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1 Introduction
Following the improvement of information technology, large panels of economic
and financial time series are now available. Using a large data set in econometric
analysis can lead to the curse-of-dimensionality problem. One such example is the
rise in degrees-of-freedom when the number of variable increases. On the other
hand, choosing among variables introduces an element of arbitrariness and can
lead to misspecification and misleading results (see Hansen and Richard 1987;
Ludvigson and Ng 2007). A solution to this problem is to use the factor analysis
where the information in hundreds of economic and financial time series can be
summarized by a relatively small number of (common and latent) factors (see,
among others, Chamberlain and Rothschild 1983; Connor and Korajczyk 1986,
1988, 1993; Chen Roll and Ross 1986; Stock and Watson 2002, Bernanke, Boivin
and Eliasz 2005; Ludvigson and Ng 2007, 2009, 2011).

The existence of the factor model is strictly related to the number of primitive
shocks in a data set (Rao 1955). The choice of the number of factors is very im-
portant. In fact, researchers can face misspecification problems when the number
of factors is underestimated, or problems related to power when the number of
factors is overestimated. Many methods have been proposed to estimate the num-
ber of (static and dynamic) factors (see, among others, Bai and Ng 2002, 2007;
Onatski 2009, 2010; Alessi, Barigozzi and Capasso 2010; Ahn and Horenstein
2013; Hallin and Liska 2007; Amengual and Watson 2007).

The aim of this paper is to study the selection of the number of factors of
different tests and information criteria in presence of structural instability. First,
we conduct an extensive comparison of all the procedures using several large
macroeconomic and financial panels. The empirical results shows that: i) the
estimated number of factors differs substantially across the selection methods; ii)
it varies a lot over time across, and within, selection methods. Several explanations
are possible. The factors (often perceived as states of economy) become more or
less pervasive over time such that their dimension can be harder to estimate.
This could be modelled by allowing for time-varying factor loadings. Another
possibility is the presence of nonlinearity between observables and latent factors.
For instance, the number of states is the same through the sample but during crisis
periods their effects on the economy could be nonlinear. Such misspecification
could lead the procedures to overestimate the number of factors because they
interpret a squared or interaction term as a new state.

In the second part of the paper, we perform many Monte Carlo simulations to
suggest that the structural instability, in terms of both time-varying factor load-
ings and nonlinear factor representations, can alter the estimation of the number
of factors and therefore explain the empirical findings above. In particular, we
consider two types of irregularities: time-varying factor loadings and nonlinear
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factor representations. Our work is related to Bates, Plagborg-Moller, Stock and
Watson (2013), BPSW hereafter, who consider the estimation of the factor space
in the presence of time variation in factor loadings. They also verify the perfor-
mance of the Bai and Ng(2002) criterion to successfully predict the dimension of
the factor space. The second related paper is Chen, Dolado, and Gonzalo (2014),
who provide a framework to test for large breaks in factor loadings1. They also
show that the Bai and Ng (2002) information criteria are likely to overestimate the
true number of factors in the presence of large breaks. Finally, Guo-Fitoussi and
Darné (2014) concentrate on comparing finite sample properties among many se-
lection rules. Our contribution to this literature consists of: i) providing empirical
evidence for the time varying factor structure, in terms of the number of factors,
in macroeconomic and large financial data sets; ii) assessing the performance of
several selection rules in the presence of irregularities discussed above. In addi-
tion, we study the robustness of selection methods in finite and large samples,
and in exact and approximate factor structures.

The results from our extensive simulation exercise show that structural insta-
bilities, taking several forms of time-variant factor loadings and nonlinear factor
representations, together with cross-sectional and time dependence of the idiosyn-
cratic component, do alter the estimation of the number of factors across all six
most popular selection methods used in the literature.

In Section 2, we present the time-varying parameters factor model framework.
The selection rules considered in our analysis are shown in Section 3. The em-
pirical part of the paper is presented in Section 4. The Monte Carlo simulation
experiments are detailed in Sections 5 and 6. Additional empirical results are
presented in the Appendix.

2 The factor model
In this framework, the large number of observed time series are modelled as de-
pendent on a small number of latent factors. The factor model can be written as
follows:

Xi,t = λ
′

i,tFt + ei,t, i = 1, ..., N t = 1, ..., T (1)

where Xi,t is the observed data, λi,t ∈ Rq is the possibly time varying factor
loading, Ft is a q × 1 vector of latent common factors and ei,t is an idiosyncratic
error assumed to be uncorrelated with Ft at all leads and lags.
Define Xt = (X1,t,...,XN,t)

′, ∧t = (λ1,t,..., λN,t)
′, et = (e1,t,..., eN,t)

′ , and
Ft = (F1,t,...,Fq,t)

′ such that the model can be written in a more compact form:
1See also Breitung and Eickmeier (2011) who test for the presence of structural breaks in

dynamic factor models.
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Xt = ∧tFt + et (2)

Following BPSW the structural instability may be introduced by modelling
the factor loadings as follows:

∧t = ∧0 + hNT ζt (3)

where hNT is a deterministic scalar sequence that may depend on N and T . hNT
sets the scale of deviation. ζt is a possibly random process of dimension N × r .
ζt will be modelled depending on which type of instability we want to assess. For
example, ζt may be white noise, in which case the factor loading ∧t will be the
initial loading matrix ∧0 plus uncorrelated noise. ζt may also be modelled as a
random walk, which gives a standard continuous time-varying parameter model.
Finally, ζt may be a single deterministic break. Of course, if ∧t is constant, (1)
becomes standard factor model with constant parameters.

Note that we only consider the time instability in factor loadings and do not
specify a time-varying VAR process for factors, unlike in Korobilis (2013) and
Eickmeier, Lemke and Marcellino (2014). Our goal is not to study how impulse
responses of Xt are changing over time, but to verify if the estimation of the
number of factors is affected by structural instabilities in the way the observable
series are linked to latent states of the economy.

3 Tests and Criteria for selecting the number of
factors

We consider several selection methods that have been recently developed in ap-
proximate static linear factor model framework. In this section, they are presented
briefly, the details can be found in the original references. Information criteria
procedures are represented by Bai and Ng (2002) and Amengual and Watson
(2007). Onatski (2010) and Ahn and Horenstein (2013) are tests based on the
theory of random matrices, while Bai and Ng (2007) exploit the rank of matrices.
Finally, Hallin and Liska (2007) build on spectral density representation of factor
models. Some of these procedures are suited for selecting the number of static
factors and others seek to determine the number of dynamic factors. In our simu-
lation designs, we only consider the case where the number of static and dynamic
factors is the same, i.e. the two representations are equivalent.
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3.1 Bai and Ng (2002)

Information criteria select the number of factors which minimizes the variance
explained by the idiosyncratic component. The estimated number of factor is:

k̂ = argmin
0≤k≤rmax

([
1

NT

N∑
i=1

T∑
t=1

(
Xi,t − λ̂k

′

i F̂
k
t

)2
]

+ kp(N, T )

)
, (4)

where λ̂ki and F̂ k
t are the principal components analysis estimators of the factor

loadings and factors, when the number of static factors is k. p(N, T ) is a penalty
function that is used to avoid over-parametrization. The authors provide 16 differ-
ent specification of the objective function. The most useful one that we consider
in the rest of the paper, is the ICp2.

3.2 Amengual and Watson (2007)

To estimate the number of dynamic factors, the Bai and Ng (2002) estimator is
applied to residuals obtained by projecting the observed data onto lagged values
of principal components estimates of the static factors. Assume, in addition to
the observational equation (1), that Ft follow a finite VAR process:

Ft =

p∑
i=1

ΦiFt−i + εt. (5)

Let ηt represents the vector of q common dynamic shocks. The innovation εt can
be written as εt = Gηt, where G is k × q with full column rank. By substitution,
we have:

eXt = Xt −
p∑

i=1

∧ΦiFt−i = ∧Gηt + et (6)

Hence, eXt follows a static factor model with q factors that correspond to the
common shocks ηt . In practice, ext is obtained by the following calculations:

êAXt = Xt −
p∑
i=1

∧̂Φ̂iF̂t−i, (7)

êBXt = Xt −
p∑
i=1

Π̂ols
i F̂t−i, (8)

where F̂ and ∧̂ denote the principal components estimators of F and ∧, using the
consistent estimator of k, and

(
Φ̂1

ˆ,Φ2, ... ˆ,Φp

)
the ordinary least square estimator
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of F̂t onto
(
F̂t−1, F̂t−2, ..., F̂t−p

)
. On the other hand,

(
Π̂ols

1
ˆ,Π
ols

2 , ... ˆ,Π
ols

p

)
are the

OLS estimators from projection of Xt onto
(
F̂t−1, F̂t−2, ..., F̂t−p

)
Finally, the Bai and Ng (2002) ICp2 criteria are applied on an estimate of eXt

to select the number of dynamic common shocks. In our exercises, we concentrate
only on static factor models so the matrix G is identity, and we will use the
estimator in (7).

3.3 Onatski 2010

Onatski (2010) develops an estimator of the number of factors - in the approxi-
mated factor models - that performs well even when the idiosyncratic terms are
correlated. Assume that the idiosyncratic components of the data can been writ-
ten as e = AεB, where A and B are two largely unrestricted matrices and ε is
an N × T matrix with i.i.d Gaussian. Both (limited)cross-sectional and tempo-
ral correlations in e are allowed. Onatski (2010) observes that any finite number
of the largest idiosyncratic eigenvalues of the sample covariance matrix clusters
around a single point, while all the systematic eigenvalues - the number of which
equals the number of factor - diverge to infinity. The estimator then separates
the diverging eigenvalues from the cluster and counts the number of separated
eigenvalues - this is the estimated number of factors. Bai and Ng(2002), Hallin
and Liska(2007), and Watson and Amengual (2007) made the assumption that the
factor’s cumulative effect on the N cross-sectional units grows proportionally to
N . According to this assumption, with r static factors, r eigenvalues of the data’s
covariance matrix grow proportionally to N while the rest of the eigenvalues stay
bounded. Onatski (2010) estimates the number of factors without making any
assumption on the rate of growth of the factor’s cumulative effect.

Let k be the number of factors, and λj the j largest eigenvalues of XX ′/T ,
Onatski (2010) shows that for j>k, the differences λj − λj+1 converge to zero
while the differences λk − λk+1 diverge to infinity. Let {knmax, n ∈ N} be a slowly
increasing sequence of real numbers such that (knmax/n) → 0 as n → ∞. The
family of estimators is defined as:

k̂(δ) = max {i ≤ knmax : λi − λi+1 ≥ δ}

where knmax is the maximum possible number of factors having a sample of size n.

3.4 Ahn and Horenstein (2013)

The idea is based on the fact that the k largest eigenvalues of the variance matrix of
N response variables grow unboundedly asN increases, while the other eigenvalues
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remain bounded. The estimators are obtained by maximizing the ratio of two
adjacent eigenvalues. The two estimators are:

k̂ER = argmax
0≤k≤kmax

µ̃NT,k
µ̃NT,k+1

and

k̂GR = argmax
0≤k≤kmax

log [V (k − 1)/V (k)]

log [V (k)/V (k + 1)]

where V (k) =
∑m

j=k+1 µ̃NT,j and µ̃NT,k := ψk [XX ′/(NT )] are the kth largest
eigenvalues of the positive semi definite matrix XX ′/(NT ). ER refers to the
eigenvalue ratio and GR to the growth ratio.

3.5 Bai and Ng (2007)

Bai and Ng (2007) exploit the fact that if a r× r matrix Σu has rank q, the k− q
smallest eigenvalues are zero. Let

c1 > c2 > ... > cN be the ordered eigenvalues of Σu, and

D1k =
(

c2k+1∑r
j=1 c

2
j

)1/2

and D2k =
(

Σr
j=k+1c

2
k+1∑r

j=1 c
2
j

)1/2

When the true eigenvalues cq+1,...cr are zero, D1k and D2k should be zero for
any k > q. The covariance matrix Σu is estimated by Σ̂u = 1

T−p
∑T

t=1 ûtû
′
t, where

ût are the residuals from estimation of the VAR(p) process in F̂ . The cut-off point
is used to account for estimation error.

3.6 Hallin and Liska (2007)

Let
∑

n(θ), θ ∈ [−π, π] represent the spectral density matrices and λn1(θ), ...λnn(θ)
its eigenvalues in decreasing order of magnitude.

• If the spectral density matrices
∑

n(θ) are known, Hallin and Liska (2007)
propose selecting the number of factors as:

q̂n = argmin
0≤k≤qmax

[
1

n

n∑
j=k+1

∫ π

−π
λn,j(θ)dθ + kp(n)

]
where p(n) is a penalty function, and qmax is some predetermined upper bound.
In this case, q̂n is deterministic because the spectral density matrices

∑
n(θ) are

assumed known. Under assumptions in their paper, if the penalty is such that
lim
n→∞

p(n) = 0 and lim
n→∞

np(n) =∞, lim
n→∞

q̂n = q
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If the spectral density matrices
∑

n(θ) are unknown, they can be estimated by
the lag window estimator

∑T
n (θ):

∑T
n (θ) := 1

2π

MT∑
u=−MT

w(M−1
T u)ΓTn,ue

−iuθ,

where x → w(x) is a positive even-weight function and MT > 0 is a truncation
parameter, ΓTn,u is the sample cross-covariance matrix of Xn,t and Xn,t−u based on
T information.

The estimated factor number, for a given pair n and T , are:

q̂T1,n = argmin
0≤k≤qmax

[
1

n

n∑
i=k+1

1

2MT + 1

MT∑
l=MT

λTni(θl) + kp(n, T )

]
or

q̂T2,n = argmin
0≤k≤qmax

[
log

(
1

n

n∑
i=k+1

1

2MT + 1

MT∑
l=MT

λTni(θl)

)
+ kp(n, T )

]
where p(n, T ) is a penalty function, θl := πl/(MT + 1/2) for l = −MT , ...,MT ,
qmax is the predetermined upper bound and the eigenvalues λTni(θl) are those of the
lag window estimator

∑T
n (θ). Under the assumptions in Hallin and Liska (2007),

the estimators q̂T1,n and q̂T2,n are consistent.

4 Empirical evidence
Despite a good performance of all selection methods in simulation experiments
under regular conditions, their application to large macroeconomic and financial
data sets produces mitigated results. In particular, the estimated number of
factors varies significantly across the selection procedures and even within a single
one2.

In this section we compare all the procedures using a variety of macroeco-
nomic and financial panels. A number of conditions can affect the performance of
selection methods. First, the macroeconomic panel must be constructed in a way
that is representative of economy: time series for different sectors of economic
real activities, prices, monetary and credit aggregates, interest rates, etc. The
sectoral and disaggregate data are more and more readily available, but adding
many series of the same type is not recommended because it may alter the esti-
mation of common factors, as pointed by Boivin and Ng (2006). The most used

2A typical example is Bai and Ng (2002) information criteria that have 16 slightly different
specifications where the suggested numbers of factors can diverge substantially.
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US macroeconomic panel is the one from Stock and Watson (2002). While it has
been updated by a number of researchers, the core of the data set - in terms of the
relative importance of sectors - is always the same. Second, all of these time series
must be stationary. In some cases the solution is easy, but in others the transfor-
mation to be applied is not obvious. For example, some researchers kept interest
rates and inflation rates in levels (Bernanke, Boivin and Eliasz 2005), while others
considered the first difference (Stock and Watson 2005). Since these series usually
represent an important part of the sample, the stationary transformations may
substantially modify the correlation structure and hence alter the estimation of
the number of factors. Finally, the frequency in which the time series are observed
and transformed can be important. Financial indicators are often available on a
daily basis while real economic activity series are observed at best monthly. If,
in addition, one requires quarterly series such GDP and government spending in-
dicators, the construction of the data set involves several temporal aggregations
that are known to change the properties time series (see Lutkepohl 1984).

To investigate the empirical stability of results, we estimate the number of
factors in several data sets and across time.

4.1 Number of factors in a large panel of macroeconomic
variables

Figure 1 presents the selection of the number of factors in a large US macroe-
conomic panel used in Jurado, Ludvigson, and Ng (2013). Essentially, it is an
updated version of the Stock-Watson data set, which consists of 132 monthly
macroeconomic series spanning between 1964M01 - 2011M12. The data have
been stationarized following Stock and Watson (2005): interest, unemployment
rates, and inflation measures are in first-difference. We start selecting number
of factors within the 1964M01 - 1979M12 sub-period and then continue until the
end with rolling and expanding windows (first and second column panels, respec-
tively). The first row panels present results for Ahn and Horenstein (2013), Hallin
and Liska (2007), and Onatski (2010) procedures while the results for information
criteria are presented in the second row. In the case of Bai and Ng (2002), we
show the ICp2 criterion, which is also used in the second step of Amengual and
Watson (2007).

We remark important instabilities over time and between methods. Firstly,
the suggested number of factors varies significantly across the criteria - in the full
sample case, at the end of the expanding window, it goes from 1 to 7. Typically,
the estimates of the number of dynamic factors are smaller than those of static
factors. Secondly, there exists a lot of instability over time. For example, con-
sider the Amengual and Watson (2007) criteria in the rolling window panel. The
suggested number of factors during the 80s was stable at 3, but then rose to 4

8



and 5 until the 2008-09 recession. A similar behavior is observed in the expanding
window exercise.

Figure 1: Number of factors over time: Macroeconomic panel
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This figure presents the selection of the number of factors during 1980-2012 period. The first
column presents results computed for a rolling window with 192 months in size (the initial period
is 1964M01 - 1979M12). The second column presents results for the expanding window where
the time series size grows every period. AH2013 stands for Ahn and Horenstein (2013), HL2007
for Hallin and Liska (2007), O2010 for Onatski (2010), AW2007 for Amengual and Watson
(2007), BN2002 and BN2007 for Bai and Ng (2002,2007), respectively.

Interpretation of factors

It is well known that the factors are identified up to a rotation. The estimation of
Ft by principal components of Xt specifies a particular rotation matrix such that
factors are orthonormal and Λ′Λ is diagonal3. However, after the estimation, it is

3See Bai and Ng (2013) for more details on identification issues within principal components
estimation of factor models
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common practice to verify which type of variables loads on each factor. Since we
have found that the number of factors is likely to change over time, it is interesting
to see if their interpretation remains stable.

The interpretation of factors is formulated in terms of the marginal R2 of each
element in Ft for all series in Xt. To fix the ideas, we evaluate separately the
part of the variance of each series explained by every factor . Then, we order
the series by highest marginal R2s for each factor. We start with the initial
period 1964M01-1979M12 and expand the panel month by month. The results
are presented in Figure 3. Consider, for example, the first north-west panel. The
blue line corresponds to the highest marginal R2 of the first factor. The five
series in the text box are those that load the most on F1, in descending order.
Hence, the variation in the growth rate of the industrial production index of
manufacturing industries (IP: mfg) are explained by more than 82% by the first
factor during 1980, but its explanatory power decreases to 77% for the full sample.
We note that the interpretation of the first factor did not change over time, it is
highly related to the real sector, which includes the other series, employment and
capital utilization. The explanatory power of the second factor did not change
significantly: it represents the credit spread and the long term spread measures.
Its determination coefficient goes from 65% during the 1980 decade to 55% at the
end of the sample. The vertical lines correspond to periods where the ordering
of five most-explained series by the factor has changed. In the case of F2, these
changes are minor: usually only the fifth variable is affected.

On the other hand, the interpretations of the third and the fourth factor
have changed through the sample. Before 1986, F3 was clearly related to the
term structure of interest rate, but subsequently became an inflation factor. In
addition, its explanatory power has risen significantly over time, especially from
the year 1990. On the contrary, the fourth factor was related to prices before
1990, then became a term structure factor from 1999 onwards. The fifth factor’s
interpretation remained quite stable over time – it explains around 35% of the
variation in short term spreads. The sixth factor exhibited an interesting behavior.
It is clearly related to the stock markets, with a respectable R2 of 30% for the
S&P industrial returns until 1990. However, between 2001 and 2008, it explained
almost 60% of the variation in total reserves growth - clearly making it a monetary
factor. Finally, the interpretations of F7 and F8 have evolved a lot during the 1980-
2011 period. In the case of F7, it changes from being an exchange rates, inflation,
and stock market factor to a housing market factor in 2001.

Now, let us see how the estimated number of factors relates to their interpre-
tations. Consider, for example, the Bai-Ng (2002) criteria at the south-east panel
in Figure 1. The estimated number of factors is five until 1984M02. Hence, the
underlying states of the economy until 1984 were: real, credit spread, term struc-
ture of interest rates, inflation, and term spread. Then, from 1984 to 1991, the
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estimated K grows to six, implying the following decomposition of elements of Ft:
real, credit spread, inflation and term structure, term spread, and stock market
factors. The ordering is important since Ft is estimated by principal components:
they are ordered by explanatory power of the total variance of Xt. Between 1992
and 2001, a seventh factor is suggested by the information criteria. The interpre-
tation from the previous period did not change except that the seventh factor is
also related to the stock market. Between 2002 and mid-2009, eight factors are
needed. Now, the 6th, 7th, and 8th components correspond to monetary aggre-
gates, housing market, and stock market, respectively. Finally, when we consider
the full sample, seven factors are estimated.

4.2 Number of factors in a large panel of financial variables

As noted by Onatski (2012), macroeconomic panels may suffer from a weak factor
structure . In fact, macroeconomic aggregates and sectoral data are strongly cor-
related within groups but less across them. For example, inflation series are very
similar amongst each other but much less correlated to employment indicators.
The presence of correlation clusters may alter the strength of the common factor
structure and hence the estimation of pervasive factors.

The factor analysis has been applied in finance to characterize the determinants
of a large set of returns. In this section, we consider a large financial data set
from Jurado, Ludvigson, and Ng (2013), which is an update from Ludvigson and
Ng (2007). There are 147 financial market variables observed from 1960M01 to
2011M12. Figure 2 shows the selection of the number of factors over time. There
is less instability in case of the information criteria on second row panels for both
rolling and expanding windows, in comparison to results from the macroeconomic
panel in Figure 1. Interestingly, Hallin and Liska (2007) and Onatski (2010)
suggest that number of factors varies more, especially for the rolling window. The
former seems to be highly unstable since the late 90s while the latter suggests
between 1 and 6 factors during 1988-1998 period.

In the Appendix, we presented more examples with other US and Canadian
macroeconomic panels.. Overall, using a battery of selection methods, we find
robust evidence that the number of factors is changing over time. One can offer
several explanations for this finding. Possibly, if the factors represent the latent
states of economy, these could be more or less pervasive over time such that
their number is harder to estimate. This hypothesis of structural instability can
be represented by time-varying factor loadings. Hence, the number of factors is
always the same but a subset of them may become more or less related to the
series in Xt. Alternatively, we assume a linear factor structure. This assumption
can be violated over time, especially during turbulent periods. For example,
suppose the first element of Ft is a productivity factor and the second a financial
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factor representing the credit market conditions. There can be periods where
the impact of productivity shocks on the macroeconomy depends on the level of
credit market conditions: a negative productivity shock may produce even worse
reactions if there is not enough liquidity in the financial system. This can be
modelled by adding an interaction between F1,t and F2,t in (1) without a need for
time-varying factor loadings.

Figure 2: Number of factors over time: Financial panel
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This figure presents the selection of the number of factors during 1980-2012 period. The first
column presents results computed for a rolling window with 240 months in size (the initial period
is 1960M01 - 1979M12). The second column presents results for the expanding window where
the time series size grows every period.

In the next section we will investigate if structural instability in factor loadings
and the presence of nonlinearities in observational equation can alter the selection
of the number of factors. Both exact and approximate factor models will be
considered.
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5 Monte Carlo simulation exercise I: time-varying
factor loadings

The aim of this simulation is to assess the robustness of different tests and infor-
mation criteria used when selecting the number of factors in a static factor model.
Recall the model:

Xt = ∧tFt + et

∧t = ∧0 + hNT ζt

The focus is on instabilities of the factor loadings, ∧t; hence, one needs to
impose a stochastic process for them. We consider several cases that can be
summarized as follows (see BPSW 2012):

Case 1: the loading factor does not depend in time

• q = 2

• (N, T ) ∈ {(50, 100), (100, 200)}

• ∧t = ∧0, ∀t

• λi,j ∼ N(0, 1), Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1), i = 1, . . . , N , j = 1, . . . , q and
t = 1, . . . , T .

Case 2: the loading factors are random variables

• q = 2

• (N, T ) ∈ {(50, 100), (100, 200)}

• Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1)

• ∧t = ζt
For each t ∈ {1...T} we draw λi,j, 1 ≤ j ≤ N and 1 ≤ i ≤ q from N(0, 1)
distribution.
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Case 3: single large deterministic break with hNT = 10

• q = 2

• (N, T ) ∈ {(50, 100), (100, 200)}

• λi,j ∼ N(0, 1), Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1)

• ∧t =

{
∧0 for t = 1, ..., T/2

∧t = ∧0 + 10∧0 for t > T/2

Case 4: single small deterministic break with hNT = 1

• q = 2

• (N, T ) ∈ {(50, 100), (100, 200)}

• λi,j ∼ N(0, 1), Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1)

• ∧t =

{
∧0 for t = 1, ..., T/2

∧t = ∧0 + ∧0 for t > T/2

Case 5: random walk

• q = 2

• (N, T ) ∈ {(50, 100), (100, 200)}

• Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1)

• ∧t = ∧t−1 +ζt where (ζi,j)t ∼ N(0, 1). The sequence ∧t at t = 0 is initialized
from λi,j ∼ N(0, 1),.

To complete the simulation exercise, we also consider several degrees of cross-
sectional and time dependence among idiosyncratic components in the observa-
tional equation, et. In particular, we follow Boivin and Ng (2005), Onatski (2012),
and Dufour and Stevanovic (2013). Assuming that

ei,t = ρNei−1,t + ζi,t

and

ζi,t = ρT ζi,t−1 + εi,t

εi,t ∼ N(0, 1).
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Hence, the parameter ρN drives the degree of cross-sectional dependence while
ρT is responsible for serial correlation among et. For each factor loadings cases
above, following Dufour and Stevanovic (2013), we consider four correlation struc-
tures of et:

• Exact factor structure: ρN = 0 and ρT = 0.

• Cross-sectional dependence: ρN = 0.5 and ρT = 0.

• Serial correlation: ρN = 0 and ρT = 0.9

• Cross-sectional and serial dependence : ρN = 0.5 and ρT = 0.9

In addition, we consider two sets of panel dimensions: N = 50, T = 100 (small
sample) and N = 100, T = 200 (large sample).

The Monte Carlo exercise consists of simulating 1000 times for each case,
small and large samples, each correlation structure, and then applying all tests or
criteria. For each selection procedure, we compute the percentage of underesti-
mation, overestimation, and texact estimation. The mean and standard deviation
of estimated number of factors are also computed.

5.1 Results and discussion

The results are summarized in four tables. Table 1 shows the simulation results in
the case of exact factor structure. Table 2 presents the performance of selection
methods in presence of cross-sectional dependence, while Table 3 presents results
where only univariate serial correlation of et is considered. Lastly, Table 4 shows
the behavior of selection methods in the case of the weakest factor structure
implied by the presence of both cross-sectional and serial dependence.

Overall, it is most problematic when the factor loadings follow a random walk
(case 5). In that case, each test and information criteria fails to capture the
true number of factors in both small and large samples and in all four correlation
structures of the idiosyncratic component (see Tables 1 - 4). In particular, Ahn
and Horenstein (2013) and Bai and Ng (2007) systematically underestimate the
number of factors, while the others largely overestimate.

In the case of classical factor structure, ρN = 0 and ρT = 0, results summarized
in Table 1 show that, having a break on loading factors (cases 3 and 4) does
not prevent the identification of the good number of factors in the large sample;
however, this is not always the case in the small sample. For example, when there
is a high break on loading factors (case 3), Hallin and Liska (2007) underestimate
the number of factors at least 16% of the time, while Amengual and Watson
(2007) information criteria overestimate approximately 15%. Hallin and Liska
(2007) have the worst record on estimating the true number of factors in a small
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sample, this may be due to the fact that there is less accuracy when we try to
estimate a spectral density matrix using a small sample.

However, as soon as we allow for time and/or cross-sectional dependence, the
amplitude of the break increases the probability if failure to identify the true
number of factors. For example, Bai and Ng (2002) have a perfect estimator
when there were no dependence, but overestimate q when allowing for a break.
Moreover, as the break becomes larger, the q̂ also becomes larger (Table 2 shows
that, in the large sample, when the break is 1 the estimated number of factors
is three, versus eight when the amplitude of the break is 10). BPSW and Chen,
Dolado, and Gonzalo (2014) find similar behavior of the Bai and Ng (2002) infor-
mation criteria ICp2. Another observation in Table 2 concerns Hallin and Liska
(2007). In the large sample, it usually overestimates the number of factors when
the magnitude of the break is 10 but performs perfectly when the break is smaller.

Strong time dependence leads many tests and information criteria to fail in
identifying q even in the case of constant factor loadings. As expected, the sit-
uation is worse in small samples. However, even when the panel dimensions are
larger, only Ahn and Horenstein (2013) and Bai and Ng (2007) perform well.

To summarize, the results from this extensive simulation exercise show that
structural instabilities, taking several forms of time-variant factor loadings, to-
gether with cross-sectional and time dependence of the idiosyncratic component,
do alter the estimation of the number of factors across all six most popular selec-
tion methods used in the literature.

Consequences

Here we discuss several consequences of the previous results for empirical anal-
ysis. Diffusion indices have been very popular in forecasting within the factor-
augmented regressions. The typical framework consists of the forecasting equation
for a series of interest yt:

yt+h = α + ρyt + βFt + ξt+h, (9)

where a large number of potential predictors obey a factor model

Xt = ΛFt + et.

Hence, the question is how the forecasting performance is affected in the pres-
ence of irregularities in the observational equation. Chen, Dolado, and Gonzalo
(2014) show, using simulations, that imposing a priori number of factors that
ignores the existence of a large break on Λ can worsen the forecasting power of
the factor-augmented regressions. Overestimating the number of factors can help,
but this entails more estimation uncertainty that ultimately increases the mean
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squared predicted errors. Barhoumi, Darné, and Ferrara (2013) compare several
selection methods in the pseudo out-of-sample forecasting exercise and find that
setting the number of factors with the Alessi, Barigozzi and Capasso (2010) in-
formation criterion (a modification of Bai-Ng (2002)) produces significantly lower
squared prediction errors.

Our results contribute to these findings by showing that many selection meth-
ods typically overestimate the number of factors. Hence, if they are used to assess
the dimension of Ft to include in (9), a similar forecasting behavior is expected to
occur. More importantly, we showed that there are cases where Ahn-Horenstein
(2013) and Bai-Ng (2007) tests underestimate the true number of latent common
components. Obviously, this will misspecify the forecasting equation (9) as some
important predictors would be omitted.

Another area of interest for factor models is the structural analysis. Since
Bernanke, Boivin, and Eliasz (2005), the factor-augmented VAR (FAVAR) ap-
proach has been heavily used to identify and estimate the effects of structural
shocks (monetary, news, productivity, credit, etc.) on real economy of many
countries. The FAVAR model consists of the state-space representation

Xt = ΛFt + et, (10)
Ft = Φ(L)Ft−i + ut. (11)

where ut are the reduced-form disturbances related to the structural shocks via
ut = Hεt. The objects of interest are impulse responses of Xt to the structural
shocks εt

Xt = [I − Φ(L)L]−1Hεt. (12)

Clearly, the misspecification, and particularly the underestimation, of the num-
ber of elements in Ft will alter both the identification of structural shocks and the
estimation of the impulse responses. An extensive study on the consequences on
forecasting and structural analysis goes beyond the scope of this paper, but is a
part of our research agenda.

6 Monte Carlo simulation exercise II: nonlinear
factor model

In this section we conduct several experiments where the data are simulated from
a nonlinear factor model and then the same tests and criteria are used to detect
the number of factors. The nonlinearity takes the form of different polynomials
with power and/or interaction terms within elements of Ft.

17



Case 1: quadratic polynomial with 2 factors

• q = 2

• (N, T ) ∈ {(100, 200), (300, 200)}

• The model is:
Xt = Λ1Ft + Λ2F

2
t + et

• The elements of Λ1 are drawn from N(0, 1) and those of Λ2 from N(0, 0.25).
Changing the variance of Λ2 keeps the average R2 of the model around 80%.

• Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1), i = 1, . . . , N , j = 1, . . . , q and t = 1, . . . , T .

Case 2: cubic polynomial with 1 factor

• q = 1

• (N, T ) ∈ {(100, 200), (300, 200)}

• The model is:
Xt = Λ1Ft + Λ2F

2
t + Λ3F

3
t + et

• The elements of Λ1 are drawn from N(0, 1), those of Λ2 from N(0, 0.25) and
of Λ3 from N(0, 0.09). Changing the variance of factor loadings keeps the
average R2 of the model around 80%.

• Ft ∼ N(0, 1), ei,t ∼ N(0, 1).

Case 3: 3 factors plus an interaction term

• q = 3

• (N, T ) ∈ {(100, 200), (300, 200)}

• The model is:
Xt = Λ1Ft + Λ2(F1,t × F2,t) + et

• The elements of Λ1 are drawn from N(0, 1) and those of Λ2 from N(0, 0.25).

• Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1), i = 1, . . . , N , j = 1, . . . , q and t = 1, . . . , T .
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Case 4: quadratic polynomial with 3 factors plus an interac-
tion term

• q = 3

• (N, T ) ∈ {(100, 200), (300, 200)}

• The model is:

Xt = Λ1Ft + Λ2F
2
1,t + Λ3(F2,t × F3,t) + et

• The elements of Λ1 are drawn fromN(0, 1) and those of Λ2 Λ3 fromN(0, 0.25).

• Fj,t ∼ N(0, 1), ei,t ∼ N(0, 1), i = 1, . . . , N , j = 1, . . . , q and t = 1, . . . , T .

This exercise is unfair for the estimation of linear factors given an observational
equivalence. For example, consider Case 1. One can define F3,t ≡ F 2

1,t and F4,t ≡
F 2

2,t and rewrite the nonlinear 2-factor model as a linear 4-factor model. However,
our goal is to verify if the methods used to estimate the number of primitive
shocks are robust to this type of nonlinearity.

6.1 Results and discussion

The simulation results for all cases and selection methods are presented in Table 5.
As expected, all the procedures overestimate the number of true primitive shocks
by interpreting polynomial terms as new factors. This confirmation is useful to
show that if nonlinearity becomes important over time in the true data-generating
process of macroeconomic and financial panels, it can alter the determination of
the true number of factors.

Note that we have changed the time and cross-section sizes compared to simu-
lations with structural instabilities. In fact, we also did the pair (N, T ) = (50, 100)
and found that some methods selected much smaller number of factors than when
N is very large. The reason is that the signal of polynomial terms gets weaker in
small N sample where some methods simply have the tendency to underestimate
the number of linear factors.

7 Conclusion
The objective of this paper is to verify the robustness of most important selection
methods to identify the number of factors in large data sets. Empirically, we show
that, in both large macroeconomic and financial panels, the estimated number of
factors varies significantly across time procedures. To provide an explanation of
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these findings we conduct an extensive Monte Carlo simulation exercise where
the instabilities took two forms. First, we consider several time-varying processes
for factor loadings in both exact and approximate factor model structures. Sec-
ond, we study the implication of different nonlinear factor representations on the
estimation of the number of factors.

The simulation results show that structural instabilities do alter the estimation
of the number of factors across all six most popular selection methods used in the
literature. Their performance is particularly affected when factor loadings behave
as random walks and in the presence of cross-sectional and time dependencies
across idiosyncratic components. More research is needed to explore the exact
theoretical reasons for the systematic failure of these procedures. In addition,
we hope this work will provide a basis for pursuing research on developing new
estimators of the factor space rank in the presence of time instabilities and in the
case of nonlinear factor structures.
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Table 1: MC simulations: factor loadings instabilities with exact factor structure

(N=50 ; T=100) (N=100 T=200)

Ahn and Horenstein (2013)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 0.5 0.6 0 0 100 0 0 0 0 100

over 0 0 0 0 0 0 0 0 0 0

average 1.995 1.994 2 2 1 2 2 2 2 1

std 0.0706 0.0773 0 0 0 0 0 0 0 0

Hallin and Liska (2007)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 45.5 27.9 20.2 16.90 0 0 0 0 0 0

over 0 0 0.9 0 100 0 0 0 0 100

average 1.537 1.692 1.605 1.68 7.96 2 2 2 2 7.998

std 0.5147 0.521 1.81 0.71 0.2011 0 0 0 0 0.447

Onatski (2010)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 1 0.8 1.10 0.8 100 0.6 0.9 1.3 0.6 100

average 2.018 2.013 2.014 2.009 7.997 2.006 2.016 2.013 2.011 7.998

std 0.24 0.2071 0.1607 0.1045 0.0547 0.0773 0.2276 0.1133 0.2023 0.447

Bai and Ng (2007)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 0.3 0.3 1.3 2 100 0 0 0 0 100

over 16.5 13.1 0 0.1 0 0 0.1 0 0 0

average 2.166 2.132 1.987 1.98 1 2 2.001 2 2 1

std 0.3906 0.3588 0.11 0.14 0 0 0.0316 0 0 0

Bai and Ng (2002)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 0 0 0 0 100 0 0 0 0 100

average 2 2 2 2 8 2 2 2 2 8

std 0 0 0 0 0 0 0 0 0 0

Amengual and Watson (2007)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 1 Case 2 Case 3 Case 4 Case 5

under 1.4 2 0 0 0 0 0 0 0 0

over 0 0 15.8 0 100 0 0 0 0 100

average 1.986 1.979 2.213 2 6 2 2 2 2 6

std 0.1175 0.1503 0.5639 0 0 0 0 0 0 0

This table presents the selection of the number of factors with factor loadings instabilities without any dependencies within

idiosyncratic components. Case 1: constant factor loadings. Case 2: factor loadings are random variables. Case 3: single

large deterministic break on loadings. Case 4: single large deterministic break on loadings. Case 5: each factor loading

follows a random walk.



Table 2: MC simulations: factor loadings instabilities with cross-sectional depen-
dance

(N=50 ; T=100) (N=100 T=200)

Ahn and Horenstein (2013)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 100 0 0 0 0 100

over 0 0 0 0 0 0 0 0 0 0

average 2 2 2 2 1 2 2 2 2 1

std 0 0 0 0 0 0 0 0 0 0

Hallin and Liska (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 0 0 40.2 0.1 100 0 0 57.4 0 100

average 2 2 2.685 2.001 7.999 2 2 2.768 2 8

std 0 0 1.06 0.0316 0.0316 0 0 0.8372 0 0

Onatski (2010)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 2.5 3.2 6.8 3.7 100 1.1 1.9 0.7 2 100

average 2.045 2.043 2.277 2.231 8 2.011 2.028 2.009 2.029 8

std 0.3565 0.2593 1.0571 0.7671 0 0.1044 0.2435 0.1222 0.2573 0

Bai and Ng (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 2.8 5.6 1 1.6 100 0 0 0 0 100

over 0 0 0 0 0 0 0 0 0 0

average 1.972 1.944 1.99 1.984 1 2 2 2 2 1

std 0.1651 0.23 0.0995 0.1255 0 0 0 0 0 0

Bai and Ng (2002)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 100 100 100 100 100 0 0 100 100 100

average 3 3 8 8 8 2 2 8 3 8

std 0 0 0 0 0 0 0 0 0 0

Amengual and Watson (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 91.40 93.8 100 100 100 33.8 64.9 100 96.1 100

average 4.603 4.939 6 5.959 6 2.42 3.099 6 4.578 6

std 1.3263 1.2739 0 0.2267 0 0.6709 1.0697 0 1.1914 0

This table presents the selection of the number of factors with factor loadings instabilities with cross-sectional dependencies

within idiosyncratic components. Case 1: constant factor loadings. Case 2: factor loadings are random variables. Case

3: single large deterministic break on loadings. Case 4: single large deterministic break on loadings. Case 5: each factor

loading follows a random walk.



Table 3: MC simulations: factor loadings instabilities with time dependence

(N=50 ; T=100) (N=100 T=200)

Ahn and Horenstein (2013)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 98.8 85.6 0 0.1 100 1.7 1.8 0 0 100

over 1.2 13.9 100 99.80 0 98.3 98.2 100 100 0

average 1.024 1.283 3 2.999 1 2.966 2.964 3 3 1

std 0.2179 0.6938 0 0.0837 0 0.2587 0.266 0 0 0

Hallin and Liska (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0.6 0 0 0 0 0 0 0

over 100 100 99.4 100 100 100 100 100 100 100

average 3.066 3.051 3.436 3.172 7.789 3.051 3.062 3.639 3.157 7.912

std 0.3432 0.3106 0.9863 0.541 0.4782 0.3413 0.4151 1.0667 0.6187 0.3104

Onatski (2010)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 6.6 5.3 0 0 0 0 0 0 0 0

over 90.8 92.8 100 100 100 100 100 100 100 100

average 3.262 3.259 3.472 3.373 7.906 3.0360 3.032 3.043 3.033 7.862

std 1.2661 1.1838 1.0965 1.0232 0.3021 0.3699 0.2917 0.3182 0.3162 0.348

Bai and Ng (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 15.9 12.3 5.2 15.5 100 0 0 0 0 100

over 0 0 0 0 0 0 0 0 0 0

average 1.841 1.877 1.948 1.845 1 2 2 2 2 1

std 0.3659 0.3286 0.2221 0.3621 0 0 0 0 0 0

Bai and Ng (2002)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 100 100 100 100 100 100 100 100 100 100

average 8 8 8 8 8 8 8 8 8 8

std 0 0 0 0 0 0 0 0 0 0

Amengual and Watson (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 100 100 100 100 100 100 100 100 100 100

average 5.139 5.246 5.939 5.504 6 4.9710 6 6 5.383 6

std 1.0596 1.0414 0.3121 0.8711 0 1.1625 0 0 0.966 0

This table presents the selection of the number of factors with factor loadings instabilities with serial dependencies within

idiosyncratic components. Case 1: constant factor loadings. Case 2: factor loadings are random variables. Case 3: single

large deterministic break on loadings. Case 4: single large deterministic break on loadings. Case 5: each factor loading

follows a random walk.



Table 4: MC simulations: factor loadings instabilities with time and cross-
sectional dependences

(N=50 ; T=100) (N=100 T=200)

Ahn and Horenstein (2013)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 100 100 0 99.7 100 100 100 0 27.6 100

over 0 0 100 0.3 0 0 0 100 72.4 0

average 1 1 3 1.006 1 1 1 3 2.448 1

std 0 0 0 0.1094 0 0 0 0 0.8945 0

Hallin and Liska (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0.5 0.1 8.3 1.6 0 0 0 0 0 0

over 98.4 99.8 91.7 98.30 100 100 100 100 100 100

average 3.009 3.042 3.268 3.104 7.782 3.063 3.052 3.838 3.163 7.933

std 0.2811 0.323 1.3386 0.5844 0.4676 0.3862 0.3456 1.1752 0.5889 0.2731

Onatski (2010)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 24.8 15.5 0 0.2 0 0 0.2 0 0 0

over 67.5 78.9 100 99.6 100 100 99.8 100 100 100

average 2.934 3.206 3.702 3.543 7.877 3.052 3.07 3.124 3.075 7.937

std 1.5748 1.5277 1.2177 1.124 0.3376 0.3089 0.4138 0.5088 0.3867 0.2472

Bai and Ng (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 19.3 16.4 10.7 28.7 100 0 0 0 0 100

over 0 0 0 0 0 0 0 0 0 0

average 1.807 1.836 1.893 1.713 1 2 2 2 2 1

std 0.3949 0.3705 0.3093 0.4526 0 0 0 0 0 0

Bai and Ng (2002)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 100 100 100 100 100 100 100 100 100 100

average 8 8 8 8 8 8 8 8 8 8

std 0 0 0 0 0 0 0 0 0 0

Amengual and Watson (2007)

Case 1 case 2 Case 3 Case 4 Case 5 Case 1 case 2 Case 3 Case 4 Case 5

under 0 0 0 0 0 0 0 0 0 0

over 100 100 100 100 100 100 100 100 100 100

average 5.777 5.869 5.999 5.914 6 5.405 5.983 6 5.698 6

std 0.5635 0.4336 0.0316 0.3616 0 0.9273 0.1369 0 0.6937 0

This table presents the selection of the number of factors with factor loadings instabilities with both cross-sectional and

serial dependencies within idiosyncratic components. Case 1: constant factor loadings. Case 2: factor loadings are

random variables. Case 3: single large deterministic break on loadings. Case 4: single large deterministic break on

loadings. Case 5: each factor loading follows a random walk.



Table 5: MC simulations: nonlinear factor model

N=100 N=300
Ahn and Horenstein (2013)

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
percentiles [4 4 4] [1 3 3] [4 4 4] [5 5 5] [4 4 4] [3 3 3] [4 4 4] [5 5 5]
average 4 2.88 3.98 4.99 4 2.99 4.00 5.00
std 0 0.45 0.15 0.09 0 0.03 0.00 0.00

Hallin and Liska (2007)
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

percentiles [4 4 4] [3 3 3] [4 4 4] [5 5 5] [4 4 4] [3 3 3] [4 4 4] [5 5 5]
average 4 2.99 4.00 5.00 4 3.00 4.00 5.00
std 0 0.05 0.00 0.00 0 0.00 0.00 0.00

Onatski (2010)
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

percentiles [4 4 4] [3 3 3] [4 4 4] [5 5 5] [4 4 4] [3 3 3] [4 4 4] [5 5 5]
average 4.02 3.01 4.02 5.03 4.01 3.01 4.01 5.02
std 0.20 0.17 0.17 0.21 0.05 0.05 0.07 0.19

Bai and Ng (2007)
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

percentiles [2 3 4] [1 2 2] [3 3 3] [3 3 4] [3 4 4] [2 2 2] [3 3 3] [3 4 4]
average 2.98 1.62 3.00 3.20 3.83 2.00 3.03 3.81
std 0.55 0.49 0.03 0.42 0.37 0.11 0.16 0.40

Bai and Ng (2002)
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

percentiles [4 4 4] [2 3 3] [3 4 4] [4 5 5] [4 4 4] [2 2 2] [4 4 4] [5 5 5]
average 4.00 2.69 3.94 4.93 4.00 3.00 4.00 5.00
std 0.00 0.46 0.25 0.25 0.00 0.14 0.00 0.00

Amengual and Watson (2007)
Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

percentiles [4 4 4] [2 3 3] [3 4 4] [4 5 5] [4 4 4] [2 2 2] [4 4 4] [5 5 5]
average 4.00 2.68 3.93 4.93 4.00 2.98 4.00 5.00
std 0.00 0.47 0.26 0.26 0.00 0.15 0.00 0.00

This table summarize main simulation results under nonlinear factor models as presented in Sec-
tion 6. For each panel, percentile line reports 5th, 50th and 95th percentile over 1000 simulation
replications.
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A Appendix: additional empirical results
Figure 4 shows the estimated number of factors over time for the macroeconomic
panel used in Boivin, Giannoni and Stevanovic (2013) which is an update of the
data set in Bernanke, Boivin and Eliasz (2005). There are 124 variables observed
from 1959M01 to 2009M06. This panel is very similar to the one used by Jurado,
Ludvigson and Ng (2013) except for the stationarity assumptions on a subset of
series. In this data set, interest, unemployment and inflation rates are supposed
stationary, therefore they enter Xt in levels, contrary to Jurado, Ludvigson and
Ng (2013) where the same series are in first difference of logs. Compared to Figure
1, these stationarity assumptions imply more factors on average over time.

Figure 4: Number of factors over time: Macroeconomic panel from Boivin et al.
(2013)
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This figure presents the selection of the number of factors during 1980-2009 period. The first
column results are computed for rolling window of size 251 months (the initial period is 1959M02
- 1979M12). The second column is for the expanding window where the time series size grows
every period.
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Figure 5 shows the estimated number of factors over time for a macroeconomic
panel of Canadian series. The composition of the panel is very similar to the US
data set used in Jurado, Ludvigson and Ng (2013). In addition, the same station-
arity assumptions are imposed. There are 124 variables observed from 1981M01
to 2011M12. The Canadian macroeconomic data are typically less available and
since the recent reform at Statistics Canada many series are constructed from
1981 only.

Figure 5: Number of factors over time: Canadian macroeconomic panel
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This figure presents the selection of the number of factors during 1992-2012 period. The first
column results are computed for rolling window of size 131 months (the initial period is 1981M01
- 1991M12). The second column is for the expanding window where the time series size grows
every period.
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Finally, we combine the previous Canadian data set with the US panel to
construct a very large US-CAN macroeconomic panel containing 246 series during
1981 - 2012 period. The results are presented in Figure 6. Overall, the number of
factors seems to grow over time.

Figure 6: Number of factors over time: US and Canadian macroeconomic panel
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This figure presents the selection of the number of factors during 1992-2012 period. The first
column results are computed for rolling window of size 131 months (the initial period is 1981M01
- 1991M12). The second column is for the expanding window where the time series size grows
every period.
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