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Abstract:   
We introduce learning in a dynamic game of international pollution, with ecological 
uncertainty. We characterize and compare the feedback non-cooperative emissions 
strategies of players when the players do not know the distribution of ecological 
uncertainty but they gain information (learn) about it. We then compare our learning 
model with the benchmark model of full information, where players know the distribution 
of ecological uncertainty. We find that uncertainty due to anticipative learning induces a 
decrease in total emissions, but not necessarily in individual emissions. Further, the 
effect of structural uncertainty on total and individual emissions depends on the beliefs 
distribution and bias. Moreover, we obtain that if a player’s beliefs change toward more 
optimistic views or if she feels that the situation is less risky, then she increases her 
emissions while others react to this change and decrease their emissions. 
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1 Introduction

Although it is widely acknowledged that greenhouse gas (GHG) concentrations are responsible for
global climate change,1 it is also accepted that the evolution of the climate system is far from
being deterministic. Rather, it is subject to considerable ecological uncertainty. To illustrate, the
scientific community still lacks information about randomness in, e.g., the oceans’ and forests’ ability
to decay pollution, the exact effect of greenhouse gases on climate change, and the precise change in
temperature we may face in the future. On the economic side, we also face many uncertainties. For
example, our knowledge of how production and abatement technologies will develop and improve
over time is imperfect (see Pindyck (2007) for a review). These features clearly invite us to adopt
models where we account for (at least some of) these uncertainties, as in, e.g., Pindyck (2000, 2007),
Yeung and Petrosyan (2008) and de Zeeuw and Zemel (2012). Further, as the environmental battle
is necessarily a long-term one−it is indeed hard to believe that technology and consuming habits
can be changed overnight−decision-makers will have the opportunity to learn about the unknowns
further down the road.

Several contributions have addressed the issues of uncertainty and learning in climate change
and environmental management problems.2 Ulph and Maddison (1997) consider a two-period, two-
player pollution emissions game, where the damages could have several possible values with given
probabilities. They compare the cases of no learning and learning, with irreversible emissions, and
obtain that information could decrease the welfare when the two countries choose their emissions
non-cooperatively. Other studies focus on the role of uncertainty and learning in the formation
of an International Environment Agreement (IEA). Kolstad (2007) considers uncertainty in envi-
ronmental costs and benefits, as well as learning about these costs and benefits. He finds that
learning tends to increase the size of the cooperating coalition in an IEA. However, with partial
learning, several stable coalitions emerge and one of them is smaller than it would have been under
no-learning. Kolstad and Ulph (2008) synthesize and extend their earlier analysis of the formation
of an IEA under uncertainty about damages and with different models of learning. As in Dellink
and Finus (2012), they consider a two-stage game model, with three scenarios for learning, namely,
no-learning (the value of the stochastic parameters are not known before making decisions), partial
(the players learn the values of these parameters before having to make their second-stage decisions)
and full learning (basically, no uncertainty is involved). We will also consider three scenarios, which
are full information, learning and no-learning, but in a very different perspectives than the cases
considered in Kolstad (2007), Kolstad and Ulph (2008) and Dellink and Finus (2012). Here, we
have a fully dynamic model and at each stage a general Bayesian learning is taking place. Breton
and Sbragia (2011) introduce a model of uncertainty and learning where the stochastic variable is
distributed normally. They assume that the players are myopic, and then numerically determine
the emissions rule and the size of stable IEAs.

In this paper, we focus on an international pollution problem in which neighboring countries
emit a pollutant, e.g., CO2, which accumulates over time and damages the shared environment. We
assume that this accumulation process is subject to ecological uncertainty, and allow the players
(countries) to learn about the unknown parameter over time. Also, we suppose that the players
face different marginal damage costs and have heterogeneous prior beliefs, which is consistent with

1For instance, according to the IPCC’s Fifth Assessment Report, “warming of the climate system is unequivocal”
(see, IPCC (2013), SPM-12).

2Some contributions dealt with the choice of (tax and quota) policies in a context with uncertainty and learning;
see, e.g., Kolstad (1996), Ulph and Ulph (1997), Kolstad and Ulph (2011) and Masoudi and Zaccour (2014).
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the fact that countries are asymmetric in terms of their vulnerability to climate change. Our
model has its root in two literature streams, i.e., uncertainty and learning and dynamic games
of pollution emissions. More precisely, our uncertainty and learning setup is in line with the
framework considered in Koulovatianos et al. (2009), Agbo (2014) and Mirman and Santugini
(2014). Koulovatianos et al. (2009) is an optimal-growth model, that is, no strategic interactions
are involved. Agbo (2014) and Mirman and Santugini (2014) extend the Great Fish War dynamic
game to a learning environment. Specifically, Agbo (2014) considers the effect of learning in the
context of a strategic exploitation of a natural resources whereas Mirman and Santugini (2014) study
the effect of multiple source of learning when agents not only extract a resource for consumption,
but also invest in technology to improve the future stock. A common thread in the literature is the
presence of an externality only in the dynamics. In this paper, we add another layer of complexity
by considering a learning environment in a dynamic game in which the players interact not only
in the dynamics but also in the market. In other words, our model accounts not only for the
externality in the dynamics (as in the previous literature) but also for the externality in the market
through the instantaneous payoff function.

Our paper also belongs to the significant literature in dynamic games dealing with strategic
emissions decisions; see the early contributions in, e.g., Van der Ploeg and de Zeeuw (1992), Long
(1992) and Dockner and Long (1993), and the survey in Jørgensen et al. (2010). Our main
contribution here is twofold. First, we introduce learning and biological uncertainty in a dynamic
international pollution problem. Second, whereas this literature systematically assumed that each
player’s revenues depend only on her emissions (or production) actions, we extend in this paper
the model to a setting where there is a cross effect in emissions in the revenue functions. This
implies that the players face environmental and economic interdependencies, and are not only
linked through the pollution stock and the damage cost.

Taking into account uncertainty and learning in a dynamic model of pollution emissions, our
objective is to answer the following question: does ecological uncertainty alleviate the emissions
problem or exacerbate it? In order to address this research question, we cast it into two sub-
questions:

1. In the presence of uncertainty, how do players’ emissions strategies compare under different
information and learning assumptions? In other words, how do different sources of uncertainty
affect these emissions strategies?

2. How do changes in beliefs, e.g., becoming more pessimistic or optimistic, or feeling a height-
ened sense of risk, affect emissions strategies?

To deal with these questions, we characterize and compare equilibrium strategies under two
different information structure assumptions. In a benchmark scenario, we assume that all players
are fully informed about the distributions of random variables. This assumption is adopted in
the environmental economics literature analyzing the impact of uncertainty on decisions (see, e.g.,
Bramoullé and Treich (2009), de Zeeuw and Zemel (2012), Arrow and Fisher (1974) and Pindyck
(2012)). The alternative assumption is to assume that players do not know the exact values of some
of the model parameters, but have some beliefs about these unknown parameters. These beliefs are
based on the available information and are updated when they receive new information. We charac-
terize and contrast non-cooperative feedback strategies under these two information assumptions.
As for the optimal-growth model in Koulovatianos et al. (2009), we present all our analytical results
for any general probability distribution function in which the information can be summarized by a
finite-dimensional vector of sufficient statistics.
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Our main results can be summarized as follows:

1. Uncertainty due to anticipation of learning results in a decrease in total emissions. A surprising
result, however, is that an individual player might increase her emissions. This is unexpected
as uncertainty would normally lead to precautionary behavior, i.e., lower emissions.

2. Depending on the beliefs bias; and the slope and curvature of the distribution function, the
impact of structural uncertainty could be either an increase, decrease, or even no change in
the emissions of individual players and also total emissions.

3. Under the learning assumption, if one player changes her beliefs in a way that makes her feel
more optimistic or less at-risk, while others’ beliefs remain unchanged, then: (i) this player
increases her emissions; (ii) all other players decrease theirs; and (iii) total emissions increase.
The reverse result is that pessimistic views or a heightened sense of risk alleviate the pollution
problem.

The rest of the paper is organized as follows. In Section 2, we present the model. In Section 3,
we characterize the equilibrium strategies under different learning assumptions and compare them
in Section 4. In Section 5, we assess the impact of changes in players’ beliefs on their emissions
strategies. In Section 6, we evaluate the effect of changes in the sense of peril on emissions, and
briefly conclude in Section 7.

2 The model

We consider N countries, indexed by i = 1, ..., N , each producing quantity qi,t of a representative
good at time t = 1, ...,∞. Production generates revenues and, as a by-product, emissions, e.g.,
CO2. Denote by ei,t the emissions of country i at time t. As in Benchekroun and Long (1998), we
make the simplifying assumption that the ratio of production to emissions is equal to one, that is,
one unit of production emits one unit of pollution. For i = 1, 2, .., N , t = 1, ...,∞, the revenues of
country i at time t are yi,t, which can be expressed as a quadratic function of emissions, i.e.,

yi,t = ei,t

αi − ei,t − γ N∑
j 6=i

ej,t

 (1)

where α and γ are constants and we assume 0 ≤ γ < 2. (As it will be apparent later on, the upper
bound on γ is required to have non negative emissions.) In the literature (see, e.g., Dockner and
Long (1993), Long (1992) and the survey in Jørgensen et al. (2010)), a common assumption is that
the countries are only related through the environmental damage and not through their revenues,
that is, γ = 0. We depart from this assumption and consider that countries also interact at an
economic level through. For instance, such a scenario may be applicable if countries are engaged
in international trade and firms have market power in the world market.

Emissions accumulate over time and damage the environment. Denote by St the pollution stock
whose evolution is described by the following difference equation:

St+1 = η
(∑

ei,t + dSt

)
, (2)
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where 0 < d < 1, such that 1−d is the natural decay rate of pollution and η is a shock variable. We
introduce η to account for ecological uncertainty, which can be due to, among other things, lack of
information about Mother Nature’s capacity to absorb emissions. To illustrate, the players could
have only partial knowledge about the precise motion of pollution due to, e.g., weather conditions
(speed and direction of wind, temperature and humidity, etc.), or about the actual and future
rate of pollution absorption by carbon sinks such as oceans and forests. Finally, players could be
uncertain about future improvements in mitigation technologies. In brief, our specification in (2)
is meant to account, in the most parsimonious way, for all these possible random ecological effects,
which were typically ignored in the literature (see, e.g., Jørgensen et al. (2010)).

The pollution stock imposes an environmental damage cost to all players. We assume that this
cost can be well approximated by the following linear function:

Di (St) = βiSt, (3)

where βi is the (positive) marginal cost of the pollution stock. This assumption, which is not
uncommon in the literature (see, e.g., Hoel and Schneider (1997), Breton and Sbragia (2011)), is
motivated by mathematical tractability and by clarity in the exposition of results. Considering a
non-linear damage cost is clearly of interest and is left for future research.

Assuming a welfare maximization behavior over an infinite horizon, the optimization problem
of player i is then stated as follows:

max
{ei,t}∞t=1

E

 ∞∑
t=0

δt

ei,t
αi − ei,t − γ N∑

j 6=i

ej,t

− βiS
 (4)

subject to the pollution dynamics (2), where δ (0 < δ < 1) is the common discount factor and E is
the expectation operator with respect to all stochastic variables in the model.

Having described the model, we now introduce the information available to the players. That
is, we define what the players know about the variable η and how they update their knowledge. We
assume that η is a realization of a random variable η̃, whose conditional probability distribution
is given by the function φ(η|θ∗), where θ∗, θ∗ ∈ Θ ⊂ Rk, is the vector of sufficient parameters of
probability distribution function (p.d.f.) φ. Let the support of this p.d.f. be given by H, such that
η ∈ H ⊆ (0, 1]. The players do not know the future realizations of the random variable η̃. There
are two cases of interest. The first is where players know the distribution of the random variable.
The second is where they do not know, but learn about it. Specifically, we consider the following
scenarios:

1. Full information. In this scenario, the assumption is that the players know all the functional
forms and parameters involved in the model, and in particular, θ∗. Consequently, there is no
need for learning to take place. This is the simplest and most common informational structure
when dealing with a problem where uncertainty is present. This is our benchmark scenario,
and we shall refer, in this context, to the players as informed players.

2. Learning. Here, the players do not know the exact value of the parameter θ∗. They have
beliefs about this unknown parameter, which are based on available information. Moreover,
they learn about it because they observe past and present levels of the pollution stock, which
is informative about θ∗. The agents do not know the distribution of the ecological uncertainty,
but they have some prior beliefs and they will learn about this distribution as information
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becomes available. Anticipation of learning is a natural consequence of an optimization prob-
lem that takes into account future learning. See, e.g., Koulovatianos et al. (2009), and Agbo
(2014).

Compared to the full-information case, the learning case adds two layers of uncertainty. The
first is simply that the objective distribution is replaced by the subjective distribution (due to
structural uncertainty). The second is that a learner anticipates learning, i.e., future beliefs are
random from today’s point of view, which makes future payoffs more random. In addition to these
two cases, we study an intermediate case that separates these two layers of uncertainty: the case
of no-learning. That is, the player does not know the true distribution of the random shock, has
beliefs about it, but does not expect beliefs to evolve over time, i.e., there is structural uncertainty
but no anticipation of learning.3

Our main motivation for retaining the intermediate case of no-learning lies in its methodological
interest (in an experimental design sense). Indeed, whereas the learning scenario embeds both the
structural uncertainty and the uncertainty related to the anticipation of learning with respect to
the full information case, the no-learning scenario only accounts for the structural uncertainty with
respect to the full information case. Therefore, by contrasting the results obtained in the three
scenarios, we are able to separate the effects of the two uncertainties.

To wrap up, we have introduced an infinite-horizon N -player dynamic game with one control
variable for each player (emissions), and a stock pollution whose evolution is governed by a stochastic
difference equation. We assume throughout the paper that the players use feedback strategies, that
is, strategies that are functions of the state of the system (pollution stock and relevant information
about the stochastic process); we also assume that the relevant solution concept is Nash equilibrium.

3 Equilibria

In this section, we characterize the non-cooperative equilibria under the different scenarios.

3.1 Full information

We recall that in this benchmark case, the assumption is that the players know the distribution of
η̃ and the actual value of θ, that is, θ∗, and therefore, that no learning takes place, that is, that
players do not change their beliefs during the planning horizon. Another way of putting it is that,
despite the ecological randomness embedded in η, there is no structural uncertainty in this scenario.
Denoting by vIi (S; θ∗) the value function of player i, where the superscript I stands for informed
player, the Hamilton-Jacobi-Bellman (HJB) equation of this player is given by

vIi (S; θ∗) = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS + δ

ˆ
H

vIi
η
 N∑
j=1

ej + dS

 ; θ∗

φ(η|θ∗)dη

 .

(5)
Proposition 1 characterizes the feedback-Nash equilibrium strategies.

3Note that the dynamic maximization of a non-learning player is identical to an adaptive-learning player who at
any point in time ignores future learning possibilities when making a decision and then suddenly realizes her mistake
and updates the decision. Hence, an adaptive learner is synonymously called a bounded-rational player, or a myopic
player. Anticipated utility is another term that is sometimes used for our non-learning case; see, e.g., Cogley and
Sargent (2008). This term is adapted from Kreps (1998).
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Proposition 1 The feedback-Nash equilibrium emissions of informed player i, i ∈ {1, ..., N} are
given by

eIi (S; θ∗) =
1

2− γ

(
αi −

γ
∑N
i=1 αi

2 + (N − 1) γ
− δµ (θ∗)

1− δdµ (θ∗)

(
βi −

γ
∑N
j=1 βj

2 + (N − 1) γ

))
, (6)

where

µ (θ∗) =

ˆ
H
ηφ(η|θ∗)dη. (7)

Proof. See Appendix.

3.2 Learning

The alternative scenario to full information is that the players do not know some parameter values
(here θ∗). We suppose that each player has her own prior beliefs, denoted by ξi (θ), about the
possible values of θ∗. To be as general as possible, we let these prior beliefs to be heterogeneous.
Further, we assume that: (i) the beliefs are common knowledge; (ii) the players only observe the
actual value of η at each period, and each player uses this new information to update her own
beliefs about the value of θ; and finally (iii) the players are Bayesian learners, that is, they update
their beliefs according to the Bayes’ rule:

ξ̂i(θ|η) =
φ(η|θ)ξi(θ)´

φ
φ(η|x)ξi(x)dx

. (8)

In the learning case, the value function vLi (S; ξi, ξ−i) of player i must satisfy the following HJB
equation:

vLi (S; ξi, ξ−i) = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS + (9)

δ

ˆ
H

(
vLi

(
η

(∑
i

ei + dS

)
; ξ̂i(θ|η), ξ̂−i(θ|η)

)(ˆ
Θ

φ (η|θ) ξi (θ) dθ

))
dη

}
,

where the superscript L refers to the learning player and ξ−i = {ξj}Nj=1,j 6=i combine the beliefs of
the other players. Hence, each player anticipates not only changes in the future stock of pollution
but also changes in all beliefs via the continuation value function.

Proposition 2 characterizes the feedback-Nash-equilibrium emissions strategies.

Proposition 2 The feedback-Nash equilibrium emissions of an anticipative-learning player i, i ∈
{1, ..., N} is given by

eLi (S; ξi, ξ−i) =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δ

2− γ

βi ˆ
Θ

µ (θ) ξi(θ)dθ

1− δdµ (θ)
−
γ
∑N
j=1 βj

´
Θ
µ(θ)ξj(θ)dθ
1−δdµ(θ)

2 + (N − 1) γ

 ,

(10)
where

µ (θ) =

ˆ
H
ηφ(η|θ)dη. (11)

Proof. See Appendix.
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3.3 Intermediate case: No-learning

As noted, a non-learner player does not know θ∗ and uses prior beliefs to form expectations about
the future outcomes. However, a non-learner player does not anticipate updating her beliefs. Put
differently, a non-learner player uses today’s beliefs to assess her expected future payoffs. In this
case, the value function vAi (S; ξi, ξ−i) of player i must satisfy the following HJB equation:

vNLi (S; ξi, ξ−i) = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS + (12)

δ

ˆ
H
vAi

η
 N∑
j=1

ej + dS

 ; ξi, ξ−i

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη

 , (13)

where the superscript NL refers to the non-learner.
The difference between the value functions in (9) and (12) lies in the difference in the beliefs that

player i uses to compute the expected value of future payoffs. Whereas a learner uses her updated
beliefs ξ̂i, a non-learner uses her beliefs of today ξi, i.e., a non-learner understands that she faces
uncertainty but does not anticipate that she will learn in the future. Proposition 3 presents the
emissions equilibrium strategy of a non-learner.

Proposition 3 The feedback-Nash equilibrium emissions of a non-learner player i, i ∈ {1, ..., N}
are given by

eNLi (S; ξi, ξ−i) =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δ

2− γ

βi ´
Θ
ξi(θ)µ (θ) dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

−
γ
∑N
j=1 βj

´
Θ
ξj(θ)µ(θ)dθ

1−δd
´
Θ
µ(θ)ξj(θ)dθ

2 + (N − 1) γ

 .

(14)

Proof. See Appendix.

4 Comparison

In this section, we compare the emissions strategies under the different scenarios. In Proposition
4, it is shown that the total emissions under no-learning exceeds value under learning.. This result
indicates that the additional uncertainty generated by the anticipation of learning leads to more
cautious behavior by the players.

Proposition 4 Total emissions are lower under learning than under no-learning, i.e.,

N∑
i=1

eLi (S; ξi, ξ−i) <

N∑
i=1

eNLi (S; ξi, ξ−i) . (15)

Proof. See Appendix 7.4.

Remark 1 Here and in the rest of the paper, the ordering of pollution stocks under different sce-
narios is the same as ordering of emissions.

9



If we make the additional assumption that the players are homogenous, we obtain the results
in Proposition 5, where individual emissions are compared.

Proposition 5 If the players have homogenous beliefs and face the same marginal damage cost,
i.e., ξi(θ) = ξ(θ) and βi = β, ∀i = 1, ..., N , then

eLi (S; ξ) < eNLi (S; ξ) . (16)

Proof. See Appendix 7.5.
Proposition 4 is in line with the results in the literature, where it is shown that the risk generated

from anticipated learning induces precautionary behavior, which in our context translates into
emissions reductions; see, e.g., Agbo (2014). Further, it has been shown that uncertainty leads to
emissions reduction due to risk considerations (see, e.g., Baker (2005) and Bramoullé and Treich
(2009)). However, the result stated in Proposition 4 is due to the fact that players are homogeneous.
When there is heterogeneity among the players, the ordering might be reversed, i.e., eLi (S, ξi, ξ−i) >
eNLi (S, ξi, ξ−i). Indeed, from (10) and (14), we have the following equivalence:

eLi (S, ξi, ξ−i) > eNLi (S, ξi, ξ−i)⇔
(2 + (N − 1)γ)βi

(´
Θ
µ(θ)ξi(θ)dθ
1−δdµ(θ) −

´
Θ
µ(θ)ξi(θ)dθ

1−δd
´
Θ
µ(θ)ξi(θ)dθ

)
γ
∑N
j=1 βj

(´
Θ
µ(θ)ξj(θ)dθ
1−δdµ(θ) −

´
Θ
µ(θ)ξj(θ)dθ

1−δd
´
Θ
µ(θ)ξj(θ)dθ

) < 1,

(17)
where the numerator is the weighted self-precautionary effect due to the additional uncertainty
generated by anticipated learning, and the denominator measures the same effect for all other
players. This effect for all other players is referred to as differential informational externality in
Agbo (2014). The inequality in (17) can be rearranged as

γ >
2Ψ

1− (N − 1)Ψ
, (18)

where

Ψ =
βi

(´
Θ
µ(θ)ξi(θ)dθ
1−δdµ(θ) −

´
Θ
µ(θ)ξi(θ)dθ

1−δd
´
Θ
µ(θ)ξi(θ)dθ

)
∑N
j=1 βj

(´
Θ
µ(θ)ξj(θ)dθ
1−δdµ(θ) −

´
Θ
µ(θ)ξj(θ)dθ

1−δd
´
Θ
µ(θ)ξj(θ)dθ

) ,
meaning that for large (small) γ, learning decreases (increases) emissions. In other words, our
results show that the sign of the difference in emissions under learning and no-learning depends
on the value of the market externality as captured by γ. Note that with homogeneous players
condition (18) becomes γ > 2, which falls outside the range of the parameter γ ∈ [0, 2). However,
when there is heterogeneity in βi and/or ξi, then it is possible for the right-hand side of (18) to be
strictly less than 2, which implies that there exist values of γ ∈ (0, 2) such that condition (18) holds.
For instance, if player i’s marginal cost of the pollution, βi, is sufficiently lower than the average
marginal cost across the players, then eLi (S, ξi, ξ−i) > eNLi (S, ξi, ξ−i). Similarly, if player i’s prior
beliefs are sufficiently less risky than the other players’ beliefs, then eLi (S, ξi, ξ−i) > eNLi (S, ξi, ξ−i).

To compare emissions under full information and no-learning cases, we look at whether beliefs
about the mean of the stochastic parameter are unbiased or biased. These comparisons provide
information about the effect of structural uncertainty, i.e., the difference between knowing the
structure (i.e., knowing θ∗) and not knowing the structure (i.e., θ∗ is unknown). The results, which
are summarized in Proposition 6, convey a different message than the one in Bramoullé and Treich
(2009). Indeed, we obtain that depending on the belief bias, considering structural uncertainty may
increase, decrease or even not affect the emissions strategies.
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Proposition 6

1. If the beliefs about the mean of the ecological shock, η̃, are unbiased, i.e., µ (θ∗) =
´
H µ (θ) ξi (θ) dθ,

then eIi = eNLi ;

2. If for player i µ (θ∗) >
´

Θ
µ (θ) ξi (θ) dθ, and ∀j 6= i µ (θ∗) =

´
H µ (θ) ξj (θ) dθ, then

eIi (S, ξi, ξ−i) > eNLi (S, ξi, ξ−i) (19)

3. If for player i µ (θ∗) <
´

Θ
µ (θ) ξi (θ) dθ, and ∀j 6= i µ (θ∗) =

´
H µ (θ) ξj (θ) dθ, then

eIi (S, ξi, ξ−i) < eNLi (S, ξi, ξ−i) (20)

Proof. It suffices to compare (14) and (6) to obtain the results.
Introducing the intermediate case of no-learning allows us not only to distinguish between the

effect of structural uncertainty and of uncertainty due to anticipation on the emissions strategies, but
to also see that these two sources of uncertainty can even have opposite effects on these strategies.

To illustrate, we have drawn in Figure 1 the emissions trajectories for two players with different
beliefs, assuming a beta distribution.4 When the structural uncertainty causes a decrease in emis-
sions with respect to the full information case (solid straight line in the figures), the uncertainty
due to anticipation goes in the same direction and decreases emissions further. However, when the
structural uncertainty increases the emissions, the uncertainty due to anticipation moderates this
effect. Put differently, whereas the uncertainty due to anticipation may mitigate (at least the total)
emissions, the effect of structural uncertainty depends on the model assumptions, and more specif-
ically, on the slope and curvature of the distribution function. Proposition 7 gives a more precise
statement in the special case of unbiased and homogeneous beliefs, i.e., ξi(θ) = ξ(θ), ∀i = 1, ..., N.

Proposition 7 Assume that the beliefs are homogeneous and unbiased, i.e., θ∗ =
´

Θ
θξi (θ) dθ,

∀i = 1, ..., N , then:

• If µ′′ > 0, then
∑
eIi (S; θ∗) >

∑
eNLi (S, ξi, ξ−i);

• If µ′′ = 0, then
∑
eIi (S; θ∗) =

∑
eNLi (S, ξi, ξ−i);

• If µ′′ < 0, then
∑
eIi (S; θ∗) <

∑
eNLi (S, ξi, ξ−i).

Proof. Since µ (θ∗) = µ (E (θ)) , if µ′′ > 0 (µ′′ < 0), i.e., µ is convex (concave), then by Jensen’s
inequality, we have µ (E (θ)) > E (µ (θ)) (µ (E (θ)) < E (µ (θ))), which completes the proof.

Note that the above result holds true for heterogeneous players in terms of the model’s param-
eters.

Recall that in the case of full information (i.e., θ∗ is known), uncertainty enters the optimization
problem through the mean of the shock, i.e., µ(θ∗). Hence, in the no-learning case, replacing µ(θ∗)
by
´

Θ
µ(θ)ξ(θ)dθ in (6) yields (14). It follows that the uncertainty in the no-learning case is also

displayed through the conditional mean µ(θ), which implies that any change in prior beliefs about
θ has an effect on behavior only through the conditional mean. When comparing the case of full
information with the no-learning case under unbiased beliefs about the unknown parameter, it is
then the curvature of the conditional mean that determines the ordering of total emissions under

4Qualitatively similar results hold when using a normal distribution.
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(a) Unknown parameter is a (b) Unknown parameter is b

Figure 1: Decomposing the effects of structural uncertainty and uncertainty due to anticipation for
a Beta distribution with parameters a and b (B (a, b) where mean = a

a+b ) in a two-player game
with heterogeneous beliefs.

full information and no-learning. Specifically, if the conditional mean is convex in θ, i.e., µ′′(θ) > 0,
then a mean-preserving increase in risk for unbiased prior beliefs implies a lower anticipated level
of pollution (i.e., µ(θ∗) >

´
Θ
µ(θ)ξ(θ)dθ), which discourages total emissions. The opposite result

occurs when the conditional mean is concave in θ. Finally, if the conditional mean is linear in θ
(i.e., µ′′(θ) = 0), then a mean-preserving increase in risk has no effect on total emissions.

In the next two propositions we state some welfare comparative results. Denote by vxi (S; ·) the
value function (welfare) under learning scenario x ∈ {NL,L, I}, that is,

vxi (S; ·) = κxi,1S + κxi,2. (21)

Unfortunately, it is not possible to compare the intercept terms κxi,2 across scenarios, but we can
compare the slopes of the value functions. Proposition 8 states that the anticipation of learning
increases the negative effect of increasing pollution on welfare.

Proposition 8 Under learning and no-learning, the slopes of the value functions compare as fol-
lows:

κLi,1 < κNLi,1 < 0. (22)

Proof. See Appendix 7.6.
The next proposition shows that the beliefs effect (captured by the difference between the full-

information and no-learning cases) may reduce or enhance the negative effect of increasing pollution
on welfare.

Proposition 9 The ordering of κIi,1 and κNLi.1 depends on the beliefs bias as follows:

1. For µ (θ∗) >
´

Θ
µ (θ) ξi (θ) dθ,

κIi,1 < κNLi,1 < 0. (23)
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2. For µ (θ∗) <
´

Θ
µ (θ) ξi (θ) dθ,

κNLi,1 < κIi,1 < 0. (24)

5 More optimistic/pessimistic beliefs

The players form and change their beliefs according to the information they receive from different
sources over time, e.g., lobbyists and scientific literature. In this section, we analyze the impact
of changes in the players’ beliefs on their emissions. To do so, we first introduce the concept of
first-order strict stochastic dominance, which is necessary to compare better and worse situations.

Definition 1 Consider two probability density functions ξ1
i and ξ2

i . We say that ξ1
i first-order

strict-stochastically dominates ξ2
i , ξ1

i �1 ξ2
i , if for any increasing function u : R → R, we have´

u (x) ξ1
i (x) dx >

´
u (x) ξ2

i (x) dx.

Next, we clarify what is meant in our context by a change in beliefs. Since beliefs are about θ and
not η, to interpret the meaning of a change in beliefs, we need to know how the mean of θ, that is,
µ (θ) varies with θ. Keeping in mind definition (1), suppose that the beliefs of player i change from
ξ1
i to ξ2

i , with ξ1
i �1 ξ

2
i and µ′ (θ) > 0. Intuitively, this player’s beliefs have changed in a way that

she expects lower values for the unknown parameter θ, and since µ is increasing, she also expects
lower values for the unknown variable η. Therefore, under ξ2

i , this player expects lower levels of
pollution accumulation, and consequently, a lower environmental cost. Put differently, by believing
in ξ2

i instead of ξ1
i , this player becomes more optimistic about the environment. If µ′ (θ) < 0, then

the result is the opposite and a change from ξ1
i to ξ2

i would be equivalent to saying that player i is
now more pessimistic. Proposition 10 presents the impact of becoming more optimistic on emissions
strategies.

Proposition 10 Assume that player i becomes more optimistic while all the other players’ priors
remain unchanged, i.e., we have the two N-tuples ξ1 =

{
ξ1
1 , ..., ξ

1
i , ..., ξ

1
N

}
and ξ2 =

{
ξ1
1 , , ..., ξ

1
i−1, ξ

2
i , ξ

1
i+1, ..., ξ

1
N

}
.

If ξ1
i �1 ξ

2
i and µ′ (θ) > 0, x ∈ {L,NL}, then for γ ≥ 0 we have

• exi
(
S, ξ2

)
> exi (S, ξ1);

• exj
(
S, ξ2

)
≤ exj (S, ξ1); ∀j 6= i, (equality holds for γ = 0);

•
∑N
z=1 e

x
z

(
S, ξ2

)
>
∑N
z=1 e

x
z (S, ξ1).

Proof. See Appendix 7.7.
The Proposition shows that if player i becomes more optimistic, then she increases her emissions,

while all the other players decrease theirs. This shows that emissions are strategic substitutes. More
importantly, we obtain that the reduction by all other players is not sufficient to compensate for
the increase in player i’s emissions. Optimism clearly has a negative effect on the environment; this
may explain why environmentalists prefer to highlight poor prospects and play down positive news.
To illustrate the results in the Proposition, we consider the following simple example: assume η has
a uniform distribution with unknown support [0, θ], and beliefs, ξ (θ), θ ∈ [0, 1], then µ (θ) = θ

2 , so
µ′ (θ) > 0. By Proposition 10, if ξ1

i �1 ξ
2
i , then eLi

(
S, ξ2

)
> eLi (S, ξ1).

The following corollary shows that if all players become more optimistic, then the total emissions
increase.
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Corollary 1 If all countries become more optimistic about the environment, i.e., ξ1
i �1 ξ

2
i , ∀i ∈

1, ..., N , and µ′ (θ) > 0, then ∀x ∈ {L,NL}, we have

N∑
z=1

exz
(
S, ξ2

)
>

N∑
z=1

exz (S, ξ1). (25)

We saw that emissions are strategic substitutes. In other words, while a player’s more optimistic
beliefs lead to an increase in her own emissions, more optimistic outsider beliefs have the opposite
effect on this player. Corollary 1 states that, in total, the effects on oneself dominate those of
outsiders, and if everyone becomes more optimistic, the total emissions will increase. However, the
effect of a change in everyone’s beliefs on individual emissions is ambiguous and depends on the
weight of self-induced versus outsider effects.5 Further, as our model allows for heterogeneity in
beliefs, we can compare the emissions strategies of players with different beliefs. Indeed, if players
i and j are similar in their parameters but not in their beliefs, such that player i is more optimistic
than player j, then

exi (S, ξ) > exj (S, ξ), x ∈ {L,NL} , (26)

that is, player i will emit more than player j under both the learning and no-learning cases. Now,
if players change their beliefs about the functional form of φ (η), then we can characterize more
directly the impact of changes in optimism/pessimism. Recalling that a player becomes more
pessimistic when she gives higher values on average to η, Proposition 11 presents the effect of such
a change on the players’ emissions.

Proposition 11 If φ1
i (η) �1 φ

2
i (η), i.e., player i gives higher mean to µ (θ) under φ1

i (η) than under
φ2
i (η), then

ex2
i (S, ξ) > ex1

i (S, ξ), x ∈ {L,NL} . (27)

Proof. Since µ (θ) =
´
H ηφ(η|θ)dθ and η is an increasing function if φ1

i (η) �1 φ
2
i (η), so by definition

we have µ1
i (θ) > µ2

i (θ). Given Proposition 2 and Proposition 3, the proof is complete.
In a nutshell, the main takeaway of this section is that increased optimism leads to increased

total emissions.

6 Belief in increased peril

To represent optimism/pessimism, we used the first-order stochastic dominance since it deals with
“better” vs. “worse” situations. To compare the relative riskiness (or volatility) of two distributions,
we introduce and use the second-order stochastic dominance.

5For example in case of learning an individual’s self-induced effect is

2 + (N − 2) γ

2 + (N − 1) γ
βi

(ˆ
Θ

µ (θ)

1 − δdµ (θ)
ξ1
i (θ)dθ −

ˆ
Θ

µ (θ)

1 − δdµ (θ)
ξ2
i (θ)dθ

)
,

the outsider effect is

γ

2 + (N − 1) γ

∑
j 6=i

βj

(ˆ
Θ

µ (θ)

1 − δdµ (θ)
ξ1
j (θ)dθ −

ˆ
Θ

µ (θ)

1 − δdµ (θ)
ξ2
j (θ)dθ

)
.
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Definition 2 Given two distributions with the same mean, distribution with p.d.f. φ1 (θ) second-
order stochastically dominates the distribution with p.d.f. φ2 (θ), φ1 (θ) �2 φ2 (θ), if for every
non-decreasing concave function u : R→ R, we have

´
R u (x)φ1 (x) dx ≥

´
R u (x)φ2 (x) dx.

By definition, we can say that if φ1 (θ) �2 φ2 (θ), then φ1 is less volatile or less risky. The
equality of the distributions’ means is crucial in the above definition as it allows us to distinguish
the effects of more optimistic/pessimistic views from the effects related to the riskiness of the
situation. Proposition 12 presents the effects of a change in the belief that the situation is more
risky.

Proposition 12 Suppose µ′ (θ) > 0, and consider the two N -tuples ξ1 =
{
ξ1
1 , ..., ξ

1
i , ..., ξ

1
N

}
and

ξ2 =
{
ξ1
1 , , ..., ξ

1
i−1, ξ

2
i , ξ

1
i+1, ..., ξ

1
N

}
. If country i feels more at-risk under ξ2

i than under ξ1
i , i.e.,

ξ1
i (θ) �2 ξ

2
i (θ), then for γ ≥ 0 we have

1. eLi
(
S, ξ2

)
≤ eLi (S, ξ1);

2. eLj
(
S, ξ2

)
≥ eLj (S, ξ1), ∀j 6= i, (equality holds for γ = 0);

3.
∑N
z=1 e

L
z

(
S, ξ2

)
≤
∑N
z=1 e

L
z

(
S, ξ1

)
.

Proof. See Appendix 7.8.
According to Proposition 12, given that the unknown variable’s mean is increasing in θ, if a

learner player perceives a higher-risk situation while all other players’ beliefs remain unchanged, then
she will decrease her emissions, while other players will increase their own (by strategic substitution).
Similar to what we found before (see Proposition 10), their reactions are not strong enough to
overcome the direct effect and the total emissions will be lower. If everyone feels more at-risk, the
net effect on player i’s emissions is ambiguous since the increase in one’s own riskiness tends to
decrease the emissions while the increase in the opponents’ sense of peril is an incentive to increase
emissions.

7 Concluding remarks

We introduced in a dynamic game of pollution emissions the two important features of ecological
uncertainty and learning, with the objective of answering the question of whether uncertainty
decreases emissions or not. While one might expect uncertainty to alleviate the commons problem,
we obtained that, depending on the model setup, the effect of uncertainty can go in both directions.
By decomposing the different sources of uncertainty, we were able to separate the effects of structural
uncertainty from those due to learning. We also studied the impacts of changes in players beliefs,
either toward greater optimism/pessimism or a greater sense of peril. Our results suggest that more
pessimistic beliefs about the pollution stock and a greater sense of peril both decrease the total
emissions.

Number of extensions of this work to enhance our understanding of the impact of different sources
of uncertainty on the results would be of interest. First, we could add economic uncertainty in the
form of a random marginal cost of pollution, or in the parameters of the revenue function, that is,
α and β. Note, however, that introducing uncertainty in terms of α or β does not bring a profound
effect of learning on behavior, if we keep the assumption of linear damage cost. Indeed, for these
cases, the policy functions under learning are equivalent to the policy functions under no-learning.
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That is, the anticipation of learning is nonexistent. Hence, learning has different effect depending
on which parameters you are learning about.6 Second, we fully acknowledge that some of our results
are reminiscent of our assumption of a linear damage cost and considering a non-linear damage cost
is clearly an extension worth analyzing. Third, we could envision to link the realized values of η
to the values of the revenue parameters α and β. For instance, if η is very high, this may cause a
catastrophe leading to a discrete fall in the value of α. The possibility of catastrophes may affect
players’ behavior, either by enhancing the precautionary motive or by encouraging countries to emit
more before the catastrophe hits. Also, different behavioral assumptions, such as loss aversion, may
lead to outcomes other than those derived in this model.7 Finally, a very challenging extension is to
add abatement technology as a state variable and let the emissions levels be a decreasing function of
the available stock of this technology. With this addition, a player can respond to the uncertainty
by either reducing production, reducing pollution emissions per production unit, or by a mix of the
two options.

Appendix

7.1 Proof of Proposition 1

Denote by vIi (S; θ∗) the value function of player i, where the superscript I refers to an informed
player. The Hamilton-Jacobi-Bellman (HJB) equation is given by

vIi (S; θ∗) = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS + δ

ˆ
H

vIi
η
 N∑
j=1

ej + dS

φ(η|θ∗)dη

 .

(28)
Considering the linear-state structure of our model, we conjecture that the value function is linear
and specified as follows:

vIi (S; θ∗) = κIi,1S + κIi,2.

Plugging the conjectured value function in (50), we obtain

κIi,1S+κIi,2 = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS + δ

ˆ
H

κIi,1η
 N∑
j=1

ej + dS

+ κIi,2

φ(η|θ∗)dη

 .

(29)
The first-order equilibrium condition is given by8

αi − 2ei − γ
∑
j 6=i

ej + δ

ˆ
H
κIi,1ηφ(η|θ∗)dη = 0. (30)

To find the coefficients of the value function, we substitute for eIi in (29) and equate the coefficients
in order of S. This leads to a system of 2N equations (2 equations for each player) and 2N unknowns
(κIi,1 and κIi,2 ∀i = 1, 2), that is,

κIi,1 = −βi + δ(1− d)

ˆ
H
ηκIi,1φ(η|θ∗)dη, (31)

6See Masoudi and Zaccour (2014) for a proof of this statement in the simpler case where uncertainty is only in β.
7We wish to thank the Reviewer who suggested this extension. The last lines are in his/her own words.
8Notice that the second-order condition is satisfied for the model.
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κIi,2 = αiei − e2
i − γei

∑
j 6=i

ej + δ

ˆ
H

ηκIi,1
 N∑
j=1

eIj

+ κIi,2

 (φ(η|θ∗)) dη. (32)

Since µ (θ∗) =
´
H ηφ(η|θ∗)dη, from (31), we get

κIi,1 =
−βi

1− δdµ (θ∗)
, (33)

and from (32)

κIi,2 =
1

1− δ

αieIi − (eIi )
2 − γei

∑
j 6=i

ej + δµ (θ∗)κIi,1

 N∑
j=1

eIj

 .

To solve for
{
eIi
}N
i=1

rewrite (30) as a function of total emissions,
∑N
j=1 ej , i.e.,

αi − (2− γ) ei − γ
N∑
j=1

ej + δ

ˆ
H
κIi,1ηφ(η|θ∗)dη = 0, (34)

and consequently, the best reaction function of player i is

eIi =
1

2− γ

αi − γ N∑
j=1

ej − δ
βiµ (θ∗)

1− δdµ (θ∗)

 . (35)

We first solve for
∑N
j=1 ej . Summing 35 over i yields

N∑
i=1

eIi =
1

2− γ

 N∑
i=1

αi − γN
N∑
j=1

ej − δ
µ (θ∗)

∑N
i=1 βi

1− δdµ (θ∗)

 . (36)

So that total emission is

N∑
i=1

eIi =
1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
µ (θ∗)

1− δdµ (θ∗)

N∑
i=1

βi

)
. (37)

Plugging (37) into 35 yields

eIi =
1

2− γ

(
αi −

γ

2 + (N − 1) γ

(
N∑
i=1

αi − δ
µ (θ∗)

1− δdµ (θ∗)

N∑
i=1

βi

)
− δ βiµ (θ∗)

1− δdµ (θ∗)

)
. (38)

By rearranging we have

eIi =
1

2− γ

(
αi −

γ
∑N
i=1 αi

2 + (N − 1) γ
− δµ (θ∗)

1− δdµ (θ∗)

(
βi −

γ
∑N
j=i βj

2 + (N − 1) γ

))
. (39)
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7.2 Proof of Proposition 2:

By virtue of our linear-state model we conjecture that the value function of player i has the linear
form of vLi = κLi,1(ξi)S + κLi,2(ξ1, .., ξN ). Replacing this conjectured vLi in the HJB equation, we
obtain

vLi (S, ξ1, .., ξN ) = max
ei

ei
αi − ei − γ N∑

j 6=i

ej

− βiS
+δ

ˆ
H
κLi,1(ξ̂i)η

 N∑
j=1

ej + dS

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη

+ δ

ˆ
H

(
κLi,2

(
ξ̂1 (θ|η) , .., ξ̂N (θ|η)

))(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη

}
. (40)

From the first-order conditions we have

αi − 2eLi − γ
N∑
j 6=i

eLj + δ

ˆ
H
κLi,1(ξ̂i (θ|η))η

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη. (41)

Plugging (41) into (40) and equating the coefficients in order of S, we have the following system of
equations:

κLi,1(ξi) = −βi + δd

ˆ
H
κLi,1(ξ̂i)η

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη (42)

κLi,2(ξ1, .., ξN ) =αiei − (ei)
2 − γei

N∑
j 6=i

ej

+ δ

ˆ
H

(
κLi,1(ξ̂i)η

∑
i

ei + κLi,2

(
ξ̂1 (θ|η) , .., ξ̂N (θ|η)

))(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη.

(43)
We claim that

κLi,1(ξi) = −βi
ˆ

Θ

ξi(θ)

1− δdµ (θ)
dθ, (44)

and consequently

κLi,2(ξ1, .., ξN ) =αiei − (ei)
2 − γei

N∑
j 6=i

ej

− βiδ
∑
i

ei

(ˆ
Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ

)
+ δ

ˆ
H
κLi,2

(
ξ̂1 (θ|η) , .., ξ̂N (θ|η)

)(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη.

(45)

To show this, let us update (44) for one period to obtain

κLi,1

(
ξ̂i (θ|η)

)
= −βi

ˆ
Θ

ξ̂i (θ|η)

1− δdµ (θ)
dθ. (46)
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Using (8), we get

κLi,1(ξ̂i (θ|η)) = −βi
ˆ

Θ

1

1− δdµ (θ)

φ(η|θ)ξi(θ)´
Θ
φ(η|x)ξi(x)dx

dθ.

Plugging this back into (42) leads to

κLi,1(ξi) = −βi
(

1 + δd

ˆ
H

ˆ
Θ

1

1− δdµ (θ)

φ(η|θ)ξi(θ)´
Θ
φ(η|x)ξi(x)dx

dθη

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη

)
,

= −βi
(

1 + δd

ˆ
Θ

µ (θ)

1− δdµ (θ)
ξi(θ)dθ

)
,

= −βi
(ˆ

Θ

[
1− δdµ (θ)

1− δdµ (θ)
+

δdµ (θ)

1− δdµ (θ)

]
ξi(θ)dθ

)
.

This corresponds to our claim. To solve for
{
eIi
}N
i=1

rewrite (41) as a function of total emissions,∑N
j=1 ej , i.e.,

αi − (2− γ) eLi − γ
N∑
j=1

eLj − δβi
ˆ

Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ.

So, for i = 1, .., N ,

eLi =
1

2− γ

αi − γ N∑
j=1

eLj − δβi
ˆ

Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ

 . (47)

We first solve for
{
eLi
}N
i=1

, then for eLi . Summing (47) over i yields

N∑
i=1

eLi =
1

2− γ

 N∑
i=1

αi − γN
N∑
j=1

eLj − δ
N∑
i=1

βi

ˆ
Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ

 .

So, total emissions is given by

N∑
i=1

eLi =
1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
N∑
i=1

βi

ˆ
Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ

)
. (48)

Plugging (48) into (47) yields

eLi =
1

2− γ

(αi − γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δ

βi ˆ
Θ

µ (θ) ξi(θ)

1− δdµ (θ)
dθ −

γ
∑N
j=1 βj

´
Θ
µ(θ)ξj(θ)
1−δdµ(θ)dθ

2 + (N − 1) γ

 .

(49)

7.3 Proof of Proposition 3

We follow the same procedure as we did for a learner player. We conjecture that vNLi , which satisfies
(12), has the linear form vNLi = κNLi,1 (ξi)S + κNLi,2 (ξ1, .., ξN ). Rewriting (12) with our conjectured
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value function we have

vNLi (S, ξ1, .., ξN ) = max
ei

ei
αi − ei,t − γ N∑

j 6=i

ej

− βiS (50)

+ δ

ˆ
H
κNLi,1 (ξi)η

 N∑
j=1

ej + dS

+ κNLi,2 (ξ1, .., ξN )

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη

 .

The first-order condition for i is

αi − 2eNLi − γ
N∑
j 6=i

eNLj + δ

ˆ
H
κNLi,1 (ξi)η

(ˆ
Θ

φ(η|θ)ξ(θ)dθ
)

dη, (51)

and since
´
H ηφ(η|θ)dη = µ (θ), we obtain

eNLi (S, ξ1, .., ξN ) =
1

2

αi − γ N∑
j 6=i

eNLj + δ

ˆ
Θ

(
κNLi,1 (ξi)

)
µ (θ) ξ(θ)dθ

 . (52)

Plugging (52) into (50) gives the following system of equations

κNLi,2 (ξ1, .., ξN ) = αiei−e2
i−γei

N∑
j 6=i

ej+δ

ˆ
H

κNLi,1 (ξi)η

 N∑
j=1

ej

+ κNLi,2 (ξ1, .., ξN )

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη,

(53)
and

κNLi,1 (ξi) = −βi + δd

ˆ
Θ

κNLi,1 (ξi)

(ˆ
H
ηφ(η|θ)dη

)
ξi(θ)dθ, (54)

or

κNLi,1 (ξi) = −βi + δd

ˆ
Θ

κNLi,1 (ξi)µ (θ) ξi(θ)dθ. (55)

We now show that κNLi,1 (ξi) = −βi

1−δd
´
Θ
µ(θ)ξi(θ)dθ

. Inserting this guessed form into (55), we get

κNLi,1 (ξi) = −βi − βiδd
ˆ
H

1

1− δd
´

Θ
µ (θ) ξi(θ)dθ

η

(ˆ
Θ

φ(η|θ)ξi(θ)dθ
)

dη, (56)

= −βi − βiδd
´

Θ

(´
H ηφ(η|θ)dη

)
ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

, (57)

= −βi − βiδ
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

, (58)

= −βi
(

1− δd
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

+
δd
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

)
, (59)

=
−βi

1− δd
´

Θ
µ (θ) ξi(θ)dθ

. (60)
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To complete the proof, rewrite (51) as a function of total emissions, i.e.,

αi − (2− γ) eNLi − γ
N∑
j=1

eNLj − δ
βi
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

= 0. (61)

We first solve for
∑N
j=1 e

NL
j , then for eNLi . Summing (61) over i yields

N∑
i=1

αi − (2− γ)

N∑
i=1

eNLi − γN
N∑
j=1

eNLj − δ
N∑
i=1

βi
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

= 0. (62)

So total emissions is given by

N∑
j=1

eNLj =
1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
N∑
i=1

βi
´

Θ
µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) ξi(θ)dθ

)
. (63)

Plugging this back in (61) yields

eNLi =
1

2− γ

αi − γ
∑N
j=1 αj

2 + (N − 1) γ
− δ

βi ´Θ µ (θ) ξi(θ)dθ

1− δd
´

Θ
µ (θ) dθ

−
γ
∑N
j=1 βj

´
Θ
µ(θ)ξj(θ)dθ

1−δd
´
Θ
µ(θ)dθ

2 + (N − 1) γ

 (64)

7.4 Proof of Proposition 4

We have

N∑
i=1

(
eLi − eNLi

)
=

δ

2 + (N − 1) γ

(
N∑
i=1

βi

[
R

(ˆ
Θ

ξi(θ)µ (θ) dθ

)
−
ˆ

Θ

R (µ (θ)) ξi(θ)dθ

])

Since R is an increasing convex function, by Jensen’s inequality we have

ˆ
Θ

R (µ (θ)) ξi(θ)dθ > R

(ˆ
Θ

ξi(θ)µ (θ) dθ

)
,

that is,
∑N
i=1

(
eLi − eAi

)
< 0, or

N∑
i=1

eLi (S, ξ1, .., ξN ) <

N∑
i=1

eAi (S, ξ1, .., ξN ) .

7.5 Proof of Proposition 5

If βi = β and ξi(θ) = ξ(θ), ∀i = 1, ..., N , then

eLi (S; ξi, ξ−i) =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δ

2− γ
β

(
1− γN

2 + (N − 1) γ

)ˆ
Θ

µ (θ) ξ(θ)dθ

1− δdµ (θ)
.

(65)
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eNLi =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δ

2− γ
β

(
1− γN

2 + (N − 1) γ

) ´
Θ
µ (θ) ξ(θ)dθ

1− δd
´

Θ
µ (θ) dθ

. (66)

Let R (x) = x (1− δdx)
−1

, then

eLi (S, ξ1, .., ξN ) =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δβ

2− γ
2− γ

2 + (N − 1) γ

ˆ
Θ

R (µ (θ)) ξ(θ)dθ,

and

eNLi (S, ξ1, .., ξN ) =
1

2− γ

(
αi −

γ
∑N
j=1 αj

2 + (N − 1) γ

)
− δβ

2− γ
2− γ

2 + (N − 1) γ

(
R

(ˆ
Θ

ξ(θ)µ (θ) dθ

))
.

Since 0 < δ, d < 1, and 0 < µ (θ) < 1, then R is an increasing convex function for acceptable values
of our model parameters (R′ > 0, R” > 0, ∀x ∈ [0, 1]), then by Jensen’s inequality we have

ˆ
Θ

R (µ (θ)) ξ(θ)dθ > R

(ˆ
Θ

ξ(θ)µ (θ) dθ

)
,

Since 1
2+(N−1)γ is positive, then

eLi (S, ξ1, .., ξN ) < eNLi (S, ξ1, .., ξN ) .

7.6 Proof of Proposition 8

Let G (x) = 1
1−δdx , which is an increasing convex function for 0 < x < 1, then we can rewrite

κLi,1(ξi) and κNLi,1 (ξi) as follows

κLi,1(ξi) = −βi
ˆ

Θ

ξi(θ)

1− δdµ (θ)
dθ = −βi

ˆ
Θ

G (µ (θ)) ξi(θ)dθ,

κNLi,1 (ξi) =
−βi

1− δd
´

Θ
µ (θ) ξi(θ)dθ

= −βiG
(ˆ

Θ

ξi(θ)µ (θ) dθ

)
,

then by Jensen’s inequality we have

ˆ
Θ

G (µ (θ)) ξi(θ)dθ > G

(ˆ
Θ

ξi(θ)µ (θ) dθ

)
,

that yields
κNLi,1 (ξi) > κLi,1(ξi).

7.7 Proof of Proposition 10

Let R (x) = x (1− δdx)
−1

and u (x) = R (µ (x)). Since, µ ∈ [0, 1], R is increasing, and

∂u

∂x
= µ′R′ ⇒

{
∂u
∂x > 0 if µ′ > 0
∂u
∂x < 0 if µ′ < 0

. (67)
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Recall that the individual’s emissions for an non-learner player are given by equation 10, and the
total emissions by

N∑
i=1

eLi =
1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
N∑
i=1

βi

ˆ
Θ

ξi(θ)R (µ (θ)) dθ

)
. (68)

Using definition 1 and conditions (67), confirm the results for an non-learner player.
For the adaptive-learning case, an individual’s emissions are given by (14), and the total emis-

sions are as follows:

N∑
i=1

eNLi =
1

2 + (N − 1) γ

(
N∑
i=1

αi − δ
N∑
i=1

βiR

(ˆ
Θ

ξi(θ)µ (θ) dθ

))
. (69)

Besides, if ξ1
i (θ) �1 ξ

2
i (θ), then

´
Θ
ξ1
i (θ)µ (θ) dθ >

´
Θ
ξ2
i (θ)µ (θ) dθ if µ′ > 0, which gives the results

presented in the Proposition for the adaptive learner.

7.8 Proof of Proposition 12

We assumed µ′ > 0. If µ” ≥ 0, then since R is also increasing and convex, R (µ (θ)) would be an
increasing convex function. Given that ξ1

i (θ) �2 ξ
2
i (θ), we will have

−
ˆ

Θ

R (µ (θ)) ξi(θ
1)dθ ≥ −

ˆ
Θ

R (µ (θ)) ξi(θ
2)dθ. (70)

Now, assume that µ is a concave function, µ′′ ≤ 0, and player i’s beliefs change from ξ1
i (θ) to ξ2

i (θ),
with ξ1

i (θ) �2 ξ
2
i (θ), that is, θ1 is less volatile than θ2 meaning that θ1 �2 θ

2, then µ
(
θ1
)
�2 µ

(
θ2
)
.

Consequently, the inequality (70) is satisfied.
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