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Résumé / Abstract 
 

 

In this paper, we formally show that the cross-sectional variance of stock returns is a consistent and 

asymptotically efficient estimator for aggregate idiosyncratic volatility. This measure has two key 

advantages: it is model-free and observable at any frequency. Previous approaches have used monthly 

model based measures constructed from time series of daily returns. The newly proposed cross-

sectional volatility measure is a strong predictor for future returns on the aggregate stock market at the 

daily frequency. Using the cross-section of size and book-to-market portfolios, we show that the 

portfolios’ exposures to the aggregate idiosyncratic volatility risk predict the cross-section of expected 

returns. 

 

Mots clés : Aggregate idiosyncratic volatility, cross-sectional dispersion, prediction 

of market returns. 
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I Introduction

The recent financial literature has paid considerable attention to idiosyncratic volatility.

Campbell, Lettau, Malkiel, and Xu (2001) and Malkiel and Xu (2002) document that id-

iosyncratic volatility increased over time, while Brandt, Brav, Graham, and Kumar (forthcoming)

show that this trend completely reversed itself by 2007, falling below pre-1990s levels and

suggest that the increase in idiosyncratic volatility through the 1990s was not a time trend

but rather an “episodic phenomenon”. Bekaert, Hodrick, and Zhang (forthcoming) confirm

that there is no trend both for the United States and other developed countries. A second

fact about idiosyncratic volatility is also a source of contention. Goyal and Santa-Clara

(2003) put forward that idiosyncratic volatility has forecasting power for future excess re-

turns, while Bali, Cakici, Yan, and Zhang (2005) and Wei and Zhang (2005) find that the

positive relationship is not robust to the sample chosen. Finally, while some economic the-

ories suggest that idiosyncratic volatility should be positively related to expected returns,

Ang, Hodrick, Xing, and Zhang (2006) find that stocks with high idiosyncratic volatility

have low average returns.

An underlying issue in all these studies is the measurement of idiosyncratic volatility.

Campbell et al. (2001) use a value-weighted sum of individual firm idiosyncratic variances,

computed as the variances of residuals of differences between individual firm returns and

the return of an industry portfolio to which the firm belongs.1 In addition to this measure,

Bekaert et al. (forthcoming) use the individual firm residuals of a standard Fama and French

three-factor model to compute a value-weighted aggregate idiosyncratic volatility.2

We revisit the issues regarding the dynamics and forecasting power of idiosyncratic

variance by using instead the cross-sectional dispersion of stock returns. Through central

limit arguments, we provide the formal conditions under which the cross-sectional variance

(CSV) of stock returns asymptotically converges towards the average idiosyncratic variance.3

1This amounts to imposing unit beta restrictions in an industry-market model.
2This is also the approach followed in Ang et al. (2006).
3Goyal and Santa-Clara (2003) argue informally that their measure can be interpreted as a measure of
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One key advantage of this measure is obviously its observability at any frequency, while the

previous approaches have used monthly measures based on time series of daily returns. A

second important feature is that this measure is model-free, since we do not need to obtain

residuals from a particular model to compute it.

We confirm empirically that the cross-sectional variance is an excellent proxy for the

idiosyncratic variance obtained from the CAPM or the Fama-French models, as done in

the previous literature. Correlations between the CSV measure and the model-based mea-

sures estimated monthly are always above 99%, whether we consider equally-weighted or

capitalization-weighted measures of idiosyncratic variance.

On the debate about predictability of aggregate returns by the idiosyncratic variance, we

first verify empirically that the CSV measure leads to the same conclusions that other studies

(in particular Goyal and Santa-Clara (2003) and Bali et al. (2005)) have reported at the

monthly frequency. Then, we report new results at the daily frequency. Specifically, we show

that the predictive power of idiosyncratic volatility is much stronger both quantitatively

and statistically at the daily frequency than at the monthly frequency. This relationship is

robust to the inclusion of index return variance, option-implied variance and index realized

variance as additional variables in the predictive regressions.

We find that the relation is much stronger and stable across periods between the equally-

weighted measure of aggregate idiosyncratic volatility and the returns on the equally-

weighted index than for the market-cap weighted equivalents. Economic sources of hetero-

geneity between firms, as diverse as they can be, are better reflected in an equally weighted

measure, all other things being equal. This argument is consistent with previous findings in

Bali et al. (2005), who argue that the relationship between equal-weighted average idiosyn-

cratic risk and the market-cap weighted index on the sample ending in 1999:12 is mostly

driven by small stocks traded in the NASDAQ.

cross-sectional dispersion of stock returns, but do not establish a formal link between the two. Allen and Bali

(2007) use cross-sectional moments of equity returns for financial institutions to measure catastrophic and

operational risks.
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Finally, we unveil an asymmetry in the relationship between idiosyncratic variance and

returns and show that the predictive power of specific risk is substantially increased when

a cross-sectional measure of idiosyncratic skewness is added as explanatory variable.

Using a Fama-MacBeth procedure with several sets of portfolios, we find support for a

positive and significant price of risk for the exposure to the idiosyncratic variance risk. This

is consistent with the asset pricing literature, since most theories support a positive relation

between idiosyncratic risk and expected returns (see in particular Levy (1978), Merton

(1987), Malkiel and Xu (2002), Campbell et al. (2001), and Guo and Savickas (2008)).

The rest of the paper is organized as follows. In Section II, we provide a formal argument

for choosing the cross-sectional variance of returns as a measure of average idiosyncratic

volatility, explore its asymptotic and finite-distance properties, and compare it to other

measures formerly selected in the literature. Section III provides an empirical implemen-

tation of the concept, again in comparison with other measures, and studies its relation

with macroeconomic variables. In Section IV, we provide new results on the predictability

of returns by idiosyncratic volatility, as well as idiosyncratic skewness. Section V focuses

on the analysis of the cross-sectional relationship between idiosyncratic risk and expected

returns. Section VI concludes and an appendix collects proofs.

II The Cross-sectional Variance as a Measure of Id-

iosyncratic Variance

Let Nt be the total number of stocks in a given universe at day t, and assume with no loss

of generality a conditional single factor model for excess stock returns.4 That is, we assume

that for all i = 1, ..., Nt, the return on stock i in excess of the risk-free rate can be written

4Assuming a single factor structure is done for simplicity of exposure only and the results below can

easily be extended to a multi-factor setting.

4



as:

(1) rit = βitFt + εit.

where Ft is the factor excess return at time t, βit is the beta of stock i at time t, and εit is

the residual, with E(εit) = 0 and cov (Ft, εit) = 0. We assume that the factor model under

consideration is a strict factor model, that is cov (εit, εjt) = 0 for i ̸= j5.

Given T observations of the stock returns and the factor return, one can use the resid-

uals of the regression to obtain a measure of the idiosyncratic variance of asset i by:

σ2
i = 1

T

∑T
t=1 ε

2
it. An aggregate measure of idiosyncratic variance over the T observations

(say a month) can be obtained by averaging across assets such individual idiosyncratic vari-

ance estimates. This is the approach that has been followed by most related papers with

observations of the returns at a daily frequency to compute monthly idiosyncratic variances.

We propose instead to measure at each time t the cross-sectional variance of observed

stock returns. Using formal central-limit arguments, we show that, under mild simplifying

assumptions, this cross-sectional measure provides a very good approximation of the average

idiosyncratic variance. Moreover, it offers two main advantages: it can be computed directly

from observed returns, with no need to estimate other parameters such as betas, and it is

readily available at any frequency and for any universe of stocks.

5This assumption is made in the single index or diagonal model of Sharpe (1963) and in the derivation

of the APT in Ross (1976). The very definition of idiosyncratic risk relies on the assumption of orthogonal

residuals: assuming that the model is the “true” factor model implies that the“true” idiosyncratic risk is

the one measured with respect to that model, which in turn implies that no commonalities should be left

after controlling for the common factor exposure.
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A Measuring the Cross-Sectional Variance

Let (wt)t≥0 be a given weight vector process. The return on the portfolio defined by the

weight vector process (wt) is denoted by r
(wt)
t and given by:

(2) r
(wt)
t =

Nt∑
i=1

witrit.

We restrict our attention to non-trivial weighting schemes, ruling out situations such

that the portfolio is composed by a single stock. We also restrict the weights to be positive

at every point in time. Hence, a weighting scheme (wt) is a vector process which satisfies

0 < wit < 1 ∀ i, t. The cross-sectional variance measure is defined as follows.

Definition (CSV ): The cross-sectional variance measure under the weighting scheme

(wt), denoted by CSV
(wt)
t , is given by

(3) CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r

(wt)
t

)2
.

A particular case of interest is the equally-weighted CSV, denoted by CSV EW
t and

corresponding to the weighting scheme wit = 1/Nt ∀ i, t:

(4) CSV EW
t =

1

Nt

Nt∑
i=1

(
rit − rEW

t

)2
,

where rEW
t is the return on the equally-weighted portfolio.

Another important weighting scheme is the capitalization weighting scheme. If we denote

by cit the market capitalization of stock i at the beginning of the month corresponding to

day t, Ct =
∑Nt

i=1 cit the total market capitalization and rCW
t the return on the market

capitalization-weighted portfolio, the cap-weighted CSV, denoted by CSV CW , is defined as:

(5) CSV CW
t =

Nt∑
i=1

wCW
it

(
rit − rCW

t

)2
,
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where wCW
it =

∑Nt

i=1
cit
Ct
.

For any given weighting scheme (in particular EW or CW), the corresponding cross-

sectional measure is readily computable at any frequency from observed returns. This

stands in contrast with the previous approaches that have used monthly measures based

on time series regressions on daily returns. The second important feature of the CSV is its

model-free nature, since we do not need to specify a particular factor model to compute it6.

B A Formal Relationship between CSV and Idiosyncratic Vari-

ance

The following proposition establishes a formal link between CSV and idiosyncratic variance.

It is an asymptotic result (Nt → ∞) obtained under the assumptions of homogeneous betas

and residual variances across stocks. These assumptions will be relaxed later on.

Proposition 1 (CSV as a proxy for idiosyncratic variance - asymptotic re-

sults):

Assume βit = βt = 1 ∀ i (homogeneous beta assumption) and E(ε2it) = σ2
ε (t) ∀i (ho-

mogeneous residual variance assumption), then for any strictly positive weighting scheme

satisfying for all dates t the condition
∑Nt

i=1w
2
it = O

(
1
Nt

)
, we have that:

(6) CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r

(wt)
t

)2
−→
Nt→∞

σ2
ε (t) almost surely.

Proof See Appendix A.

This result draws a formal relationship between the dynamics of the cross-sectional

dispersion of realized returns and the dynamics of aggregate idiosyncratic variance. Note

6While Goyal and Santa-Clara (2003) and Wei and Zhang (2005)consider the equally-weighted CSV in

conjunction with other measures, they do not provide a thorough discussion about the conditions under

which it can be interpreted as a proxy for idiosyncratic variance nor its empirical validity in the data, as

we provide in this paper.
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that the asymptotic result CSV
(wt)
t −→ σ2

ε (t) holds for any weighting scheme that satisfies

the condition
∑Nt

i=1w
2
it = O

(
1
Nt

)
7. This condition, which translates into the existence of a

constant Ct such that
∑Nt

i=1w
2
it ≤ Ct

Nt
, is trivially satisfied for the equally-weighted scheme

by taking Ct = 1 for all t 8. Intuitively, the condition rules out cases where portfolios show

an extreme level of concentration. Therefore, the case of the cap-weighting scheme is more

complex, since in principle the condition
∑Nt

i=1w
2
it = O

(
1
Nt

)
may not hold, depending on

how market capitalization weights evolve as the number of stocks increases. In the empirical

analysis that follows, we actually focus on the equally-weighted scheme, and we only consider

the cap-weighted scheme for comparison purposes. Formal justification for our focus on the

equally-weighted scheme is provided in the next section, where we show that the CSV EW

is the best estimator for idiosyncratic variance within the class of CSV obtained under a

strictly positive weighting scheme.

C Properties of CSV as an Estimator for Idiosyncratic Variance

First, we derive in Proposition 2 the bias and the variance of the CSV as an estimator

of idiosyncratic variance. Then we study asymptotic limits as the number of firms grows

large and conclude that the equally-weighted CSV is the best among all positively-weighted

estimators.

Proposition 2 (Bias and variance of CSV):

Maintaining the homogenous beta assumption (βit = βt = 1 ∀ i, t) and the homogeneous

residual variance assumption (E(ε2it) = σ2
ε (t) ∀i), for any strictly positive weighting scheme,

we have that:

(7) E
[
CSV

(wt)
t

]
= σ2

ε (t)

(
1−

Nt∑
i=1

w2
it

)
.

7Of course, at finite distance, different weighting schemes will generate different proxies for idiosyncratic

variance.
8See Cuzick (1995) or Sung (2002) for slightly weaker conditions.
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To analyze the variance of the CSV estimator, we further make the assumption of multi-

variate normal residuals ε ∼ N(0,Σε), where Σε denotes the variance covariance matrix of

the residuals. Under this additional assumption, we obtain:

(8) V ar
[
CSV

(wt)
t

]
= 2σ2

ε (t)

( Nt∑
i=1

w2
it

)2

+
Nt∑
i=1

w2
it − 2

Nt∑
i=1

w3
it

 .

Proof See Appendix B for a proof in the slightly more general case when the homogeneous

specific variance assumption has been relaxed.

Hence the CSV is a biased estimator for idiosyncratic variance, with a bias given by the

multiplicative factor
(
1−

∑Nt

i=1w
2
it

)
, which can be easily corrected for since it is available

in explicit form. In the end, the bias and variance of the CSV appear to be minimum for

the EW scheme, which corresponds to taking wit = 1/Nt at each date t. It is easy to see

that this bias disappears and the variance tends to zero for the equally-weighted scheme

when the number of stocks grows infinitely large, as explained in the following proposition.

Proposition 3 (Properties of the equally-weighted CSV)

The bias and variance of the EW CSV as an estimator for specific variance disappear

in the limit of an increasingly large number of stocks:

E
[
CSV EW

t

]
−→
Nt→∞

σ2
ε (t) .

V ar
(
CSV

EW )
t

)
−→
Nt→∞

0.

Proof See Appendix B for a proof in the slightly more general case when the homogeneous

specific variance assumption has been relaxed.

The equally-weighted CSV thus appears to be a consistent and asymptotically efficient

estimator for idiosyncratic variance. As such, it is the best estimator in the class of CSV

estimators defined under any positive weighting scheme, and it dominates in particular the

cap-weighted CSV as an estimator for idiosyncratic variance. If we relax the homogeneous
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residual variance assumption, we still obtain that the CSV appears to be an asymptotically

unbiased estimator for the average idiosyncratic variance of the stocks in the universe (see

Appendix B). Hence, the assumption of homogeneous residual variances comes with no loss

of generality.

D Relaxing the Homogeneity Assumption for Factor Loadings

Relaxing the homogeneous beta assumption involves a bias that remains strictly positive

even for an infinite number of stocks and an equal-weighting scheme. We characterize this

bias in the next proposition in order to gauge its magnitude for given models of returns.

Proposition 4 Bias of CSV as an estimator for average idiosyncratic variance

in the presence of heterogenous betas: Relaxing the assumptions βit = βt = 1 ∀ i, t

(homogeneous beta assumption) we have, for any strictly positive weighting scheme:

(9) E
[
CSV

(wt)
t

]
=

Nt∑
i=1

witσ
2
εi
(t)−

Nt∑
i=1

w2
itσ

2
εi
(t) + E

[
F 2
t CSV

β
t

]
,

where CSV β
t denotes the cross-sectional variance of stock betas:

CSV β
t =

Nt∑
i=1

wit

(
βit −

Nt∑
j=1

wjtβjt

)2

.

Proof See Appendix C.

The first term
∑Nt

i=1witσ
2
εi
(t) in equation (9) represents the average idiosyncratic vari-

ance of stocks within the universe under consideration. The second term −
∑Nt

i=1w
2
itσ

2
εi
(t)

is the negative bias that was also present even in the presence of homogeneous beta as-

sumptions. If we focus on the equally-weighted scheme, the sum of these two terms is equal

to 1
Nt

∑Nt

i=1 σ
2
εi
(t)
(
1− 1

Nt

)
so that the bias disappears in the limit of an increasingly large

number of stocks. The third term E
[
F 2
t CSV

β
t

]
in equation (9) represents, on the other

hand, an additional (positive) bias for the CSV as an estimator of average idiosyncratic

10



variance, which is introduced by the cross-sectional dispersion in betas, and which does not

disappear in the limit of an infinitely large number of stocks.

In section A, we use this explicit expression to directly measure the beta dispersion bias

using the CAPM and the Fama and French three-factor model as benchmark factor models.

An extensive analysis of the CSV in the empirical section suggests that the homogeneous

beta assumption does not represent a material problem for the CSV as an estimator of

idiosyncratic variance as implied by standard asset pricing models (i.e. CAPM and Fama-

French).

E Competing Measures of Idiosyncratic Risk

In this section, we describe measures that have been used in the literature and which will be

used for comparison purposes in subsequent sections of the paper. The standard approach

consists of considering idiosyncratic variance either relative to the CAPM and or to the

Fama-French (FF) model (Fama and French (1993)):

(10) rit = b0it + b1itXMKTt + b2itSMBt + b3itHMLt + εFF
it

where rit denotes the excess return at time t of stock i, XMKT is the excess return on the

market portfolio, SMB is the size factor and HML is the value factor. The idiosyncratic

variance for asset i is the variance of the residuals of the regression, that is σ2(εFF
it ). To

obtain an estimate for average idiosyncratic variance, Bekaert et al. (forthcoming) use a

market capitalization weighting:

(11) FFCW
t =

Nt∑
i=1

witσ
2(εFF

it ).

For comparison purposes we also look at the equally-weighted average of FF idiosyncratic

variance in what follows.

An alternative approach to average (mostly) idiosyncratic risk estimation has been sug-

11



gested by Goyal and Santa-Clara (2003), with a measure given by:

(12) GSEW
t =

1

Nt

Nt∑
i=1

[
Dt∑
d=1

r2id + 2
Dt∑
d=2

ridrid−1

]
,

where rid is the return on stock i in day d and Dt is the number of trading days in month

t9.

More recently, Bali, Cakici, and Levy (2008) proposed a model-independent measure of

aggregate idiosyncratic risk which does not require estimation of market betas nor correla-

tions and which is based on the concept of gain from portfolio diversification:

(13) σ2
ε,t =

(
n∑

i=1

wi,tσi,t

)2

− V ar(Rm,t),

where (
∑n

i=1wi,tσi,t)
2 is the variance of the non-diversified portfolio and V ar(Rm,t) is the

variance of the fully diversified portfolio, that is the market variance10.

III Empirical Implementation

In order to perform an empirical analysis of our measure for idiosyncratic risk, we collect

daily US stock returns (common equity shares only) and their market capitalization from

the CRSP data base. Our longest sample runs from July 1963 to December 2006. We also

extract the FF factors and the one-month Treasury bill from Kenneth French web-site data

library for the same sample period. Each month, we drop stocks with missing returns and

with non-positive market capitalization at the beginning of the month. The number of firms

9As in Goyal and Santa-Clara (2003), when the second term makes the estimate negative, it is ignored.

This measure has been originally used in French, Schwert, and Stambaugh (1987).
10Campbell et al. (2001) propose an alternative measure of average idiosyncratic variance. They assume

that all betas are equal to one and subtract industry returns in addition to market returns to control for

risk. We do not include this measure in our comparison because Bekaert et al. (forthcoming) have shown

that it is very closely related to the measure obtained from standard asset pricing models.
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varies between 377 and 7293, and remains greater than one thousand 75% of the time. The

maximum number of stocks is reached during the dot.com bubble. Then, we estimate every

month the cap-weighted11 and equal-weighted average idiosyncratic variance relative to the

FF, CAPM, GS and Bali measures in equations (11), (12) and (13) respectively. We also

estimate on a daily basis the equal and cap-weighted versions of the CSV as in equations

(4) and (5). In order to construct the monthly series for our cross-sectional measures, we

estimate the average of the daily series at the end of each month. We annualize all figures in

order to compare daily and monthly measures. Following Bekaert et al. (forthcoming), we

fit a regime-switching model to the monthly and daily series in order to further compare the

different measures. Last, we look at the relation between the CSV measures of idiosyncratic

variance and selected economic and financial variables.

A Measuring the CSV Bias

As illustrated in Proposition 4 and discussed in Appendix C, the presence of non-homogeneous

betas introduces a positive bias on the CSV as an estimator for average idiosyncratic vari-

ance, which is given by the last term in equation (9). We now measure the impact of this

bias with respect to the CAPM as a benchmark model.

First, we compute the bias E
[
F 2
t CSV

β
t

]
for every month in the sample using beta

estimates for each stock with both the equal-weighted and the cap-weighted market returns.

To gauge its importance, we divide it by the average idiosyncratic variance, also measured

with respect to the CAPM12.

Table 1 presents a summary of the distribution of the time series of cross-sectional

dispersion of betas, its product with the squared return of the market portfolio (hence the

bias itself) and the proportion of this bias with respect to the average idiosyncratic variance

at the end of every month. Although the cross-sectional dispersion of betas is sizable, once

it is multiplied by the squared return of the market portfolio, the size of the bias remains

11We use previous period market capitalization and assume it is constant within the month.
12This is measured as in equation (11) with just the market returns with both weighting schemes.

13



relatively small. The median of the distribution of
F 2
t CSV β

t

σ2
εt

is 0.348% for the equal-weighted

scheme and 0.351% for the cap-weighted measure, computed over the whole sample (July

1963 to December 2006). The 97.5 quantiles are 3.24% and 3.47% respectively.

On the other hand, the formal discussion about the properties of the CSV as a measure

of idiosyncratic variance on section D also uncovered the fact that another bias (but negative

in sign) coming from the CSV weighting scheme concentration is also introduced.

Using the explicit expression for this bias provided in Proposition 4 we estimate the

proportion of the size of this weights-concentration bias with respect to the average idiosyn-

cratic variances implied by the CAPM13. In the last line of the upper and lower panels of

Table 1 we report quantiles of the distribution of this bias for both weighting schemes. The

corresponding medians are 0.030% and 0.426% for the EW and CW schemes respectively.

Since the bias is of opposite sign to the beta cross-sectional dispersion bias, we need to

assess the resulting overall bias.

We measure the total bias as the intercept of a regression of the CSV on the average

idiosyncratic variance estimated with respect to the CAPM or the Fama-French three-factor

model:

(14) CSV wt
t = bias+ ψσ2

model (wt) + ζt,

where wt refers to the weighting scheme (equal-weight or market-cap) and model stands for

either the CAPM or the Fama-French three-factor model.

Table 2 reports summary statistics for regression (14). The bias of the CSV measured

with respect to standard asset pricing models is small in magnitude for both weighting

schemes (in the order of 10−5). While it remains statistically significant, we can safely

consider that the impact of the bias remains immaterial for any practical purposes. Another

interesting finding is the sign of the bias. For the equal-weighted quantities, the sign of the

13As noted earlier, it would be straightforward to remove the impact of this bias by dividing the CSV

measure by the factor
(
1−

∑Nt

i=1 w
2
it

)
, equal to

(
1− 1

Nt

)
in the EW case.
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bias is positive, while it is negative for the cap-weighted ones. Therefore, the beta bias

dominates the weighting bias for equal-weighted averages in both models. This is consistent

with the prediction made by the theoretical analysis regarding the relative impact of the

weighting-bias for different weighting schemes. Regarding the model, the bias is larger when

the idiosyncratic variance is measured with respect to the Fama-French model instead of

the CAPM for both weighting schemes, as expected, but its magnitude remains negligible.

B Comparison with Other Measures

In this section we compare the CSV measure to the aforementioned measures of idiosyncratic

risk (i.e., FF-based, CAPM-based, GS and Bali). To obtain the factor-based measures, we

need to re-estimate the relevant factor model using a rolling window of one-month worth

of daily data to allow for time-variation in beta estimates (or total-variance variation for

the GS). In Table 3, we report summary statistics for the monthly time series of annualized

idiosyncratic variances based on 516 observations from January 1964 to December 200614.

On the monthly series, the annualized means of the equally-weighted CSV, FF-based and

CAPM-based measures are 38.4%, 38.3% and 38.7%, respectively, while the EWGS and Bali

variances are 34.2% and 23.6% . The standard deviations are 8.5%, 8.6%, 8.7% for the CSV,

FF-based and CAPM-based measures and 7.0% and 4.7% for the GS and Bali measures. For

the cap-weighted version, the CSV, FF and CAPM idiosyncratic variance measures have an

annualized mean of 8.5%, 7.6%, 8.0%, respectively and the GS and Bali measure means are

11.2% and 6.5%. The standard deviations are also closer for the CSV, FF, CAPM and Bali

measures than for GS. Although GS argue that their measure fundamentally constitutes a

measure of idiosyncratic risk, it is strictly speaking an average of total stock variance.

The cross-correlation matrix reported in Table 3 provides further evidence on the close-

ness of the CSV to the other model-based measures. Correlations are high between CSV EW

14In this section of the paper, we start the sample period in January 1964 to allow for direct comparison

with Bekaert et al. (forthcoming). In the predictability section, we instead start the sample in July 1963.
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and CAPMEW (99.93%), FFEW (99.75%) and BaliEW (97.75%), as well as between

CSV CW and CAPMCW (99.48%), FFCW (98.56%) and BaliCW (99.36%). The high cor-

relations between the CAPM and the FF measures (99.88% and 99.18% for EW and CW

respectively) also indicate that adding factors does not drastically affect the estimation of

idiosyncratic variance. Correlations between the GS measures and the other measures are

always smaller but remain close to 90% when considering the same weighting scheme. Cor-

relations between measures for different weighting schemes are much lower, irrespective of

the estimation method, indicating that the choice over the weighting scheme is fundamen-

tally important for estimating idiosyncratic variance, as stressed in our theoretical analysis

in section II.

Table 4 provides mean and standard-deviation estimates for the daily average idiosyn-

cratic variance measures. The mean of the EW CSV is 38.4%, practically equal to the mean

of EW idiosyncratic variance based on the FF model15. For the cap-weighted measures,

the CSV has a slightly higher mean than the FF-based one. For the CSV daily series, the

standard deviation is higher than for the FF-based measure for both weighting schemes.

This is due to the different nature of the two series. The CSV only includes information

from the cross-section of realized returns, while the FF idiosyncratic variance is a persistent,

overlapping, rolling-window estimate.

The lower panel of Table 4 presents cross-correlations for the daily series of idiosyncratic

variance measures. Although the coefficients are smaller than for the monthly series, the

relationship remains strong provided the comparison is done for the same weighting scheme:

82.6% and 73.9% for EW and CW measures respectively. The difference with the monthly

series correlations may again be explained by the presence of the smoothed estimation

procedure inherent to the FF-based measure.

15It is estimated based on a rolling-window of one month.

16



C Cross-sectional Volatility - Regimes and Relation with Eco-

nomic and Financial Variables

Bekaert et al. (forthcoming) fit a Markov regime-switching model with a first-order auto-

correlation structure for the monthly series of idiosyncratic variance based on the FF model.

We estimate this model with our CSV measure both at the monthly and daily frequencies.

In this model, two regimes are indexed by a discrete state variable, st , which follows a

Markov-chain process with constant transition probabilities. Let the current regime be in-

dexed by i and the past regime by j and xt be the original idiosyncratic variance, which

follows an AR(1) model:

(15) xt − µi = ϕ(xt−1 − µj) + σiet, i, j ∈ {1, 2}

The transition probabilities are denoted by p = P [st = 1|st−1 = 1] and q = P [st =

2|st−1 = 2]). The model involves a total of 7 parameters, {µ1, µ2, σ1, σ2, ϕ, p, q}.

We report the estimation results in Panel A of Table 5 for the equally-weighted CSV,

monthly and daily, and for the FF-based measure monthly. We observe that the monthly

estimates obtained for the CSV and the FF-based measures are very similar. For both

measures, the low-mean, low-variance regime displays a higher probability of remaining in

the same state16. We estimated the same model for the daily CSV series. The estimated

values of the mean parameters µ1 and µ2 are quite close to the values obtained with the

monthly series. This result suggests that we capture the same process at different frequen-

cies17. The resulting filtered probabilities suggest that the CSV measure is counter-cyclical,

the dispersion of returns being high and quite variable when economic growth subsides.

16Similar results for the cap-weighted CSV are not included for space considerations.
17This is of course not the case for the daily FF-based measure, since it is an overlapping measure of

idiosyncratic variance. This results in a high degree of persistence, with an autocorrelation parameter very

close to one, and similar means in both regimes.

17



Recently, Bansal and Yaron (2004) have revived consumption-based asset pricing models

by showing that two sources of long-run risk — expected consumption growth and consump-

tion volatility as a measure of economic uncertainty — determine asset returns. Further,

Tédongap (2010) provides strong evidence that consumption volatility risk explains a high

percentage of the cross-sectional dispersion in average stock returns for the usual set of

size and book-to-market portfolios. In tests of the intertemporal CAPM or the conditional

CAPM, the cross-section of expected returns is linked to other economic or financial vari-

ables such as the term spread, default spread, implied or realized measures of aggregate

returns variance, and many others. We relate our CSV measure to some of these variables.

Our first economic variable is consumption-growth volatility as a measure of economic

uncertainty. Following Bansal and Yaron (2004) and Tédongap (2010), we filter consumption-

growth volatility with a GARCH model. For consumption, we used FRED’s personal con-

sumption expenditures of non-durables and services monthly series, divided by the consumer

price index and the population values to obtain a per-capita real consumption series. We

then compute its growth rate from July 1963 to 200618. The second economic variable we

consider is inflation volatility, which we filter also with a GARCH process19. For the finan-

cial variables we use Welch and Goyal (2008)’s data for corporate bond yields on BAA and

AAA-rated bonds, long-term government bond yield and 3-month T-bill rate to estimate

the credit spread and term spread (as the difference between the first and the second rate

18 The series IDs at the FRED’s webpage are, PCEND and PCES for “Personal Consumption Ex-

penditures: Nondurable Goods” and “Personal Consumption Expenditures: Services”, CPIAUCNS for

“Consumer Price Index for All Urban Consumers: All Items” and POP for “Total Population: All Ages

including Armed Forces Overseas”. Bansal and Yaron (2004) used the Bureau of Economic Analysis data

available at www.bea.gov/national/consumer spending.htm on real per-capita annual consumption growth

of nondurables and services for the period 1929 to 1998. The series is longer but is available only at annual

and quarterly frequencies.
19For space considerations, we do not report parameter estimates for the two AR(1)-Garch(1,1) we

estimate. They are available upon request from the authors.
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in both cases)20. In Panel B of Table 5 we report the results of univariate regressions of

the equally-weighted measure of cross-sectional variance on the five economic and finan-

cial variables during the 1990-2006 period. We also explore some potential asymmetries by

computing the CSV EW for the positive and negative returns.

We observe that the R2 for consumption growth volatility is close to 16 per cent. In

Figure 1 we plot the two series over the same sampling period. While the CSV series is

much noisier than consumption-growth volatility, the coincident movements between the

two series are quite remarkable. This suggests the presence of a common factor (aggregate

economic uncertainty) that affects the idiosyncratic variance of each security. Aggregating

over all securities will make the CSV a function of economic uncertainty21.

The next most highly negatively correlated variable is inflation volatility with a R2 of

13 per cent. Since 1998, inflation volatility has been on an upward trend, while the cross-

sectional variance of returns has been sharply declining. In presence of higher inflation

uncertainty, investors will allocate more to stocks relative to bonds in their portfolios, gen-

erating a general increase in stock returns that reduces their cross-sectional variance. The

T-bill rate is also relatively highly correlated with CSV EW with a R2 close to 9 per cent. In

the type of equilibrium models we have referred to, the risk-free rate, proxied here by the

T-bill, will be a function of consumption growth volatility, hence its positive relation with

the cross-sectional variance.

For the financial variables (credit spread and term spread), the signs obtained are intu-

itive. Credit risk affects differently individual firm returns and therefore tends to increase

CSV, while a pervasive term spread risk will reduce dispersion by being common to many

securities due to a move of investors away from bonds into the stock market. However, the

relations are not statistically significant, although the relation improves for the CSV com-

20Data available at Amit Goyal’s webpage: http://www.bus.emory.edu/AGoyal/Research.html
21In intertemporal asset pricing models of Bansal and Yaron (2004) and Bollerslev, Tauchen, and Zhou

(2009), economic uncertainty is a priced risk factor that affects returns, therefore providing a fundamental

rationale for the observed correlation between CSV and consumption growth volatility.
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puted with negative returns. Therefore, it is in bear periods that these risk variables seem

to affect most the dispersion of returns. This asymmetry between positive and negative

returns is also present for consumption volatility.

IV New Evidence on the Predictability of the Market

Return

There is an ongoing debate on the predictive power of average idiosyncratic variance for av-

erage (or aggregate) stock market returns. Goyal and Santa-Clara (2003) find a significantly

positive relationship between the equal-weighted average idiosyncratic stock variance and

the cap-weighted portfolio returns for the period 1963:07 to 1999:12. They find that their

measure of average idiosyncratic variance has a significant relationship with next month

return on the cap-weighted portfolio. The regression in GS is as follows:

(16) rCW
t+1 = α + βνEW

t + εt+1,

where νEW
t corresponds to GSEW

t . In a subsequent analysis, Bali et al. (2005) argue that

this relationship disappeared for the extended sample 1963:07 to 2001:12, and attribute

the relationship observed in GS to high-tech-bubble-type stocks (i.e., stocks traded on the

NASDAQ) and a liquidity premium. In a similar way, Wei and Zhang (2005) find that the

significance of the relationship found by GS disappeared for their sample 1963:07 to 2002:12

and argue that the presumably temporary result of GS was driven mainly by the data in

the 1990s. Wei and Zhang (2005) criticize the fact that GS looked at the relationship be-

tween an equally-weighted average stock variance and the return on a cap-weighted average

stock return, as opposed to an equally-weighted portfolio return. Moreover, both Bali et al.

(2005) and Wei and Zhang (2005) find no significant relationship between the cap-weighted

measures and the cap-weighted portfolio return in all three sample periods (ending in 1999,

2001 and 2002, respectively).
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A Monthly Evidence

In this section we confirm existing results and extend them in a number of dimensions, in-

cluding a longer sample period. The first panel in Table 6 presents the predictability regres-

sion of the cap-weighted return by equally-weighted variance measures as in Goyal and Santa-Clara

(2003) and Bali et al. (2005) for their sample periods, as well as for the extended sample

up to 2006:12. The regression is as in equation (16), where νEW
t corresponds to the EW

CAPM-based measure and the CSV22. For comparison purposes we start the sample pe-

riod in this section in 1963:07, as in Goyal and Santa-Clara (2003), Bali et al. (2005) and

Wei and Zhang (2005).

For the monthly series, we confirm that there is a significant positive relationship in

the first sample, and also that it weakens for the subsequent extended samples23. The

Newey and West (1987) autocorrelation corrected t-stat for 12 lags of the β coefficient of

both CSV and the CAPM-based measures goes from 3.54 for the first sample period down to

0.96 for the largest sample. Consequently, the adjusted R2 goes from 1.3% down to 0.04%.

Therefore the findings of Bali et al. (2005) and Wei and Zhang (2005) are also present in

the extended sample. In Section C we propose a possible explanation for this result.

In the second panel of Table 6 we present the results of the regression between the equally-

weighted average return and the lagged equally-weighted idiosyncratic variance measure, as

given by:

(17) rEW
t+1 = α + βνEW

t + εt+1

where νEW
t is taken as the CAPM-based average idiosyncratic variance or as the CSV

measure. In contrast with the former regression, the relationship is found to be significantly

22As explained before, the monthly CSV is the average of its daily values during the month.
23We found a similar result using the GS measure of equally-weighed average variance. We do not present

these regression results for the sake of brevity given that they produce similar findings, which have also

been confirmed in Bali et al. (2005) and Wei and Zhang (2005).
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positive for the three sample periods and for both measures24.

In the third panel of Table 6 we present the results for the three sample periods of

the one-month-ahead predictive regression of the cap-weighted market portfolio using the

cap-weighted idiosyncratic variance return as a predictor. In this case, the beta of the

idiosyncratic variance is not significant for all three sample periods. This result confirms

the findings of Bali et al. (2005) and Wei and Zhang (2005) for the extended sample.

B New Predictability Evidence at Daily Frequency

Prevailing measures used in the literature require a sample of past data to estimate addi-

tional parameters, constraining existing evidence to the monthly estimations. Fu (2009)

finds that high idiosyncratic volatilities of individual stocks are contemporaneous with high

returns, which tend to reverse in the following month. Huang, Liu, Rhee, and Zhang (2010)

find that the negative relationship between idiosyncratic variance and expected returns at

the stock level uncovered in Ang et al. (2006) and Ang, Hodrick, Xing, and Zhang (2009)

becomes positive after controlling for the return reversals. Looking at the predictability

relation at a higher frequency than the month may help sort out these effects. Taking ad-

vantage of the instantaneous nature of the CSV, we run the same predictability regression

(17) on the one-day-ahead portfolio return using the average idiosyncratic variance.

The upper panel of Table 7 shows that at a daily basis, this relationship is much stronger,

with (Newey-West corrected) t-stats of coefficients for the average idiosyncratic variance

across the three samples ranging between 4 and 4.7.

24Wei and Zhang (2005) find a significantly positive relation between the equal-weighted GS measure and

the equal-weighted market return for the initial sample. They also test the robustness of the relation by

using an equally-weighted cross-sectional variance of monthly returns. They found a significantly positive

coefficient for predicting the equal-weighted portfolio return mainly for the long samples starting in 1928

but not for the sample going from 1963 to 2002. Note that our cross-sectional measures differ. Ours is an

average of the daily cross-sectional variances over the month. Theirs is the cross-sectional variance of the

returns computed over the month.
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In the lower panel of Table 7 we report the results for the one-day-ahead predictive

regression on the cap-weighted pairs (CSV and market return). The relation is positive and

significant for all three samples, but the t-stat on the cap-weighted idiosyncratic variance

coefficient deteriorates as we increase the period, from about 5.91 in the first sample down

to 1.97 for the longest sample.

C Interpretation of Predictability Results

The relationship between the equal-weighted average idiosyncratic variance and the cap-

weighted market index observed up to the end of the 1990 can be explained by the het-

erogeneous and transitory nature of the omitted sources of risk captured by idiosyncratic

risk and its relation with the inflated valuation of several NASDAQ companies during that

period25.

Some intuition behind the far more robust relationship between the equally-weighted

average idiosyncratic variance and the equally-weighted portfolio comes precisely from the

logic of standard asset pricing theory. As discussed in Section V, several theories can

be invoked to link average idiosyncratic risk to average returns, due to the heterogeneous

sources that may compose idiosyncratic risk. According to the CAPM, only systematic

risk should explain future returns. However, if during a certain period of time there exists

anomalies of any kind (priced omitted risk factors) that, presumably, are not proportionally

reflected in the current market capitalization of the companies carrying these factors, then

the omitted sources of risk are more likely to explain the returns of an equally-weighted

25In that sense, we agree with Wei and Zhang (2005) and Bali et al. (2005). The strongest omitted factor

in that period (call it the irrational.com factor), partially captured by the equally weighted idiosyncratic

variance, started to be increasingly represented in the market-cap index, due to the suddenly-higher market

capitalization of precisely the group of companies carrying this temporarily strong omitted factor. The

subsequent burst of the bubble explains the strong attenuation of the relationship between the average

idiosyncratic variance and the market-cap portfolio, since most stocks carrying this irrational.com factor

lost value and their weight fell in the market-capitalization index.
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portfolio than the returns of a value-weighted portfolio.

Along these lines, Pontiff (2006) argues that idiosyncratic risk is the largest holding cost

borne by rational arbitrageurs in their pursuit of mispricing opportunities. This theory

implies that the current level of idiosyncratic risk should predict returns since it should

measure the amount of current mispricing opportunities present in the market. All things

being equal, large-cap stocks are less likely to present misspricing and hence the predictabil-

ity implied by this theory would be more likely to be present on the equal-weighted index

return rather than the cap-weighted index return, as we observed in predictive regressions

at daily and monthly horizons26. Moreover, assuming that mispricing opportunities tend

to disappear in the long run, it appears more likely to observe this relationship between

idiosyncratic variance and returns over very short horizons. This is consistent with our

results. The sign of the relationship is not predicted by Pontiff’s theory in general, because

it depends on whether the average (equal or cap-weighted) portfolio is over- or under-priced

(it predicts a positive sign for underpriced stocks and a negative sign for overpriced stocks).

D Robustness of Predictability

In this section, we test further the predictability documented in the former section. First,

we control for some usual macroeconomic and financial predictors. Next, we include other

measures of variance in the predictability regression. Finally we check for the presence of

asymmetry in the relationship between idiosyncratic variance and future average returns.

D.1 Inclusion of Macroeconomic and Financial Predictors

Several authors (see in particular (Bali et al. (2005) and Goyal and Santa-Clara (2003)) have

suggested to estimate the risk-return trade-off predictability regression with various control

26It is well known that large cap stocks are more liquid than small-cap stocks, which implies a higher

number of people trading them and usually a higher number of analysts looking at them. Together with

less constraints to short-selling, we expect a higher price efficiency for large cap stocks.
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variables to account for potential changes in the investment opportunity set27. We consider

four macroeconomic and financial variables: the aggregate dividend yield (DIV), the term

spread (TERM), the default or credit spread (DEF) and the relative T-bill rate (RREL).

Over the longest sample period we have considered, July 1963 to December 2006, only the

variables DIV, TERM and RREL are available at both daily and monthly frequencies. For

this long sample, the default or credit spread is only available at the monthly frequency. At

the daily frequency, the latter series starts only in December 1996.

Table 8 reports the daily and monthly regression estimates for predicting the returns

of the equally-weighted (rEW ) and cap-weighted (rCW ) indexes. At the daily frequency,

the predictive power of CSV remains unaffected by the presence of the macroeconomic and

financial variables. The coefficients are close to the values found in the univariate regression.

Of the three added variables, only the relative T-bill rate appears as a strongly significant

predictor. This is true for both rEW and rCW 28. At the monthly frequency, the predicting

capacity of CSV EW for rEW remains after controlling for the macroeconomic variables,

while CSV CW is still a non-significant predictor of rCW . These results are consistent with

Bali et al. (2005) for a shorter sample ending in December 1999.

D.2 Inclusion of Return Variance

We now include the variance of the market portfolio in the predictability regression. For

the monthly estimations of V ar
(
rEW
t

)
we use the realized sample variance over the month

computed from daily returns. For the daily estimations we fitted an AR(1)-EGARCH(1,1)

model on the overall sample29. In the first two panels of Table 9, we report regression

results at the monthly and daily frequency. In the univariate regression, the variance of

27This is to capture the intertemporal hedging demand components in an ICAPM framework.
28On the reduced sample from December 1996, the default spread does not appear significant. The only

significant variable is the dividend yield in the regression forecasting rCW .
29Using the overall sample to estimate the parameters would only give the portfolio variance an advantage

to predict future returns. However, we find that even when using such forward-looking estimates for

V ar
(
rEW
t

)
, the significance of the CSV remains strong.
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the equally-weighted portfolio returns does not appear to be significant in explaining the

average future returns at the monthly and daily frequencies.

In the bivariate regression, the coefficient of V ar
(
rEW
t

)
, ϑ, is negative and non-significant

at the monthly frequency. At the daily frequency, the coefficient ϑ is still negative and

(marginally) significant. For both monthly and daily frequencies, the significance of the

CSV coefficient improves slightly after the inclusion of the equally-weighted portfolio vari-

ance.

In the two bottom panels of Table 9, we report the regression results at monthly and daily

frequencies using the cap-weighted index and CSV equivalents. The relationship at the daily

horizon becomes non-significant after the inclusion of the realized variance of the market

cap-weighted index. At the monthly horizon, the relationship remains non-significant.

Other measures of variance have been used in trying to link market returns to a measure

of market risk. Option-implied variance (V IX2) has been used as a forward-looking measure

of market variance in addition to realized variance (the sum of squared returns at higher

frequency than the targeted frequency for the measure of variance)30. Results with these

measures are similar to the ones we just reported31.

D.3 Asymmetry in the Cross-Sectional Distribution of Returns

We now test for an asymmetry in the relationship between idiosyncratic variance and future

average returns. First, the cross-sectional variance is split in two and is computed for returns

above or below the mean. Second, we compute a robust measure of the cross-sectional

skewness.

This asymmetry may be the result of the leverage effect put forward by Black (1976)

since we are considering individual firms in the cross section. Consumption volatility risk

may also affect differently small and large firms or value and growth firms. Therefore, we

30For example, for the monthly variance, one will sum the daily squared returns, while for the daily

variance, it is customary to use five-minute or one-minute squared returns.
31These results are available upon request from the authors.
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test i) whether the predictability power is the same for the CSV of returns to the left and

right of the center of the returns’ distribution, ii) whether the relationship is driven by one

of the sides and iii) whether the sign of the coefficient is the same on both sides. Therefore,

we define CSV +
t as the cross-sectional variance of the returns to the right of the cross-

sectional distribution (that is the cross-sectional distribution that includes all stocks such

that rit > rEW
t ) and conversely define CSV −

t as the cross-sectional variance of the returns

to the left of the cross-sectional distribution (that is the cross-sectional distribution that

includes all stocks such that rit < rEW
t ). Then we run the following regression:

(18) rEW
t+1 = α + β+CSV +

t + β−CSV −
t + ϵt+1.

Table 10 presents the results of regression (18) for daily and monthly estimates. First,

we observe that splitting the CSV into right and left sides of the cross-sectional distribution

make the adjusted R2 of the predictive regression increase from 0.8% to 1.11% in monthly

data and from 0.6% to 1.55% in daily data. Second, there is an asymmetric relationship

between the CSV of the returns to the right and left of the cross-sectional distribution and

the expected market return: the coefficient of the CSV +
t is positive while the one of CSV −

t

is negative in both daily and monthly regressions, and, for the daily equally-weighted CSV,

the magnitude of the coefficients differs significantly. However, for the monthly regressions,

the coefficients are mostly non-significant.

The summary statistics of the predictive regression on the cap-weighted index using

the equivalent cap-weighted CSV measures, displayed in the right-hand side upper panel of

Table 10, are qualitatively similar to the results on the equal-weighted measures.

These findings suggest that a measure of asymmetry of the cross-sectional distribution

would be relevant in the context of exploring the relationship between market expected

returns and aggregate idiosyncratic risk. Another key advantage of the cross-sectional nature

of the CSV measure is that it can be easily extended to higher-order moments. Therefore
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we consider below the skewness of the cross-sectional distribution of returns and assess its

predictive power for future returns. To the best of our knowledge, this additional factor,

which appears as a natural extension of the CSV for measuring idiosyncratic risk32, is new

in this context33. We follow Kim and White (2004) and use a quantile-based estimate (see

Bowley (1920)), generalized by Hinkley (1975), as a robust measure of skewness for the

cross-sectional distribution of returns34:

(19) RCS =
F−1(1− α1) + F−1(α1)− 2Q2

F−1(1− α1) + F−1(α1)

for any α1 between 0 and 0.5 and Q2 = F−1(0.5). The Bowley coefficient of skewness is a

special case of Hinkley’s coefficient when α1 = 0.25 and satisfies the Groeneveld and Meeden

(1984)’s properties for reasonable skewness coefficients. It has upper and lower bounds

{−1, 1}.

In the two lower panels of Table 10 we report the results of a univariate regression of daily

and monthly returns on the equal-weighted and cap-weighted market indexes on the robust

measure of cross-sectional skewness. The coefficients of skewness in the daily regressions are

highly significant. The R2 for the equal-weighted market returns is above 5% at the daily

level. At the monthly frequency, skewness is a significant predictor only for the equally-

weighted index. The sign of the coefficient of skewness is positive, which means that a shock

resulting in an increase of the positive skewness of the cross-sectional distribution of returns

32We show formally in an appendix available upon request from the authors that there is a link between

idiosyncratic skewness and the skewness of the cross-sectional distribution of returns.
33At the stock level, Kapadia (2009) uses cross-sectional skewness to explain the puzzling finding

in Ang et al. (2006) that stocks with high idiosyncratic volatility have low subsequent returns, while

Bali, Cakici, and Whitelaw (2011) examine the role of extreme positive returns in the cross-sectional pricing

of stocks.
34The usual non-robust skewness measure of the cross-section of returns is highly noisy compared to the

proposed robust measure, especially at the daily frequency.
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will translate in higher expected returns next period35. We can invoke the same mispricing

arguments as in section C. Our findings are also consistent with the differentiated impact

of investor sentiment on the prices of individual securities. Baker and Wurgler (2006) run

predictability regressions for equal-weighted and cap-weighted market returns using proxies

for investor sentiment at the monthly frequency. They find that when sentiment is low

small stocks earn particularly high subsequent returns. When sentiment is high there is

no size effect. This would explain both the positive sign for skewness and the fact that

capitalization weighting obscures the pattern.

In Table 11, we report the results of predictive regressions at the daily and monthly

frequencies where we add the robust measure of the cross-sectional skewness to the CSV

measures and macroeconomic variables included in Table 8. The first observation is that the

magnitude and the significance of the CSV measures are very close to the values reported

in Table 8. However, the striking fact is that skewness remains the major contributor to

the predictability of returns since the R2 increases significantly compared to the regressions

including CSV and macroeconomic variables. At the daily frequency, the adjusted R2

increases to close to 6 % (from 1.4 %). At the monthly frequency, it goes up to almost 8 %

(from 5.7 %). This robustness check shows that the skewness effect goes beyond good and

bad times defined by macroeconomic conditions.

V Is Average Idiosyncratic Risk Priced?

Several theoretical papers predict a positive relation between idiosyncratic risk and expected

returns. Levy (1978), Merton (1987) and Malkiel and Xu (2002) pricing models relate stock

35Several theoretical papers predict lower expected returns for stocks with idiosyncratic skew-

ness; see among recent contributions Mitton and Vorkink (2007), Barberis and Huang (2008), and

Brunnermeier, Gollier, and Parker (2007). This literature refers to the pricing of individual securities that

exhibit skewness. Our result concerns the relation between aggregate idiosyncratic skewness and the ex-

pected aggregate return.
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returns to their beta with the market and their beta to market-wide measures of idiosyncratic

risk. In these models, an important portion of investors’ portfolios may differ from the

market. Their holdings may be affected by corporate compensation policies, borrowing

constraints, heterogeneous beliefs and include non-traded assets that add background risk

to their traded portfolio decisions (e.g. human capital and private businesses). These

theoretical predictions are also in line with Campbell et al. (2001)’s argument that investors

holding a limited number of stocks hoping to approximate a well-diversified portfolio would

end up being affected by changes in idiosyncratic volatility just as much as by changes in

market volatility. More recently, Guo and Savickas (2008) argue that changes in average

idiosyncratic volatility provide a proxy for changes in the investment opportunity set and

that this proxy is closely related to the book-to-market factor36.

However, there is an ongoing empirical debate on the cross-sectional relation between

idiosyncratic volatility and future stock returns. Ang et al. (2006) and Ang et al. (2009)

find results that are opposite to these theories since stocks with high idiosyncratic volatility

earn low average returns, but they cannot fully rationalize this result. Recently, Huang et al.

(2010) have found that the negative sign in the relationship between idiosyncratic variance

and expected returns at the stock level becomes positive after controlling for return reversals.

Similarly, Fu (2009) documented that high idiosyncratic volatilities of individual stocks are

contemporaneous with high returns, which tend to reverse in the following month. Bali et al.

(2011) find that the negative effect of idiosyncratic volatility is driven by its close association

with the maximum daily return in a month, proxying for demand for lottery-like stocks.

Finally, Bali and Cakici (2008) show that there is no robust, significant relation between

idiosyncratic volatility and the cross-section of expected returns. The relation is sensitive

to portfolio construction methodology and data frequency.

36Alternative explanations of the relation between idiosyncratic risk and return are the firm’s as-

sets’ call-option interpretation by Merton (1974) where equity is a function of total volatility as well as

Barberis, Huang, and Santos (2001) prospect theory asset pricing model with loss aversion over (owned)

individual stock’s variance.
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In order to use the standard set of assets in the asset pricing literature, we extract

daily returns data from Kenneth French data library on their 100 (10x10) and 25 (5x5)

size/book-to-market portfolios for the period July 1963 to December 2006. Then we run

every calendar month the following regression for each portfolio37:

(20) rit = α + βi,xmktXMKTt + βi,smbSMBt + βi,hmlHMLt + βi,csvCSV
EW
t .

To estimate the factor loadings (the βs) we use the past month or the past three months

of daily data (to reduce measurement error) and run the following cross-sectional regression

every month on the next month’s excess returns and record the γ coefficients:

(21) rmit+1 = γ0 + γxmktβi,xmkt(t) + γsmbβi,smb(t) + γhmlβi,hml(t) + γcsvβi,csv(t).

We finally test whether the average γ coefficients are statistically different from zero.

In order to take into account possible serial correlation in the coefficients, we compute the

t-statistic using Newey and West (1987) standard errors with 4 lags (same number of lags as

in Ang et al. (2009)). We use four sets of assets: 100 (10x10) size/book-to-market equally-

weighted portfolios and cap-weighted weighted portfolios, and 25 (5x5) size/book-to-market

equally-weighted and cap-weighted portfolios. For each of them, we use the CSV EW as

the fourth risk factor. In Table 12 we report the corresponding Fama-MacBeth regression

results. The table displays the annualized coefficients and standard errors (multiplied by 12

from the original monthly values), as well as their corresponding autocorrelation-corrected

t-stat and the average R2. In Panel A, for the monthly beta estimates, the γ coefficient for

CSV EW is positive and significant when we use the 100 and 25 size/book-to-market Fama-

French equally-weighted portfolios. However, it is positive and not significant when we use

37As before, XMKT stands for excess market return, SMB and HML are the size and book to market

Fama-French factors, also directly extracted from Kenneth French data library.
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the 25 market cap-weighted portfolios and marginally significant for the 100 market cap-

weighted portfolios. The latter result is not entirely surprising considering that the cross-

sectional variation in returns is reduced through the market-capitalization adjustment. In

Panel B, we report results for the three-month beta estimates to account for some potential

measurement errors. The coefficient for the CSV loading is now significant for the 100

cap-weighted portfolios but not quite for the 25.

VI Conclusion

We formally introduced a cross-sectional dispersion measure as a proxy for aggregate id-

iosyncratic risk that has the distinct advantage of being readily computable at any fre-

quency, with no need to estimate other parameters. It is therefore a model-free measure

of idiosyncratic risk. We extensively show how this measure is related to previous proxies

of idiosyncratic variance, such as the measures proposed by Goyal and Santa-Clara (2003),

Bali et al. (2008), and the ones based on the Fama and French (1993) and CAPM models,

which have been previously shown to be very close to the Campbell et al. (2001) proxy

as well. We confirm previous findings of Goyal and Santa-Clara (2003), Bali et al. (2005)

and Wei and Zhang (2005) on the monthly predictability regressions for an extended sam-

ple period using our cross-sectional measure and more standard measures of idiosyncratic

variance. We find that the results are robust across these measures. Thanks to the in-

stantaneous nature of our measure, we are able to extend to daily data the evidence on

the predictability power of idiosyncratic variance on the future market portfolio return.

We provide a statistical argument to support the choice of an equally-weighted measure of

average idiosyncratic variance as opposed to a market-cap weighted and explain why both

empirically and theoretically such a measure should forecast better the equal-weighted mar-

ket return. We also showed that this cross-sectional measure displays a sizable correlation

with economic uncertainty, as measured by consumption growth volatility, and with several

economic and financial variables. One additional advantage of the cross-sectional nature
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of our measure is that it generalizes to higher moments. We showed that the asymmetry

of the cross-sectional distribution is a very good predictor for future returns. We leave for

further research an exhaustive analysis of the properties of the skewness of cross-sectional

return distribution as a measure of average idiosyncratic skewness as well as an empirical

analysis of the CSV measure using international data.
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A Proof of Proposition 1

Consider the factor model decomposition

r
(wt)
t =

Nt∑
i=1

witβitFt +
Nt∑
i=1

witεit

and

rit − r
(wt)
t =

(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
j=1

wjtεjt

Under the homogeneous betas assumption, we have

(A-1) rit − r
(wt)
t = εit −

Nt∑
j=1

wjtεjt

and therefore [
rit − r

(wt)
t

]2
= ε2it +

(
Nt∑
j=1

wjtεjt

)2

− 2εit

Nt∑
j=1

wjtεjt

so that

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r

(wt)
t

)2
=

Nt∑
i=1

witε
2
it +

(
Nt∑
j=1

wjtεjt

)2

− 2
Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

=
Nt∑
i=1

witε
2
it −

(
Nt∑
i=1

wjtεjt

)2

We now argue that the term
∑Nt

i=1wjtεjt converges to 0 for increasingly large numbers of

stocks. To show this, we need to use recent results regarding the Marcinkiewcz−Zygmund

strong law of large numbers for weighted sums of i.i.d. variables (see Sung (2002)):

(A-2)
1

N

N∑
i=1

aNiXi −→
N→∞

0 almost surely
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when {X,XN , N ≥ 1} is a sequence of i.i.d. random variables with E (X) = 0, E|X|2 <∞

and {aNi, 1 ≤ i ≤ N,N ≥ 1} is an array of constants satisfying38

(A-3)
N∑
i=1

aNi = O

(
1

N

)

Here we take aNi ≡ wit and Xi ≡ εit at all dates t. Thus, for a positive weighting scheme

satisfying condition (A-3), it follows from the strong law of large numbers for weighted sums

of i.i.d. variables that:
Nt∑
i=1

witεit −→
Nt→∞

0 a.s.,

Using similar arguments, and the homogeneous idiosyncratic second moment assump-

tion, E [ε2it] ≡ σ2
ε (t), we obtain that for a strictly positive weighting scheme, wt, and i.i.d.

εi,
Nt∑
i=1

witε
2
it −→

Nt→∞
σ2
ε (t) almost surely

Using these results, we finally have that:

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r

(wt)
t

)2
−→
Nt→∞

σ2
ε (t) almost surely.

B Properties of the CSV Estimator

A Bias of the CSV Estimator

Under the factor model decomposition (1) and equation (2) and using the homogeneous

beta assumption, we have:

38See corollary 2 in Sung (2002) (with p = q = 2). Note that the convergence result holds under slightly

weaker assumptions (see Cuzick (1995) or corollary 2 from Sung (2002)).
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(B-1) rit − r
(wt)
t =

(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
j=1

wjtεjt = εit −
Nt∑
j=1

wjtεjt

Replacing result (B-1) in equation (3) we have as before:

(B-2) CSV
(wt)
t =

Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

By definition of a strict factor model, E [εitεjt] = 0 for i ̸= j, and E(ε2it) = σ2
εi
. Applying

the expectation operator in equation (B-2) we get:

(B-3) E
[
CSV

(wt)
t

]
=

Nt∑
i=1

witσ
2
εi
(t)−

Nt∑
i=1

w2
itσ

2
εi
(t)

The second term in (B-3) implies that the CSV would tend to underestimate the average

idiosyncratic variance. Considering the equal-weighted scheme where wit = 1/Nt ∀i, (B-3)

simplifies into

E
[
CSV EW

t

]
=

(
1− 1

Nt

)
1

Nt

Nt∑
i=1

σ2
εi
(t)

and we obtain, as Nt goes to infinity:

E
[
CSV EW

t

]
− 1

Nt

Nt∑
i=1

σ2
εit

→ 0.

B Variance of the CSV Estimator

Let wt and εt be column vectors of the weighting scheme and residuals respectively and

Ωt = wtw
′
t, Λt = diag (wt), Nt ×Nt matrices, and denote Σε the variance covariance matrix

of the residuals, which is diagonal for a strict factor model.
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For a finite number of stocks in the case where Ft ̸= r(wt), we have from equation (B-2):

CSV
(wt)
t =

Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

.

Letting Qt = Λt − Ωt, CSVt can be written in matrix form, as follows:

(B-4) CSV
(wt)
t = ε′tQtεt.

Using the quadratic structure of the CSV and assuming normal residuals, we have (see for

instance Kachman (1999))39:

(B-5) V ar (ε′tQtεt) = 2tr (QtΣ
ε
tQtΣ

ε
t)

Under the assumption of a strict factor model, i.e. ρεijt = 0 ∀i ̸= j, equation (B-5)

simplifies to:

(B-6) V ar
(
CSV

(wt)
t

)
= 2

Nt∑
i=1

σ4
εit
w2

it(1− wit)
2 + 2

Nt∑
i=1

Nt∑
j ̸=i

w2
itw

2
jtσ

2
εit
σ2
εjt

Assuming an upper bound for the individual idiosyncratic variances, denoted as σ̄2
εt

equation (B-6) yields to the following inequality (replacing each variance for its upper bound)

(B-7) V ar
(
CSV

(wt)
t

)
< 2σ̄4

εt

( Nt∑
i=1

w2
it

)2

+
Nt∑
i=1

w2
it − 2

Nt∑
i=1

w3
it

 .

39The operator tr stands for the trace of a matrix, which is the sum of the diagonal terms.
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When wt = 1/Nt, equation (B-7) simplifies to

(B-8) V ar
(
CSV

(wt)
t

)
< 2σ̄4

εt

(
Nt − 1

N2
t

)
< 2σ̄4

εt

(
1

Nt

)
.

For a large number of stocks,

(B-9) V ar
(
CSV

(wt)
t

)
−→ 0.

C Relaxing the Assumption of Homogenous Betas

The assumption that βit = βt for all i is obviously a simplistic one and is done only for

exposure purposes. Starting with the single factor decomposition on the definition of the

CSV we have:

CSV
(wt)
t =

Nt∑
i=1

wit

(
rit − r

(wt)
t

)2
=

Nt∑
i=1

wit

[(
βit −

Nt∑
j=1

wjtβjt

)
Ft + εit −

Nt∑
i=1

wjtεjt

]2

After simple rearrangement of terms we get:

CSV
(wt)
t = F 2

t

Nt∑
i=1

wit

(
βit −

Nt∑
j=1

wjtβjt

)2

+
Nt∑
i=1

witε
2
it −

Nt∑
i=1

Nt∑
j=1

wjtwitεitεjt

+ 2Ft

Nt∑
i=1

witεit(βit −
Nt∑
j=1

wjtβjt)

Applying the expectation operator and assuming a strict factor model, the last expression
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simplifies so as to yield:

E
[
CSV

(wt)
t

]
=

Nt∑
i=1

witσ
2
εit

−
Nt∑
i=1

w2
itσ

2
εit

+ E
[
F 2
t CSV

β
t

]
.
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D Tables and Figures

Table 1: Estimates of the Biases due to the Cross-Sectional Dispersion of Betas

and Weight Concentration: This table contains a summary of the distribution of the

following time series: the cross-sectional dispersion of betas CSV β
t , estimated with respect to

the CAPM at the end of every month using daily returns; the average idiosyncratic variance

σ2
εt with respect to the CAPM; the product of the average return of the market portfolio

squared, F 2
t , and the beta dispersion, CSV β

t ; the proportion of the product F 2
t CSV

β
t to σ2

εt

and the proportion of
∑
w2

itσ
2
εit

to σ2
εt . The upper panel corresponds to the equal-weight

scheme (CSV EW ) and the lower panel to the market-cap weighting (CSV CW ). All figures

are daily. The period is from July 1963 to December 2006.

Equal-Weighted Q2.5 Q25 Q50 Q75 Q97.5

CSV β
t 0.282 0.970 1.563 3.022 11.437

σ2
εt(%) 0.043 0.065 0.103 0.241 0.485

F 2
t CSV

β
t (%) 6.57e-07 6.92e-05 3.84e-04 0.001 0.005

F 2
t CSV β

σ2
εt

(%) 0.001 0.078 0.348 0.890 3.240∑
w2

itσ
2
εit

σ2
εt

(%) 0.014 0.020 0.030 0.054 0.154

Cap-Weighted Q2.5 Q25 Q50 Q75 Q97.5

CSV β
t 0.075 0.309 0.451 0.704 3.079

σ2
εt(%) 0.009 0.020 0.030 0.042 0.153

F 2
t CSV

β
t (%) 1.83e-07 2.30e-05 1.09e-04 2.77e-04 0.001

F 2
t CSV β

σ2
εt

(%) 4.85e-04 0.080 0.351 0.930 3.472∑
w2

itσ
2
εit

σ2
εt

(%) 0.173 0.281 0.426 0.637 1.463
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Table 2: Total Bias Associated with CSV: This table reports the results of the regression

CSV wt
t = bias + ψσ2

model (wt) + ζt, where σ
2
model (wt) represents monthly estimates of the

weighted average idiosyncratic variance estimated using the corresponding model (either

CAPM or FF). The average measures and the CSV are computed with either the cap-

weighted scheme (CW) or the equal-weighted one (EW). The period is from July 1963 to

December 2006.

CAPMEW FFEW CAPMCW FFCW

Bias 1.29e-05 2.23e-05 -2.09e-05 -3.74e-05
NW t-stat (1.986) (2.382) (-2.849) (-4.767)

ψ 0.983 0.988 1.125 1.242
NW t-stat (153.819) (100.162) (39.259) (39.226)

R
2
(%) 99.866 99.503 98.946 97.117
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Table 4: Comparison of Daily Measures of Idiosyncratic Variance: The upper panel

contains the annualized means and standard deviations of the daily time series for the CSV

and the average idiosyncratic variance based on the Fama-French model as in equations

(4) and (11) using both weighting schemes. The lower panel presents the cross-correlation

matrix among these variables. The period is from January 1964 to December 2006.

CSV EW FFEW CSV CW FFCW

Mean 0.384 0.383 0.085 0.078
Std.Dev. 0.021 0.019 0.005 0.004

Correlation CSV EW FFEW CSV CW FFCW

100.00 82.63 60.33 63.96
100.00 52.12 72.55

100.00 73.95
100.00
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Table 5: Idiosyncratic Volatility - Regimes and Relations with Macroeconomic

and Financial Variables: Panel A reports the parameter estimates of the regime-switching

model specified in equation 15, first at the monthly frequency for the equally-weighted CSV

and for the average idiosyncratic variance based on the FF model as in equations (4) and

(11), then at the daily frequency for the CSV. µi is the average level of the variable on regime

i, σi is the standard deviation level of the variable on regime i, ϕ is the autocorrelation

coefficient, p and q are the probabilities of remaining in regimes 1 and 2 respectively. The

estimation period is from 01/1964 to 12/2006. In Panel B, we run the regression CSV EW
t =

α+βEvarEvart, where Evart is either Consumption Volatility, Credit Spread, Term Spread,

Inflation volatility and Risk-free rate. The sample period is 01/1990 to 12/2006.

Panel A CSV EW
m FFEW

m CSV EW
d

µ1 0.401 0.363 0.446
µ2 0.299 0.275 0.304
σ1 0.067 0.062 0.036
σ2 0.010 0.009 0.003
ϕ 0.980 0.981 0.965
p 0.839 0.823 0.695
q 0.963 0.951 0.956

Panel B

Full Sample CSV EW R
2
(%)

Consumption-Vol 18.611 15.659
t-stat (3.242)

Credit-Spread 2.067 2.642
t-stat (1.560)

Term-Spread -0.157 0.248
t-stat (-0.558)

Inflation-Vol -10.420 13.030
t-stat (-3.631)
Rf 5.148 8.687

t-stat (2.457)

Pos. Returns CSV EW+ R
2
(%)

Consumption-Vol 12.063 2.922
t-stat 2.403

Credit-Spread 1.647 0.479
t-stat 1.178

Term-Spread -0.279 0.649
t-stat -1.166

Inflation-Vol -5.547 1.379
t-stat -1.901
Rf 2.209 0.331

t-stat 1.235

Neg. Returns CSV EW− R
2
(%)

Consumption-Vol 2.930 11.532
t-stat 3.505

Credit-Spread 0.352 2.239
t-stat 1.687

Term-Spread -0.073 4.317
t-stat -1.390

Inflation-Vol -0.501 0.445
t-stat -0.985
Rf 0.508 2.195

t-stat 1.26948



Table 6: Monthly Predictability of Market Returns by Two Measures of Idiosyn-

cratic Variance (Cross-Sectional Variance and CAPM-based): The upper panel

presents the results of a one-month ahead predictive regression of the monthly cap-weighted

market excess returns, denoted by rCW , by the monthly lagged equal-weighted CAPM-based

average idiosyncratic variance and CSV EW for three sample periods. The second panel re-

ports corresponding results for predicting the monthly equal-weighted market excess returns,

denoted by rEW , by the monthly lagged equal-weighted CAPM-based average idiosyncratic

variance and CSV EW . In the third panel, the monthly cap-weighted market excess returns,

rCW , are predicted by the monthly lagged CAPM-based cap-weighted idiosyncratic variance

and CSV CW . CAPM refers to the average idiosyncratic variance derived from the CAPM,

estimated using one month of daily data and CSV is the average of the daily cross-sectional

variance over each month. The intercept, the regression coefficient of the corresponding

lagged idiosyncratic variance, the Newey-West corrected t-stats and the adjusted coefficient

of determination denoted by R
2
are reported. The sample periods are 1963:08 - 1999:12,

1963:08 - 2001:12 and 1963:08 - 2006:12.

Monthly series 1963:08 - 1999:12 1963:08 - 2001:12 1963:08 - 2006:12
Forecasting rCW CAPMEW CSV EW CAPMEW CSV EW CAPMEW CSV EW

Intercept -0.001 -0.002 0.001 0.001 0.002 0.002
NW t-stat (-0.424) (-0.479) (0.228) (0.264) (0.586) (0.617)
Coefficient 0.241 0.250 0.123 0.120 0.090 0.087
NW t-stat (3.543) (3.609) (1.356) (1.247) (1.055 (0.964)

R
2
(%) 1.336 1.365 0.275 0.233 0.072 0.044

Forecasting rEW CAPMEW CSV EW CAPMEW CSV EW CAPMEW CSV EW

Intercept 4.51e-04 3.31e-04 -1.67e-04 -1.06e-05 0.001 0.001
NW t-stat (0.086) (0.063) (-0.033) (-0.002) (0.241) (0.270)
Coefficient 0.247 0.254 0.238 0.235 0.217 0.215
NW t-stat (2.175) (2.189) (2.395) (2.329) (2.331) (2.271)

R
2
(%) 0.774 0.773 0.885 0.824 0.726 0.678

Forecasting rCW CAPMCW CSV CW CAPMCW CSV CW CAPMCW CSV CW

Intercept 0.001 0.001 0.007 0.007 0.007 0.008
NW t-stat (0.150) (0.334) (2.226) (2.459) (2.551) (2.823)
Coefficient 0.856 0.688 -0.356 -0.373 -0.404 -0.421
NW t-stat (1.192) (0.995) (-0.871) (-1.081) (-1.080) (-1.334)

R
2
(%) 0.128 0.043 -0.037 0.038 0.035 0.123
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Table 7: Daily predictability of Market Returns by Cross-Sectional Variance:

The upper panel presents the results of a one-day ahead predictive regression of the equal-

weighted daily market excess returns, denoted by rEW , on the daily lagged equal-weighted

cross-sectional variance denoted by CSV EW estimated as in equation (4) for three sample

periods. The lower panel presents the results of the predictive regression of the cap-weighted

daily excess market returns using the cap-weighted CSV. The intercept, the regression

coefficient corresponding to the CSV, the Newey-West corrected t-stats (30 lags) and the

adjusted coefficient of determination denoted by R
2
are reported. The sample periods are

1963:07 to 1999:12, 1963:07 to 2001:12 and 1963:07 to 2006:12.

Daily series 63:07-99:12 63:07-01:12 63:07-06:12

Forecasting rEW CSV EW CSV EW CSV EW

Intercept -1.58e-04 -1.40e-04 -1.29e-05
NW t-stat (-0.785) (-0.714) (-0.071)
Coefficient 0.544 0.483 0.411
NW t-stat (4.711) (4.515) (4.000)

R
2
(%) 0.883 0.788 0.573

Forecasting rCW CSV CW CSV CW CSV CW

Intercept -0.001 -1.88e-04 -1.65e-04
NW t-stat (-3.521) (-0.791) (-0.737)
Coefficient 3.404 1.189 1.151
NW t-stat (5.919) (1.948) (1.966)

R
2
(%) 0.831 0.220 0.186
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Table 8: Daily and Monthly Return Predictability by Cross-Sectional Variance

Controlling for Macroeconomic Variables: The two upper panels include the multi-

variate regression results for daily predictions of the equal-weighted or cap-weighted market

returns using the equal-weighted CSV (first panel) or the cap-weighted CSV (second panel)

and a set of macroeconomic variables as predictors. The two lower panels report the cor-

responding monthly predictions. The set of macroeconomic variables are the aggregate

dividend yield (DIV), the term spread (TERM), the default or credit spread (DEF) and the

relative T-bill rate (RREL). The sample period is from July 1963 to December 2006.

Forecasting rEW −Daily Coeff NW t-stat R
2
(%)

CSV EW 0.380 (3.408) 1.363
RREL -0.056 (-3.861)
DIV 0.013 (1.434)

TERM 0.010 (0.743)

Forecasting rCW - Daily Coeff NW t-stat R
2
(%)

CSV CW 1.337 (2.012) 0.473
RREL -0.036 (-3.232)
DIV 0.011 (1.438)

TERM 0.010 (0.961)

Forecasting rEW - Monthly Coeff NW t-stat R
2
(%)

CSV EW 0.275 (2.262) 5.670
RREL -1.062 (-3.672)
DIV 0.647 (1.531)

TERM 0.078 (0.370)
DEF -0.034 (-0.036)

Forecasting rCW - Monthly Coeff NW t-stat R
2
(%)

CSV CW -0.400 (-1.106) 3.007
RREL -0.701 (-3.497)
DIV 0.067 (0.256)

TERM 0.132 (0.959)
DEF 0.014 (0.021)
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Table 9: Daily and Monthly Return Predictability with and without Market

Volatility: This table presents summary statistics for three predictive regressions. The

two upper panels correspond to daily and monthly predictions of the equal-weighted broad

market index using equal-weighted CSV and the realized variance of the equal-weighted

broad market index, while the two lower panels include the corresponding statistics for the

cap-weighted measures for both returns and CSV. In each panel, the first row corresponds

to the regression rwt = α + βCSV w
t + ϵt, the second row to rwt = α + ϑV ar (rwt ) + ϵt, and

the third one to rwt = α + βCSV w
t + ϑV ar (rwt ) + ϵt. The sample period is from July 1963

to December 2006.

Daily Estimates Intercept T-stat CSV EW T-stat V ar
(
rEW

)
T-stat R

2
(%)

Forecasting rEW -1.29e-05 (-0.071) 0.411 (4.000) 0.573
Forecasting rEW 0.001 (4.928) -2.437 (-0.976) 0.034
Forecasting rEW 1.19e-04 (0.629) 0.470 (4.672) -5.038 (-2.226) 0.737

Monthly Estimates Intercept T-stat CSV EW T-stat V ar
(
rEW

)
T-stat R

2
(%)

Forecasting rEW 0.001 (0.270) 0.215 (2.271) 0.678
Forecasting rEW 0.008 (2.673) 0.240 (0.182) -0.185
Forecasting rEW 0.001 (0.324) 0.226 (2.206) -0.478 (-0.394) 0.515

Daily Estimates Intercept T-stat CSV CW T-stat V ar
(
rCW

)
T-stat R

2
(%)

Forecasting rCW -1.65e-04 (-0.737) 1.151 (1.966) 0.186
Forecasting rCW 2.10e-05 (0.183) 2.680 (2.003) 0.068
Forecasting rCW -1.76e-04 (-0.937) 1.084 (1.298) 0.447 (0.198) 0.179

Monthly Estimates Intercept T-stat CSV CW T-stat V ar
(
rCW

)
T-stat R

2
(%)

Forecasting rCW 0.008 (2.823) -0.421 (-1.334) 0.123
Forecasting rCW 0.005 (2.636) -0.418 (-0.569) -0.116
Forecasting rCW 0.008 (2.815) -0.459 (-1.054) 0.130 (0.113) -0.065
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Table 10: Predictability Regression on Market Returns with Right and Left CSV

Measures, and Skewness: In the upper panel, we report the results of daily and monthly

predictive regressions of the excess equal-weighted and cap-weighted portfolio returns, de-

noted respectively by rEW and rCW . We use as predictors the corresponding daily or

monthly measures of the returns cross-sectional variance to the right and the left of the

cross-sectional distribution mean, denoted as CSV + and CSV − respectively. In the lower

panel, we report results for similar regressions with the returns cross-sectional skewness as

the predictive variable, at the daily and monthly frequencies. We include the intercept, the

regression coefficients and the Newey-West corrected t-stats, as well as the adjusted coeffi-

cient of determination denoted by R
2
. The sample period is from July 1963 to December

2006.

Forecasting rEW DailyEW MonthlyEW

Intercept 0.001 0.003
NW t-stat (3.944) (0.727)
CSV + 0.488 0.375

NW t-stat (3.360) (2.400)
CSV − -1.200 -0.486

NW t-stat (-3.551) (-1.129)

R
2
(%) 1.552 1.114

Forecasting rCW DailyCW MonthlyCW

Intercept -1.12e-04 0.008
NW t-stat (-0.588) (2.753)
CSV + 4.942 0.071

NW t-stat (3.546) (0.054)
CSV − -2.842 -1.302

NW t-stat (-2.736) (-0.879)

R
2
(%) 0.785 -0.069

Daily - rEW Coeff. t-stat R
2
(%)

Intercept 0.001 (5.200) 5.345
Skewness 0.004 (19.989)

Monthly - rEW Coeff. t-stat R
2
(%)

Intercept 0.008 (3.403) 3.626
Skewness 0.004 (4.915)

Daily - rCW Coeff. t-stat R
2
(%)

Intercept 2.18e-004 (2.576) 0.952
Skewness 0.002 (11.601)

Monthly - rCW Coeff. t-stat R
2
(%)

Intercept 0.006 (2.840) 0.047
Skewness 0.001 (1.180)
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Table 11: Daily and Monthly Predictability of Market Returns with Skewness and

Macroeconomic Variables: The two upper panel includes the multivariate regression re-

sults for daily predictions of the equal-weighted broad market index using the equal-weighted

CSV (first panel) or the cap-weighted CSV (second panel), cross-sectional skewness and a

set of macroeconomic variables as regressors. The two lower panels report the corresponding

monthly predictions. The set of macroeconomic variables are the aggregate dividend yield

(DIV), the term spread (TERM), the default or credit spread (DEF) and the relative T-bill

rate (RREL). The sample period is from July 1963 to December 2006.

Forecasting rEW - Daily Coeff NW t-stat R
2
(%)

CSV EW 0.331 (3.205) 6.081
Skewness 0.004 (19.450)
RREL -0.045 (-3.475)
DIV 0.007 (0.901)

TERM 0.014 (1.142)

Forecasting rCW - Daily Coeff NW t-stat R
2
(%)

CSV CW 1.278 (1.912) 1.241
Skewness 0.002 (10.340)
RREL -0.030 (-2.916)
DIV 0.009 (1.181)

TERM 0.011 (1.175)

Forecasting rEW - Monthly Coeff NW t-stat R
2
(%)

CSV EW 0.277 (2.403) 7.800
Skewness 0.003 (3.819)
RREL -0.869 (-3.108)
DIV 0.546 (1.445)

TERM 0.114 (0.586)
DEF 0.043 (0.053)

Forecasting rCW - Monthly Coeff NW t-stat R
2
(%)

CSV CW -0.393 (-1.092) 2.829
Skewness 1.47e-004 (0.271)
RREL -0.691 (-3.426)
DIV 0.064 (0.245)

TERM 0.134 (0.966)
DEF 0.015 (0.022)
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Table 12: Pricing of Cross-Sectional Variance: This table displays the average values

and Newey-West corrected t-stats for the coefficients in Fama-MacBeth regressions, run

every month in the sample, using the betas on the 3 Fama-French factors and on CSV EW

for the 100 and 25 size and book-to-market Fama-French equally-weighted (first two tables

of each panel) and cap-weighted (last two tables of each panel) portfolios. Panel A uses 1

month of daily data (21 days) to estimate the betas of the Factor model regressions every

month while Panel B uses 63 days of daily returns (3 months) to run the Factor model

regressions every 21 days. The table also displays the average R2 across subsamples of the

Fama-MacBeth regressions. The sample period is July 1963 to December 2006.

Panel A
100-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.223 -0.067 0.029 0.048 0.005 24.657
tstat (9.222) (-4.173) (2.320) (3.916) (2.847)

25-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.278 -0.133 0.042 0.064 0.009 51.962
tstat (9.969) (-6.447) (2.480) (3.927) (2.703)

100-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.155 -0.007 0.004 0.037 0.003 24.262
tstat (6.896) (-0.421) (0.323) (2.762) (1.909)

25-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.175 -0.034 0.010 0.048 0.004 50.815
tstat (7.417) (-1.624) (0.625) (2.910) (1.395)

Panel B
100-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.665 -0.278 0.167 0.154 0.036 34.806
tstat (9.826) (-4.866) (3.676) (3.398) (3.422)

25-EW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.844 -0.470 0.186 0.174 0.072 61.582
tstat (9.699) (-6.673) (3.477) (3.179) (2.874)

100-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.392 -0.020 0.064 0.126 0.018 34.676
tstat (7.123) (-0.372) (1.479) (2.676) (2.370)

25-CW Portfolios Intercept XMKT SMB HML CSV EW R̄2(%)

γ 0.465 -0.107 0.078 0.134 0.025 59.604
tstat (7.574) (-1.685) (1.587) (2.634) (1.730)
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Figure 1: Cross-sectional Variance and Consumption Volatility: Monthly time series

of CSV EW on the right-hand axis and Consumption Volatility on the left-hand axis. The

sample period is January 1990 to December 2006.
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