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Résumé/abstract  
 

The horizon effect in the long-run predictive relationship between market excess return and historical 

market variance is investigated. To this end, the asymptotic multivariate distribution of the term 

structure of risk-return trade-offs is derived, accounting for short- and long-memory in the market 

variance dynamics. A rescaled Wald statistic is used to test whether the term structure of risk-return 

trade-offs is at, that is, the risk-return slope coeffcients are equal across horizons. When the regression 

model includes an intercept, the premise of a at term structure of risk-return relationships is rejected. 

In contrast, there is no significant statistical evidence against the equality of slope coeffcients from 

constrained risk-return regressions estimated at different horizons. A smoothed cross-horizon estimate 

is then proposed for the trade-off  intensity at the market level. The findings underscore the importance 

of economically motivated restrictions to improve the estimation of intertemporal asset pricing models. 

 

Mots clés/keywords : Horizon effect, Stock return predictability, Realized variance, 

Short-memory, Long-memory. 

                                                 
*
 Corresponding address: Department of Finance, Université du Québec à Montréal, 315 rue Sainte-Catherine 

Est, Montréal, Québec, Canada. Tel.: +1 514 987 3000x5521; fax.: +1 514 987 0422. 

E-mail address: okou.cedric@uqam.ca 
†
 Department of Finance, HEC Montréal, Canada. 



1. Introduction

For decades now, several studies have proposed models to forecast stock market returns based on empirical

evidence and theoretical arguments. In practice, many investors track the time variation in asset returns

to try to take advantage of predictability patterns and mispricings. Fama and French (1988) report early

evidence of stock returns predictability induced by dividend yields over various time horizons. Since then,

many variables including macroeconomic indicators, financial ratios and risk factors have widened the set

of predictors that can explain a substantial part of the time variation in stock returns. See for example

Merton (1980), Campbell and Shiller (1988), Boudoukh, Richardson and Whitelaw (2008).

In the return predictability framework, several models relate excess returns to risk measures. These

models can be estimated at different horizons to yield a term structure of risk-return trade-offs. Variance

measures emerge as good predictors of excess returns, delivering their full predictive power in the long-run as

documented by Campbell and Viceira (2005), Bandi and Perron (hereafter BP) (2008), Bollerslev, Tauchen

and Zhou (2009). At the market index level, a cursory look at the term structure of trade-offs between

excess returns and historical variances, reveals a striking pattern. In general, the risk-return trade-off is

hard to detect for short horizons but appears significant for longer horizons. The observed discrepancy

between short versus long horizons trade-off estimates, illustrates the horizon effect. As pointed out by

Camponovo, Scaillet and Trojani (2013), a few extreme observations might “hide” the evidence of short

term return predictability. There is an ongoing debate on whether this empirical pattern is backed by an

economic rationale or is just the result of a mere sampling artifact. Namely, the evidence of long horizon

predictability in returns documented in Fama and French (1988), Valkanov (2003), Cochrane (2008), BP

(2008) has been challenged by Stambaugh (1999), Ang and Bekaert (2007), Boudoukh et al. (2008), Goyal

and Welch (2008) who raise the possibility of spurious long horizon relations.

The main purpose of this paper is to propose a formal detection test for the horizon effect in the predictive

long-run relation between the market excess return and its historical variance. To fulfill this objective, we

employ a methodology which explicitly accounts for persistence in the predictor, that is, the variance process.

In their multi-horizon analysis of the risk-return trade-off, BP (2008) accommodate the persistence in the

variance process using a near-unit-root specification. However, the variance dynamics can exhibit long-

range memory as pointed out by Comte and Renault (1998), BP (2006), Corsi (2009), Bollerslev, Sizova
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and Tauchen (2012), Sizova (2013) among others. Moreover, BP (2008) perform an individual treatment

of the trade-off estimates while the inference on the term structure of predictive relationships should rely

on joint test procedures to protect against spuriousness, as argued by Boudoukh et al. (2008). Because

of the overlapping aggregation, there is a limited amount of independent information across horizons, and

therefore, the estimated coefficients are strongly tied together. We propose a joint inference framework

which is robust to the strong dependence among coefficients across horizons.

This article adds to the existing literature in two ways. First, we derive the joint asymptotic distribution

of the term structure of risk-return trade-offs and the limiting approximation of its corresponding covariance

matrix. We consider both local-to-unity (BP 2008) and long-memory (Sizova 2013) frameworks for the

realized variance dynamics. Our results provide multivariate analytical tools to build appropriate Wald

statistics and test some restrictions on the term structure of risk-return trade-offs. Thus, we generalize the

analysis of BP (2008) and Sizova (2013) to the multivariate case and extend the results of Jacquier and Okou

(2013) to long-memory predictors. Second, we exploit a standardized version of the classical Wald statistic,

the rescaled Wald statistic, to assess the horizon effect. The proposed rescaled Wald statistic allows for

multiple hypotheses testing while controlling for the level of type I error. In a multi-horizon context, this

helps overcome the drawbacks of a “one-at-a-time” test strategy. We also provide simulated critical values

for the rescaled Wald statistics.

Further, the inclusion of an intercept in the risk-return trade-off model plays a significant role. We

find that the past market variance is positively related to the market excess return only at long horizons

when an intercept is included in the model. By contrast, we cannot reject the assumption of no horizon

effect for zero-intercept specifications as the estimated slope coefficients remain positive and have the same

magnitude across all horizons. These results suggest a proportional risk-return trade-off relation consistent

with Merton-type intertemporal capital asset pricing model (ICAPM). From the various horizon-specific

estimates of the link between past variance and future excess return, we extract a smoothed proxy for the

aggregate price of variance risk. We interpret this proxy as a “cross-horizon backward-looking” market price

of risk. We obtain a reasonable value between 2 and 3.

The rest of this paper is structured as follows. We begin in Section 2 by introducing a simple risk-return

model and discussing some estimation findings. Section 3 presents single inference results and simulated

2



critical values for the rescaled t-statistics. In Section 4, we perform a joint test based on the rescaled Wald

statistic to investigate the horizon effect in the term structure of risk-return trade-offs. Specifically, we study

the statistical equality between slope coefficients from different horizons. Thus, we characterize the term

structure of risk-return trade-offs and relate it to Merton’s (1973) ICAPM framework. Then, we draw on

model averaging techniques to compute a cross-horizon estimate of the strength of the trade-off, a proxy for

the market price of risk. We conclude in Section 5.

2. Framework

2.1 Model Specification

For the empirical work, we use NYSE/AMEX value-weighted index with dividends as the market proxy and

30-day T-bill rate as the risk-free rate. The data span the period from January 2, 1952 to December 31,

2009 and are retrieved from CRSP files. BP (2008) use the same dataset over a shorter period from January

2, 1952 through December 29, 2006. To begin our analysis, we specify the regressions

Rt,t+h = αh + βhRVt−h,t + εt,t+h, (1)

where Rt,t+h is the market log-excess return between t and t+ h, RVt−h,t denotes the past market variance

between t − h and t, and εt,t+h represents a prediction error. The subscript h stands for the horizon and

takes value between 1 and 120 months. The parameters αh and βh are the intercept and the slope of the

risk-return model. For a given horizon h, βh captures the trade-off intensity.

The baseline data are daily. Thus, we aggregate the daily continuously compounded return (r) in excess

of the risk-free rate (rf ), to obtain the monthly log-excess return

Rt,t+1 =

nt∑
j=1

(
rt+j/nt − r

f
t+j/nt

)
, (2)

where nt is the number of transaction days in month t. Monthly data are then used to construct h-month

overlapping series. To compute the aggregated log-excess return series over (t, t+ h),

3



Rt,t+h =
h−1∑
i=0

Rt+i,t+1+i, (3)

we employ a h-length rolling window. An overlapping aggregation of the raw series is intended to produce

longer and smoother aggregated series than a non-overlapping aggregation procedure. This common practice

in long-run analysis is expected to generate more accurate estimates by reducing the noise. However, an

overlapping aggregation might create some concern on the validity of traditional inference procedures when

the resulting highly serially correlated variables are used within a least squares framework. See Campbell

and Shiller (1988) or Boudoukh and Richardson (1993) for details.

We now discuss the computation of the regressor in the risk-return model of Eqn. (1). Realized variance

measures are simple and consistent estimates for the second-order path variation of the returns based on

infill asymptotics, i.e., asymptotics as the time distance between any two records shrinks. This justifies the

use of higher frequency observations to compute quadratic variation estimates as popularized by Andersen,

Bollerslev and Diebold (2010), Andersen, Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen and

Shephard (2003), among others. Specifically, the monthly variance RVt,t+1 =
∑nt

j=1 r
2
t+j/nt

is estimated as

the sum of squared daily log-returns where nt is the number of daily observations available in month t.

Similarly as the returns, for any horizon h longer than one month, we implement the aggregation according

to

RVt,t+h =
h−1∑
i=0

RVt+i,t+1+i. (4)

As the sampling frequency increases towards infinity (nt ↑ ∞) Eqn. (4) yields a consistent estimator for the

quadratic variation of the log-price process over (t, t+ h). Jacquier and Okou (2013) account for possible

discontinuities in the return dynamics by separating continuous volatility from jumps in the risk-return

trade-off analysis.

Other common variance measures such as realized kernels (Barndorff-Nielsen, Hansen, Lunde and Shep-

hard 2008) may include Bartlett-type adjustments to account for autocorrelations in the daily returns.

However, the effect of a potentially non-vanishing predictable component in the log-returns is relatively

marginal in our sample.
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Table 1 reports some descriptive statistics of realized log-excess returns (Rt,t+1) and variances (RVt,t+1)

for non-annualized monthly NYSE/AMEX value weighted market index from January 1952 to December

2009.

Table 1
Descriptive statistics.

Rt,t+1 RVt,t+1

Mean 0.0044 0.0017
Variance 0.0018 1.644E-5
Skewness -0.803 10.778
Kurtosis 6.154 146.014
Autocorrelation 0.098 0.503
Autocorrelation 1952-1986 0.056 0.537
Autocorrelation 1988-2007 -0.006 0.502

Typically, the market realized variance displays a right-skewed and fat-tailed distribution. This empirical

regularity is discussed in Andersen, Bollerslev, Diebold and Labys (2003). Namely, the descriptive statistics

show higher asymmetry and kurtosis for the realized variance series in contrast to the distribution of excess

returns. A look at the dependence structure reveals a stronger first-lagged autocorrelation for RVt,t+1

(0.503) than for Rt,t+1 (0.098) over the full sample. Table 1 also presents first-order autocorrelations in two

subsamples excluding 1987 and post-2007 financial crisis periods. The dependence structure seems robust

to the large swings in returns during crisis periods as subsample autocorrelation estimates are close to the

full sample ones.

In Fig. 1, we plot the monthly market excess return (Rt,t+1) and variance (RVt,t+1) time series. Clearly,

the financial crash around October 1987 translates into an extreme quadratic variation activity. The end of

the sample period also exhibits substantial variability related to the subprime crisis that started in 2007.
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Fig. 1. Monthly NYSE / AMEX excess return (top) and realized variance (bottom), from Jan. 52 to Dec. 09.
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Fig. 2. Autocorrelation of monthly excess return (top) and realized variance (bottom).

Fig. 2 presents the autocorrelation functions plots for Rt,t+1 and RVt,t+1. The bottom plot reveals some

persistence in the distribution of the realized variance. Namely, we see significant autocorrelations for the

realized variance series up to lag 6. The serial dependence in the quadratic variation activity is carried at

least over a semester.
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2.2 Evidence of Risk-Return Trade-Off

Predictability in returns is of prime importance for investment decisions and has become a centerpiece in

empirical finance. Campbell (2001) points out that the persistence of the predictor and the strength of the

short-run predictability are key determinants for long-run predictability. Moreover, the so-called leverage

effect is expected to determine the intensity of the long-run risk-return relationship, see Stambaugh (1999).

Interestingly, BP (2008) show that past market variance is a stronger predictor of future excess return than

the dividend yield and the consumption-to-wealth ratio suggested by Lettau and Ludvigson (2001a). BP’s

(2008) findings are robust in Valkanov’s (2003) local-to-unity framework.

We estimate the relationship between market excess returns and past market variances at different

horizons ranging from 1 to 120 months. The regression results for Eqn. (1) are presented in the top panel

of Table 2. The bottom panel reports the regression estimates when the intercept is constrained to zero.

Note that in our empirical analysis, we use a sample which covers the 2007-2009 financial crisis period.

For now, we conduct inference according to the heteroskedasticity and autocorrelation consistent (HAC)

correction of the standard t-statistic. It is important to mention that the HAC t-statistic is badly behaved,

especially when the predictor is highly persistent due to overlapping aggregation. To address this issue,

Hodrick (1992) and Nelson and Kim (1993) conduct Monte Carlo simulations supporting alternative inference

procedures with improved small-sample properties. However, these simulation-based studies do not provide

a systematic analytic answer within a unified inference framework, as pointed out by Valkanov (2003). Thus,

contrasting or reconciling the conclusions from these simulations methods may be challenging, because their

results highly depend on how the artificial data are being generated. Moreover, it might be difficult to

pin down the potential effect of specific features of the data on the test statistics. In the next section, we

propose a unified framework to conduct inference on the term structure of long horizon predictive regressions.

Specifically, we derive the joint asymptotic distribution of the term structure of risk-return trade-offs and the

limiting approximation of its corresponding covariance matrix, considering both local-to-unity (BP 2008)

and long-memory (Sizova 2013) dynamics for the predictor. Our results yield multivariate analytical tools

to construct adequate statistics and test some restrictions, including but not limited to predictability and

horizon effect in the term structure of risk-return trade-offs.

Among our key findings, unconstrained regressions unveil statistically significant trade-offs only for ultra
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long horizons (7 years and over). R2s values range from 0.0% up to 68.5% and increase almost monotonically

at longer horizons, consistently with BP’s (2008) results.

The zero-intercept regressions show positive slopes which are statistically significant across all horizons,

the only exceptions being monthly and quarterly horizons. Beyond the quarterly horizon, the risk-return

trade-off estimates range from 1.4 to 3.0. It is important to notice that the zero-intercept constraint is an

empirical refinement proposed in Campbell and Thompson (2008) for the ICAPM analysis. Imposing such

a restriction yields economically meaningful trade-off intensities within a realistic range.

In a nutshell, the past market variance has a major contribution to the predictable part of excess returns

at medium to long horizons. This is consistent with previous works suggesting historical volatility as a

strong driver of return predictability at low frequencies. See Lettau and Ludvigson (2010) for a review.

In general, short term risk-return trade-offs are difficult to detect. Namely, short-run estimates are sen-

sitive to short term variability of predictors. This is critical in the estimation of the risk-return relationship,

especially when the data sample contains episodes of high volatility. For instance, monthly market variances

during periods of financial instability in October 1987, Q4 2008 and Q1 2009 were too high, 40 to 50 times

bigger than the trimmed average variance value for the whole post-war period. Exploring the relationship

between expected stock returns and volatility, French, Schwert and Stambaugh (1987) discuss the challenge

of finding a positive trade-off in the data at a short horizon. Volatility is known to be persistent and, as

pointed out by Sizova (2013), performing inference with long-range dependent predictive variable is not

trivial. A few additional data points can induce dramatic changes in the predictor’s sample mean. Thus,

the evidence of risk-return trade-off will be sensitive to shifts in the sample mean of volatility (see, e.g.,

Campbell and Yogo, 2006).

There are several attempts to improve the estimation of the risk-return trade-off. Ghysels, Santa-Clara

and Valkanov (2005) suggest a mixed data sampling (or MIDAS) regression and conclude that “there is

a risk-return trade-off after all”. Maheu and McCurdy (2007) propose a truncated exponential realized

volatility estimator, whereas DeGennaro and Zhao (1998) advocate for additional predictors in the risk-

return model. Moreover, realized range-based variance estimators tend to outperform the sum of squared

returns (realized variance) approximation of the integrated variance in terms of efficiency and robustness to

market microstructure noise, as argued by Parkinson (1980), Beckers (1983), Alizadeh, Brandt and Diebold

10



(2002), among others. Christensen and Podolskij (2007) extend the homoscedastic diffusion assumption of

Dijk and Martens (2007) to derive a general asymptotic theory supporting this evidence. Their theoretical

results are confirmed by some empirical findings based on high-frequency data. However, the long-run

risk-return analysis is often performed at low frequencies (typically 1 month horizon and beyond using not

intra-day, but daily baseline data). Thus, the impact of microstructure contaminations on realized variance

estimator in such a low frequency analysis should be minimal. This might explain why the long-run risk-

return literature commonly adopt the realized variance as an estimate of the monthly (or longer horizon)

variance.

An important line of criticism against the long-horizon predictability of returns is based upon the argu-

ment that standard inference may fail in the presence of a persistent predictor in the long-run regression.

This failure of the classical asymptotics can manifest itself in terms of inconsistent estimators, test size

distortions and convergence to functionals of Brownian motions, as discussed in Valkanov (2003). More-

over, Boudoukh et al. (2008) claim that short- and long-run estimators are almost perfectly correlated and

therefore, econometricians should be “equally impressed by short- and long-horizon evidence” of returns

predictability. We now provide an alternative asymptotic framework to address these issues.

3. Inferential Insights

In this section, we present test statistics with improved size properties in the presence of a persistent

regressor. We assume both short- and long-memory frameworks for the realized variance dynamics. In

our multi-horizon regressions, classical and HAC asymptotics lose their accuracy due to the overlapping

aggregation. The observed size distortions, which increase with the horizons, are only partially corrected

by HAC t-statistics. As an illustration, the bootstrap experiments conducted in BP (2008) show that the

actual size is 3 times larger than the nominal size of 5% for a 10-year horizon. This leads to over-reading the

evidence in favor of the alternative hypothesis of returns predictability in long-run estimations. Valkanov

(2003) addresses this issue by proposing a standardized version of the classical t-statistic when the proportion

of overlapping is a fixed fraction of the sample size. In this setting, the so-called rescaled t-statistic is a

theoretically and empirically valid correction both for correlation and long horizon biases.

11



3.1 Local-to-Unity Asymptotics

To conduct inference on long-run risk-return trade-offs, BP (2008) use Valkanov’s (2003) local-to-unity

framework. Similarly, we consider the following system

Rt,t+1 = β1RVt−1,t + εt,t+1, (5)

and

RVt,t+1 = ρ0 + ρ1RVt−1,t + ut,t+1, (6)

where Eqn. (5) describes the risk-return predictive relationship and Eqn. (6) sets a near-unit-root process

for the predictor, the realized variance.

We summarize the assumptions for convenience.

Assumptions In model (5-6),

1. Rt,t+h =
∑h−1

i=0 Rt+i,t+1+i and RVt−h,t =
∑h−1

i=0 RVt−i−1,t−i are the long-horizon regressand and

regressor.

2. The proportion of overlapping h = bλT c is a non-trivial fraction of the sample size, where λ is

fixed between 0 and 1, and bxc denotes the largest integer that is less than or equal to x.

3. (εt,t+1, ut,t+1)′ is a vector martingale difference sequence with covariance matrix
[
σ2
ε , σεu, •, σ2

u

]
and finite fourth moments.

4. ρ0 = 0 and ρ1 = 1 + c/T .

At least, two comments arise from the above assumptions. First, Assumption 3 is more suitable when

characterizing the evolution of the log-realized volatility. Second, deviations from the unit root for the

autoregressive coefficient ρ1 in Assumption 4, are controlled by the parameter c at the decreasing rate T .

Thus, ρ1 can be arbitrarily close to 1. Yet, the dynamics of the realized variance characterizes a stationary

short-memory process.
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To alleviate notation, we denote λ(a∨b) ≡ max (λa, λb). Further, we consider the following functionals of

two processes X and Y that are defined and almost surely continuous over [0, 1] .

F1 (Xs, Ys) ≡
∫ 1−λ
λ XsYsds∫ 1−λ
λ Y 2

s ds
,

F2 (Xs, Ys) ≡

∫ 1−λ
λ X2

sds
∫ 1−λ
λ Y 2

s ds−
(∫ 1−λ

λ XsYsds
)2

(∫ 1−λ
λ Y 2

s ds
)2 ,

and

F3 (Xs (λa) , Xs (λb) , Ys (λa) , Ys (λb)) ≡

∫ 1−λ(a∨b)
λ(a∨b)

Xs (λa)Xs (λb) ds
∫ 1−λ(a∨b)
λ(a∨b)

Ys (λa)Ys (λb) ds∫ 1−λa
λa

Y 2
s (λa) ds

∫ 1−λb
λb

Y 2
s (λb) ds

−

∫ 1−λa
λa

Xs (λa)Ys (λa) ds
∫ 1−λb
λb

Xs (λb)Ys (λb) ds
(∫ 1−λ(a∨b)

λ(a∨b)
Ys (λa)Ys (λb)

)2

(∫ 1−λa
λa

Y 2
s (λa) ds

)2 (∫ 1−λb
λb

Y 2
s (λb) ds

)2 .

We generalize the asymptotic results of BP (2008) in the propositions below. Namely, we extend BP’s

(2008) asymptotics to the multivariate case by considering the joint limiting distribution of slope coefficients

estimated at two (w.l.o.g.) arbitrary horizons. It is straightforward to extend our results to more than two

horizons.

Proposition 1 (The unrestricted regressions as per Eqn. (1)). For dynamics (5) and (6) under Assump-

tions (1-4), β1 = 0, and Eqn. (1) estimated for any two arbitrary levels of aggregation hi and hj (w.l.o.g.),

1. T

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→ σε
σu

 F1

(
W (s, λi) , Jc (s,−λi)

)
F1

(
W (s, λj) , Jc (s,−λj)

)
 ,

2. T 3V ar

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)
 ,

13



where

Avar
(
β̂hl

)
= σ2

ε
σ2
u

1
1−2λl

F2

(
W (s, λl) , Jc (s,−λl)

)
, l = i, j,

Acov
(
β̂hi , β̂hj

)
= σ2

ε
σ2
u

1
1−2λ(i∨j)

F3

(
W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)

)
,

W (t, λl) = {W (t+ λl)−W (t)} − 1
1−2λl

∫ 1−λl
λl

(W (s+ λl)−W (s)) ds, l = i, j,

Jc (t,−λl) =
{∫ t

t−λl Jc (s) ds
}
− 1

1−2λl

∫ 1−λl
λl

(∫ t
t−λl Jc (s) ds

)
dt, l = i, j,

dJc (s) = cJc (s) + dB (s) , Jc (0) = 0 or Jc (s) = B (s) + c
∫ s

0 e
c(s−τ)B (τ) dτ,

and {W (s) , B (s)} is a vector of standard Brownian motions with covariance σεu/σεσu.

Proposition 2 (The restricted regressions as per Eqn. (1) with αh = 0). For dynamics (5) and (6) under

Assumptions (1-4), β1 = 0, and Eqn. (1) estimated with αh = 0 for any two arbitrary levels of aggregation

hi and hj (w.o.l.g),

1. T

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→ σε
σu

 F1 (W (s, λi) , Jc (s,−λi))

F1 (W (s, λj) , Jc (s,−λj))

 ,

2. T 3V ar

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)
 ,

where

Avar
(
β̂hl

)
= σ2

ε
σ2
u

1
1−2λl

F2 (W (s, λl) , Jc (s,−λl)) , l = i, j,

Acov
(
β̂hi , β̂hj

)
= σ2

ε
σ2
u

1
1−2λ(i∨j)

F3 (W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)) ,

W (t, λl) = W (t+ λl)−W (t) , l = i, j,

14



Jc (t,−λl) =
∫ t
t−λl Jc (s) ds, l = i, j,

dJc (s) = cJc (s) + dB (s) , Jc (0) = 0 or Jc (s) = B (s) + c
∫ s

0 e
c(s−τ)B (τ) dτ,

and {W (s) , B (s)} is a vector of standard Brownian motions with covariance σεu/σεσu.

The above propositions provide key ingredients for constructing adequate test statistics and inspecting

their asymptotic properties. The rescaled t-statistic, used to test for the significance of the slope coefficient

in Eqn. (1), has a well-defined asymptotic distribution. See Propositions 1 and 2 in BP (2008). That is,

for the unrestricted regressions,

t
β̂h=bλTc√

T

L−→
F1

(
W (s, λ) , Jc (s,−λ)

)√
1

1−2λF2

(
W (s, λ) , Jc (s,−λ)

) ,

and for the restricted regressions αh = 0,

t
β̂h=bλTc√

T

L−→ F1 (W (s, λ) , Jc (s,−λ))√
1

1−2λF2 (W (s, λ) , Jc (s,−λ))
.

3.2 Long-Memory Asymptotics

While the autocorrelation of the returns is insignificant beyond lag 0, the return variance series exhibits

persistence which lasts over many periods. Thus, the realized variance may reveal a long-memory pattern

reflecting in a slow decay of its correlogram. Recall that for a long-range dependent process, the first

autocorrelations are not necessarily high but taper off at a hyperbolic rate. BP (2006) find evidence of

long-memory in the realized and implied volatility processes and argue for a fractional cointegrating relation

between the two series. Sizova (2013) studies the small-sample effects arising in long-horizon regressions,

assuming short- and long-memory variance dynamics. Now, consider the following system

Rt,t+1 = β1Zt (d) + ϑt, (7)
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and

RVt,t+1 = Zt+1 (d) , (8)

where ϑt is a short-memory process and Zt (d) denotes a long-memory process.

A basic long-memory model for Zt+1 (d) is the fractionally integrated Gaussian noise. It is defined as

the unique stationary solution of the difference equations (1− L)d Zt+1 (d) = ut,t+1, with ut,t+1 ∼ N
(
0, σ2

u

)
and the fractional parameter d ∈ ]−1/2, 1/2[. The condition d > −1/2 ensures invertibility while d <

1/2 guarantees stationarity. Fractionally integrated models raise many challenges. Namely, the fractional

difference filter can introduce some artificial mixing between long and short term characteristics, as reported

by Comte and Renault (1998). Moreover, the implementation of this class of process necessitates a long

build-up period.

In general, the definition of a long-memory process either characterizes the decay rates of its long-lag

autocorrelations or the explosion rates of its low-frequency spectral density in the neighborhood of zero.

The conditions for the equivalence between these two definitions can be found in Beran (1994). Based

on the autocorrelation structure, a covariance stationary process Zt (d) has long-memory if the condition

limh→∞ corr (Zt+h (d) , Zt (d)) = Gh2d−1 with G 6= 0, holds. This definition seems more intuitive as pointed

out by Breidt, Crato and de Lima (1998).

Alternatively, a long-memory process Zt (d) has an unbounded spectral density fz (δ) in a neighborhood

of δ = 0, and there exists a positive constant κ such that limδ→0 fz (δ)
∥∥1− e−iδ

∥∥2d
= κ, for some 0 < d < 1/2.

In addition, Zt (d) has a finite variance and therefore,
∫ π
−π fz (δ) dδ < ∞. This definition focuses on the

stationary subclass of long-memory processes. It excludes non-stationary processes which are obtained

when d ≥ 1/2. When the differencing parameter d controlling the order of integration is equal to 0, the

spectral density defines a short-memory process. A detailed discussion is presented in Tsay and Chung

(2000).

In some cases, the clear identification of long-memory can be delicate. Diebold and Inoue (2001) argue

that nonzero but “small” amounts of structural change may be mistaken for long-memory.

The previous characterizations of a long-memory process are more general than the one we consider based

on the asymptotic distribution of its partial sums (Baillie, 1996). We rely on the following assumptions.
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Assumptions In model (7-8),

5. Zt (d) is a long-memory process of order d ∈ ]0, 1/2[ and ϑt is a short-memory process.

6. For a given λ ∈ [0, 1] and a non-negative differencing parameter d,

∑h=bλT c
s=1 [Zs (d)− E (Zs (d))]

T 1/2+d

L−→ σdBd (λ) ,

where E is the expectation operator, limT→∞
V ar(

∑T
s=1 Zs(d))

T 1+2d = σ2
d,

Bd (t) ≡

√
(1 + 2d) Γ (1− d)

Γ (1 + d) Γ (1− 2d)


∫ t

0 (t− s)d dB (s)

+
∫ 0
−∞

[
(t− s)d − (−s)d

]
dB (s)


is a type I fractional Brownian motion, and B (t) is a standard Brownian motion.

Clearly, when d = 0, B0 (t) is identical to the standard Brownian motion B (t). Type I fractional

Brownian motion has emerged in the paper by Mandelbrot and Van Ness (1968) and has become the

cornerstone of many subsequent works such as Taqqu (1975), Grippenberg and Norros (1996), Tsay and

Chung (2000), Marinucci and Robinson (2000), Davidson and Hashimzade (2009), and others.

As for the local-to-unity case, we derive the joint asymptotic distribution of slope coefficients estimated

at two (w.l.o.g.) different horizons when the predictor exhibits long-memory dependence. Thus, as presented

in the propositions below, we provide a multivariate extension of the asymptotic results in Sizova (2013).

Proposition 3 (The unrestricted regressions as per Eqn. (1)). For dynamics (7) and (8) under Assump-

tions (1-2, 5-6), β1 = 0, and Eqn. (1) estimated for any two arbitrary levels of aggregation hi and hj

(w.l.o.g.),

1. T d

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→ σϑ
σd

 F1

(
W (s, λi) , Bd (s,−λi)

)
F1

(
W (s, λj) , Bd (s,−λj)

)
 ,
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2. T 1+2dV ar

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)
 ,

where

Avar
(
β̂hl

)
=

σ2
ϑ

σ2
d

1
1−2λl

F2

(
W (s, λl) , Bd (s,−λl)

)
, l = i, j,

Acov
(
β̂hi , β̂hj

)
=

σ2
ϑ

σ2
d

1
1−2λ(i∨j)

F3

(
W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj)

)
,

W (t, λl) = {W (t+ λl)−W (t)} − 1
1−2λl

∫ 1−λl
λl

(W (s+ λl)−W (s)) ds, l = i, j,

Bd (s,−λl) = {Bd (t)−Bd (t− λl)} − 1
1−2λl

∫ 1−λl
λl

(Bd (s)−Bd (s− λl)) ds, l = i, j,

Bd (s) =
√

(1+2d)Γ(1−d)
Γ(1+d)Γ(1−2d)

{∫ s
0 (s− τ)d dB (τ) +

∫ 0
−∞

[
(s− τ)d − (−τ)d

]
dB (τ)

}
,

and {W (s) , B (s)} is a vector of standard Brownian motions with covariance σϑd/σϑσd.

Proposition 4 (The restricted regressions as per Eqn. (1) with αh = 0). For dynamics (7) and (8) under

Assumptions (1-2, 5-6), β1 = 0, and Eqn. (1) estimated with αh = 0 for any two arbitrary levels of

aggregation hi and hj (w.l.o.g.),

1. T d

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→ σϑ
σd

 F1 (W (s, λi) , Bd (s,−λi))

F1 (W (s, λj) , Bd (s,−λj))

 ,

2. T 1+2dV ar

 β̂hi=bλiT c

β̂hj=bλjT c

 L−→

 Avar
(
β̂hi

)
Acov

(
β̂hi , β̂hj

)
Acov

(
β̂hi , β̂hj

)
Avar

(
β̂hj

)
 ,

where

Avar
(
β̂hl

)
=

σ2
ϑ

σ2
d

1
1−2λl

F2 (W (s, λl) , Bd (s,−λl)) , l = i, j,

Acov
(
β̂hi , β̂hj

)
=

σ2
ϑ

σ2
d

1
1−2λ(i∨j)

F3 (W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj)) ,
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W (t, λl) = W (t+ λl)−W (t) , l = i, j,

Bd (s,−λl) = Bd (t)−Bd (t− λl) , l = i, j,

Bd (s) =
√

(1+2d)Γ(1−d)
Γ(1+d)Γ(1−2d)

{∫ s
0 (s− τ)d dB (τ) +

∫ 0
−∞

[
(s− τ)d − (−τ)d

]
dB (τ)

}
,

and {W (s) , B (s)} is a vector of standard Brownian motions with covariance σϑd/σϑσd.

In the long-memory framework of system (7)-(8), we can also derive the asymptotic distribution of the

rescaled t-statistic used to test the significance of the slope coefficients estimated in Eqn. (1).

For the unrestricted regressions,

t
β̂h=bλTc√

T

L−→
F1

(
W (s, λ) , Bd (s,−λ)

)√
1

1−2λF2

(
W (s, λ) , Bd (s,−λ)

) ,

and for the restricted regressions αh = 0,

t
β̂h=bλTc√

T

L−→ F1 (W (s, λ) , Bd (s,−λ))√
1

1−2λF2 (W (s, λ) , Bd (s,−λ))
.

Finally, in the context of overlapping aggregation of predicted and predictive series, the rescaled Wald

statistic is appropriate to overcome the issues arising with the joint inference for long-run regressions. The

rescaled Wald statistic has very appealing sample properties while usual Wald statistics tend to diverge. In

addition, the rescaled Wald statistic provides a proper answer to the adjustments for multiple hypotheses

testing.

For a given restriction G, the rescaled Wald test statistic

T−1χ2
(G) = T−1

{(
Gβ̂
)′ [
GV ar

(
β̂
)
G′
]−1 (

Gβ̂
)}

, (9)

converges to a non-degenerate distribution. Note that the vector β̂
′

=
(
β̂h1 , . . . , β̂hK

)
is the estimator

of the term structure of risk-return trade-offs. The matrix V ar
(
β̂
)

denotes the corresponding covariance

matrix of the β̂ estimator with typical elements V ar
(
β̂hi , β̂hj

)
defined in the Appendix. The rescaled Wald
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statistic can be used to investigate the joint significance of the set of slope coefficients. To test for the null

hypothesis of no predictability (βh1 = βh2 = · · · = βhK = 0), one can use the identity matrix I to set the

restriction. Boudoukh et al. (2008) use a standard Wald statistic to test for joint significance, since they do

not consider a high degree of persistence such as near-unit-root or long-memory dynamics for the regressor.

Eqn. (9) also provides a metric to assess the relative importance of the horizon effect in multiple horizons

risk-return regressions. One can test if the risk-return relationship is proportional across horizons, that is,

if the slope coefficients are all equal.

3.3 Simulation Results

We simulate the asymptotic distribution of the rescaled t-statistic to obtain its critical values. The simu-

lations are implemented under the null of no predictability, with a first set of parameter values chosen to

mimic the observed data. We consider both short- and long-memory dynamics for the realized variance

process. The simulation parameters are Rt = εt, RVt = ρ1RVt−1 + ut, corr (εt, ut) = −0.3, σε = 1, σu = 1

for the short-memory (SM) case and Rt = εt, RVt = (1− L)−d ut, corr (εt, ut) = −0.3, σε = 1, σu = 1 for

the long-memory (LM) case. The simulation results for the autoregressive coefficient ρ1 and the fractional

parameter d matching their empirical estimates of 0.6 and 0.44 are displayed in Table 3a. For robustness

check, we also simulate the critical values for different designs of the memory parameters (ρ1 = 0.3, 0.9 and

d = 0.2) corresponding to different levels of persistence in the realized variance dynamics, as shown in Table

3b.

For the slope estimates previously reported in Table 2, we calculate their corresponding rescaled t-

statistics t
β̂h
/
√
T . As these empirical rescaled t-statistics increase with the horizon, their simulated distri-

butions under the null hypothesis become more disperse, yielding wider confidence intervals. This pattern

is observed whether we specify a short- or long-memory dynamics for the predictive variable RV . A wild

boostrap procedure implemented in BP (2008) yields similar critical values. For the unconstrained regres-

sions, the rescaled t-statistics fall outside the simulated confidence bounds beyond 7 years. This suggests a

long-run predictability as previously found with the classical HAC inference. By contrast, the zero-intercept

regressions reveal significant trade-offs beyond the quarterly frequency. Interestingly, long-range dependence
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in RV tends to favor the null hypothesis of no predictability in returns. That is, a short-memory dynamics

in RV produces tighter confidence intervals as compared to a long-memory specification. This confirms the

findings of BP (2008) and Sizova (2013).

With these observations in mind, we now turn to the joint test of no predictability H0 : βh1 = βh2 = · · · =

βhK = 0 versus H1 : βhi 6= 0 for some horizon hi. The calculated rescaled Wald statistic T−1χ2
(I) = 38.357 for

the unconstrained regressions (6.621 for the constrained regressions) is greater than its simulated 5% right-

tail critical value of 2.303 (1.404). These results provide some global evidence against the null hypothesis

of no predictability in returns.

4. Investigating the Horizon Effect

This section investigates the evidence of the horizon effect in the term structure of risk-return trade-offs.

Recall that the term structure of risk-return trade-offs is the set of slope coefficients (βh1 , . . . , βhK ) for the

entire spectrum of horizons. From our previous findings, realized variance explains a substantial part of

medium to long term market excess returns. For the unconstrained regressions, we observe that past market

variances are positively related to market excess returns only for long horizons over 7 years. However, the

term structure of risk-return trade-offs appears “nearly” flat for zero-intercept specifications as the estimated

slope coefficients remain positive and have similar magnitudes at all horizons beyond 3 months. Following

Lanne and Saikkonen (2006), BP (2008) argue that the zero-intercept constraint is a useful restriction

yielding slope estimates with increased accuracy. Thus, the inclusion of an intercept term can compromise

the efficient analysis of the horizon effect in the term structure of risk-return trade-offs.

4.1 Testing for Restrictions on the Term Structure

The origin of the term structure of risk-return trade-offs can be found in the dynamic changes to the

investment opportunities. Campbell and Vicera (2005) introduce a simple model of return dynamics to

compute the term structure of risk-return trade-offs from U.S. post-war quarterly data. Here, we want to

assess whether the slope coefficients are similar from an econometric standpoint. That is, if the slopes are

not statistically distinct from one another, the resulting term structure of risk-return trade-offs is immune to

23



horizon effect. Otherwise, there is a substantial horizon effect in the linkage between market excess return

and past market realized variance.

Pairwise Comparison of Slope Coefficients: one-at-a-time strategy

In the light of the previous asymptotical derivations, we construct statistics for testing some continuous

restrictions on a vector of slopes fitted at different horizons. Namely, we compute rescaled Wald statistics

for testing significant differences between slope coefficients from different horizons. The rescaled Wald

statistic provides a useful way to explore the presence of sizable spreads between the slopes.

We now introduce two four-argument functionals N (·) and D (·), as the building blocks of the asymptotic

distribution of the rescaled Wald test statistic. These functionals are rigorously defined in the Appendix.

We invoke the Functional Central Limit Theorem (FCLT) and the Continuous Mapping Theorem (CMT)

to derive our asymptotics.

Corollary 1 (Local-to-unity asymptotics).

1. For the unrestricted regressions,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→
N
(
W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)

)
D
(
W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)

) .
2. For the restricted regressions αh = 0,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→ N (W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj))
D (W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj))

.
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Corollary 2 (Long-memory asymptotics).

1. For the unrestricted regressions,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→
N
(
W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj)

)
D
(
W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj)

) .
2. For the restricted regressions αh = 0,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→ N (W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj))
D (W (s, λi) ,W (s, λj) , Bd (s,−λi) , Bd (s,−λj))

.

Interestingly, the asymptotic distribution of the rescaled Wald statistic for testing the difference between

a pair of slopes from two distinct horizons, converges to a non-degenerate distribution. It is worth mentioning

that test size distortions might arise from a multiple pairwise comparisons strategy. To assess the horizon

effect, performing multiple pairwise equality tests often requires a Bonferroni-type of correction to control

for the level of type I error. One can easily generalize the pairwise test results to more than two horizons.

Joint Test: global strategy

To try to fully answer the question of whether the term structure of risk-retrun trade-offs is immune to

horizon effect, we assess the statistical proximity inside the set of slope coefficients estimated for the whole

horizon spectrum. To this end, we test the equality of slopes across horizons H0 : βh1 = βh2 = · · · = βhK

versus H1 : βhi 6= βhj , for some horizons hi and hj . Lack of evidence against βh1 = βh2 = · · · = βhK will

point to a flat term structure of risk-retrun trade-offs. Our strategy consists in constructing a test statistic

using the sum of squared differences β̂hi − β̂h1 for i = 2, . . . ,K, adequately standardized. We rely on the

rescaled Wald test statistic T−1χ2
(∆) where the restriction matrix is

∆
(K−1)×K

=



−1 1 0 · · · 0

−1 0 1
. . .

...

...
...

. . .
. . . 0

−1 0 · · · 0 1


.
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4.2 Critical Values

In this subsection, we use daily observations to illustrate the asymptotic results for the detection of the

horizon effect. Therefore, we do not refer to asymptotics literally. Nevertheless, we expect that running

medium to long term analysis from daily data is a good practice for understanding medium- to long-run

financial market dynamics.

To support our theoretical results, we report the rescaled Wald statistics for testing pairwise equality

between slope coefficients from NYSE/AMEX regressions as per Eqn. (1) in the panel (a) of Table 4.

The panel (b) in Table 4 provides the simulated critical values for T−1χ2(
β̂hj−β̂hi

) at 5% level of probabil-

ity. To obtain the critical values, we generate 10,000 paths of 696 monthly observations of continuously

compounded excess returns and realized variances, consistently with the actual sample size. The sim-

ulations are performed under the assumption of no predictability. Simulation parameters are Rt = εt,

RVt = 0.6RVt−1 + ut, corr (εt, ut) = −0.3, σε = 1, σu = 1 for the short-memory (SM) specification and

Rt = εt, RVt = (1− L)−0.44 ut, corr (εt, ut) = −0.3, σε = 1, σu = 1 for the long-memory (LM) specification.

These parameters are chosen to replicate the empirical properties of the actual data as much as possible.

The autoregressive coefficient of the realized variance dynamics is consistent with the parameter value used

by BP (2008) in their local-to-unity analysis. Moreover, BP (2006) report long-memory parameter estimates

of the realized volatility process for the S&P 100 market index between 0.443 and 0.473 using a local Whittle

estimator. Finally, the negative correlation between return and variance innovations is a well-documented

stock market feature, sometimes referred to as the leverage effect as discussed in Jacquier, Polson and Rossi

(2004). The simulated series are then aggregated over h periods (1 to 120 months) and h-horizon predic-

tive regressions with and without an intercept, of excess returns on past realized variances are estimated.

Simulated critical values of T−1χ2
(β̂hj−β̂hi )

for a one-sided test of size 5% using Bonferroni adjustment are

reported. Significant spreads between β̂hi and β̂hj should generate T−1χ2(
β̂hj−β̂hi

) test statistic values in

the panel (a) of Table 4 that are larger than their corresponding critical values in the panel (b) of Table

4. Note that we only present short-memory simulations since long-range variance dynamics yield similar

results for pairwise equality tests.

When the regressions include an intercept, the observed differences are not statistically significant at
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short/medium horizon, i.e., up to 7 years. The estimates of the pairwise equality test statistics T−1χ2(
β̂hj−β̂hi

)
for hi = 1, ..., 72 and hj = 3, ..., 84 in the panel (a) of Table 4, are all included in their simulated 95% confi-

dence intervals in the panel (b) of Table 4. This reflects the fact that slope coefficients are found statistically

insignificant, thus mutually close for horizons between 1 to 84 months. Consistently with the detected long-

run risk-return relationship, we see significant T−1χ2(
β̂hj−β̂hi

) values in the bottom left rectangular area

of the panel (a) in Table 4, for hi = 1, ..., 84 and hj = 96, 108, 120. Finally, even though slopes become

significant beyond 7 years, their values stay close from an econometric standpoint. Therefore, the pairwise

equality test statistics are found insignificant in the bottom right corner of the panel (a) in Table 4, for

hi = 96, 108, 120 and hj = 108, 120.
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Table 5
Pairwise equality test statistics T−1χ2

(β̂hj
−β̂hi

)
for Eqn. (1) estimated without an intercept.

Panel a: h-horizon predictive regressions, without an intercept, of continuously compounded NYSE/AMEX value-weighted
excess returns from 1952 to 2009, on past realized variances as per Eqn. (1) are run. Horizons h = 1 to 120 months are
considered and T−1χ2

(β̂hj
−β̂hi

)
estimates are reported. [∗] indicates a significant rescaled Wald statistic value outside the

simulated confidence bounds shown in Panel b.
Panel b: simulation parameters are Rt = εt, RVt = 0.6RVt−1 + ut, corr (εt, ut) = −0.3. 10,000 samples of 696 months of
continuously compounded excess returns and realized variances are simulated under the assumption of no predictability.
Then, the simulated series are aggregated over h periods (1 to 120 months) and h-horizon predictive regressions without an
intercept, of excess returns on past realized variances are run. Simulated critical values of T−1χ2

(β̂hj
−β̂hi

)
for a one-sided

test of size 5% using Bonferroni correction are reported.

Panel a: Estimates of the pairwise equality test statistics

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.006

6 0.028[∗] 0.009[∗]

12 0.034[∗] 0.019[∗] 0.001

24 0.048[∗] 0.034[∗] 0.004 0.001

36 0.060[∗] 0.041[∗] 0.009 0.003 0.001

48 0.072[∗] 0.056[∗] 0.015 0.005 0.003 0.002

60 0.087[∗] 0.071[∗] 0.026 0.012 0.010 0.008 0.006

72 0.102[∗] 0.086[∗] 0.039 0.019 0.020 0.018 0.017 0.005

84 0.113[∗] 0.104[∗] 0.050 0.026 0.024 0.030 0.027 0.013 0.003

96 0.119[∗] 0.121[∗] 0.055 0.030 0.028 0.031 0.027 0.016 0.005 0.001

108 0.138[∗] 0.135[∗] 0.056 0.030 0.030 0.032 0.027 0.015 0.005 0.001 0.000

120 0.145[∗] 0.149[∗] 0.060 0.032 0.033 0.035 0.031 0.015 0.007 0.002 0.001 0.000

Panel b: Simulated critical values of the pairwise equality test statistics

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.007
6 0.008 0.007
12 0.015 0.017 0.016
24 0.025 0.031 0.048 0.034
36 0.036 0.038 0.073 0.070 0.041
48 0.047 0.052 0.094 0.100 0.072 0.041
60 0.058 0.067 0.117 0.130 0.112 0.080 0.040
72 0.070 0.078 0.139 0.157 0.153 0.112 0.081 0.040
84 0.084 0.097 0.162 0.184 0.185 0.153 0.120 0.083 0.039
96 0.095 0.113 0.183 0.208 0.215 0.195 0.151 0.129 0.084 0.038
108 0.110 0.124 0.215 0.240 0.246 0.232 0.200 0.166 0.129 0.082 0.036
120 0.125 0.144 0.243 0.270 0.276 0.268 0.241 0.201 0.174 0.129 0.080 0.034
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Constraining the intercept to zero in the regressions yields significant, positive and statistically close

slopes across horizons beyond the quarterly frequency. As a consequence, the panel (a) in Table 5 exhibits

significant pairwise equality test values only when hi = 1, 3 and hj = 6, ..., 120. For constrained regressions,

we fail to obtain evidence against a flat risk-return term structure beyond 3 months.

4.3 Sensitivity of short term estimates to the variability of the predictor

Looking at the significant difference between monthly and quarterly constrained regression estimates, and

the values obtained at longer horizons, one could conclude that there is some evidence of horizon effect.

We consider otherwise since the stability and robustness of short term estimations are overwhelmingly

affected by extreme volatility records, especially with the two major financial crises in our sampling window.

Camponovo, Scaillet and Trojani (2013) use a similar argument to propose a robust bootstrap method for

testing predictive relations that might be distorted by few anomalous observations. As shown in Fig. 3,

monthly variances for October 1987, Q4 2008 and Q1 2009 appear extremely high. These extreme values

are suspected to drive the negative and/or insignificant trade-offs found at the short term horizon.

To assess the sensitivity of short-run estimates to the variability of the predictor, we windsorize the

realized variance series. The primary benefit of pre-processing the variance series is to generate more robust

and stable estimations across horizons. The windsorization does not trim some observations away from

the sample, but rather decreases the magnitude of the extreme variance values by substituting them with

their 99% quantile. Obviously, data windsorization may not be adequate for some risk monitoring purposes.

When monthly variance data are windsorized (R̃V ) before the aggregation, the sluggish short term (monthly

and quarterly) trade-off intensities present sizeable increases to become positive and statistically significant

for constrained intercept regressions.
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Fig. 3. Monthly realized variance with 1% largest values plotted as dark grey filled circles.

Table 6 reports a striking increase in the monthly (respectively quarterly) slope value from -0.544 (re-

spectively 0.497) to 1.775 (respectively 2.409) for zero-intercept regressions. A percentage point rise in the

monthly (quarterly) realized variance induces an average increase in the excess return on the next month

(3 months) of 1.8% (2.4%). These numbers are quite comparable to the 2.9% increase at 10-years horizon.

Thus, sampling variation may explain the weak short term trade-offs in the data. Beyond the quarterly

horizon, the distorting effect of extreme variance values becomes less important in the regressions.

As shown in Table 7, the difference between slopes becomes statistically insignificant across all horizons

including the monthly and quarterly horizons. Accordingly, the rescaled Wald test statistic for a joint

restriction test T−1χ2
(∆) = 0.061 is found smaller than its simulated 5% right-tail critical value of 0.724.

This reflects a lack of evidence against the assumption of a flat term structure of risk-return trade-offs.
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Table 7
Estimates of pairwise equality test statistics T−1χ2

(β̂hj
−β̂hi

)
for zero-intercept regressions with 99% windsorized variance

series. h-horizon predictive regressions, without an intercept, of continuously compounded NYSE/AMEX value-weighted
excess returns from 1952 to 2009 on 99% windsorized realized variance series as per Eqn. (1), are run. Horizons h = 1
to 120 months are considered and T−1χ2

(β̂hj
−β̂hi

)
estimates are reported. [∗] indicates a significant rescaled Wald statistic

value outside the simulated confidence bounds shown in the Panel b in Table 5.

hi=1 3 6 12 24 36 48 60 72 84 96 108
hj=1

3 0.001
6 0.000 0.000
12 0.000 0.001 0.000
24 0.000 0.001 0.000 0.000
36 0.000 0.001 0.000 0.000 0.000
48 0.000 0.000 0.000 0.001 0.001 0.001
60 0.001 0.000 0.000 0.003 0.005 0.008 0.006
72 0.002 0.000 0.002 0.007 0.013 0.019 0.020 0.007
84 0.002 0.001 0.003 0.010 0.016 0.029 0.028 0.013 0.002
96 0.002 0.001 0.003 0.011 0.018 0.029 0.027 0.015 0.003 0.000
108 0.002 0.001 0.004 0.011 0.019 0.031 0.027 0.014 0.003 0.001 0.000
120 0.003 0.001 0.004 0.012 0.021 0.033 0.030 0.014 0.005 0.003 0.002 0.000

To induce a risk averse representative investor to hold the market portfolio in Merton’s (1973) ICAPM

world, it must promise a higher excess return as the market’s conditional variance increases. For an investor

endowed with isoelastic preferences, the intensity of this risk-return relation is measured by the slope coeffi-

cient which corresponds to her relative risk aversion. Zero-intercept regressions are consistent with Merton’s

(1973) ICAPM expectations under the assumption that market excess return and past market variance are

good proxies for conditional market risk premium and variance, respectively. Campbell and Thompson

(2008) also advocate for this restriction in the ICAPM estimation. Our findings suggest that the condi-

tional expected excess return on the stock market moves positively and proportionally with the market’s

conditional variance under the zero-intercept restriction. Hence, the risk-return term structure appears flat

across the holding periods we consider in our empirical analysis. This points towards the constancy of the

relative risk aversion of a representative investor with power utility looking at various investment horizons.

4.4 Smoothed Estimator

The empirical risk-return trade-off analysis can be performed at different horizons. Yet, there is not much

consensus on which data frequency to choose. This may explain some conflicting evidence found in the

finance literature. Nonetheless, when the effect of extreme variance observations in the sample is dampened
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through windsorization, we fail to reject the null hypothesis of a flat term structure of risk-return trade-offs

for zero-intercept estimations. This motivates the idea of computing a single estimate for the risk-return

trade-off intensity which will summarize the whole term structure. Interestingly, model averaging methods

can combine our multi-horizon set of slopes into one cross-horizon estimate. One can view this single

constrained estimator as a “backward-looking” proxy for the market price of risk which is robust to the

horizon effect.

We now introduce a general framework for model averaging. Let D be the available dataset and Mh a

model specified at a given horizon h ∈ H = {1, ..., 120}. Actually, H determines the number of all possible

models in the analysis. Typically, this set can be very large. Given that the “true” specification is unknown,

a single model selection is less appealing as it amounts to neglecting some information in the card (H)− 1

remaining models. A valuable alternative is to combine the parameter estimates from the different models,

weighting them with their corresponding posterior probabilities {p (Mh | D)}h∈H. Following formulas from

Leamer (1978), the posterior mean and variance of the parameter in the composite model are

E (β | D) =
∑
h∈H

p (Mh | D)× E (β | Mh, D) , (10)

and

V ar (β | D) =
∑
h∈H

p (Mh | D)
[
V ar (β | Mh, D) + (E (β | Mh, D)− E (β | D))2

]
. (11)

The posterior variance formula illustrates both estimation and model risks. The first term in the posterior

variance expression reflects the aggregation of model-specific estimation risks. The second term captures

the variability across the models and therefore, it measures model uncertainty.

In the frequentist framework, the model averaging methodology proposes a smoothed estimator (see,

e.g., Sala-i-Martin et al., 2004 and Hansen, 2007)

β̂sm =
∑
h∈H

ωh × β̂h. (12)

Note that for a given set of variables, E (β | Mh, D) coincides with the least squares coefficient β̂h assum-
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ing normality. Moreover, the weight ωh can be obtained from estimation criteria, including Akaike informa-

tion criterion, Mallows criterion, Bayesian information criterion, etc. Based on the Akaike information crite-

rion, the corresponding weight for Model Mh is ωh = exp
(
−1

2AICMh

)
/
∑

l∈H exp
(
−1

2AICMl

)
. Similarly,

the Bayesian information criterion weight of Model Mh is ωh = exp
(
−1

2BICMh

)
/
∑

l∈H exp
(
−1

2BICMl

)
.

The Mallows criterion-based weight vector W =
(
ω1, . . . , ωcard(H)

)′
minimizes a linear-quadratic objective

function. Thus, the empirical Mallows weight vector Ŵ = arg min
W

W ′e′eW + 2σ2K ′W is calculated numer-

ically since no closed-form solution is available.

Accordingly, the variance of the smoothed estimator is computed as

V ar
(
β̂sm

)
=
∑
h∈H

ωh

[
V ar

(
β̂h

)
+
(
β̂h − β̂sm

)2
]
. (13)

Hansen (2007) conducts some simulation experiments to gauge the relative performance of least squares

model average estimators. He finds that the smoothed AIC and Mallows estimators achieve lower risk than

the smoothed BIC estimator in most simulation scenarios.

Table 8
Smoothed cross-horizon risk-return trade-off estimates.

AIC BIC Mallows

β̂sm 2.370 2.368 2.024

SE
(
β̂sm

)
0.535 0.538 0.767

Table 8 shows three cross-horizon estimates of the risk-return trade-off based on different information

criteria. Their values are between 2 and 3, consistently with previous empirical estimations of the relative

risk aversion at the market index level. Recently in Bali and Engle (2010), the risk aversion coefficient was

estimated to be between 2 and 4 across several assets in a panel regression under a Dynamic Conditional

Correlations.

5. Conclusion

Our empirical evidence suggests that the term structure of risk-return trade-offs is nearly flat for low

frequency data (monthly horizon and beyond). We argue that the weak evidence of risk-return trade-off at
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the short horizon can be explained by sampling variation. For zero-intercept regressions, the linkages between

market excess returns and past market variances appear both statistically and economically significant at

all horizons. Based on the rescaled Wald statistics, we find that the differences between the estimated slope

coefficients are statistically insignificant across horizons. It is worth noting that the zero-intercept restriction

in the risk-return analysis is intended to yield more precise slope estimates as pointed out by Lanne and

Saikkonen (2006), BP (2008), Campbell and Thompson (2008). A flat term structure of risk-return trade-

offs, as suggested by our empirical findings, is broadly consistent with the implications of Merton-type

ICAPM. Specifically, our empirical evidence does not indicate that different investment holding periods

can generate notable changes in the risk-return trade-off intensity at the market level. Furthermore, model

averaging techniques allow us to compute cross-horizon estimates of the risk-return trade-offs. The risk-

return trade-off intensity is often considered as a proxy for the risk aversion of a representative investor. Our

results show that the cross-horizon proxies for the relative risk aversion coefficient of an aggregate investor

lie in a reasonable range, between 2 and 3.

We prove the econometric validity of our approach based on robust theoretical and empirical arguments.

We rely on the asymptotic joint distribution of the set of trade-off intensities to provide some analytical infer-

ence results. We also implement some simulations to support the theoretical derivations. Our methodology

rigorously incorporates the persistence in the realized variance using short- and long-memory dynamics.

An important research avenue is to study how risk-return models translate into optimal allocations from

a long term investment perspective. Clearly, a strategic investor should care about both estimation and

misspecification risks in choosing her optimal portfolio. We leave this topic for future research.
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Appendix A. Proofs

A sketch for the proof of the propositions and corollaries proceeds in two main steps. First, the statistics of

interest are properly scaled and re-expressed in terms of the predictor and predicted variables of the long-run

risk-return regressions. Second, the asymptotic results are derived by invoking the Functional Central Limit

Theorem (FCLT) and the Continuous Mapping Theorem (CMT).

Proof of Proposition 1. Assumptions (1-4) imply the following convergence result for a generic hl-horizon

regression slope estimate:

T β̂hl =

1
T

T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)(
RVt−hl,t

−RV−hl
T3/2

)
1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T3/2

)2

L−→ σε
σu

∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds∫ 1−λl
λl

J
2
c(s,−λl)ds

, l=i,j.

Under the same set of Assumptions (1-4), a scaled covariance matrix of slope coefficients estimated at two

arbitrary horizons hi and hj (w.l.o.g.) is defined as:

T 3V ar

 β̂hi

β̂hj

 = T 3

 V ar
(
β̂hi

)
Cov

(
β̂hi , β̂hj

)
Cov

(
β̂hi , β̂hj

)
V ar

(
β̂hj

)
 .

By rewriting the elements of the covariance matrix in terms of the regressor (RVt−hl,t) and regressand

(Rt,t+hl), we obtain:

T 3V ar
(
β̂hl

)
=

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
RVt−hl,t−RV −hl

T 3/2

)2
)−1

,

where S2
l = 1

T−2hl+1

[
T−2hl+1∑
t=1

(
Rt,t+hl −Rhl

)2 − β̂2

hl

T−2hl+1∑
t=1

(
RVt−hl,t −RV −hl

)2]
, l=i,j.

We also have:

37



T 3Cov
(
β̂hi , β̂hj

)
=

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t−RV−hi

T3/2

)(
RVt−hj,t−RV−hj

T3/2

)
(

1
T

T−2hi+1∑
t=1

(
RVt−hi,t−RV−hi

T3/2

)2
) 1

T

T−2hj+1∑
t=1

(
RVt−hj,t−RV−hj

T3/2

)2


 ,

where Sij = 1
T−2h(i∨j)+1


T−2h(i∨j)+1∑

t=1

(
Rt,t+hi −Rhi

) (
Rt,t+hj −Rhj

)
−β̂hi β̂hj

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t −RV −hi

) (
RVt−hj ,t −RV −hj

)
 is the covariance

between the error terms of the two regressions, and h(i∨j) ≡ max (hi, hj).

Note that Rhl = 1
T−2hl+1

T−2hl+1∑
t=1

Rt,t+hl and RV −hl = 1
T−2hl+1

T−2hl+1∑
t=1

RVt−hl,t, l = i, j, are sample averages

of the regressand and regressor for a generic hl-horizon predictive risk-return regression.

Now, by invoking the FCLT and the CMT it follows that:

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
RVt−hl,t−RV −hl

T 3/2

)2
)−1

= T
T−2hl+1

[
1
T

T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)2

−
(
T β̂hl

)2
1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T3/2

)2
]

1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T3/2

)2

L−→ σ2
ε
σ2
u

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

J
2
c(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(1−2λl)
(∫ 1−λl
λl

J
2
c(s,−λl)ds

)2 , l = i, j.

It also holds that:

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t−RV−hi

T3/2

)(
RVt−hj,t−RV−hj

T3/2

)
(

1
T

T−2hi+1∑
t=1

(
RVt−hi,t−RV−hi

T3/2

)2
) 1

T

T−2hj+1∑
t=1

(
RVt−hj,t−RV−hj

T3/2

)2




L−→ σ2
ε
σ2
u

1
1−2λ(i∨j)



∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds∫ 1−λi
λi

J
2
c(s,−λi)ds

∫ 1−λj
λj

J
2
c(s,−λj)ds

−
∫ 1−λi
λi

W (s,λi)Jc(s,−λi)ds
∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds
(∫ 1−λ(i∨j)

λ(i∨j)
Jc(s,−λi)Jc(s,−λj)ds

)2

(∫ 1−λi
λi

J
2
c(s,−λi)ds

)2(∫ 1−λj
λj

J
2
c(s,−λj)ds

)2

.

Hence, T 3V ar
(
β̂hl

)
L−→ Avar

(
β̂hl

)
= σ2

ε
σ2
u

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

J
2
c(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Jc(s,−λl)ds
)2]

(1−2λl)
(∫ 1−λl
λl

J
2
c(s,−λl)ds

)2 , l=i,j.

Finally, T 3Cov
(
β̂hi , β̂hj

)
L−→ Acov

(
β̂hi , β̂hj

)
, where
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Acov
(
β̂hi , β̂hj

)
= σ2

ε

σ2
u(1−2λ(i∨j))



∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

Jc(s,−λi)Jc(s,−λj)ds∫ 1−λi
λi

J
2
c(s,−λi)ds

∫ 1−λj
λj

J
2
c(s,−λj)ds

−
∫ 1−λi
λi

W (s,λi)Jc(s,−λi)ds
∫ 1−λj
λj

W (s,λj)Jc(s,−λj)ds
(∫ 1−λ(i∨j)

λ(i∨j)
Jc(s,−λi)Jc(s,−λj)ds

)2

(∫ 1−λi
λi

J
2
c(s,−λi)ds

)2(∫ 1−λj
λj

J
2
c(s,−λj)ds

)2

 ,
and λ(i∨j) ≡ max (λi, λj) .

The proof of Proposition 2 is similar except that for the restricted regressions, W (s, λ) and Jc (s,−λ) are

replaced with their uncentered versions W (s, λ) and Jc (s,−λ) .

Proof of Proposition 3. Under Assumptions (1-2, 5-6), the following convergence result for a generic

hl-horizon regression slope estimate holds:

T dβ̂hl =

1
T

T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)(
RVt−hl,t

−RV−hl
T1/2+d

)
1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T1/2+d

)2

L−→ σ0
σd

∫ 1−λl
λl

W (s,λl)Bd(s,−λl)ds∫ 1−λl
λl

B
2
d(s,−λl)ds

, l=i,j.

Moreover, if Assumptions (1-2, 5-6) are met, we can scale a covariance matrix of the slope coefficients

estimated at two arbitrary horizons hi and hj (w.l.o.g.) as follows:

T 1+2dV ar

 β̂hi

β̂hj

 = T 1+2d

 V ar
(
β̂hi

)
Cov

(
β̂hi , β̂hj

)
Cov

(
β̂hi , β̂hj

)
V ar

(
β̂hj

)
 .

Thus, the diagonal elements of the covariance matrix may be re-expressed in terms of the regressor (RVt−hl,t)

and regressand (Rt,t+hl) as:

T 1+2dV ar
(
β̂hl

)
=

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
RVt−hl,t−RV −hl

T 1/2+d

)2
)−1

,

where S2
l = 1

T−2hl+1

[
T−2hl+1∑
t=1

(
Rt,t+hl −Rhl

)2 − β̂2

hl

T−2hl+1∑
t=1

(
RVt−hl,t −RV −hl

)2]
, l=i,j.

Similarly, we can rewrite the off-diagonal elements as:

T 1+2dCov
(
β̂hi , β̂hj

)
=

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t−RV−hi

T1/2+d

)(
RVt−hj,t−RV−hj

T1/2+d

)
(

1
T

T−2hi+1∑
t=1

(
RVt−hi,t−RV−hi

T1/2+d

)2
) 1

T

T−2hj+1∑
t=1

(
RVt−hj,t−RV−hj

T1/2+d

)2


 ,
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where Sij = 1
T−2h(i∨j)+1


T−2h(i∨j)+1∑

t=1

(
Rt,t+hi −Rhi

) (
Rt,t+hj −Rhj

)
−β̂hi β̂hj

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t −RV −hi

) (
RVt−hj ,t −RV −hj

)
 is the covariance

between the error terms of the two regressions and h(i∨j) ≡ max (hi, hj).

The FCLT and the CMT allow us to compute the following convergence result:

S2
l
T

(
1
T

T−2hl+1∑
t=1

(
RVt−hl,t−RV −hl

T 1/2+d

)2
)−1

= 1
T−2hl+1

[
T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)2

−
(
T dβ̂hl

)2 T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T1/2+d

)2
]

1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T1/2+d

)2

= T
T−2hl+1

[
1
T

T−2hl+1∑
t=1

(
Rt,t+hl

−Rhl
T1/2

)2

−
(
T dβ̂hl

)2
1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T1/2+d

)2
]

1
T

T−2hl+1∑
t=1

(
RVt−hl,t

−RV−hl
T1/2+d

)2

L−→ σ2
ϑ

σ2
d

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

B
2
d(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Bd(s,−λl)ds
)2]

(1−2λl)
(∫ 1−λl
λl

B
2
d(s,−λl)ds

)2 , l = i, j.

It also holds that:

Sij
T


 1
T

T−2h(i∨j)+1∑
t=1

(
RVt−hi,t−RV−hi

T1/2+d

)(
RVt−hj,t−RV−hj

T1/2+d

)
(

1
T

T−2hi+1∑
t=1

(
RVt−hi,t−RV−hi

T1/2+d

)2
) 1

T

T−2hj+1∑
t=1

(
RVt−hj,t−RV−hj

T1/2+d

)2




L−→ σ2
ϑ

σ2
d(1−2λ(i∨j))



∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

Bd(s,−λi)Bd(s,−λj)ds∫ 1−λi
λi

B
2
d(s,−λi)ds

∫ 1−λj
λj

B
2
d(s,−λj)ds

−
∫ 1−λi
λi

W (s,λi)Bd(s,−λi)ds
∫ 1−λj
λj

W (s,λj)Bd(s,−λj)ds
(∫ 1−λ(i∨j)

λ(i∨j)
Bd(s,−λi)Bd(s,−λj)ds

)2

(∫ 1−λi
λi

B
2
d(s,−λi)ds

)2(∫ 1−λj
λj

B
2
d(s,−λj)ds

)2

.

Hence, T 1+2dV ar
(
β̂hl

)
L−→ Avar

(
β̂hl

)
=

σ2
ϑ

σ2
d

[∫ 1−λl
λl

W
2
(s,λl)ds

∫ 1−λl
λl

B
2
d(s,−λl)ds−

(∫ 1−λl
λl

W (s,λl)Bd(s,−λl)ds
)2]

(1−2λl)
(∫ 1−λl
λl

B
2
d(s,−λl)ds

)2 , l =

i, j.

Finally, T 1+2dCov
(
β̂hi , β̂hj

)
L−→ Acov

(
β̂hi , β̂hj

)
, where

Acov
(
β̂hi , β̂hj

)
=

σ2
ϑ

σ2
d(1−2λ(i∨j))



∫ 1−λ(i∨j)
λ(i∨j)

W (s,λi)W (s,λj)ds
∫ 1−λ(i∨j)
λ(i∨j)

Bd(s,−λi)Bd(s,−λj)ds∫ 1−λi
λi

B
2
d(s,−λi)ds

∫ 1−λj
λj

B
2
d(s,−λj)ds

−
∫ 1−λi
λi

W (s,λi)Bd(s,−λi)ds
∫ 1−λj
λj

W (s,λj)Bd(s,−λj)ds
(∫ 1−λ(i∨j)

λ(i∨j)
Bd(s,−λi)Bd(s,−λj)ds

)2

(∫ 1−λi
λi

B
2
d(s,−λi)ds

)2(∫ 1−λj
λj

B
2
d(s,−λj)ds

)2

 ,
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and λ(i∨j) ≡ max (λi, λj) .

The proof of Proposition 4 follows the same steps except that for the restricted regressions, W (s, λ) and

Bd (s,−λ) are replaced with their uncentered counterparts W (s, λ) and Bd (s,−λ) .

Proof of Corollary 1. Let λ(a∨b) denote the maximum between two distinct fractions of overlap λa

and λb. To derive the asymptotic distribution of a rescaled -Wald statistic, we consider the following two

four-argument functionals of stochastic processes that are defined and almost surely continuous over [0, 1]:

N (Xs (λa) , Xs (λb) , Ys (λa) , Ys (λb)) ≡ {F1 (Xs (λb) , Ys (λb))− F1 (Xs (λa) , Ys (λa))}2 ,

and

D (Xs (λa) , Xs (λb) , Ys (λa) , Ys (λb)) ≡
{
F2 (Xs (λa) , Ys (λa))

1− 2λa

+
F2 (Xs (λb) , Ys (λb))

1− 2λb

− 2× F3 (Xs (λa) , Xs (λb) , Ys (λa) , Ys (λb))

1− 2λ
(a∨b)

}
,

where F1 (•), F2 (•), and F3 (•) are given in the main text.

To investigate the horizon effect in the risk-return relationship estimated at two distinct horizons hi and

hj (w.l.o.g.), we use a rescaled Wald statistic and test the following restriction G

 β̂hi

β̂hj

 = 0 where

G =

[
−1 1

]
.

Recall that T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) =

[
T
(
β̂hj−β̂hi−0

)]2
T 3
[
V ar(β̂hi)+V ar

(
β̂hj

)
−2Cov

(
β̂hi ,β̂hj

)] .

Hence, combining the FCLT, the CMT and the results of Propositions (1) and (2) yields:

for the unrestricted regressions,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→
N
(
W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)

)
D
(
W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj)

) .
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and for the restricted regressions,

T−1χ2(
β̂
hj=bλjTc−β̂hi=bλiTc

) L−→ N (W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj))
D (W (s, λi) ,W (s, λj) , Jc (s,−λi) , Jc (s,−λj))

.

This completes the proof of Corollary 1.

The proof of Corollary 2 proceeds similarly, by invoking the FCLT and the CMT and using the conver-

gence results of Propositions (3) and (4).
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