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Abstract:   
Policy decisions affect economic outcomes, and the likelihood of observing a given state 
of the world. We investigate how policy choices affect learning of the true model of the 
economy when the policymaker’s model is mis-specified. We ask under what conditions 
can the central bank learn the correct specification of the model describing the economy, 
and what is the impact of exogenous shocks and of adopting an optimal monetary policy 
on the speed of learning. Slow learning can occur simply because identifying the correct 
model at standard confidence levels requires a long data sample. We show that neither 
real-time learning by the policymaker or the private sector, nor the adoption of an 
optimal policy, affect the speed of detection of model misspecification. Detection speed 
depends instead on the relative volatility of supply and demand shocks. 
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1 Introduction

The adoption of an optimal monetary policy requires knowledge of the model de-

scribing the economy’s law of motion. Policy-makers look with caution at the pre-

scriptions of optimal policy rules because they tend to be highly model-specific. The

literature on optimal monetary policy under model uncertainty dates back at least

to Brainard (1967), who showed how uncertainty in the models’ parameters would

alter the optimal behaviour of the central bank. A growing literature has suggested

several approaches to account for model uncertainty in policy design, including the

use of robust control (Hansen and Sargent, 2003), policy rules robust to some form of

model misspecification (Giannoni and Woodford, 2005) and model averaging methods

(Brock et al., 2007, Cogley and Sargent, 2005, Cogley et al., 2011). These methodolo-

gies aim at allowing policymakers to explicitly account for the likelihood of competing

models to correctly describe the economy when choosing policy.

Nevertheless, policymakers may need to engage in model selection, and take a

stand on what is the ’true’ model of the economy. For example, central banks need

to produce forecasts of the economy, which constitute an important input in the

policymaking process. Alternatively, policymakers may have a preference for policies

which are independent of the continuous updating of model probabilities over time.

The central bank’s policy problem has two distinctive characteristics. First, policy

choices depend on the available data and the understanding of the economy. At the

same time, policy decisions affect economic outcomes, and the very data-generating

process used as an input when estimating the economy’s model. Second, central

banks do not base policy decisions on models that nest every possible specification.

Therefore the problem of whether a central bank can learn the correct model often

cannot be reduced to whether the true parameters can be estimated. The evolution of

central bank behavior arises from switching to different (non-nested) models that can

give better account of data observations (Sargent, 1999, suggest as an explanation

of the move to a low-inflation environment in the 1980s the ’triumph of natural rate

theories’).

In this paper we study the problem of a central bank which must identify the

true model across competing alternatives while conducting policy according to its

beliefs on the model of the economy. We assume the policymaker tries to detect

the existence of misspecification in its believed model against a proposed alternative,

while estimating in real time the deep parameters of the model needed to compute

the optimal policy. We also allow for the private sector to learn over time the law

of motion of the economy, as in Evans and Honkapohja (2003b). In this framework,

we can assess whether the objective of selecting the correct model across competing
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alternatives provides an incentive to deviate from the full-information optimal policy,

as in Wieland (2000).

Our results show that a central bank using an optimal policy updated in real-time

can detect the misspecification in its believed model as fast as a non-optimizing poli-

cymaker setting policy using a given Taylor-type rule. Behaving optimally does not

affect the likelihood that equilibrium outcomes are observed that reveal the model

mis-specification to the policymaker. Moreover, real-time learning of the model pa-

rameters by the policymaker or of the law of motion by the private sector does not

affect the speed of misspecification detection. Crucially, our results depend on the

relative volatility of supply and demand shocks. When supply shocks are sufficiently

more volatile than demand shocks, detection of the model misspecification does not

occur even after the central bank has accumulated a 25-year long sample of data.

In our analysis we focus on competing models for the inflation process within a

new Keynesian business cycle framework. Our choice of competing models reflects a

long-standing debate on the nature of inflation inertia - whether inflation is driven by

inertial exogenous shocks, or by an endogenous inertial mechanism for price updating

- which has proven up to date difficult to resolve using available data. We assume the

central bank believes inflation is a completely forward-looking variable. Therefore,

costless disinflations are possible, and persistence in inflation is driven by persistence

in the inflation equation’s shock process. Goodfriend and King (2001) show this

to be a plausible model of the US inflation behaviour. The true model embeds a

substantial degree of inflation inertia, and an i.i.d. supply-side shock process, in the

spirit of the Fuhrer and Moore (1995) model of US inflation dynamics. While both

models imply long-run neutrality, they have sharply different implications on the

speed of disinflation, the central bank’s mis-specified model calling for instantaneous

disinflation, the true model requiring gradualism.

A large literature on real-time learning studies the stability of REE when the

private sector updates the model’s estimate recursively, for a given policy rule (Evans

and Honkapohja, 2003b). Evans and Honkapohja (2003a) and Dennis and Ravenna

(2008) examine the case of a central bank estimating the model’s parameters in real

time, and updating its estimate when formulating the optimal policy. Within the real-

time learning framework, we examine the problem of a central bank which must also

select across non-nested model alternatives. Cogley and Sargent (2005) and Cogley

et al. (2011) are closer in spirit to our work, assuming that the central bank updates

the probability assigned to alternative reference models when formulating policy.

These contributions rely on model averaging in a Bayesian learning framework, thus

the optimal policy is affected by the possibility of large losses in competing models,

even if they have a very low probability of being correct. Our analysis focuses on
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the econometric problem of distinguishing across model alternatives in a real-time

learning environment. As in most of the learning literature, we assume a boundedly

rational policymaker does not account for uncertainty in the parameters estimate

when implementing policy, or for the learning process of the private sector.

2 Can the Central Bank Learn the true model? An Easy

Example

This section uses a simple form of model mis-specification to illustrate the issues

arising when the central bank is at the same time trying to learn the true structure

of the economy and setting policy optimally.

2.1 Irrelevant mis-specifications

The economy is described by a log-linear, two-equations New-Keynesian model (widely

adopted in the optimal monetary policy literature, see Clarida, Gali, and Gertler,

1999). The central bank believes the inflation equation includes an unobservable,

exogenous cost push shock  when no such shock appears in true model:

Central bank  = +1 +  +  (1)

mis-specified model  = +1 − ( −+1) +  (2)

 = −1 +  ;  = −1 + 



where  is inflation,  is the output gap,  is the nominal interest rate,  is an i.i.d.

random variable. Given a loss function  (∞) = 

P∞
=0 


h
2+ + 2+

i
 the

optimal time-consistent policy first order conditions are given by eqs. (1), (2) and:

 = −

 (3)

Conditional on the optimal policy, the central bank expects to observe the follow-

ing equilibrium law of motion:

 =  (4)

 = − (5)

 =
1

2 + (1− )

This set of equations describes the central bank’s Perceived Law of Motion ()

as defined in Evans and Honkapohja (2003a). The optimal policy can be implemented

3



through an instrument rule that does not depend explicitly on the unobservable shock

:

 =

∙
1 + (1− )




−1

¸
+1 + −1 (6)

The true model of the economy is given by:

True Model  = +1 + 

 = +1 − ( −+1) + 

 = −1 + 



What is the Rational Expectation Equilibrium () of the economy? It is

straightforward to show that the true model and the policy rule (6) lead to the :

 = 0

 = 0

This is the same equilibrium that we would observe if the central bank imple-

mented the optimal policy conditional on the true model:  = −1 1. For this kind
of model mis-specification, two results emerge. First, the mis-specification does not

lead to any welfare loss: the policy rule (6) can sustain the optimal 2 Second,

the central bank would never be able to learn the mis-specification, since both 

and  have zero variance in the . The very policy chosen by the central bank

prevents econometric estimation and testing of the model in eqs. (1), (2). In other

words, the fact that the optimal equilibrium can be attained does not imply that the

central bank knows the true model.

If the private sector is trying to learn the law of motion of the economy, will the

 be attained? It can be shown that the optimal ,  =  = 0 (the True

Law of Motion, or ) can be learnt - the  is E-stable. Let  = [ ]
0. The

private sector needs to form expectations of +1 +1 Assume the private sector

Perceived Law of Motion () takes the form:

+1 = 21

where  is not the mathematical expectation of a variable, but the expectation

conditional on current knowledge of the reduced form model of the economy. In

1 It is well known that this rule leads to indeterminacy (Woodford, 2003). This point is not crucial

for the issue at hand, and is illustrated in the following section.
2This result extends to some other model mis-specifications, but is not true in general. For

example, with habit-persistent preferences the true output-gap equation is  = (1 − )+1 +

−1 − ( −+1) + . The mis-specified output-gap dynamics (2) would not have any impact

on the .
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this model, the  is E-stable if both rows of the  vector converge to 0 as the

private sector updates its estimate of  (under some regularity conditions). Since

the true law of motion in this example corresponds to the optimal , learnability

of the  would imply learnability of the optimal policy rule by the central bank

- although not learnability of the true model3.

2.2 Easily learnable mis-specifications

Contrary to the previous example, most model mis-specifications cause a welfare loss.

Assume that the central bank is not aware of the existence of cost-push disturbances

to the inflation equation, whereas they do exist in the true model of the economy:

Central Bank Model True Model

 = +1 +   = +1 +  + 
 = +1 − ( −+1) +   = +1 − ( −+1) + 

 = −1 + 

  = −1 +  ;  = −1 + 




The time-consistent optimal policy first order conditions are given by the central

bank’s model and:

 = −

 (7)

The optimal policy can be implemented using the policy rule  = −1. Since
this rule would lead to indeterminacy and E-instability, we assume the central bank

implements the policy:

 = +1 + −1

  1

Model mis-specification leads to a welfare loss Conditional on the central

bank policy, the  - or true law of motion () - is:

 = 0

 = 0

0 =  ; 0 = (1− )−1

 = (1− )− [(1− ) + (1 + )]

3While this conclusion would require a formal proof and a complete specification of the Central

Bank’s learning process, an even stronger result is true in this example: learnability of the 

implies learnability of the optimal , regardless of whether the Central Bank is updating its

model, provided the parameter  is known.
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But the model mis-specification implies a loss in the economy’s welfare: the 

under the true optimal policy is different, and is given by eqs. (4), (5). Notice that

the  is E-stable, but inefficient.

Mis-specification detectability Can the central bank realize it is using a mis-

specified model? The monetary authority perceived law of motion () is given

by:

 = 0

 = 0

whereas the actual law of motion () has been shown to be:

 = 0

 = 0

Therefore, by comparing the economy’s dynamics to the  the central bank

can easily realize its model suffers from mis-specification. We will say that the mis-

specification is ’detectable’ if the  allows econometric identification of the model

- if differences between the believed model and any alternative model lead to testable

restrictions in the law of motion.

The speed of learning In this example, all that the central bank needs to detect

the mis-specification is one observation. In general, this is not the case: learning

takes time, many observations may be needed to be able to reject a false model. The

speed of learning is affected by the policy adopted: although in this model any policy

would lead to an instantaneous learning, since the shock  is observable. The speed

of learning is also a function of the random disturbances: even in this easy example,

until a shock  occurs, the central bank would have no reason to reject the model,

since conditional on  the  and the  are identical.

The usefulness of Robust Optimal Explicit rules Giannoni and Woodford

(2005) discuss policy rules (Robust Optimal Explicit, or ROE rules) which are invari-

ant to the random disturbances affecting the economy. Essentially, they suggest using

as policy rule the first order conditions of the optimal policy problem which do not

involve random shocks. In the two previous example, this corresponds to assuming

the monetary authority can use  as an instrument. In fact, the first order condi-

tions (3) and (7) are identical, since the only differences in the two models is in the

disturbances. It is true that using the ROE rule would allow the optimal  to be
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achieved in both examples. Unfortunately, this is not the case for more sophisticated

mis-specifications. To illustrate this point, in the following section we will always use

the ROE rule.

Robustness to parameter uncertainty In this example, the monetary authority

could easily guard itself from mis-specification by adopting the inflation equation

specification:

 = +1 +  +  (8)

and using an optimal policy rule robust to uncertainty in the parameter . While

this is a wise strategy, it will only work if the alternative (true) model is a restricted

version of the estimated equation (8) - if the estimated model  the alternative.

As we show in the following section, often even very straightforward model alterna-

tives can be non-nested. This implies that robustness to parameter uncertainty is of

limited help when addressing the issue of model mis-specification in formulating the

optimal policy

3 The model

3.1 The true model

The model that we analyze is a sticky-price New Keynesian model widely used in

the monetary policy literature. Households are assumed to consume a Dixit-Stiglitz

aggregate of the goods firms produce, choosing consumption, leisure, and their hold-

ings of real money balances to maximize utility. Household consumption behavior

is governed by

 = −1 + (1− )+1 +  ( −+1) +  (9)

where ,  and  are the consumption gap, inflation, and the nominal interest rate,

respectively. The lagged consumption term in equation (9) is motivated by external

habit formation. In equation (9),  is the intertemporal elasticity of substitution,

 is a function of the degree of habit formation and  is a consumption preference

shock.4 In the special case where there is no habit formation,  = 0, equation (9)

collapses to the standard Euler equation for consumption with time-separable utility.

The economy’s resource constraint equates consumption to output, which implies

that equation (1) can be expressed in terms of either consumption or output. In

what follows we use equation (9) to describe the behavior of the output gap, which

we denote by .

4Formal derivations of equation (9) can be found in McCallum and Nelson (1999) and Amato and

Laubach (2004).
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On the supply side, we assume each period a fixed share of firms is able to re-

optimize their price. However, within this share, a fixed proportion of firms un-

dertakes the standard Calvo (1983) re-optimization while the remaining firms adjust

their price to the time  − 1 price chosen by the optimizing firms adjusted for the
lagged aggregate inflation rate. Galí and Gertler (1999) show that this model implies

the behavior of inflation can be summarized by the Phillips curve equation

 = (1− )+1 + −1 +  +  (10)

where  denotes real marginal costs and  is a supply shock. In equation (10),

 is the discount factor while  and  are composite parameters that depend on

the share of Calvo-pricing firms and on the share of indexing firms. While the

underlying theory implies that real marginal costs should be the driving variable in

the Phillips curve, we follow Clarida, Galí, and Gertler (1999) and substitute the

output gap  for real marginal costs .
5 We assume that the supply shock and

the consumption preference shock are independent, white noise processes, with finite

absolute moments. We further assume that the parameters in equations (9) and (10)

satisfy 0 ≤  ≤ 1 0    1,   0, and   0.

While equations (9) and (10) are reasonably simple, and are intended to serve

only as a stylized description of the economy, they encompass several widely studied

macroeconomic models. As noted earlier, when  = 0, equation (9) collapses to

the standard (log-linearized) time-separable consumption Euler equation. Similarly,

when  = 1 equation (10) corresponds to a backward-looking accelerationist Phillips

curve (Ball, 1999) and when  = 0 equation (10) simplifies to the traditional Calvo-

pricing specification. Further, if  = 0 and  = 1, then equation (10) is equivalent to

the costly-price-adjustment specification of Rotemberg and Woodford (1982). Inter-

mediate values of  accommodate Phillips curves with complete inflation indexation

(Christiano, Eichenbaum, and Evans, 2005) and partial inflation indexation (Smets

and Wouters, 2003).

3.2 Monetary policy

We assume that monetary policy is set under discretion and the central bank chooses

the nominal interest rate, , to minimize the loss function

 (∞) = 

∞X
=0


h
2+ + 2+ +  (∆+)

2
i
 (11)

5 In the absence of habit formation, it is easily shown that real marginal costs are directly propor-

tional to the gap. See Amato and Laubach (2004) or Dennis (2004) for derivations of the relationship

between the gap and real marginal costs in the presence of habit formation.
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subject to the behavior of households and firms, as summarized by equations (9) and

(10). This loss function postulates that the central bank aims to stabilize inflation

and the output gap avoiding large changes in the nominal interest rate. With the

weight on inflation stabilization normalized to one, the relative weight on output

stabilization is  ≥ 0 and the relative weight on interest rate smoothing is  ≥ 0.
To solve the model we use the procedure developed in Dennis (2007) to solve for

the Euler equation, or targeting rule, associated with the optimal discretionary policy.

A key feature of this targeting rule is that it is expressed in terms of endogenous

variables and excludes the shocks,  and . As a consequence, it is robust, to

mis-specification of the shocks process. In addition to the Euler equation for the

optimal discretionary policy, the solution algorithm yields decision rules for inflation,

the output gap, and the nominal interest rate that take the form

z = Az−1 +Bv (12)

where z =
£
  

¤0
and v =

£
 

¤0
.

3.3 Model parameterization

To simulate the model we require benchmark values for each of the parameters in the

model. We set  equal to 050 and  equal to 030. With these values, consumption

and inflation are persistent, but consumption smoothing and the forward looking

nature of price setting remain prominent. The household’s discount factor, , is

set to 099. Two parameters that are central in our analysis are  and . In our

simulations  = −015 and  = 020. In our benchmark parameterization for the

central bank preferences we set  = 100 and  = 05. Finally, we set the standard

deviations of the demand and supply shocks equal to 15.

3.4 The Central Bank Model

The central bank believes that the dynamics for inflation and the output gap are

described by

 = −1 + (1− )+1 −  ( −+1) +  (13)

 = +1 +  +  (14)

 = −1 + 

Thus the central bank believes that the economy is impacted by serially corre-

lated supply shocks whereas in fact its model mis-specifies the economy’s inflation
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and output dynamics. The perceived supply shock, , truly represents model mis-

specification and evolves according to

 = −+1 + −1 +  (15)

Both the true and central bank’s specification imply  and  display autocorrelation

under the (respective) optimal policy. But they have radically different implications

for the way the central bank should move its instrument in response to shocks, for

the cost of moving to a lower steady-state inflation level, and for the optimal way

to achieve it (Clarida, Gali and Gertler, 1999, offer a detailed discussion). The

central bank believes disinflation can be achieved without any cost, while a monetary

authority which knows the true model and has a quadratic loss function in inflation

would find optimal a gradual inflation reduction.

3.5 Central Bank Learning

The central bank formulates the optimal policy conditional on eqs. (13), (14) and on

the real-time estimate of the unknown parameters    Since the central bank puts

a positive weight on   and ∆ in the objective function, the set of state variables

under the mis-specified model is the same as in true model:  −1 −1 −1. To
have a meaningful mis-specification problem in the estimation, we must assume that

at least the shock  is unobservable to the policy maker. This assumption still leaves

the central bank a choice of three instruments to use in the GIV estimator.

The Robust Optimal Explicit rule involves  and lagged values of the nomi-

nal interest rate, and therefore gives an instrument rule independent of the exogenous

shock process for the cost-push shock. This also means that estimates of the coeffi-

cient  do not need to enter the formulation of the optimal policy.

Replacing expected values with realizations for estimation purposes, equation (13)

becomes

 = − ( − +1) +  − (1− )+1 + +1 (16)

 ≡  − −1 − (1− )+1

where +1−+1 = +1 and +1−+1 = +1 Similarly, with  and  assumed

to be known, the Phillips curve can be expressed as

 − +1 =  +  (17)

Once expected future inflation is replaced with observed inflation, introducing an

expectation error to the dependant variable, we obtain:

 =  +  − +1 (18)

 ≡  − +1
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Since  is an AR(1) process, lagged values of all the variables will be correlated with

the error term, and will not satisfy the necessary condition for instrument validity.

We assume the central bank uses the Cochrane-Orcutt transform:

(1− ) = (1− ) + (1− )( − +1)

 = −1 +  − −1 + ( + e+1) (19)

where both  and e+1 are i.i.d. shocks and  is the lag operator. Efficient

estimation would require the use of a NLIV estimator (see Fair, 1970), but we assume

the central bank estimates equation (19) without imposing the non-linear parameter

restriction. −1 can serve as instrument for  while −1 −1 are valid instruments
for the remaining endogenous regressors. Note that while  needs to be estimated, it

does not appear in the optimal policy rule.

3.6 Private Sector Learning

We assume private agents estimate the economy’s equilibrium relationships and use

these estimated relationships to form expectations of future output and inflation.

The private sector is assumed to know the structure of the economy and have an

information set given by  = {   −1}.
Rewrite the structural model in matrix form:

0 = 1−1 +2+1 +3 (20)

The REE takes the form:

z = Az−1 +Bv (21)

Substituting from the REE equations +1 =  into the structural equations

system, gives the matrix quadratic equations:

 = (0 −2)
−11 (22)

 = (0 −2)
−13

which can be solved for the matrices  and 

Assume that the private sector forms expectations ∗ +1 according to the Per-
ceived Law of Motion (PLM ) and the estimated matrices ∗ ∗ :

 = ∗−1 +∗ (23)
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Then:

∗ +1 = ∗ +∗+1 (24)

Substituting eq. (24) in the structural model gives:

0 = 1−1 +2
∗
 +1 +3

The reduced-form dynamics of the economy, or Actual Law of Motion (ALM ), is

then:

z = A
z−1 +Bv (25)

where

 = (0 −2
∗)−11 (26)

 = (0 −2
∗)−13

Comparing eqs. (22) and (26) it is clear that  6=  unless we are in the REE.

Moreover,  6= ∗ therefore as more observations are generated the private
sector estimates of  will change. Finally, when the central bank’s model is mis-

specified, the REE is different from the optimal REE.

4 HowCentral Banks Learn: Competing ReferenceMod-

els

4.1 Evaluating reference models

This section asks whether the economy may eventually attain the optimal REE from

any suboptimal one that has been reached because of the central bank model mis-

specification. Can the central bank realize the model mis-specification by estimating

competing models, and selecting among them? If the competing models have testable

implications, we expect the central bank will be able to detect which one is the true

model, since this will be the one with the highest probability of having generated the

data observed. In the following we examine the model mis-specification detectability,

and the impact on the speed of learning of the policy rule chosen by the central bank

and of the relative shocks variance.

4.2 Optimal monetary policy and non-nested models

Whenever model uncertainty cannot be described in terms of parameter uncertainty

the fact that the competing models are non-nested complicates the central bank

learning problem at two separate stages - in devising the optimal monetary policy, and

in estimating the correct model. In general, optimal policy rules robust to parameter
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uncertainty and robust optimal explicit rules are of no help to deal with this kind of

model uncertainty.

Recall that:

Central Bank  = +1 +  +  (27)

mis-specified model  = −1 + (1− )+1 −  ( −+1) +  (28)

 = −1 +  (29)

True model  = (1− )+1 + −1 +  +  (30)

 = −1 + (1− )+1 −  ( −+1) +  (31)

If the monetary authority considered the true model as a possible alternative, how

would it alter its current policy-making?

First, the central bank faces an econometric problem. Consider the case when all

parameters are unknown. It is useful to build an encompassing model of the inflation

equation to be used for estimation purposes:

 =
1

1 + (1− )
{(1− )+1 + ( + )−1 − −2 +  − −1}+0 (32)

Eq. (32) is obtained from a model given by eqs. (29), (30) and (31). The variable

+1 is replaced with the realized value +1 and the Cochrane-Orcutt transform

is applied, so that the term 0 is a linear function of i.i.d. Gaussian variables (the
shock  and a forecast error). The vector of parameters values

b can be estimated
using a non-linear instrumental variables estimator (provided enough instruments are

available). Under the hypothesis  = 0 we obtain the central bank model’s inflation

equation needed for estimation of the unknown parameters:

 =
1

1 + 
{+1 + −1 +  − −1}+ 0 (33)

while under the hypothesis  = 0 we obtain the true model inflation equation :

 = (1− )+1 + −1 +  + 0 (34)

These model alternatives are non-nested. The parameter space of each alternative

is a subset of the parameter space of the unrestricted model (32): b = (   ), but
neither model can be obtained as a restriction on the other.

Estimation of equation (32) will likely return biased estimates since we are includ-

ing the irrelevant regressor −2 whereas under either the central bank or the true
model  = 0 Since the estimated equation is non-linear in the parameters, it is not
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necessarily true that adding an irrelevant regressor does not affect the unbiasedness

of the estimator.

Second, and independently from how the estimation problem is dealt with, there is

no compelling reason for the central bank to use an encompassing model to formulate

the optimal monetary policy. The optimizing policymaker knows with certainty that

this model is incorrectly specified. When models are non-nested it is clearly always

possible to build a new model encompassing all alternative theories. In our case, it

would be given by:

Encompassing  = (1− )+1 + −1 +  + 

model  = −1 + (1− )+1 −  ( −+1) + 

 = −1 + 

But this model has zero probability of being correct, and it is difficult to argue that

it should be the basis for formulating an optimal policy. Effectively, endowing the

policymaker with the information that the encompassing model is incorrect trans-

forms the central bank problem from one of finding the correct parameters to one of

finding the correct theory. Therefore, rules robust to parameter uncertainty built as

in Brainard (1967) that use the encompassing model are of no help.

The challenge raised by non-nested alternatives becomes clear when we look at a

case where competing models are nested. Consider the estimation problem faced by a

central bank contemplating the choice between eq. (27) and (30). We now endow the

central bank with knowledge of the fact that supply shocks are white noise. In this

case the central bank could estimate eq. (34) and use eq. (30) in formulating policy.

Eq. (30) nests the central bank model where  = 0 Over time estimates of  would

converge to the true value, so the problem faced by the central bank becomes simply

one of parameter uncertainty in one of the coefficients in the inflation equation. The

central bank model, whatever the current estimate of  will be the one with the

highest probability of being correct conditional on the data available.

It is worth noting that, within the mis-specification we examine, using a Robust

Optimal Explicit rule would offer the central bank the chance to effectively nest the

alternative models in the optimization problem. Since the ROE rule is independent

of  the central bank can use the true model when optimizing - the shock processes

equations do not enter the first order condition implementing the optimal policy. The

fact that the estimable inflation equations (33) and (34) are non-nested is irrelevant

for the optimization problem. This result is by no means general. For example,

eq. (30) could easily be only an encompassing model, with the two alternatives

characterized by  = 0 and  = 1 Then the problem of choosing the true model

cannot be reduced anymore to parameter uncertainty, even adopting a ROE rule.
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Many of the policy-making paradigm shifts which happened in the last decades

involved choosing among non-nested alternatives. In the following we assume the

central bank will abandon its current model and adopt the alternative one when the

current model can be rejected at a given level of statistical significance.

If the central bank wished to take into account different models’ likelihood of

being correct, it would be appropriate to use a Bayesian setup, as in Cogley and

Sargent (2005), where competing models are assigned different, time-varying weights

in the policymaker optimization problem. In this framework though the weight of

any model on the shaping of policy can be different from the likelihood a model has

of being correct, since each model enters into the calculation of expected discounted

welfare in the policymaker’s optimization. Therefore a model can be learnt quickly,

but still have a small impact on policy. We instead assume that once a model can

be rejected, its weight drops to zero. Slow learning can simply be the outcome of the

slow convergence of the estimator, coupled with the central bank and private sector

affecting the data generating process.

4.3 Detectability with reduced-form estimation

The central bank model, eqs. (27), (28) and (29), and the alternative model, eqs.

(30) and (31), have reduced form representation:

 = [  ]−1 + [ ] (35)

where  = [  ]0  = [ ]0  = [  ]
0. The optimal monetary

policy conditional on the central bank model implies that −1 is not a state variable
in the REE. On the contrary, if the alternative model is true all variables are state

variables. If all variables and shocks were observable, the central bank would only

need one observation to discriminate between the two models. Since the vector  is

unobservable, the policy-maker must rely on statistical testing to determine whether

the restriction  = 0 is validated by the data.

How long will it take to discriminate between the alternative models? We ran

500 simulations to determine the average learning time, assuming that the central

bank has available an initial sample of twenty observations (five years at a quarterly

frequency), generated by the true model conditional on the rule  = 15+05 The

policy maker estimates the model parameters  and  updates the optimal policy,

and in every period also estimates the VAR reduced form (35) to test the restriction

on the vector  The likelihood ratio test compares the hypotheses:

0 :  = 0

1 :  6= 0
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through the likelihood ratio statistics Λ = (ln | | − ln | ∗|)  is the residual

covariance matrix based on the restricted (true) model, whereas  ∗ is the corre-
sponding statistic for the unrestricted model.

We evaluate the speed of detection using two different measures. First, we build

the average p-value of the statistic Λ across the different simulations, at each period

 Since there are 20 initial observations, the sample size at time  is +20 To provide

a measure of how the data volatility affects speed of detection in individual samples,

we also build an average detection time statistic, reporting the average of the number

of observations necessary in each simulation run to obtain four consecutive rejections

of the null hypothesis at 5% confidence - we assume after a full year the central bank

can reject its model, it switches to the alternative one.

Figure 1 shows the average p-value at time . Mis-specification detection is quite

slow - it takes over 15 years of data for the average p-value of the null hypothesis to

fall in the 5% rejection region. The test average speed of detection is 34 quarters.
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Figure 1: Restricted model VAR estimates: average p-value for 0 at time 

Does the central bank real-time learning of the model parameters slow the de-

tection process? Not in a significant way. Using the same random draw, we ran the

simulation giving full knowledge to the central bank of the parameter values. The av-

erage p-value is very close to the previous case at every horizon, and the test average

speed of detection rises to 36 quarters.

Reduced-form testing cannot be used if the private sector is learning too. In this

case, rejection of the null hypothesis would not imply a model mis-specification: it

could also originate from the private sector forecasting function not having converged
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to the REE. In principle it is always possible for the central bank to estimate the

private sector forecasting model, build the predicted [  ] vector using the opti-

mal policy rule and the private sector expectations, and test it as the null hypothesis

against the estimated actual law of motion. But this implies that the central bank

has full knowledge of the private sector forecasting model.

In the same fashion, testing the restriction  = 0 is not a valid test of the central

bank model if the policy rule is given by a Taylor rule, such as  = 15 + 05

Then the vector [  ] would have no zero elements conditional on any of the two

alternative models.

4.4 Detectability with structural estimation

Structural estimation allows us to examine the impact of a wider range of parameters

on the learning speed. As in the previous section, the central bank in every period up-

dates the estimates for   of the current (mis-specified) model (27) and re-optimizes

conditional on the new information. The private sector updates its estimates of the

law of motion, and generates expectations of future variables. The policymaker is

also endowed with the alternative (true) model (30), and in every period tests the

hypothesis that the current model is correct.

There is a number of ways in which the two models can be statistically compared.

First, the policymaker can use any of a long list of test for non-nested models (see

Greene, 2003). Most of these tests though have been devised for linear models and in

the context of OLS estimation (see Godfrey, 1983 for an extension of the Cox, 1961,

test to the IV estimator)

We examine an easier testing strategy. The central bank can estimate eq. (33).

While this equation’s coefficient vector does not nest the alternative eq. (34) coef-

ficient vector, its reduced-form, linear unrestricted coefficient vector does nest the

alternative. The central bank can distinguish the two models by testing whether

the coefficient on −1 is significantly different from zero. This methodology has the

advantage that we do not need to assume knowledge of  or  and do not involve

tests of these coefficients. On the other hand, the central bank would be using for

models selection an equation different from the one used for model estimation.

In our simulations we rearranged equation (33) for estimation purposes6, so that

6This specification is also used in Linde (2005) when testing the New Keynesian inflation equation.

We found the test performs better when compared to the results from estimating eq. (33), but the

results are qualitatively unaltered.
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the two alternative equations are:

+1 =
1


[−−1 −  + −1 + (1 + )] + +1

+1 =
1

(1− )
[−−1 −  + ] + +1

and  is an i.i.d. Gaussian random variable. We assume the policy maker runs

two Wald test on the estimated equation.

+1 = + 1−1 + 2 + 3−1 + 4 + +1 (36)

The first test compares the hypotheses:

0 : 3 = 0

1 : 3 6= 0

If 0 cannot be rejected, doubt is cast on the central bank’s model. Since the

acceptance region for 0 can be very large, we assume the mis-specification detection

occurs when the policy maker cannot reject 0 and at the same time can reject 2

in the test:

2 : 3 = 

3 : 3 6= 

The parameter  is set equal to 05 - a very large value, which will bias the test

towards detection, given 4 =  the true value of  is 02 and   1

To build the test statistics, we need an estimate of the asymptotic variance of 3

Since the regressors are correlated with the error term, we would need to use an IV

estimator. The need to estimate four regression coefficients (beyond the constant)

lead us to the choice of four instruments: −1 −1 −1 −2 Conditional on the
true model, only the first three are valid instruments, whereas conditional on the

central bank model the only valid instruments are −1 and −1 Given that in the
simulations both the private sector and the central bank are updating their estimates

in real time, we can expect our list of instruments will be appropriate, although not

asymptotically in the REE. To check the power of the test, we ran 500 simulations

assuming all agents have full information, and no learning takes place. It takes several

hundred observation for the coefficients to converge to the population values. The

large variance of the estimates makes the Wald statistics a very weak test in detecting

model mis-specification, unless the sample is in the thousands of observation. Figure

2 (panels A and B) shows the percentage of rejections of the two null hypotheses

0 and 2 The number of rejections of the false null hypothesis 2 increases very
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slowly with the sample size, and after a 25 year-long span still amounts to less than

20% of the simulations.
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Figure 2: Structural model: percentage of rejections of the two null hypotheses

0 : 3 = 0 and 2 : 3 =  for  = 05
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If the central bank were to rely on asymptotic theory for testing the IV estimates,

it would never be able to detect the model mis-specification except after several

decades. Learning cannot happen.

There is obviously an advantage in terms of estimator asymptotic variance in

using an OLS rather than an IV estimator. On the other hand, the OLS estimate

of the vector  is inconsistent, and its asymptotic variance does not converge to

zero, if correlation between the regressor and the error term exists. Whether this

correlation is such to make the IV estimator superior to the OLS estimator in our

testing environment is an empirical issue that we investigated. The very large variance

of the IV estimator implies that an Hausman test could not reject the null hypothesis

that the OLS estimator is consistent. Running 500 simulations (using the same

random draws as in the previous sections) we ascertained that the OLS estimate of

3 is consistent. Figure 2 (panels C and D) shows the percentage of rejections of the

two null hypothesis using the OLS estimator, in the case when no agent is learning7.

The performance of the OLS estimator Wald test is clearly superior, and the sample

size for which the test is asymptotically valid is an order of magnitude lower than in

the IV estimator case.

Structural OLS estimation allows us to examine the impact of the learning en-

vironment and of many other variables that may affect the learning speed, to which

the estimated equation is invariant.

4.4.1 The Impact of Learning

Mis-specification detectability and speed of learning Table 1 reports the

average detection time for the misspecification in the central bank’s model, measured

using the average number of quarters after which 0 cannot be rejected and 2 is

rejected at 10% significance level for four consecutive samples.

7Therefore, the asymptotic variance of  is calculated as 2[0]−1. The estimated asymp-

totic variance for the IV estimator is given by 2[0(0)−1(0)]−1 where  is the matrix of

regressors,   the matrix of instruments, 2 is a consistent estimate of the error variance.
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Table 1: Model selection and the impact of learning

Average Detection Time (quarters)

Full Information 35

Central Bank Learning 36

Private Sector Learning 36

All Agents Learning 36

Note: Average Detection Time for 2 using Wald test, OLS estimator, equation

(36). Average number of quarters after which 0 cannot be rejected and 2 is

rejected at 10% confidence for four consecutive observations. The total sample

size is equal to the detection time plus the initial 20 observations. Initial obser-

vations are generated using a Taylor rule. All simulations use the same random

draws from a normal distribution. The volatility of the shocks is 2 = 2 = 15

Central Bank real-time learning Does the real-time learning behaviour of the

central bank impact the speed of detection? Interestingly, very little. The first line of

Table 1 shows that in the full information case the learning speed is about the same

as in the case when the central bank is estimating the values of  and  in real time.

Private sector learning The simulations show that the private sector learns very

fast how to use the model’s reduced form to generate its forecast. When the private

sector is learning - either with or without the central bank also estimating the model’s

parameters - mis-specification detection happens at about the same speed as in the

full information case. This result indicates that (in the context of our model) the

welfare loss due to the optimal monetary policy ignoring private sector learning is

likely to become negligible very fast.

4.4.2 Shocks volatility and detectability

The speed of model misspecification detection is heavily impacted by the shocks

realization. Table 2 shows that relative to our baseline case, where 2 = 2 = 15

lowering the volatility of the cost-push shock increases the detection time by nearly
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40% The learning speed changes dramatically if the volatility of demand shocks

decreases, so that 2
2
 = 15. In this case, learning has not happened even after

30 years.

Table 2: Model selection and the impact of shocks

All Agents Learning Average Detection Time (quarters)

 =  = 15 36

 = 15 ;  = 03 50

 = 03 ;  = 15  120

Note: Average Detection Time is the average number of quarters after which

0 cannot be rejected and 2 is rejected at 10% significance level for four

consecutive samples, computed over 500 simulations.

4.4.3 Does optimal monetary policy slow learning?

Wieland (2000) argues that a central bank weighing the advantages of learning fast

against the advantages of using an optimal policy conditional on partial information

may find desirable to generate spurts of large volatility in the economy to speed

up the learning process. Within our framework, using an optimal policy does not

penalize significantly the learning speed of the policy-maker. Table 3 shows the

average detection time for the optimizing policymaker, compared to the one achieved

by a policymaker using a Taylor rule  = 15 + 05 While there will be non-

optimizing policy rule that can slow down learning, using an optimal policy does not

put the policy-maker at a clear disadvantage in the context of the New-Keynesian

model.
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Table 3: Model selection and the impact of policy

Average Detection Time (quarters)

All Agents Learning - optimal policy 36

Private sector Learning - Taylor rule 38

Full Information - Taylor rule 36

Note: Under the Taylor rule case the central bank uses the policy  =

15 + 05

5 Conclusions

This paper uses a New Keynesian model of the business cycle to investigate how

policy choices affect the policymakers’ ability to learn the structure of the economy.

We examine the probability with which an optimizing central bank will detect that

it is using a mis-specified model. We investigate numerically under what conditions

the true model can be learnt, focusing on how the random innovations and the choice

of policy affect the speed at which learning is achieved.

Our results show that a central bank attempting to stabilize the economy using

an optimal policy while trying to identify the true model learns at about the same

speed as a non-optimizing policymaker - for example, one that sets policy using a

forward-looking Taylor-type rule. Behaving optimally does not affect the likelihood

that equilibrium outcomes are observed that reveal the model mis-specification to

the policymaker. Learning by either the central bank or the private sector does

not significantly affect the average length of the data sample a central bank needs

to detect a misspecification in its model of the economy. While there may exist

an incentive for experimentation, using the boundedly-rational optimal policy does

not put the policy-maker at a clear disadvantage in the context of the our model.

This result crucially depends on the relative volatility of the supply and demand

shocks. When the supply shock volatility is five times as large as the demand shock,

model misspecification can go undetected for over 30 years.This finding suggests that

switching between competing models of the economy is potentially related to large

swings in the volatility of the process driving the business cycle.
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