, when
this likelihood is not the same across the firms, the firm in disadvantage (the
one with a lower α value, firm B in the graph) has to invest more money
than the other firm at almost all the states to compensate for this lack of
likelihood of success. Because of the low probability of success of increasing
its product quality and the higher amount of money spent in the investment,
firm B receives in the long run a lower stream of cash flows and ends up
having lower values for its value function compared to firm A. This is even
true when firm B sells a high quality product and firm A is absent (its quality
is equal to 0). The reason for this is that the depreciation effect is strong
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enough to counteract the possibility of quality improvements, thus leading
to low net discounted profits.

Figure 1: Homogeneous case example with αA = αB = 9.7, δ = 0.5.

20

qual B

10

VA

00

10

qual A

400

300

200

100

0
20

20

qual B

10

VB

00

10

qual A

400

300

200

100

0
20

20

qual B

10

XA

00

10
qual A

6

4

2

0
20

20

qual B

10

XB

00

10
qual A

6

4

2

0
20

The behavior described above is not an isolated one. In the next section
we explore in a systematic manner the consequences of heterogeneity in the
likelihood of investment on the long run, that is, if both firms use their
equilibrium policy functions to react to each other until there is convergence
in the distribution of quality states.

4 Analysis

We provide a numerical analysis of the effect of heterogeneity on the long
run market structures.

Let πt = [π0
t , . . . , π

(M+1)2

t ] is (M + 1)2×1 where πst is the probability that
the industry is in state s = (ωj, ωk) such that

∑
sπ

s
t = 1.

Let P be a (M + 1)2× (M + 1)2 transition matrix such that each element
provides the probability to transition from one industry state to the other
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Figure 2: Heterogeneous case example with αA = 18.7, αB = 0.7, δ = 0.5.
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one, i.e., Pr[(ω̃′H , ω̃
′
L) | (ωH , ωL)]. Say something about the sum of the rows.12

In general, the transient distribution satisfies

πt = Pπt−1 (27)

or
πt = Ptπ0 (28)

given the initial condition π0. For each set of paraemters, we use the con-
verged policy functions x∗H (ω) to calculate P. In each of the cases we study,
there is one eigenvalue equal to zero, the limiting distribution π∗ exists and
satisfies

π∗ = Pπ∗. (29)

Now, in order to study heterogeneity, we proceed as follows. Let αH =
µ + ε and αL = µ − ε such that the distance 2ε reflects the differences in
the investment technology to improve quality. Once we obtain the distribu-
tion π∗, we count the number of modes. Each of these modes represents the

12Appendix provides a detailed derivation of this transition probability.
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maximum probability of a specific market configuration.13 We show that in
the long run, the distribution might be unimodal (i.e., only one configura-
tion occurs) or bimodal (two different market configurations are possible) or
tri-modal (three different market structures can arise from the same set of
parameters).

Possible market configurations. Our model can exhibit five different
limiting distributions depending on parameter values. Each one represents
a different collection of possible market structures. Those different limiting
distributions are: 1) market collapse, 2) market collapse or monopolies, 3)
monopolies, 4) duopoly or monopolies, and 5) duopoly. Notice that we do
not observe limiting distributions in which only one of the two firms becomes
the monopolist with probability 1.

1. The market may collaspe, i.e., quality is driven to zero with probability
one and firms do not sell anything.

2. Duopoly with positive quality.

3. One firm may end up dominating, i.e., one firm offers a good of positive
quality, i.e., ωj 6= 0 whereas the other firm offers a good of zero quality,
essentially becomes insignificant, i.e., ωk = 0 For this case, we find that
firm H does not always end up dominating the market. Sometimes
firm L dominates the market.

4. There is a positive probability for duopoly and for each of the two firms
being the monopolist.

5. All the probability mass is over states where both firms are producing
the good with quality greater than zero.

Figure 3 shows an example for each of the cases listed above and their
corresponding parameter values.

Market configurations in the parameter space. We investigate the
market configurations for different µ, ε, and δ as we increase the rate of
depreciation. Figure 6 shows the results. Each panel represents the output
for each different depreciation rate we investigated. For each of these panels

13We discard modes that have an associated probability of less than 10−3. This threshold
is equivalent to discard duopolies that have an associated probability of less than 0.1%
chance of occurring.
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Figure 3: Market configurations.
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we show the type of limiting distribution we obtain at each different pair
(µ, ε). That is, each point represents en entire probability distribution in
the long run. Points on the vertical axis represent the cases where both
firms are identical. Any point to the right of the vertical axis represents a
mean preserving spread of the firm parameters on the likelihood of success of
investment, specifically (αH , αL) = (µ+ε, µ−ε).14 In other words, the farther
to the right from the vertical axis, the higher the degree of heterogeneity.

As investment becomes more reversible (higher depreciation rate) the
region for duopoly shrinks from occupying almost the entire set of parameter
combinations to no presence at all.

Figure 4: Policy functions low dispersion
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The opposite is true for the region that represents a market collapse (both
product qualities are zero), it becomes more common as investment becomes
highly reversible.

14Since below the diagonal the difference µ− ε < 0, none of those points are associated
to any model specification and they are left in blank.
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Figure 5: Policy functions high dispersion
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Figure 6: Heterogeneity.
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If we fix specific values for mu-epsilon and change the rate of depreciation,
we can measure the probability for each market structure. Figure 7 shows
the results.

Market concentration. Conditional on having a duopoly structure, we
can compute weighted HHIs for each different rate of depreciation and fixed
pairs mu-epsilon. For some combinations of parameters, the possibility of
converging to a duopoly vanishes and there is no HHI to calculate. For other
values, higher rates of depreciation have a negative effect on concentration.
Figure 8.

Appendix

LM Algorithm

In this appendix, we explain the Levhari-Mirman (1980) algorithm. We
Value Function, Finite Programs. For j = 1, 2, consider firm j’s

maximization problem for a horizon of τ periods, τ = 0, 1, .... For j = 1, 2,
given x3−j ≥ 0, firm j’s value function for a τ -period horizon is

vτj (ωj, ω3−j) = max
xj≥0

{
Πj (ωj, ω3−j)− djxj + βjE[vτ−1j (ω̃′j, ω̃

′
3−j)|ωj, ω3−j, xj, x3−j]

}
(30)

where E[·] is the expectation operator with respect to {ω̃′j, ω̃′3−j} according
to (4), (5), and (6). The value function for the static game (i.e., τ = 0) is

v0j (ωj, ω3−j) = max
xj≥0
{Πj (ωj, ω3−j)− djxj} . (31)

Consistent with (30), firm j’s value function for the infinite-period horizon
is thus

v∞j (ωj, ω3−j) = max
xj≥0

{
Πj (ωj, ω3−j)− djxj + βjE[v∞j (ω̃′j, ω̃

′
3−j)|ωj, ω3−j, xj, x3−j]

}
.

(32)
Equilibrium. Next, we define the Markov-perfect equilibrium for a

game lasting T + 1 period, i.e., a horizon of T periods, T = 0, 1, ...,∞. The
equilibrium consists of the strategies of the two firms for every horizon from
the first period (when there are T periods left) to the last period (when there
is no horizon). Condition 1 defines the Nash equilibrium in the static game.
Note that in fact, there is no externality since X0

3−j(ω3−j, ωj) has no effect
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Figure 7: Probabilities of market structures
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Figure 8: HHI and depreciation
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on the zero-period-horizon objective function for firm j. Condition 2 states
the equilibrium for every higher horizon of the game. For τ = 1, 2, 3, ..., T ,
expressions (35) and (36) reflect the recursive nature of the equilibrium in
which the equilibrium continuation value function for a τ − 1-period horizon
depends on the equilibrium strategies for τ ′-period horizons, τ − 1 > τ ′ ≥ 0.

Definition 1 The tuple {Xτ
1(ω1, ω2), X

τ
2(ω2, ω1)}Tτ=0 is a Markov-perfect Nash

equilibrium for a game of T -period horizons if, for all {ω1, ω2},

1. For τ = 0, for j = 1, 2, given X0
3−j(ω3−j, ωj),

X0
j (ω3−j, ωj) = arg max

xj≥0
{Πj (ωj, ω3−j)− djxj} . (33)
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2. For τ = 1, 2, . . . , T , for j = 1, 2, given Xτ
3−j(ω3−j, ωj) and {X t

1(ω1, ω2), X
t
2(ω2, ω1)}τ−1t=0 ,

Xτ
j (ω3−j, ωj)

= arg max
xj≥0
{Πj (ωj, ω3−j)− djxj

+ βjφj(xj)φ3−j(X
τ
3−j(ω3−j, ωj)) ·

(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
+ βjφj (xj) (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
+ βj(1− φj (xj))φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
+βj(1− φj (xj))(1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)}
(34)

where, for any y, z ∈ {1, 2, ...,M},

V τ ′−1
j (y, z) =

{
Πj (y, z)− djX0

j (y, z) τ ′ = 1

Πj (y, z)− djXτ ′−1
j (y, z) + βj · Γτ

′−2
j (Xτ ′−1

j (y, z), Xτ ′−1
3−j (z, y)) τ ′ = 2, 3, ..., T

(35)
is the value function for a τ ′ − 1 period horizon for any state vector
(y, z) with

Γτ
′−2
j (Xτ ′−1

j (y, z), Xτ ′−1
3−j (z, y))

= φj(X
τ ′−1
j (y, z))φ3−j(X

τ ′−1
3−j (z, y) ·

(
δV τ ′−2

j (y, z) + (1− δ)V τ ′−2
j (y + 1, z + 1)

)
+ φj(X

τ ′−1
j (y, z))(1− φ3−j(X

τ ′−1
3−j (z, y))) ·

(
δV τ ′−2

j (y, z − 1) + (1− δ)V τ ′−2
j (y + 1, z)

)
+ (1− φj(Xτ ′−1

j (y, z)))φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z) + (1− δ)V τ ′−2
j (y, z + 1)

)
+ (1− φj(Xτ ′−1

j (y, z)))(1− φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z − 1) + (1− δ)V τ ′−2
j (y, z)

)
(36)

is the expected continuation value function corresponding to the equi-
librium for a horizon of τ ′ − 2 periods.

Proposition states the Markov-perfect Nash equilibrium for each horizon
of the game.

Proposition 2 Consider a game of T -period horizons.

1. For τ = 0, {
X0

1 (ω1, ω2) , X
0
2 (ω2, ω1)

}
= {0, 0} , (37)
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with the corresponding value function is

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) . (38)

2. For τ ≥ 1, given {V τ−1
1 (ω1, ω2) , V

τ−1
2 (ω2, ω1), {Xτ

1 (ω1, ω2) , X
τ
2 (ω1, ω2)}

is defined by

Xτ
1 (ω1, ω2) = max


−1 +

√
1
d1

√
β1α1

1+α2Xτ
2 (ω2,ω1)

√
α2Xτ

2 (ω2, ω1) ∆τ−1
1 + Ψτ−1

1

α1

, 0

 ,

(39)

Xτ
2 (ω2, ω1) = max


−1 +

√
1
d2

√
β2α2

1+α1Xτ
1 (ω1,ω2)

√
α1Xτ

1 (ω1, ω2) ∆τ−1
2 + Ψτ−1

2

α2

, 0

 ,

(40)

where for j = 1, 2,

∆τ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j)− V τ−1

j (ωj − 1, ω3−j)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j + 1)− V τ−1

j (ωj, ω3−j + 1)
]
, (41)

Ψτ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j − 1)− V τ−1

j (ωj − 1, ω3−j − 1)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j)− V τ−1

j (ωj, ω3−j)
]
. (42)

Proof. The first-order condition corresponding to (34) is

− dj + βj
αj

(1 + αjxj)
2φ3−j(X

τ
3−j(ω3−j, ωj)) ·

(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
+ βj

αj

(1 + αjxj)
2 (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
− βj

αj

(1 + αjxj)
2φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
−βj

αj

(1 + αjxj)
2 (1− φ3−j

(
Xτ

3−j(ω3−j, ωj)
)
) ·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)
(43)

= 0 (44)
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which yields (15) and thus (40), as long as the second-order condition is
satisfied, i.e., for j, 3− j = 1, 2, j 6= 3− j,

− βj
2α2

j

(1 + αjxj)
3

α3−jx3−j
1 + α3−jx3−j

·
(
δV τ−1

j (ωj, ω3−j) + (1− δ)V τ−1
j (ωj + 1, ω3−j + 1)

)
− βj

2α2
j

(1 + αjxj)
3

1

1 + α3−jx3−j
·
(
δV τ−1

j (ωj, ω3−j − 1) + (1− δ)V τ−1
j (ωj + 1, ω3−j)

)
+ βj

2α2
j

(1 + αjxj)
3

α3−jx3−j
1 + α3−jx3−j

·
(
δV τ−1

j (ωj − 1, ω3−j) + (1− δ)V τ−1
j (ωj, ω3−j + 1)

)
+βj

2α2
j

(1 + αjxj)
3

1

1 + α3−jx3−j
·
(
δV τ−1

j (ωj − 1, ω3−j − 1) + (1− δ)V τ−1
j (ωj, ω3−j)

)
< 0 .

(45)

Algorithm. Having described the model and define the equilibrium.
We now proceed with the characterization of the MPE. Here, we solve the
equilibrium recursively as in Levhari and Mirman (1980). Consider first the
static game of investment, i.e., τ = 0. Then, there is no externality, and
no firm has an incentive to invest, i.e., the Markov-perfect equilibrium for a
game of 0-period horizon is simply{

X1
1 (ω1, ω2) , X

1
2 (ω1, ω2)

}
= {0, 0} , (46)

with the corresponding value function is

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) . (47)

Hence, there is a unique equilibrium for the no-horizon game in which the
firms do not invest and the value function is equal to the profit function
corresponding to the Bertrand game.

Consistent with the solution of the equilibrium, we characterize the equi-
librium for each horizon. Each iteration is an horizon with the caveat that at
each iteration, the solution to the reaction function is a Markov-perfect Nash
equilibrium (and not an approximation). Hence, wherever we stop, we have
an equilibrium. The question remains whether we converge to the stationary
Markov-perfect Nash equilibrium (in infinite horizons).

1. For τ = 0, {
X0

1 (ω1, ω2) , X
0
2 (ω2, ω1)

}
= {0, 0} , (48)
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with the corresponding value function is

V 0
j (ωj, ω3−j) = Πj (ωj, ω3−j) . (49)

2. For τ ≥ 1, given {V τ−1
1 (ω1, ω2) , V

τ−1
2 (ω2, ω1)}, firm j’s reaction func-

tion

Rτ
1 (x2) = max


−1 +

√
1
d1

√
β1α1

1+α2x2

√
α2x2∆

τ−1
1 + Ψτ−1

1

α1

, 0

 , (50)

Rτ
2 (x1) = max


−1 +

√
1
d2

√
β2α2

1+α1x1

√
α1x1∆

τ−1
2 + Ψτ−1

2

α2

, 0

 (51)

where for j, 3− j = 1, 2, j 6= 3− j,

∆τ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j)− V τ−1

j (ωj − 1, ω3−j)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j + 1)− V τ−1

j (ωj, ω3−j + 1)
]
, (52)

Ψτ−1
j ≡ δ

[
V τ−1
j (ωj, ω3−j − 1)− V τ−1

j (ωj − 1, ω3−j − 1)
]

+ (1− δ)
[
V τ−1
j (ωj + 1, ω3−j)− V τ−1

j (ωj, ω3−j)
]

(53)

where

V τ−1
j (y, z) =

{
Πj (y, z)− djX0

j (y, z) τ = 1

Πj (y, z)− djXτ−1
j (y, z) + βj · Γτ−2j (Xτ ′−1

j (y, z), Xτ ′−1
3−j (z, y)) τ = 2, 3, ..., T
(54)

is the value function for a τ − 1 period horizon for any state vector
(y, z) with

Γτ−2j (Xτ−1
j (y, z), Xτ−1

3−j (z, y))

= φj(X
τ ′−1
j (y, z))φ3−j(X

τ ′−1
3−j (z, y) ·

(
δV τ ′−2

j (y, z) + (1− δ)V τ ′−2
j (y + 1, z + 1)

)
+ φj(X

τ ′−1
j (y, z))(1− φ3−j(X

τ ′−1
3−j (z, y))) ·

(
δV τ ′−2

j (y, z − 1) + (1− δ)V τ ′−2
j (y + 1, z)

)
+ (1− φj(Xτ ′−1

j (y, z)))φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z) + (1− δ)V τ ′−2
j (y, z + 1)

)
+ (1− φj(Xτ ′−1

j (y, z)))(1− φ3−j(X
τ ′−1
3−j (z, y)) ·

(
δV τ ′−2

j (y − 1, z − 1) + (1− δ)V τ ′−2
j (y, z)

)
(55)
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Transition Probability Matrix

For j = 1, 2, let ωj ∈ {0, 1, 2, ...,Mj}. Using the converged policy functions,
for j = 1, 2,

ω̃′j|ωj = min{max{ωj + τ̃j + η̃, 1},M} (56)

where τj ∈ {1, 0} such that Pr[τ̃j = 1] = φj (ω1, ω2) =
αjXj(ωj ,ω3−j)

1+αjXj(ωj ,ω3−j)
and

η ∈ {−1, 0} such that Pr[η̃ = −1] = δ.
We want to calculate all transition probabilities such as Pr[(ω′1, ω

′
2) | (ω1, ω2)].

We consider each case separately.

1. Suppose that (ω1, ω2) is such that ω1, ω2 /∈ {0,M}. Given (ω1, ω2),
there are (M + 1)2 conditional probabilities to calculate. All of them
are zero except

Pr[(ω1, ω2) | (ω1, ω2)] = δφ1 (ω1, ω2)φ2 (ω2, ω1)

+ (1− δ) (1− φ1(ω1, ω2)) (1− φ2(ω2, ω1)) ,
(57)

Pr[(ω1 + 1, ω2) | (ω1, ω2)] = (1− δ)φ1 (ω1, ω2) (1− φ2(ω2, ω1)) ,
(58)

Pr[(ω1 − 1, ω2) | (ω1, ω2)] = δ (1− φ1(ω1, ω2))φ2 (ω2, ω1) , (59)

Pr[(ω1, ω2 − 1) | (ω1, ω2)] = δφ1 (ω1, ω2) (1− φ2(ω2, ω1)) , (60)

Pr[(ω1 − 1, ω2 − 1) | (ω1, ω2)] = δ (1− φ1(ω1, ω2)) (1− φ2(ω2, ω1)) ,
(61)

Pr[(ω1, ω2 + 1) | (ω1, ω2)] = (1− δ) (1− φ1(ω1, ω2))φ2 (ω2, ω1) ,
(62)

Pr[(ω1 + 1, ω2 + 1) | (ω1, ω2)] = (1− δ)φ1(ω1, ω2)φ2 (ω2, ω1) . (63)

Given these above probabilities and the ones equal to zero, they sum
up to one, I checked.

2. Suppose that (ω1, ω2) = (0, 0). Given (ω1, ω2), there are (M + 1)2

conditional probabilities to calculate. All of them are zero except

Pr[(0, 0) |(0, 0)] = 1− (1− δ) (φ1(0, 0) + φ2(0, 0)− φ1(0, 0)φ2(0, 0)) ,
(64)

Pr[(1, 0) |(0, 0)] = (1− δ)φ1(0, 0) (1− φ2(0, 0)) , (65)

Pr[(0, 1) |(0, 0)] = (1− δ) (1− φ1(0, 0))φ2(0, 0), (66)

Pr[(1, 1) |(0, 0)] = (1− δ)φ1(0, 0)φ2(0, 0). (67)
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3. Suppose that (ω1, ω2) = (M,M). Given (ω1, ω2), there are (M + 1)2

conditional probabilities to calculate. All of them are zero except

Pr[(M,M) | (M,M)] = 1− δ(1− φ1 (M,M)φ2 (M,M)),
(68)

Pr[(M − 1,M) | (M,M)] = δ (1− φ1 (M,M))φ2 (M,M) , (69)

Pr[(M,M − 1) | (M,M)] = δφ1 (M,M) (1− φ2 (M,M)) , (70)

Pr[(M − 1,M − 1) | (M,M)] = δ (1− φ1 (M,M)) (1− φ2 (M,M)) .
(71)

4. Suppose that (ω1, ω2) = (0,M). Given (ω1, ω2), there are (M + 1)2

conditional probabilities to calculate. All of them are zero except

Pr[(0,M) | (0,M)] = 1− (1− δ)φ1 (0,M)− δ (1− φ2 (0,M)) ,
(72)

Pr[(1,M) | (0,M)] = (1− δ)φ1 (0,M) , (73)

Pr[(0,M − 1) | (0,M)] = δ (1− φ2 (0,M)) . (74)

5. Suppose that (ω1, ω2) = (M, 0) . Given (ω1, ω2), there are (M + 1)2

conditional probabilities to calculate. All of them are zero except

Pr[(M, 0) | (M, 0)] = 1− (1− δ)φ2 (0,M)− δ (1− φ1 (M, 0)) ,
(75)

Pr[(M, 1) | (M, 0)] = (1− δ)φ2 (0,M) , (76)

Pr[(M − 1, 0) | (M, 0)] = δ (1− φ1 (M, 0)) . (77)

6. Suppose that (ω1, ω2) is such that ω1 = 0 and ω2 /∈ {0,M}. Given
(ω1, ω2), there are (M + 1)2 conditional probabilities to calculate. All
of them are zero except

Pr[(0, ω2) | (0, ω2)] = δφ2 (ω2, 0)

+ (1− δ) (1− φ1 (0, ω2)) (1− φ2 (ω2, 0)) , (78)

Pr[(1, ω2) | (0, ω2)] = (1− δ)φ1 (0, ω2) (1− φ2 (ω2, 0)) , (79)

Pr[(0, ω2 − 1) | (0, ω2)] = δ (1− φ2 (ω2, 0)) , (80)

Pr[(0, ω2 + 1) | (0, ω2)] = (1− δ) (1− φ1 (0, ω2))φ2 (ω2, 0) , (81)

Pr[(1, ω2 + 1) | (0, ω2)] = (1− δ)φ1 (0, ω2)φ2 (ω2, 0) . (82)
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7. Suppose that (ω1, ω2) is such that ω1 /∈ {0,M} and ω2 = 0. Given
(ω1, ω2), there are (M + 1)2 conditional probabilities to calculate. All
of them are zero except

Pr[(ω1, 0) | (ω1, 0)] = δφ1 (ω1, 0)

+ (1− δ) (1− φ2 (0, ω1)) (1− φ1 (ω1, 0)) , (83)

Pr[(ω1, 1) | (ω1, 0)] = (1− δ)φ2 (0, ω1) (1− φ1 (ω1, 0)) , (84)

Pr[(ω1 − 1, 0) | (ω1, 0)] = δ (1− φ1 (ω1, 0)) , (85)

Pr[(ω1 + 1, 0) | (ω1, 0)] = (1− δ) (1− φ2 (0, ω1))φ1 (ω1, 0) , (86)

Pr[(ω1 + 1, 1) | (ω1, 0)] = (1− δ)φ2 (0, ω1)φ1 (ω1, 0) . (87)

8. Suppose that (ω1, ω2) is such that ω1 = M and ω2 /∈ {0,M}. Given
(ω1, ω2), there are (M + 1)2 conditional probabilities to calculate. All
of them are zero except

Pr[(M,ω2) | (M,ω2)] = δφ1 (M,ω2)φ2 (ω2,M)

+ (1− δ)(1− φ2 (ω2,M)) (88)

Pr[(M − 1, ω2) | (M,ω2)] = δ (1− φ1 (M,ω2))φ2 (ω2,M) (89)

Pr[(M,ω2 − 1) | (M,ω2)] = δφ1 (M,ω2) (1− φ2 (ω2,M)) (90)

Pr[(M − 1, ω2 − 1) | (M,ω2)] = δ (1− φ1 (M,ω2)) (1− φ2 (ω2,M))
(91)

Pr[(M,ω2 + 1) | (M,ω2)] = (1− δ)φ2 (ω2,M) (92)

9. Suppose that (ω1, ω2) is such that ω1 /∈ {0,M} and ω2 = M . Given
(ω1, ω2), there are (M + 1)2 conditional probabilities to calculate. All
of them are zero except

Pr[(M,ω1) | (ω1,M)] = δφ2 (M,ω1)φ1 (ω1,M)

+ (1− δ)(1− φ1 (ω1,M)) (93)

Pr[(ω1,M − 1) | (ω1,M)] = δ (1− φ2 (M,ω1))φ1 (ω1,M) (94)

Pr[(ω1 − 1,M) | (ω1,M)] = δφ2 (M,ω1) (1− φ1 (ω1,M)) (95)

Pr[(ω1 − 1,M − 1) | (ω1,M)] = δ (1− φ2 (M,ω1)) (1− φ1 (ω1,M))
(96)

Pr[(ω1 + 1,M) | (ω1,M)] = (1− δ)φ1 (ω1,M) . (97)
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