
 

     

Boucher : Department of Economics, Université Laval; and CIRPÉE 

vincent.boucher@ecn.ulaval.ca 

 

Part of this work was done while I was visiting the Faculty of Economics at the University of Cambridge (UK); I 

would like to thank Sanjeev Goyal and the Faculty, as well as INET-Cambridge, for their time and hospitality. I 

would like to thank Luc Bissonnette for his precious help and suggestions. I also would like to thank Yann 

Bramoullé, Charles Bellemare, Bernard Fortin, Edoardo Gallo, David Karp, Guy Lacroix, Steeve Marchand, Angelo 

Mele, Youcef Msaid and Onur Özgür for their comments and suggestions. I would like to thank the participants at 

many conferences, including Les Journées du CIRPÉE (2013, QC), Coalition Theory Workshop (2014, Brussel), the 

Coalitions and Network workshop (Concordia U., Montreal, 2014) and the CEA annual conference (BC, 2014). I 

also gratefully acknowledge financial support from FRQSC. 

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. 

Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and 

funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human 

Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is 

due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the 

Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support 

was received from grant P01-HD31921 for this analysis. 

 

 

 

 

Cahier de recherche/Working Paper 14-24 

 

 

 

Conformism and Self-Selection in Social Networks 

 

Vincent Boucher 

 

 

 

 

 

Novembre/November 2014 

mailto:vincent.boucher@ecn.ulaval.ca
http://www.cpc.unc.edu/addhealth


Abstract:  
I present a model of conformism in social networks that incorporates both peer effects 
and self-selection. I find that equilibrium behaviors are linked through the Laplacian 
matrix of the equilibrium network. I show that conformism has positive social value and 
that social welfare can be bounded by network centrality and connectivity measures. I 
apply the model using empirical data on high school student participation in 
extracurricular activities. I find that the local effects of conformism (i.e. endogenous peer 
effect for a fixed network structure) range from 7.5% to 45%, depending on the number 
of peers that an individual has. Simulations show that the optimal policies of an 
inequality-averse policy-maker change in relation to the size of a school. Small schools 
should encourage shy students to integrate more with other students, while large 
schools should focus on promoting role models within the school. 
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1. Introduction

Do teenagers smoke because their friends smoke, or do they smoke in the

hope of making new friends? Does peer pressure come from influence or self-

selection?

The literature on peer effects in social networks has mainly focused on in-

fluence, while the literature on network formation has focused on self-selection.

To date, these two sources of social interactions have mainly been studied sep-

arately.

In this paper, I present a model of conformism in social networks, where

both peer effects and self-selection affect behavior. The magnitude of each

effect can be clearly identified because changes to an individual’s peer group

induce discontinuous changes in the individual’s behavior, while changes in how

an individual’s peers behave (holding constant who an individual chooses as his

peers) induces continuous changes in the individual’s behavior. This is impor-

tant as I show that peer effects and self-selection have different policy implica-

tions. I characterize the set of all (Nash) equilibria and present an equilibrium

refinement (perfect and robust) based on the potential function of the game.

I estimate the model using student-level data on participation in high school

activities.

I characterize the relationship between individual behavior and the network

structure for all equilibria of the game. Behavior can be expressed as a function

of the Laplacian matrix of the network. This specific mathematical structure

implies that individuals are affected by the entire distribution of their peers’

behavior, and not just the average behavior of their peers. As a result, the

overall impact of conformism on the outcome variable increases with the number

of peers an individual has, with each marginal peer having less impact than the

previous one.

I show that, for a social planer with quadratic preferences, equilibria can

be ranked according to the variance of the equilibrium behaviors and that con-

formism has positive social value. I present bounds for the equilibrium variance
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based on the structure of the equilibrium network. The variance is bounded

below by a measure of network centrality and above by a function of the edge-

connectivity of the network.

This has powerful policy implications. A social planer who wants to prevent

the emergence of bad equilibria should promote integration and ensure that no

group of individuals is isolated from the rest of the network. A social planer who

wants to support the emergence of good equilibria should focus on promoting

role models. A comprehensive public policy should thus consider both centrality

and connectivity.

I apply the model empirically using data on the choice of extracurricular

activities by high school students.1 Although it is not feasible to estimate the

true model, I provide bounds for the density of the equilibrium network; each

bound can be interpreted as a latent space model (see, for example, Goldsmith-

Pinkham & Imbens (2013)). In practice, the bounds lead to roughly the same

estimated parameters. Depending on the number of peers that a student has,

the local impact of conformism (that is, the endogenous peer effect for a given

network structure) ranges from 7.5% to 45%. Using simulations, I show that the

cost of increasing connectivity in small schools is relatively low and may lead to

large welfare gains. The opposite is true for large schools where the cost is high

and the benefit to welfare is low. This suggests that small schools should focus

on connectivity and large schools should focus on centrality.

This paper contributes to the literature on conformism in social networks. I

focus on quadratic preferences, as in Bisin et al. (2006), Bisin & Özgür (2012)

and Patacchini & Zenou (2012). Bisin et al. (2006) and Bisin & Özgür (2012)

present dynamic theoretical models for fixed network structures and provide

identification conditions. Patacchini & Zenou (2012) also focus on quadratic

preferences and present an empirical application, which assumes that the net-

work is exogenous. I present a static model of conformism with quadratic pref-

erences and self-selection.

1Such activities include chess clubs and sport teams, for example.
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This paper also contributes to the theoretical literature featuring games in

endogenous networks. Hojman & Szeidl (2006) present a model where individ-

uals simultaneously choose their behavior and the agents that they link with

within a network. They find that, with mostly homogeneous agents, the equilib-

rium network is minimally connected. Herman (2013) and Kinateder & Merlino

(2014)) focus on the provision of local public goods. This paper complements

the literature by focusing on conformism among heterogeneous agents and by

showing that equilibrium behaviors are linked through the Laplacian matrix of

the equilibrium network.

This paper also contributes to the recent empirical literature on peer effects

in endogenous networks. Goldsmith-Pinkham & Imbens (2013) and Hsieh & Lee

(2011) present models where there is endogeneity, which is due to the presence

of an unobserved variable. They find that the estimated endogenous effects,

controlling for the endogeneity of the network, are similar to those estimated

when the network is exogenous. Using a similar approach, Patacchini & Rainone

(2014) also find that the bias due to the potential endogeneity of a network’s

structure is small. However, as noted by Badev (2013) and by Boucher & Fortin

(2014), this does not imply that the network formation process can be ignored,

since it may still affect the efficiency of public policies. For instance, Badev

(2013) finds that ignoring the network formation process leads to biases (from

10% to 15%) on the predicted impact of public policies.

In this paper, as in Badev (2013), the endogeneity is created by the fact that

the endogenous variable (behavior) directly affects the value of links, assuming

that all the relevant variables are observed. I also find a small bias on the

estimated parameters, although the endogenous structure of the network may

still strongly impact the effectiveness of public policies. I provide additional

insights as of why the network formation process does not substantially bias the

estimated impact of peer effect for the AddHealth database.

The remainder of the paper is as follows. In section 2, I present a microeco-

nomic model where individuals simultaneously choose their behavior and their

peer groups. In section 3, I present an empirical application using data on
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student participation in extracurricular activities. I conclude in section 4.

2. The Microeconomic Model

The economy is composed of n individuals. Individuals simultaneously make

two decisions: their behavior (yi ∈ R), and their peers (gi ∈ {0, 1}n−1). I assume

that individuals have preferences for conformism:2

ui(y, g) =
∑
j 6=i

[
zijδ −

λ

2
(yi − yj)2 + ηij

]
gijgji −

1

2
(yi − xiβ − εi)2

where λ ≥ 0, zij = zji is a vector of pair-specific characteristics,3 and xi is a

vector of individual characteristics. The distributions of the unobserved shocks

εi and ηij = ηji are left free for the moment, but distributional assumptions will

be made in section 3. Individuals incur a cost if they choose a behavior yi that is

different than their type (i.e. xiβ+εi), and different than their peers’ behavior,

yj . However, individuals gain from forming connections with peers that provide

a net positive value. Since the value of a link is multiplied by gijgji, a link is

only created under mutual consent, i.e. gij = gji = 1.

Note that if there are no social interactions, i.e. λ = 0, individuals’ utilities

reduce to ui(y, g) =
∑
j 6=i [zijδ + ηij ] gijgji− 1

2 (yi− xiβ− εi)2 and the optimal

behavior for each individual is given by yi = xiβ−εi. Similarly, a link is created

only if zijδ + ηij ≥ 0. However, if λ > 0, the utility function is not separable in

(yi, gi), so the optimal decision for yi is a function of gi, and vice-versa.

The model induces a strategic form game Γ = 〈N, {Si}i∈N , {ui}i∈N 〉, where

Si = R× {0, 1}n−1. Let S = S1 × ...× Sn. A Nash equilibrium (NE) of Γ is an

allocation (y∗, g∗) ∈ S such that for all i ∈ N ,

(y∗i , g
∗
i ) ∈ arg max

(yi,gi)∈Si

ui(yi, y
∗
−i, gi, g

∗
−i)

2The preferences are similar to the instantaneous utility of Bisin & Özgür (2012).
3The model can be extended to non-symmetric zij .
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Let us first consider the optimal choice of g, given y. Intuitively, individuals

should choose gi such that they keep links with a positive value and discard

links with a negative value. If this holds true, the aggregate utility function

reduces to:

wi(y) =
∑
j 6=i

max{zijδ −
λ

2
(yi − yj)2 + ηij , 0} −

1

2
(yi − xiβ − εi)2 (1)

This assumes that individuals play as if every link with positive value is created.

Define Γ̃ = 〈N, {S̃i}i∈N , {wi}i∈N 〉, where S̃i = R. The following proposition

shows that the set of equilibria of Γ̃ is a subset of the equilibria of Γ.

Proposition 1. If y∗ is a NE of Γ̃, then there exists g∗ such that (y∗, g∗) is a
NE of Γ.

Proposition 1 is convenient as it reduces the dimensionality of the problem.

Note, however, that proposition 1 does not imply that any equilibrium of Γ

can be found from the resolution of Γ̃. This is because the specification in

(1) implicitly solves for the bilateral coordination problem: if i does not invest

in a link with j (i.e. gij = 0), then j has no incentive to invest in the link,

even if the value of the link is positive. This observation has motivated the

introduction of equilibrium refinements allowing for bilateral deviations such as

pairwise stability (Jackson & Wolinsky, 1996) and bilateral equilibria (Goyal &

Vega-Redondo, 2007).

In what follows, I concentrate on the analysis of Γ̃, and hence implicitly as-

sume that every link with positive value is created.4 Note that from proposition

1, any equilibrium of the modified game Γ̃ is an equilibrium of the original game

Γ.

A small technical issue with the function in (1) is that it is not differentiable

everywhere. However, the next lemma shows that wi(y) is locally differentiable

4This is a standard assumption in the empirical literature on network formation. See, for
example, Christakis et al. (2010) and Goldsmith-Pinkham & Imbens (2013).
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around its maxima, and that there exists a generically unique maximum.5

Lemma 2. Let y∗i ∈ arg maxyi wi(yi, y−i). Then, for all j 6= i, we generically
have that zijδ − λ

2 (y∗i − yj)2 + ηij 6= 0. Moreover, y∗i exists and is generically
unique.

Lemma 2 says that individuals never maximize at a “kink” in the utility

function. The intuition is as follows: if i and j are linked, the choice of yi is

affected by yj . Hence, i chooses a different behavior when he is linked with j than

when he is not. The value of their link must outweigh the cost of conforming

with j. If the link has no value, i would be better off removing the link with j

and re-optimizing without j as a peer.

Lemma 2 implies that the utility functions are differentiable around their

maximum, so that it is possible to write the first-order conditions of the opti-

mization problem. This property is at the source of the identification strategy,

as it allows for the capture of the effect of marginally changing the value of y,

keeping g constant. This allows for a local analysis of the model that looks at

peer effects within a fixed network structure.

2.1. Local Analysis

From lemma 2, we can write the first-order conditions for the maximum

of wi(y), evaluated at the equilibrium (y∗, g∗). Doing so reveals a closed-form

relation between y∗ and the Laplacian matrix of the equilibrium graph. The

Laplacian matrix L = D−G is obtained from the adjacency matrix G and

the diagonal degree matrix D, where Dii =
∑
j Gij . Let E(ai) and V ar(ai)

be the mean and variance across individuals for any variable a. This gives the

following:

Proposition 3 (Structure). Let (y∗, g∗) ∈ S be a NE of the original game Γ.

Then y∗ = (I + λL∗)
−1

[Xβ + ε]. Moreover, y∗ is such that:

5In this paper, “generically” refers to results that are robust to small changes in η, or
equivalently to the fact that the set of values of η for which the proposition does not hold has
a null Lebesgue measure.
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1. E(y∗i ) = E(xiβ + εi)

2. V ar(y∗i ) ≤ V ar(xiβ + εi).

Note that proposition 3 holds for any equilibrium of the original game Γ. Note

also that the closed-form expression is always well defined, since the Laplacian

matrix is positive semi-definite, so (I + λL∗) is positive definite for any positive

λ and hence invertible. Since L∗ represents the choice of g∗, this expression

gives an equilibrium relationship between the optimal choice of y and g. Points

1 and 2 of proposition 3 are direct implications of the closed-form expression.

They characterize the effect of conformism on the distribution of behavior. The

average behavior is equal to the average individual’s type in the population,

while the variance of behaviors is always smaller. Note that those features are

implied by the conformism game for a given network, and are not a result of

the network formation process. Also note that the first point of proposition

3 implies the absence of a network multiplier for uniform policy shocks. This

feature of the conformism game is also found in Patacchini & Zenou (2012) and

Liu et al. (2011), and is discussed in Boucher & Fortin (2014). Finally, note

that it implies that the model can be estimated using within-group deviations

(see section 3).

Proposition 3 has important implications. The fact that y∗ depends on the

Laplacian matrix of the network implies that individuals are affected by the

full distribution of their peers’ behavior, as opposed to their peers’ average

behaviour, which is the approach taken by Patacchini & Zenou (2012) and most

of the empirical literature on peer effects. In order to discuss the additional

information provided by the Laplacian matrix, I express the optimal choice for

yi as a function of y−i:

yi =
λ

1 + λni

∑
j∈Ni

yj +
1

1 + λni
[xiβ + εi] (2)

ŷi =
λ

1 + λ

1

ni

∑
j∈Ni

ŷj +
1

1 + λ
[xiβ + εi] (3)
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where (2) follows from proposition 3 and (3) is the model of Patacchini & Zenou

(2012), rewriten in tems of this paper’s notation.6

For both models, the optimal choice represents a convex combination of the

individual’s type and the behavior of his peers. Model (2) differs from model

(3) mainly by the fact that the number of peers has an impact on the tradeoff

between the individual’s type and the behavior of his peers. As his number of

peers grows, an individual puts less weight on his type and more weight on the

behavior of his peers. Also note that the marginal impact of an additional peer

decreases in the number of peers that an individual has.

Returning to points 1 and 2 of proposition 3, consider the following social

welfare function:

W (y) =
∑
i

ayi +
b

2
y2i (4)

where b < 0, so the social planer is inequality averse with respect to behavior.7

Since preferences are quadratic and all the equilibria have the same mean (see

proposition 3), they can be ranked according to their variance. Point 2 of

proposition 3 thus implies that any equilibrium of the game is preferred to

a case where there would be no social interactions (i.e. when λ = 0). Put

differently, conformism has social value.

Unfortunately, there is no general comparative static result between the equi-

libria, as the equilibrium distribution of y strongly depends on the distribution

of individuals’ types. For example, increasing the number of links in a network

does not necessarily decrease the variance of equilibrium behaviors.8 However,

the variance can be bounded by functions of the network structure.

Let e(g) be the edge connectivity of g, i.e. the minimal number of links in

g that need to be removed in order to disconnect the network. Additionally,

6This is in fact a special case of their model, see equation (6) on p. 10 of Patacchini &
Zenou (2012).

7For an inequality averse social planner, social welfare is increasing with Pigou-Dalton
transfers.

8This follows from the Grone-Merris conjecture (see Bai (2011)) and the fact that V ar(yi)
is not Schur-convex in the eigenvalues of the Laplacian matrix.
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let Cij(g) = 1 +

∑
k∈Ni

nk+
∑

k∈Nj
nk

ni+nj
. The quantity C∗ = maxj 6=i Cij(g

∗) can

be interpreted as a measure of network centrality (or polarisation) for a given

network density. I provide an illustration in the Appendix (see Figure 6). We

have the following:

Proposition 4 (Dispersion). Let (y∗, g∗) ∈ S be a NE of Γ, and define e∗ =
e(g∗), C∗ = maxj 6=i Cij(g

∗) and ti = xiβ + εi, we have:

V ar(y∗i ) ≥ V ar(ti)−
t′t

n

λC∗[2 + λC∗]

[1 + λC∗]2
(5)

V ar(y∗i ) ≤ V ar(ti)−
t′t

n
+

t′t

n[1 + 2λe∗(1− cos(π/n)]2
(6)

Figure 1 provides a visual representation of proposition 4. The lower bound

(5) is strictly decreasing in the network centrality, and the upper bound (6)

is strictly decreasing in the edge connectivity. Those bounds have important

implications for policy making.

Figure 1: Equilibrium Variance of Behavior (ti = xiβ + εi)

Var(t)0 Var(y) ConnectivityCentrality

Consider a social planner (for example, a high school principal) who wants to

reduce the variance of the equilibrium behavior. In order to decrease the lower

bound, the school’s principal should promote the centrality of the network. This

is a generalization of the key player argument (see Ballester et al. (2006)) when

the network is endogenous. Promoting strong role models improves access to

equilibrium outcomes with low variance. In practice, policies such as organizing

sports teams or tournaments is likely to generate such role models. However,

this does not guarantee that the equilibrium variance will be low, as the upper

bound can be quite large.

In order to prevent bad equilibria, a school principal should increase the

edge connectivity of the graph. Notice that if the network is disconnected, the

edge connectivity is equal to zero and the upper-bound is not binding. In order
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to decrease this upper bound, a principal should proceed by linking network

components (e.g. the principal could encourage shy students to participate in

a team activity where they can make new friends and become better integrated

with the rest of the student body). Put differently, a society composed of many

segregated groups may result in equilibria with high variances.

Proposition 4 clearly exposes the tradeoff between promoting centrality and

connectivity, as well as the implications that they have for the variance of equi-

librium behavior. Note also that, even if C∗ is not necessarily increasing in the

number of links (see Figure 6) in Appendix for an example), the expected effect

of adding links has a positive impact (i.e. decreases the expected equilibrium

variance).9

Recall that this section’s analysis is conditional on the equilibrium network

structure. I now study the full model.

2.2. Global Analysis

In order to develop an intuition of the shape of the best-response functions

in Γ̃, I start by describing an example of a best-response function in a two-

dimensional space.

Figure 2 displays an example of a best-response function for i ∈ N in the

space (yi, yj) (that is, keeping yk constant for all k ∈ N \ {i, j}). When yj is

too small, i and j are not linked and small changes in yj do not affect the value

of yi. However, as yj increases, there is a point where it becomes profitable for

i and j to form a link. The link creation has a downward discontinuous effect

on yi (since yj < y0). When yi and yj are such that i and j are linked, yi

reacts linearly to a change in yj (with a slope of λ
λni+1 < 1, where ni is the

number of peers that i has; see proposition 3). Note that the changes in the

slope and the jumps are due to the creation or removal of links with the n− 2

other individuals. As yj increases further, there is a point where a link between

9This follows from the Grone-Merris conjecture (see Bai (2011)) and the exptression for
V ar(yi) in the proof of proposition 4.
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Figure 2: Best-Response Functions
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i and j is no longer profitable, such that yi goes back to y0 and is no longer

affected by small changes in yj .

The n-dimensional best-response function follows the same intuition. This is

problematic for existence (of a Nash equilibrium), as none of the standard fixed-

point theorems apply. However, Γ̃ is a “potential game” (Monderer & Shapley,

1996).10 A potential game is a game that admits a function ψ(y) such that for all

i ∈ N , and any yi, y
′
i, we have ψ(yi, y−i)−ψ(y′i, , y−i) = wi(yi, y−i)−wi(y′i, y−i).

In the case of Γ̃, a valid potential function is the following:

ψ(y) =
∑
i∈N

∑
j:j<i

max

{
zijδ −

λ

2
(yi − yj)2 + ηij , 0

}
− 1

2

∑
i∈N

(yi−xiβ− εi)2 (7)

The maximum of a potential function is a NE (Monderer & Shapley, 1996).

Hence, the existence of a NE for Γ̃ (and for Γ) follows directly from the following

proposition:

10The crucial assumption on the initial game Γ that allows for the existence of a potential
function is the mutual consent assumption, i.e. the fact that the value of the link is multiplied
by gijgji.
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Proposition 5 (Potential’s maximum). The potential function ψ(y) admits
a generically unique maximum y∗.

Since the maximum of the potential is (generically) unique, it also exhibits

robustness properties. I will discuss two of those properties: trembling-hand

perfection (Carbonell-Nicolau & McLean (2011): Theorem 1), and robustness

to canonical elaborations (Ui (2001): Theorem 3). Precise definitions of these

concepts can be found in the referenced papers. I focus on the implications of

these robustness results, namely the robustness to the presence of small, uncor-

related mistakes on the part of the individuals (trembling-hand perfection), and

robustness to the presence of a small amount of imperfect information (canonical

elaborations).

Network games are complex in terms of the requirements for individual ra-

tionality. Here, individuals have to simultaneously choose the network structure

and their action. Due to the high dimensionality of the strategy space and the

potentially large number of players, the likelihood that individuals make small,

uncorrelated, mistakes while playing the game is high. Since the maximum

of the potential function is trembling-hand perfect, it is robust to such small

mistakes.

Also note that Γ is a game with complete information. This contrasts with

part of the literature on social interactions (e.g. Blume et al. (2011)). In an

economy where individuals are not ex-ante connected in a network, it seems un-

likely that all of the individuals’ characteristics are common knowledge. How-

ever, since the maximum of the potential is robust to canonical elaborations,

it is robust to the incorporation of a small amount of imperfect information,

i.e. the maximum of the potential function would still be a (Bayesian-Nash)

equilibrium if, with high probability, the individuals’ (private) types are such

that their preferences are given by (1).

These robustness properties will justify, in the next section, the assumption

that the data is generated by the potential’s maximum.
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Table 1: Summary Statistics

Variable Mean Std Min Max
Number of activities 2.456 2.656 0 33
Age 14.255 1.748 10 19
Gender 0.522 0.500 0 1
White 0.625 0.484 0 1
Hispanic 0.127 0.333 0 1
Black 0.213 0.410 0 1
Asian 0.057 0.231 0 1
Mother works 0.691 0.462 0 1
Mother completed HS 0.771 0.420 0 1
Mother completed college 0.337 0.473 0 1
Number of schools: 100
Number of individuals: 30,241
Number of pairs of individuals: 9,962,501

3. Peer Effects and Extracurricular Activities

In this section, I apply the model to conformism in the choice of extracurric-

ular activities among high school students. This specific context is well adapted

to the model as teenagers are (1) more likely to participate an activity if their

friends do too, and (2) create new friendships while participating in these ac-

tivities.

I use the AddHealth database, which is widely used in empirical models of

peer effects (e.g. Badev (2013), Christakis et al. (2010), Goldsmith-Pinkham

& Imbens (2013) and Hsieh & Lee (2011)). The dependent variable represents

the number of extracurricular activities in which a teenager participates. Ex-

planatory variables include age, gender, race, and the mother’s education and

employment status. In order to reduce the computing time, I focus on the 100

smallest schools in the database. This sample comprises 30,241 individuals for a

total of 9,962,501 pairs of individuals. Table 1 presents the summary statistics.

Following proposition 3, and since 1 is an eigenvector of L, the model can be

estimated using within-group deviations. Let ỹr = (I− 1
nr

11′)yr and X̃r = (I−
1
nr

11′)Xr for each school r = 1, ..., R of size nr, and define Mr(λ) = (I + λLr).

I start by describing the choice of ỹ for a fixed network structure. Following

proposition 3 and in the spirit of Lee et al. (2010), I define the following quasi-
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maximum likelihood estimator (QMLE) for ỹ, given a fixed network structure

and normally distributed errors:

lnP (ỹ|G, X̃;β, λ, σε, ση) =
1

R

R∑
r=1

c− 1

2
ln(|σ2

εM
−2
r (λ)|)

− 1

2σ2
ε

[
Mr(λ)ỹr − X̃rβ

]′ [
Mr(λ)ỹr − X̃rβ

]
(8)

The identification of β, σε and λ, given G, follows from standard results for

linear models (see Blume et al. (2011) or Lee et al. (2010)).

In order to estimate the full model, i.e. P (ỹ,G|X̃,Z), one needs to use the

density of the network, i.e. P (G|X̃,Z). However, as discussed in section 2,

the full model typically features many equilibria. As noted by many authors

(e.g. Tamer (2003)), games with multiple equilibria may result in incoherent

estimators. Some innovative techniques have been recently proposed and applied

to address this issue (e.g. Galichon & Henry (2011)), but they unfortunately

cannot be applied here. In order to define a coherent estimator, I assume that

the data is generated by the (unique) equilibrium that maximizes the potential

function. Specifically:

Assumption 1 (Equilibrium Selection). Any observed equilibrium (y∗, g∗)
is such that:
(2.1) gij = 1 iff zijδ − λ

2 (y∗i − y∗j )2 + ηij > 0 for all i, j ∈ N and
(2.2) y∗ = arg maxψ(y).

The first condition assumes that the coordination problem between i and j

has been solved so that every link with positive value is created. The second

condition says that the observed equilibrium maximizes the potential function

of the game.

Assumption 1 allows for the specification of a coherent estimator, but relies

on the fact that one is able to compute y∗ = arg maxy∈Y ψ(y). As noted in the

previous sections, the potential function is not globally concave, which makes

its maximization infeasible in practice. The estimation strategy thus consists of

using approximations of the potential function. I use the following result:
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Proposition 6. Let φ∗ be the potential function’s maximum. Also let:
6.1 - G0 be such that g0,ij = 1 iff zijδ + ηij ≥ 0, and
6.2 - G1 be such that g1,ij = 1 iff zijδ + ηij − λ

2 (xiβ + εi − xjβ − εj)2 ≥ 0
Then, φ(G0) ≥ φ∗ ≥ φ(G1).

I then use P (G0|X̃,Z) and P (G1|X̃,Z) as approximations for P (G|X̃,Z).

Note that for G0, the QMLE in (8) can be estimated directly since the network

structure is exogenous. Then, the model with an exogenous network structure

represents one of the bounds of the true model. This model underestimates

the cost of creating a link by abstracting from the cost imposed by y on the

value of the links. The opposite is true for the specification for G1, where

the approximation overestimates the cost of creating a link by only considering

first-order effects.

I estimate the full approximated models using both specifications. I assume

that zij = −|xi − xj | and that ηij ∼ N(0, ση). Note that the specification for

P (G1|X̃,Z) has to be simulated, since it does not allow for a closed-form density

(see Train (2009)). Also note that P (G1|X̃,Z) allows for the identification of

δ/σε and λ/ση (see proposition 6.2) so, together with (8), all the parameters

of the model are identified. Finally, P (G0|X̃,Z) is a simple (scale-identified)

probit model.

3.1. Results

As an initial benchmark, Table 2 presents a simple (misspecified) ordinary

least squares (OLS) estimation. Participation in extracurricular activities de-

creases with age, but increases with the socio-economic status of the mother

(level of education and employment status). Blacks and Asians participate

more than whites and Hispanics. Table 3 presents the probit estimation for

the network formation process (specification 6.1). The social network features

homophily with respect to all variables, which is consistent with the literature.

Tables 4 and 5 present the quasi-maximum likelihood estimation for both

bounds of the model. Table 4 presents results for specification (6.1), while Table

5 present results for specification (6.2). The estimated coefficients for both

specifications are very similar, as are the log-likelihood values. As noted in the
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introduction, the small bias due to the endogeneity of the network is consistent

with the literature. This should not be surprising looking at the marginal effects

in Table 3. Although statistically significant, the contribution of the individual

characteristics on the probability of a link are extremely small! Then, in the

context of this particular database, the bias created by the endogeneity of the

network is also small.

Remark also that for both specifications, the coefficients associated with

individual effects are quite close to the OLS estimates. Also note that, in Table

5, none of the network formation parameters (i.e. δ) are statistically significant.

A possible explanation is that zij = −|xi−xj | is highly correlated with (xiβ +

εi − xjβ − εj)2 so the additional contribution of zi is not significant.

The estimated values for the main parameter of interest, ln(λ), are −2.5204

and −2.5149 for G0 and G1, respectively. This leads to values of λ of 8.04%

and 8.08%. However, as discussed above, the magnitude of peer effects depends

on the numbers of friends an individual has. Recall that:

yi =
λ

1 + λni

∑
j∈Ni

yj +
1

1 + λni
[xiβ + εi]

Figure 3 displays the distribution of the implied peer effects using the ob-

served distribution of the number of peers (i.e. λ
1+λni

, using λ = 8.08%). The

impact of a change in one peer’s behavior ranges from 4.5% (for an individual

with 10 peers) to 7.5% (for an individual with only one peer). Put differently,

when choosing the number of activities he participates in, a student with only

one friend puts a weight of 92.5% on his individual characteristics (i.e. his type),

while a student with 10 friends puts a weight of only 55% on his individual char-

acteristics (i.e. 1
1+λni

, using λ = 8.08%).

Finally, Figure 4 presents, for each school, the variance in behavior, the

(expected) lower-bound on that variance (see proposition 4) and the variance

in individuals’ types. The average value of the lower-bound is 3.23 (based on

centrality), the average variance in behavior is 6.70 and the average variance

in individuals’ types is 8.07. As the observed networks in every schools are
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disconnected, the upper-bound is never binding.

I now discuss the policy implications of the model.

3.2. Implications for Public Policy

The model features both peer effects and self-selection. This suggests that a

policymaker can affect an equilibrium through two different channels: by using

the shape of the network, or by affecting the shape of the network. I now discuss

these two approaches.

Suppose that the policymaker wants to use the shape of network to influence

the equilibrium outcome. Specifically, suppose that the policymaker has the

ability to increase the type xiβ+εi of any individual by a small amount. Which

individual should he affect? The typical answer to that question comes from

Ballester et al. (2006): the most central individual in the network. In the

context of this paper, the aggregate impact on the sum of behaviors is the

same, irrespective on the individual selected. This follows from the fact that

1 is the eigenvector of L associated with the eigenvalue 0. The impact on the

variance of behaviors, however, depends non-trivially on the network structure,

as well as on individuals’ types, and cannot directly be linked to a centrality

measure (see proposition 4).

In any case, the precise answer to the question of which individual the poli-

cymaker should affect is likely to be irrelevant, since (1) the measured impact of

peer effect is relatively small (the value of λ
1+λni

ranges from 4.5% to 7.5%), and

(2) the analysis would only hold locally since large policy shocks will also affect

the structure of the network. The policymaker should then focus on affecting

the network formation process.

According to proposition 4, a policymaker can affect the network structure

by increasing the network centrality, or by increasing the edge-connectivity. As

noted above, every school in the sample is disconnected, so the edge-connectivity

is equal to 0. In order to increase the edge-connectivity, a policymaker would

have to connect the network.11 Figure 5 shows how many links would have to

11That is, adding enough links so that the network has only one component.
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Table 2: OLS - Within-Group Deviations

Variable Estimate S.E.
Age -0.0387∗∗ (0.0132)
Gender 0.2288∗∗ (0.0300)
Hispanic 0.1119∗ (0.0551)
White 0.2677∗∗ (0.0517)
Black 0.4233∗∗ (0.0609)
Asian 0.5514∗∗ (0.0749)
Mother works 0.1426∗∗ (0.0356)
Mother completed HS 0.1337∗∗ (0.0421)
Mother completed college 0.3010∗∗ (0.0356)

be added to the network, as a function of the school size. We see that for large

schools, this number can be extremely high. Figure 6 shows the relative gain of

connecting the network. We see that for large schools, the impact is quite small.

This suggests that for small schools, policymakers should focus on promoting

integration, while for larger schools, policymakers should focus on promoting

role models.

4. Conclusion

I presented a model of conformism featuring both peer effects and self-

selection. I found that the network structure and the equilibrium behaviors are

linked through the Laplacian matrix of the network. This particular relation-

ship implies that the number of peers influences the magnitude of peer effects.

Moreover, social welfare can be bounded by the centrality and edge-connectivity

of the equilibrium network.

Using the theoretical predictions of the model, I measure the impact of

conformism on student participation in extracurricular activities. I find that the

magnitude of the endogenous peer effects ranges from 7.5% to 45% depending

on an individual’s number of peers. Results indicate that small schools should

focus on promoting integration, while large schools should focus on creating role

models.
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Table 3: Probit (see proposition 6.1) - Marginal Effects †

Variable Estimate S.E.
Age 3.2727∗∗ (0.0393)
Gender 3.522∗∗ (0.0579)
Hispanic 1.1593∗∗ (0.0806)
White 1.9104∗∗ (0.0761)
Black 4.0803∗∗ (0.1108)
Asian 1.2784∗∗ (0.1071)
Mother works 0.4781∗∗ (0.0540)
Mother completed HS 1.0078∗∗ (0.0591)
Mother completed college 0.3334∗∗ (0.0519)
Log-likelihood: -141 381.53

† For each zij = −|xi − xj |, coefficients are multiplied by a factor of 1000 for ease of
interpretation.

Table 4: QMLE - Exogenous Network

Variable Estimate S.E.
ln(λ) -2.5204∗∗ (0.1317)
Age -0.0389 (0.0223)
Gender 0.2496∗∗ (0.0434)
Hispanic 0.1284 (0.0978)
White 0.2657∗∗ (0.0813)
Black 0.4364∗∗ (0.0955)
Asian 0.5653∗∗ (0.1206)
Mother works 0.1495∗∗ (0.0431)
Mother completed HS 0.128∗ (0.0503)
Mother completed college 0.3262∗∗ (0.0459)
ln(σε) 1.0382∗∗ (0.0236)
Log-likelihood: -432.7814
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Table 5: QMLE - Full Model (Specification 6.2)

Variable Estimate S.E.
ln(λ) -2.5149∗∗ (0.1257)
Age -0.0475∗ (0.0220)
Gender 0.2502∗∗ (0.0435)
Hispanic 0.2027∗ (0.0982)
White 0.3031∗∗ (0.0809)
Black 0.5824∗∗ (0.0969)
Asian 0.6289∗∗ (0.1213)
Mother works 0.0867 (0.0448)
Mother completed HS 0.2098∗∗ (0.0514)
Mother completed college 0.3259∗∗ (0.0462)
ln(σε) 1.0380∗∗ (0.0232)
Network Formation
Intercept 0.0155 (0.0144)
Age 0.0048 (0.005)
Gender -0.0137 (0.0156)
Hispanic 0.0050 (0.0089)
White -0.0081 (0.0126)
Black 0.0062 (0.0127)
Asian -0.0031 (0.0179)
Mother works 0.0013 (0.0035)
Mother completed HS 0.0065 (0.0079)
Mother completed college 0.0022 (0.0019)
ln(σε) -2.9911∗∗ (0.6309)
Log-likelihood: -432.9868

Figure 3: Local Marginal Effect for One Peer ( λ
1+λni

)
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Figure 4: Variance of Types and Behaviors (All Schools)†
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† For expected variance of the types, using 1000 draws. Variances are truncated at 10 to

clarify the presentation. The upper-bound is never binding as all schools are disconnected

(the value of the upper-bound is thus always equal to the variance of the types). The

average value of the lower-bound is 3.23. The average variance of behavior is 6.70. The

average variance of the types is 8.07.
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Figure 5: Number of Links Needed to Connect the Network as a Function of School Size
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Figure 6: Reduction in Upper-Bound as a Function of the Number of Links Needed to Connect
the Network
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6. Appendix: Proofs

Proof (of Proposition 1). To simplify the notation, let υij = zijδ + ηij .
Then, simply let g∗ be such that [ g∗ij = 1 iff υij ≥ λ

2 (yi − yj)2 ] for all i, j ∈ N .
�

Proof (f Lemma 2).

Step 1: zijδ − λ
2 (yi − yj)2 + ηij 6= 0

Consider yi that maximizes the utility wi. Note that for all the ij such that
zijδ+ηij ≤ 0, any yi leads to the same value for the link, as the max is equal to
0. Then, a small perturbation of ηij will lead to the same optimal choice of yi.
Now, consider υij = zijδ + ηij > 0 and define ti = xiβ + εi and the following
sets:

Ai(y) =

{
j 6= i|yi ∈

[
yj −

√
2υij
λ
, yj +

√
2υij
λ

)}

Bi(y) =

{
j 6= i|yi ∈

(
yj −

√
2υij
λ
, yj +

√
2υij
λ

]}

Ci(y) =

{
j 6= i|yi ∈

(
yj −

√
2υij
λ
, yj +

√
2υij
λ

)}
Ãi(y) = Ai(y) \ Ci(y)

B̃i(y) = Bi(y) \ Ci(y)

Now, define the following directional derivatives:

∂+(yi) = −(yi − ti)− λ
∑

j∈Ai(y)

(yi − yj)

∂−(yi) = −(yi − ti)− λ
∑

j∈Bi(y)

(yi − yj)

It is easy to see that y∗i maximizes wi(yi, y−i) only if ∂+(yi) ≤ 0 and ∂−(yi) ≥
0, or equivalently if:

−(yi − ti) ≤ λ
∑

j∈Ai(y)

(yi − yj)

−(yi − ti) ≥ λ
∑

j∈Bi(y)

(yi − yj)

These two conditions can be met simultaneously only if∑
j∈Ai(y)

(yi − yj) ≥
∑

j∈Bi(y)

(yi − yj)
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or equivalently if ∑
j∈Ãi(y)

(yi − yj) ≥
∑

j∈B̃i(y)

(yi − yj)

Now, note that any j ∈ Ãi(y) is such that yi− yj = −
√

2υij
λ , and any j ∈ B̃i(y)

is such that yi − yj =
√

2υij
λ . Thus, it is required that

−
∑

j∈Ãi(y)

√
2υij
λ
≥

∑
j∈B̃i(y)

√
2υij
λ

which is only possible if |Ãi(y)| = |B̃i(y)| = 0.

Step 2: The maximum exists and is generically unique.

Existence follows from the fact that any yi < min{yj , ti} or yi > max{yj , ti}
is dominated by some y′i ∈ [min{yj , ti},max{yj , ti}]. Now, suppose that there
exists two maxima: yi, y

′
i. From step 1, this implies that yi and y′i do not induce

the same network structure, i.e. there exists j such that υij − λ
2 (yi − yj)2 < 0

while υij − λ
2 (y′i − yj)

2 > 0. Then, taking a small perturbation of ηij , the
first-order conditions still hold for yi and y′i, but they no longer yield the same
utility. �

Proof (of Proposition 3).
Step 1: y = [I + λL]−1[Xβ + ε]

Let (g∗, y∗) be a NE of Γ. Since the strategy space for yi is unbounded and
from lemma 2, any NE is interior for yi, the first-order conditions need to apply.
At g∗, for all i ∈ N , the following holds: 0 =

∑
j:g∗ij=g

∗
ji=1−λ(yi − yj) − yi +

xiβ + εi, which is equivalent to yi = −λn∗i yi +
∑
j:g∗ij=g

∗
ji=1 λyj + xiβ + εi. In

matrix form, we have:

y = −λ(D−G)y + Xβ + ε

Defining L = D −G, which is positive semi-definite (Godsil and Royle, 2001,
p.280), we have: y = [I + λL]−1[Xβ + ε].

Step 2: E(y∗i ) = E(xiβ + εi)
Remark that 1 is the eigenvector of L associated with eigenvalue 0, so

1

n
1′[I + λL]y =

1

n
1′y =

1

n
1′[Xβ + ε]

Step 3: V ar(y∗i ) ≤ V ar(xiβ + εi).

We have:

V ar(yi) =
1

n
y′y−E(yi)

2 +V ar(xiβ+εi)−
1

n
[Xβ + ε]′[Xβ + ε]+E(xiβ+εi)

2
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which, from step 2 above, is equivalent to:

V ar(yi) =
1

n
y′y + V ar(xiβ + εi)−

1

n
[Xβ + ε]′[Xβ + ε]

Rewriting, we have:

V ar(yi) = V ar(xiβ + εi)−
λ

n
[Xβ + ε]′(I + λL)−2(2I + λL)L[Xβ + ε]

Since the product of jointly diagonalizable positive semi-definite matrices is
positive definite, (I + λL)−2(2I + λL)L is positive semi-definite (this can be
seen by applying the Spectral Theorem), with completes the proof. �

Proof (of Proposition 4). Let 0 = ξ1 ≤ ... ≤ ξn be the eigenvalues of L.
Using the expression in step 3 of the proof of proposition 3 and applying the
Spectral Theorem, we have:

V ar(yi) = V ar(xiβ + εi)−
λ

n
[Xβ + ε]′T′U

(
2ξi + λξ2i
(1 + λξi)2

)
T[Xβ + ε]

where T is orthonormal and U(ai) is a diagonal matrix with entries a1, ..., an.
The bounds are then simply obtained by using the following bounds (see New-
man et al. (2000)):

ξn ≤ max
ij

Cij

ξ1 ≥ 2e(1− cos(π/n))

�

Proof (of Proposition 5). I now show that the potential function admits a
generically unique maximum.

Let ti = xiβ + εi. Without a loss of generality, assume that t1 ≤ ... ≤ tn.
It is sufficient to show that any y is (weakly) dominated by some y∗ such that
y∗i ∈ [t1, tn] for all i ∈ N .

Consider y and a non-empty M ⊆ N such that for all i ∈ M , yi /∈ [t1, tn],
while yi ∈ [t1, tn] for all i ∈ N \M . Also define M1 = {i ∈ N |yi < t1} and
Mn = {i ∈ N |yi > tn} so that M = M1 ∪Mn. For any y, we can write ψ(y) as
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Figure 7: Example for n = 4.
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(setting empty sums to 0):

ψ(y) =
∑

i,j∈M1

max{vij −
λ

2
(yi − yj)2, 0}+

∑
i,j∈Mn

max{υij −
λ

2
(yi − yj)2, 0}

+
∑

i∈M1,j∈Mn

max{υij −
λ

2
(yi − yj)2, 0}

+
∑

i∈M1,j∈N\M

max{υij −
λ

2
(yi − yj)2, 0}

+
∑

i∈Mn,j∈N\M

max{υij −
λ

2
(yi − yj)2, 0}

+
∑

i,j∈N\M

max{υij −
λ

2
(yi − yj)2, 0}

− 1

2

∑
i∈M1

(yi − ti)2 −
1

2

∑
i∈Mn

(yi − ti)2 −
1

2

∑
i∈N\M

(yi − ti)2

Now generate the allocation y∗ such that: y∗i = yi ∀i ∈ N \M , y∗i = t1
∀i ∈M1 and y∗i = tn ∀i ∈Mn. We have:

ψ(y∗) =
∑

i,j∈M1

max{υij , 0}+
∑

i,j∈Mn

max{υij , 0}

+
∑

i∈M1,j∈Mn

max{υij −
λ

2
(z1 − zn)2, 0}

+
∑

i∈M1,j∈N\M

max{υij −
λ

2
(z1 − yj)2, 0}

+
∑

i∈Mn,j∈N\M

max{υij −
λ

2
(zn − yj)2, 0}

+
∑

i,j∈N\M

max{υij −
λ

2
(yi − yj)2, 0} −

1

2

∑
i∈M1

(t1 − ti)2

− 1

2

∑
i∈Mn

(tn − ti)2 −
1

2

∑
i∈N\M

(yi − ti)2

One can easily verify that ψ(y∗) > ψ(y), which leads to a contradiction.
Now, suppose that the equilibrium is not unique. There exists ỹ, y∗ ∈

arg maxy ψ(y). Note that, by lemma 2, it implies that they do not induce the
same network structure. Then, there exists i, j ∈ N such that υij− λ

2 (ỹi−ỹj)2 >
0, while υij − λ

2 (y∗i − y∗j )2 < 0 (also by lemma 2). Hence, by taking a small

perturbation of ηij such that υ̃ij > υij , we have ỹ ∈ arg maxy ψ̃(y) (by lemma

2) and ψ̃(ỹ) > ψ̃(y∗). �
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Proof (of Proposition 6). Remark that the potential function can be writ-
ten as follows:∑

ij∈g∗
zijδ + ηij −

λ

2
y∗
′
Ly∗ − 1

2
(y −Xβ − ε)′(y −Xβ − ε)

Using proposition 3, this is equivalent to∑
ij∈g∗

zijδ + ηij +
1

2
(Xβ + ε)′ [I + λL]

−1
(Xβ + ε)

We have I ≤ I + λL (in the sense of definiteness), which implies that I ≥
[I + λL]−1 so (Xβ + ε)′(Xβ + ε) ≥ (Xβ + ε)′ [I + λL]

−1
(Xβ + ε). Similarly,

we have I ≥ I − λ2L2, which is equivalent to I ≥ [I − λL][I + λL] and to
[I + λL]−1 ≥ [I− λL]. Finally, it implies that (Xβ + ε)′[I + λL]−1(Xβ + ε) ≥
(Xβ + ε)′(Xβ + ε)− λ(Xβ + ε)′L(Xβ + ε). �
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