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Abstract:   
We study the effect of heterogeneous growth in demand on resource extraction. Using 
the Great Fish War framework of Levhari and Mirman (1980), we show that 
heterogeneity in demand growth has a profound effect on both cooperative and non-
cooperative solutions. 
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1 Introduction

Since the beginning of the 20th century, the use of global materials has in-

creased 8-fold (Krausmann et al., 2009). This increase in world demand

ranges from natural resources such as fish to energy-related resources. See

Figures 1 and 2 in Appendix A. Moreover, there is a lot of heterogeneity

about the growth rates for demand of natural resources. For instance, the

annual fish consumption growth rate for the years 1999-2013 is only 1.06% for

the US, but 3.43% for China. Similarly, for total primary energy consump-

tion, the annual growth rate for the years 2006-2013 is negative for the US

(−0.44%), but positive for both India (5.14%) and China (7.16%). Figures 3

and 4 in Appendix A further illustrate this heterogeneity of demand growth

among countries for both fish and primary energy consumption. In view

of such heterogeneity with the particular case of China’s exploding demand

for resources, it is important to understand how the anticipation of growing

demand affects extraction.

In this paper, we study the effect of heterogeneous growth in demand on

extraction. To that end, we extend the Great Fish War framework (Levhari

and Mirman, 1980) to a situation in which demand for the resource grows

exogenously and heterogeneously.1 Specifically, we consider the case of two

countries with heterogeneous growth in demand. The growth in demand

is assumed exogenous in order to identify clearly the effect of growing de-

mand on behavior, thereby abstracting from the effect of natural resource

utilization on demand growth.

We consider both non-cooperative and cooperative solutions. Under non-

cooperation, a higher growth rate in demand for one country leads to lower

extraction whereas a higher growth rate in demand from rivalrous countries

leads to higher extraction. The presence of cooperation alters this result.

The results change from the non-cooperative case. Specifically, under coop-

eration, a higher growth from any of the countries leads systematically to

lower extraction of the resources for both countries. The presence of hetero-

1See Long (2011) for an exhaustive survey of models of dynamic games in the exploita-
tion of renewable and exhaustible resources. None considers exogenous growth in demand
with the possibility of heterogeneity in the growth rates, as in our paper.
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geneous growth in demand increases the tragedy of commons because the

anticipation of higher future demand from rivalrous countries induces each

country to increase present extraction.

The rest of the paper is organized as follows. In Section 2, we present the

model. Section 3 provides both non-cooperative and cooperative solutions,

which are then analyzed in Section 4.

2 The Model

Consider the Great Fish War (Levhari and Mirman, 1980) dynamic game

in which two countries derive utility from the utilization of a common-pool

resource. Let yt be the stock of the resource at time t. In the absence of

extraction, the stock evolves according to the following rule,

yt+1 = yαt (1)

where α ∈ (0, 1]. From (1), the evolution of the stock applies to both renew-

able resources (i.e., α ∈ (0, 1)) and depletable resources (i.e., α = 1).

At time t, for i = 1, 2, country i utilizes qi,t units of the stock. Using (1),

the evolution of the stock under exploitation is given by

yt+1 = (yt − q1,t − q2,t)
α (2)

where a total of q1,t+q2,t is utilized at time t. For country i at time t, utilizing

qi,t yields utility ui(qi,t) = gi,t ln qi,t where gi,t > 0 reflects country i’s present

level of demand.2

In order to study the effect of exogenous and heterogeneous growth in

demand on behavior, we assume that the demand parameter evolves over

time. For i = 1, 2 and t = 1, 2, . . .,

gi,t+1 = λigi,t + θi (3)

2In Levhari and Mirman (1980), gi,t = 1 for all i and t.
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where λi ∈ [0, 1) and θi > 0 are country-specific parameters. Given the initial

value gi,0 > 0,3 the complete solution to (3) is

gi,t = λt
i

(
gi,0 − θi

1− λi

)
+

θi
1− λi

(4)

and the system converges asymptotically to the steady state

gi =
θi

1− λi

> 0. (5)

Hence, from (5), the difference in demand between the two countries con-

verges asymptotically to
∣∣∣ θ1
1−λ1

− θ2
1−λ2

∣∣∣.

3 Non-cooperative vs. cooperation solutions

In this section, we first characterize the non-cooperative solution, i.e., the

feedback-Nash equilibrium. We then provide the solution when the two coun-

tries cooperate.

Definition 3.1 states the feedback-Nash equilibrium in the infinite-horizon

case.4 To simplify notation, we drop the subscript t, and use instead a

hat sign to mark the evolution over time. Specifically, gi and ĝi represent

the level of demand today and tomorrow, respectively. Analogously, y and

ŷ = (y− q1 − q2)
α are stock today and tomorrow, respectively. Let δ ∈ (0, 1)

be the discount factor. The superscript N stands for Non-cooperation.

3The restrictions on λi ∈ [0, 1) and θi > 0 ensure that, for any gi,0 > 0, the system
converges asymptotically to a positive steady state. If λi = 1, then the system explodes
since gi,t = gi,0 + tθi and θi > 0.

4The conjecture can be inferred by solving the problem recursively as done in Levhari
and Mirman (1980). By solving recursively, one realizes that the value function is always
linear in ln y. Moreover, the limit of the solution for the t-period game as t goes to infinity
is the solution to the infinite-horizon game that we consider.
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Definition 3.1. The tuple {QN
1 (y, g1, g2), Q

N
2 (y, g2, g1)} is a feedback-Nash

equilibrium if

1. For i, j = 1, 2, i �= j, given QN
j (y, gi, gj),

QN
i (y, gi, gj) = arg max

qi

{gi ln qi

+δV N
i

(
(y − qi −QN

j (y, gi, gj))
α, λigi + θi, λjgj + θj

)}
(6)

such that qi ∈ (0, y −QN
j (y, gj, gi)) and where, for any {y′, g′i, g′j},

V N
i (y′, g′i, g

′
j) = gi lnQ

N
i (y

′, g′i, g
′
j)

+ δV N
i ((y′ −Q1(y

′, g′1, g
′
2)−Q2(y

′, g′2, g
′
1))

α, λig
′
i + θi, λjg

′
j + θj).

(7)

Proposition 3.2 presents the non-cooperative solution.

Proposition 3.2. There exists a unique feedback-Nash equilibrium. In equi-

librium, for i, j = 1, 2, i �= j,

QN
i (y, gi, gj) =

gi/A
N
i

gi/AN
i + gj/AN

j + αδ
y (8)

where

AN
i ≡ λigi +

θi
1−αδ

1− αδλi

. (9)

Proof. See Appendix B.

Remark 3.3. In the non-cooperative steady state,

Q
N

i (y
N , gi, gj) =

1− αδ

2− αδ
yN . (10)

where yN is the stock value in the non-cooperative steady state, i.e.,

yN =
αδA

N

1 A
N

2

g2A
N

1 + αδA
N

1 A
N

2 + g1A
N

2

(11)

6



and A
N

2 is AN
2 evaluated at steady state.

Having characterized the non-cooperative solution, we now turn to the

case of cooperation. When countries cooperate, individual extractions is

chosen so as to maximize the sum of present and future discounted utilities,

i.e., {QC
1 (y, g1, g2), Q

C
2 (y, g2, g1)} are the optimal solutions consistent with

the Bellman equation

V C(y, g1, g2) = max
q1,q2∈(0,y)

{g1 ln q1 + g2 ln q2

+ δV C((y − q1 − q2)
α, λ1g1 + θ1, λ2g2 + θ2)}. (12)

Here, the superscript C stands for Cooperation.

Proposition 3.4 characterizes the cooperative solution.

Proposition 3.4. From (12), for i, j = 1, 2, i �= j,

QC
i (y, gi, gj) =

gi/A
C

g1+g2
AC + αδ

y (13)

where

AC ≡ λ1g1 +
θ1

1−αδ

1− αδλ1
+

λ2g2 +
θ2

1−αδ

1− αδλ2
. (14)

Proof. See Appendix B.

Remark 3.5. In the cooperative steady state,

Q
C

i (y
C , gi, gj) =

gi (1− αδ)

gi + gj
yC . (15)

where g1, g2 are given by (5) and yC is the cooperative steady state stock, i.e.,

yC =
αδA

C

g1 + g2 + αδA
C

(16)

and A
C
is given by (14) and evaluated at steady state.

From Propositions 3.2 and 3.4, it follows that non-cooperation induces

both countries to extract more than cooperation, which yields a lower level
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of the resource stock in the steady state. Remark 3.6 restates the tragedy of

the commons in the context of heterogeneous growth in demand.

Remark 3.6. From (8) and (13),

QC
1 (y, g1, g2) +QC

2 (y, g2, g1) ≤ QN
1 (y, g1, g2) +QN

2 (y, g2, g1). (17)

4 Discussion

In this section, we study how noon-cooperation affects behavior in the pres-

ence of heterogeneous growth in demand. We begin by considering the inter-

mediate case in which the level of demand is different across the two coun-

tries, i.e., g1 �= g2, but without growth in demand. Proposition 4.1 states

that in the presence of differences in demand, non-cooperation distorts the

allocation of the resource between the two countries in favor of the smaller

country. Specifically, the cooperative solution allocates more resource toward

the largest country whereas in the non-cooperative solution, each country ex-

tracts the same amount each period, regardless of size of demand.

Proposition 4.1. Suppose that λi = 1 and θi = 0. Then,

1. Under cooperation, for i = 1, 2,

QC
i (y, g1, g2) =

gi (1− αδ)

gi + gj
y. (18)

2. Under non-cooperation, for i = 1, 2,

QN
i (y, gi, gj) =

1− αδ

2− αδ
y. (19)

Proof. Evaluating (13) and (8) at λi = 1 and θi = 0 yields (18) and (19),

respectively.

Having considered the intermediate case of heterogeneity in demand with

no growth, we now study how the non-cooperative solution compares to the
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cooperative solution when there is heterogeneous growth in demand. Propo-

sition 4.2 states that in the presence of heterogeneous growth in demand,

similar to the case of no growth, the cooperative solution considers higher

extraction level for the country with larger present-demand size, i.e., larger

gi. However, unlike the no-growth case, under non-cooperation, countries

with heterogeneous growth in demand extract unequally. Nevertheless, the

allocation of the resource between the two countries is distorted in a differ-

ent way. Indeed, under non-cooperation, countries take account of growing

demand (i.e., the terms AN
i and AN

j ) for their current consumption decisions.

Proposition 4.2. Suppose that λi ∈ [0, 1) and θi > 0. Then,

1. Under cooperation, from (13) and (14), QC
i (y, g1, g2) > QC

j (y, g1, g2)

if and only if gi > gj .

2. Under non-cooperation, from (8) and (9), QN
i (y, g1, g2) > QN

j (y, g1, g2)

if and only if
gi
AN

i

>
gj
AN

j

. (20)

Proposition 4.3 provides the effect of an increase in the size of demand on

the cooperative and the non-cooperative solutions. Consider first an increase

in the current demand of one country (part (a)). Under cooperation, such

change increases extraction for the growing country, but reduces extraction of

the other country. However, under non-cooperation, both countries increase

their resource extraction. Consider next an increase in the future demand

one country (part (b)). Under cooperation, each country reduces present

extraction to preserve the stock of resources for the future enlarged demand.

Under non-cooperation, the country whose future demand size has increased,

cuts current resource extraction. However, the other country increases ex-

traction in anticipation to lower availability in future. Hence, heterogeneity

in demand growth has an effect in over-exploitation of the resources and the

tragedy of the commons. The reason is that, under non-cooperation, coun-

tries’ competition to extract resources is exacerbated when they anticipate

higher future demand from their competitor.
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Proposition 4.3. For i, j = 1, 2, i �= j,

1. Under cooperation, from (13) and (14),

(a)
∂QC

i (y,gi,gj)

∂gi
> 0,

∂QC
j (y,gi,gj)

∂gi
< 0,

(b)
∂QC

i (y,gi,gj)

∂ĝi
< 0,

∂QC
j (y,gi,gj)

∂ĝi
< 0.

2. Under non-cooperation, from (8) and (9),

(a)
∂QN

i (y,gi,gj)

∂gi
> 0,

∂QN
j (y,gi,gj)

∂gi
> 0,

(b)
∂QN

i (y,gi,gj)

∂ĝi
< 0,

∂QN
j (y,gi,gj)

∂ĝi
> 0.

In order to understand better the distortion resulting from non-cooperation

pointed out in Proposition 4.3, we can consider each country’s share of extrac-

tion. Let rCi and rNi be country i’s share of extraction under cooperation and

non-cooperation, respectively. Hence, from (13) and (8), for i, j = 1, 2, i �= j,

rCi =
QC

i (y, gi, gj)

QC
1 (y, gi, gj) +QC

2 (y, gi, gj)
=

gi
gi + gj

, (21)

rNi =
QN

i (y, gi, gj)

QN
1 (y, gi, gj) +QN

2 (y, gi, gj)
=

giA
N
j

giA
N
j + gjA

N
i

. (22)

As it is presented in part 1.a of Remark 4.4, under cooperation, an in-

crease in the demand size of a country increases his own share of extraction,

and thus reduces the other country’s share of extraction. These effects hold

under non-cooperation as well (part 2.a). In other words, even though part

2.a of Proposition 4.3 states that, under non-cooperation, in response to an

increase in the demand size of country i, country j increases its extraction,

its share decreases due to the greater increase in the demand size of its ri-

val, i.e., country i. Under the cooperative solution, an increase in the future

demand size of a country does not affect the countries extractions shares to-

day. However, under non-cooperation, the share of the country whose future

demand size has increased will decrease due to the strategic reaction of its

rival (parts (1-b) and (2- b) of Remark 4.4).
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Remark 4.4. For i, j = 1, 2, i �= j,

1. Under cooperation, from (21)

(a)
∂rCi
∂gi

> 0,
∂rCj
∂gi

< 0,

(b)
∂rCi
∂ĝi

= 0,
∂rCj
∂ĝi

= 0.

2. Under non-cooperation, from 22

(a)
∂rNi
∂gi

> 0,
∂rNj
∂gi

< 0,

(b)
∂rNi
∂ĝi

< 0,
∂rNj
∂ĝi

> 0.
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A Figures
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Figure 1: World Fish Consumption. Source: OECD/FAO (2013),“OECD-FAO

Agricultural Outlook: Highlights 2013,” OECD Agriculture Statistics (database).
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Figure 2: World Total Primary Energy Consumption. Source:

U.S. Energy Information Administration (EIA); International Energy Statis-

tics database (as of November 2012); and International Energy Agency, “Bal-

ances of OECD and Non-OECD Statistics” (2012).
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Figure 3: Fish Consumption by Country. Source: OECD/FAO (2013),

“OECD-FAO Agricultural Outlook: Highlights 2013,” OECD Agriculture Statis-

tics (database).
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Figure 4: Total Primary Energy Consumption by Country. Source:

U.S. Energy Information Administration (EIA); International Energy Statis-

tics database (as of November 2012); and International Energy Agency, “Bal-

ances of OECD and Non-OECD Statistics” (2012).
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B Proofs

Proof of Proposition 3.2. We conjecture that country i’s value function

has the form,

V N
i (y, gi, gj) = (XN

i gi + Y N
i ) ln y + ϕN

i (gi, gj). (23)

Plugging (23) into the objective function of (6) yields the dynamic maxi-

mization problem

max
qi

{gi ln qi + δ(Ai ln(y − q1 − q2)
α + ϕN

i (ĝi, ĝj)} (24)

where AN
i = XN

i ĝi + Y N
i . For i, j = 1, 2, i �= j, given qj = QN

j (y, gj, gi),

country i’s first-order condition is

gi
qi

=
αδAN

i

y − qi −QN
j (y, gj, gi)

, (25)

which yields QN
i (y, gi, gj) = ωN

i y where

ωN
i =

gi/A
N
i

gi/A
N
i + gj/A

N
j + αδ

. (26)

Plugging QN
i (y, gi, gj) = ωN

i y, AN
i = XN

i ĝi + Y N
i , and (23) into the

objective function of (24) yields the value function

V N
i (y, gi, gj) = gi lnω

N
i + gi ln y + δα(XN

i ĝi + Y N
i ) ln(1− ωN

i − ωN
j ))

+ δα(XN
i ĝi + Y N

i ) ln y + ϕN
i (ĝi, ĝj), (27)

which needs to agree with the conjecture as defined by (23), i.e.,

XN
i gi + Y N

i = gi + δα
(
XN

i (λigi + θi) + Y N
i

)
(28)

and

ϕN
i (gi, gj) = gi lnω

N
i + δα

(
XN

i ĝi + Y N
i

)
ln(1−ωN

i −ωN
j )+ δϕN

i (ĝi, ĝj). (29)
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Given that αδλi < 1, equation (28) implies that

XN
i =

1

1− αδλi

, (30)

Y N
i =

αδθi
1− αδ

1

1− αδλi

, (31)

which, using (26) and the fact that AN
i = XN

i ĝi + Y N
i , yields (8) and (9).

Proof of Proposition 3.4. We conjecture that the cooperative value

function has the form,

V C(y, g1, g2) =
(
XC

1 g1 +XC
2 g2 + Y C

)
ln y + ϕC(g1, g2). (32)

Plugging (23) into (12) yields

V C(y, g1, g2) = max
0<q1,q2<y

{g1 ln q1 + g2 ln q2

+ δ(AC ln(y − q1 − q2)
α + ϕC(ĝ1, ĝ2))}. (33)

where AC = XC
1 ĝ1+XC

2 ĝ2+Y C . For i, j = 1, 2, i �= j, the first-order condition

for i yields

qi = gi
y − qj

gi + αδAC
(34)

so that QC
i (y, g1, g2) = ωC

i y where

ωC
i =

gi
gi + gj + αδAC

. (35)

Plugging QC
i (y, gi, gj) = ωC

i y, A
C = XC

1 ĝ1+XC
2 ĝ2+Y C and (32) into (33)

yields the value function

V C(y, g1, g2) = (g1 + g2) ln y + g1 lnω
C
1 + g2 lnω

C
2

+ δα
(
XC

1 ĝ1 +XC
2 ĝ2 + Y C

) (
ln y + ln(1− ωC

1 − ωC
2 )

)
+ δϕC(ĝ1, ĝ2), (36)
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which needs to agree with the conjecture as defined by (32), i.e.,

XC
1 g1 +XC

2 g2 + Y C = g1 + g2 + αδ
(
XC

1 ĝ1 +XC
2 ĝ2 + Y C

)
(37)

and

ϕC(g1, g2) = g1 lnω
C
1 + g2 lnω

C
2 +

δα
(
XC

1 ĝ1 +XC
2 ĝ2 + Y C

) (
ln(1− ωC

1 − ωC
2 )

)
+ δϕC(ĝ1, ĝ2).

(38)

Solving equation (37) for XC
1 , X

C
2 and Y C yields

XC
i =

1

1− αδλi

, (39)

Y C =
αδ

1− αδ

(
XSP

1 θ1 +XSP
2 θ2

)

=
αδ

1− αδ

(
θ1

1− αδλ1
+

θ2
1− αδθ1

)
, (40)

which, using (35) and the fact that AC = XC
1 ĝ1 + XC

2 ĝ2 + Y C , yields (13)

and (14).

18



References

F. Krausmann, S. Gingrich, N. Eisenmenger, K.-H. Erb, H. Haberl, and

M. Fischer-Kowalski. Growth in Global Materials Use, GDP and Popula-

tion during the 20th Century. Ecol. Econ., 68(10):2696–2705, 2009.

D. Levhari and L.J. Mirman. The Great Fish War: An Example Using a

Dynamic Cournot-Nash Solution. Bell J. Econ., 11(1):322–334, 1980.

N. V. Long. Dynamic Games in the Economics of Natural Resources: A

Survey. Dynam. Games Appl., 1(1):115–148, 2011.

19


