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Abstract:  
We study the effect of learning on optimal growth. We first derive the Euler equation in a 
general learning environment without experimentation. We then consider the case of iso-
elastic utility and linear production, for general distributions of the random shocks and 
beliefs (i.e., no conjugate priors) and for any horizon. We characterize the unique 
optimal policy function for this learning model. We show how learning alters the 
maximization problem of the social planner. We also compare the learning model with 
the deterministic and stochastic models. 
This work builds on the work on learning and growth in a Brock-Mirman environment 
initiated by Koulovatianos, Mirman, and Santugini (2009) (KMS) for the Mirman-Zilcha 
model (with log utility and Cobb-Douglas production). While the Mirman-Zilcha model 
provides some insights about the effect of learning on growth, it also hides many 
important features of learning that the model in this paper takes account of. In other 
words, compared to the Mirman-Zilcha model, we show that the case of iso-elastic utility 
and linear production yields a more profound effect of learning on dynamic programming 
and thus optimal behavior. 
 
Keywords: Brock-Mirman environment, Dynamic programming, Learning, Optimal 
growth 

JEL Classification: D8, D9, E2 
 



1 Introduction

Uncertainty is ubiquitous to virtually all economic problems beginning with

growth and real business cycles in macroeconomics and continuing with in-

dustrial organization and consumer behavior in microeconomics. Indeed,

economic agents make optimal decisions without complete knowledge of the

environment in which they live. This is particularly relevant to dynamic

maximization problems in which a myriad of future variables is unobserved

by the decision makers. To analyze optimal behavior under uncertainty,

random shocks are included in the objective functions and the constraints.1

While the agents have no knowledge of the realized shocks, they know their

distributions and thus use this knowledge to form expectations over the sum

of present and discounted future payoffs subject to constraints.

Uncertainty is particularly relevant in optimal growth. Although agents

have a certain control over the evolution of capital such as infrastructures,

roads, telecommunications, energy, and common-pool natural resources, the

dynamics of capital remains highly uncertain. In the stochastic growth mod-

els initially studied in Brock and Mirman (1972) and Mirman and Zilcha

(1975), the social planner makes consumption and saving decisions taking

account of uncertainty by forming expectations. However, economic agents

have the ability to do more than just react to uncertainty. In many cases,

they can also alter the uncertainty they face through learning. That is, agents

learn about the structure of the economy in order to reduce the uncertainty

they face. For instance, suppose that in addition to not observing future

shocks, the agents ignore the true distributions generating these shocks. In

that case, observing past shocks provides information about these unknown

distributions. Hence, the agents not only make decisions of consumption and

saving, but at the same time they engage in econometric activities, gather-

ing and analyzing data in order to learn about unknown variables, and, thus,

reducing the uncertainty they face. In general, decision making and learning

are nonseparable and influence each other.2

1Random shocks can be embedded in positive models as well. See Mirman (1970) for
an early analysis of uncertainty (i.e., random production function) in the Solow model.

2There is a two-way interaction between decision making and learning. On the one
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Unlike the literature on stochastic optimal growth models, there is lit-

tle work on learning optimal growth models.3 One exception concerns the

study of capital accumulation when the agents have the ability to experi-

ment. However, these models consider at most a three-period horizon or

rely heavily on the use of conjugate priors, especially the normal distribu-

tion.4 Recently, Koulovatianos, Mirman, and Santugini (2009) (KMS) pro-

vides closed-form solutions for the social planner’s optimal policy function

in the Mirman-Zilcha class of models when the agents learn about the pro-

duction function.5 In the learning growth model studied in KMS, there is

no experimentation. Indeed, the full problem (with experimentation) has

yet to be solved or studied in optimal growth with infinite horizon. Hence,

understanding the problem of learning takes several steps. KMS makes the

assumption that the signal is seen so experimentation is not relevant. Yet,

the learning activity changes future payoffs.6 Optimal behavior is charac-

terized for general distributions of the random shock and beliefs (i.e., no

use of conjugate priors). The class of Mirman-Zilcha models with log utility

and Cobb-Douglas production functions offers a preliminary insight of the

effect of learning on optimal growth. Although learning is shown to have a

profound effect on the social planner’s optimal policy function (there is no

equivalence in the function form between the stochastic case and the learn-

ing case), it turns out that the log case combined with the Cobb-Douglas

hand, decision making may have an effect on learning, which is referred as experimentation.
On the other hand, the presence of learning adds risk which affects future payoffs and thus
behavior.

3There is however a large literature that has focused on learning in dynamic program-
ming but abstracting from the evolution of capital. This was largely studied in the context
of models of experimentation in which the only link between periods is beliefs. See Prescott
(1972), Grossman et al. (1977), Easley and Kiefer (1988, 1989), Kiefer and Nyarko (1989),
Balvers and Cosimano (1990), Aghion et al. (1991), Fusselman and Mirman (1993), Mir-
man et al. (1993), Trefler (1993), Creane (1994), Fishman and Gandal (1994), Keller and
Rady (1999), and Wieland (2000).

4See Bertocchi and Spagat (1998), Datta et al. (2002), El-Gamal and Sundaram (1993),
Huffman and Kiefer (1994), and Beck and Wieland (2002).

5For non-optimal models, e.g., bounded rationality, there is a literature on adaptive
learning. See Evans and Honkapohja (2001).

6Even with iid shocks in production, a learning environment implies that the agents
face Markov shocks through the updating of the beliefs. See Hopenhayn and Prescott
(1992) and Mirman et al. (2008) for stochastic growth models with Markov processes.
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function removes some of the effects of learning. The reason is that in the

Mirman-Zilcha class of models, part of the effect of learning is found in the

constant term of the value function, which has no effect on optimal behav-

ior. In this paper, we extend further the analysis of the effect of learning

(without experimentation) on another more general class of growth models

with iso-elastic utility and linear production functions. The social planner

faces multiplicative uncertainty in production and does not know the true

distribution of the production shock.

To understand the effect of learning, we do not conjecture and verify

the value function as previously done in KMS. Rather, we solve for opti-

mal behavior recursively, which sheds light on how learning alters the social

planner’s maximization problem. We show that there is a unique solution

for optimal behavior for every finite horizon. We also show that the limit

exists, yielding a unique solution for the infinite horizon. To clarify the effect

of learning, we also consider two benchmark cases, the deterministic case in

which all parameters are known and the stochastic case in which production

depends on a random shock with a known distribution. We then compare

the benchmark models with the learning model. In particular, with unbiased

beliefs about the mean of the production shock, learning increases consump-

tion.

Finally, we compare the effect of learning between the Mirman-Zilcha

class of models studied in KMS and the class of models studied in this pa-

per. In general, the effect of learning is two-fold. First, there is a direct

effect due to the anticipation of the planner about the stochastic effect of

today’s production shock on tomorrow’s stock as well as the stochastic ef-

fect of today’s production shock on tomorrow’s expectations about the next

period production shock. Second, there is an indirect effect of learning that

the agent anticipates (stochastically) the effect of observing the production

shock on posterior beliefs through future optimal decisions, i.e., what the

planner alters behavior upon observing the shock and updating beliefs. In

the Mirman-Zilcha class of models, only the first direct effect influences op-

timal behavior whereas both direct and indirect effects matter in the class of

models with iso-elastic utility and linear production functions.
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The paper is organized as follows. In section 2, we introduce learning

in a general Brock-Mirman environment and derive the Euler equation cor-

responding to learning growth. Section 3 provides the optimal policy func-

tions for the specific class of models corresponding to the deterministic and

stochastic (benchmark) models. Section 4 provides the analysis for the learn-

ing growth models. Finally, in Section 5, we compare the effect of learning

on the maximization problem between our model (with iso-elastic utility and

linear production) and the Mirman-Zilcha model (with log utility and Cobb-

Douglas production).

2 Model

In this section, we present the Brock-Mirman environment under a learning

environment. We also consider two benchmark models, the deterministic and

stochastic environments. For each environment, we derive and compare the

Euler equations. In the subsequent sections, we study the effect of learning

on dynamic programming in the case of an iso-elastic utility and a linear

production.

2.1 Preliminaries

Consider a Brock-Mirman environment in which, in period t = 0, 1, ..., a

social planner divides output yt between consumption ct and investment kt =

yt − ct. Investment kt is then used for the production of the output in the

subsequent period, i.e.,

yt+1 = f(yt − ct, rt), (1)

where f(kt, rt) is the production function with the usual neoclassical prop-

erties7 and rt is a realization of the random production shock r̃t with p.d.f

φ(rt|θ
∗), rt ∈ H ⊂ R. The p.d.f. depends on a parameter θ∗ ∈ Θ ⊂ R

N , N ∈

N. The distribution of rt is parametric and fully characterized by the vector

7Namely, f(·, rt) is an increasing concave differentiable function with f(0, rt) = 0 for
all rt. The Inada conditions are also assumed, f1(0, rt) = ∞ and f1(∞, rt) = 0 for all rt.
Finally, f(kt, ·) is an increasing differentiable function for all kt.
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θ∗.

In order to study the effect of learning, we consider the deterministic and

the stochastic benchmark environments. Before proceeding with the analysis,

we describe the three environments. Regardless of the environment faced by

the planner, his objective is to maximize the expected sum of discounted

utilities where the discount factor is δ ∈ (0, 1) and the utility function is

u(ct), u
′ > 0, u′′ < 0 with u′(0) = ∞. To simplify notation, the t-subscript

for indexing time is removed and the hat sign is used to indicate the value of a

variable in the subsequent period, i.e., y is output today and ŷ = f(y−c, r) is

output tomorrow when today’s production shock is r. To distinguish among

different horizons of the dynamic program, we use the index τ = 0, 1, . . . ,∞.

2.2 Benchmark Models

In the deterministic environment, today’s production shock r is known to

have constant value r̄. For τ = 1, 2, . . ., the τ -period-horizon value function

in a deterministic (D) environment is

V D
τ (y; r̄) = max

c∈[0,y]

{
u(c) + δV D

τ−1(f(y − c, r̄); r̄)
}
. (2)

The maximum is obtained at a unique point c = ρDτ (y; r̄) since the maximand

is strictly concave. Moreover, ρDτ (y; r̄) ∈ (0, y) since u′(0) = ∞. For τ = ∞,

the optimal policy cD(y) ≡ ρD∞(y; r̄) satisfies the Euler equation

u′(cD(y)) = δf1(y − cD(y), r̄) · u′(cD(ŷD)), (3)

where ŷD ≡ f(y − cD(y), r̄).

In the stochastic environment, the planner faces uncertainty about

the future production shocks while knowing the true distribution of r̃, i.e., θ∗

is known. For τ = 1, 2, ..., the τ -period-horizon value function in a stochastic

(S) environment is

V S
τ (y; θ∗) = max

c∈[0,y]

{

u(c) + δ

∫

r∈H

V S
τ−1(f(y − c, r); θ∗)φ(r|θ∗)dr

}

. (4)
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The maximum is obtained at a unique point c = ρSτ (y; θ
∗) since the maximand

is strictly concave. Moreover, ρSτ (y; θ
∗) ∈ (0, y) since u′(0) = ∞. From Mir-

man and Zilcha (1975), for τ = ∞, the optimal policy cS(y) ≡ ρS∞(y; θ∗)

satisfies the Euler equation

u′(cS(y)) = δ

∫

r∈H

f1(y − cS(y), r) · u′(cS(ŷS(r)))φ(r|θ∗)dr, (5)

where ŷS(r) ≡ f(y − cS(y), r).

2.3 Learning Model

Having presented the benchmark models, we now described our dynamic

model with learning. In the learning environment, the planner faces un-

certainty about future production shocks as well as uncertainty about the

true distribution of production shocks, i.e., the parameter θ∗ is unknown to

the planner. While the planner does not know θ∗, observing past produc-

tion shocks provides information about the true distribution, which is used

to update beliefs via Bayesian methods. Given today’s prior beliefs about

θ∗ expressed as a prior p.d.f. ξ on Θ and the observation r,8 tomorrow’s

posterior beliefs are

ξ̂(θ|r) =
φ(r|θ)ξ(θ)

∫

x∈Θ
φ(r|x)ξ(x)dx

, (6)

θ ∈ Θ, by Bayes’ Theorem. Since there is a one-to-one relationship between

output and the shock (i.e., f2 > 0), observing the production shock is equiv-

alent to observing output. In other words, there is no active learning (or

experimentation). Under active learning (or experimentation), the planner’s

decision has an effect on the information, i.e., posterior beliefs depend on the

decision.9 While we consider passive learning in which the planner’s decision

has no effect on the information used to learn about the unknown parameter,

the presence of passive learning in dynamic models increases risk in future

8That is, given prior beliefs ξ, the probability that θ∗ ∈ S is
∫

θ∈S
ξ(θ)dθ for any S ⊂ Θ.

9See Mirman, Samuelson, and Urbano (1993) for a model with active learning.
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payoffs, which alters behavior.

The planner makes consumption decision, while learning about θ∗. That

is, endowed with initial stock and beliefs, consumption is chosen. The pro-

duction shock r is then realized and the output, in the subsequent period,

is determined from (1). Information is gleaned from observing r, which,

from (6), affects beliefs about θ∗. For τ = 1, 2, . . ., the τ -period-horizon

value function in a learning (L) environment is

V L
τ (y; ξ) = max

c∈[0,y]

{

u(c) + δ

∫

r∈H

V L
τ−1(f(y − c, r); ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(7)

where
∫

θ∈Θ
φ(r|θ)ξ(θ)dθ is the expected p.d.f. of the production shock given

prior beliefs.

In addition to anticipating the effect of the consumption decision on fu-

ture output, the planner anticipates learning. In a dynamic and learning

context, rational expectations imply that the information contained in the

future production shock is anticipated. The anticipation of learning is inte-

grated into (7) by anticipating the updated beliefs from ξ to ξ̂(·|r) using (6).

While learning is passive, the evolution of beliefs must be taken into account

in dynamic programming. Bayesian dynamics complicates the maximization

problem because the planner makes consumption and investment decisions,

anticipating updating beliefs every period. That is, the continuation value

function V L
τ−1(f(y − c, r), ξ̂(·|r)) in (7) encompasses beliefs that have been

updated many times, and in the infinite-horizon case infinitely many times.

The maximum is obtained at a unique point c = ρLτ (y; ξ) since the max-

imand is strictly concave. Moreover, there cannot be any corner solutions,

i.e., ρLτ (y; ξ) ∈ (0, y) since u′(0) = ∞. Thus, for the infinite horizon, all

programs from any initial point never exhaust the stock and are infinite. Fo-

cusing on the infinite horizon, Lemma 2.1 states that the value function is

differentiable and is equal to the marginal utility evaluated at the maximizer,

i.e., the envelope theorem. This result is then used to derive the Euler equa-

tion under learning in Proposition 2.2. The proof follows closely the proof

of Lemma 1 in Mirman and Zilcha (1975) because learning is passive and a

change in today’s consumption with no corresponding change in investment

9



has no effect on the type of information that the agent either anticipates

acquiring or actually acquires from observing future production shocks.

Lemma 2.1. ∂V L
∞(y; ξ)/∂y exists for all y and ξ and

∂V L
∞(y; ξ)

∂y
= u′(ρL∞(y; ξ)). (8)

Proposition 2.2 states the Euler equation in the learning environment.

Proposition 2.2. For all y and ξ, the optimal policy ρL∞(y; ξ) satisfies the

Euler equation

u′(ρL∞(y; ξ)) = δ

∫

r∈H

f1(y−ρL∞(y; ξ), r)·u′(ρL∞(ŷL(r); ξ̂(·|r)))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr,

(9)

where ŷL(r) ≡ f(y − ρL∞(y; ξ), r).

Proof. The first-order condition corresponding to (7) is

u′(c) = δ

∫

r∈H

f1(y − c, r)
∂V L

τ (ŷ, ξ̂(·|r))

∂ŷ

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr (10)

evaluated at c = ρL∞(y; ξ). Since (8) holds for all y and ξ, ∂V L
∞(ŷ,ξ̂(·|r))

∂ŷ
=

u′(ρL∞(y; ξ)) yielding (9).

Observe that the changes between the Euler equations for the benchmark

models (defined by (3) and (5)) and the Euler equation under learning (de-

fined by (9)) are subtle but important. In particular, if we compare the

stochastic and learning cases, learning does more than changing the distri-

bution of the production shock from the true distribution used in (5) to the

believed distribution used in (9). It also alters the marginal utility evaluated

at tomorrow’s consumption through the randomness of future beliefs, i.e., the

term u′(ρL∞(ŷL(r); ξ̂(·|r))) in (9). Indeed, anticipating learning through the

posterior beliefs embedded in the Euler equation implies that the dynamics

in output and beliefs are entwined through the production shock as shown

in (9).

10



In order to study the effect of learning on optimal growth, we make fur-

ther assumptions on the utility and production functions but retain general

distributions of the production shock and beliefs. In particular, we make

no restriction on the evolution of beliefs and we do not prevent the prior

and posterior p.d.f.’s ξ and ξ̂(·|r) from belonging to different families. In

the remainder of the paper, we study the class of optimal stochastic growth

models with iso-elasticity utility function and linear production function un-

der multiplicative uncertainty. It turns out that for this class of models an

implicit solution can be characterized and is valid for a wide range of priors,

even those that are outside of families of distributions that are closed under

sampling.

Assumption 2.3. The utility function is iso-elastic: u(c) = cα, α ∈ (0, 1).

Assumption 2.4. The production function is linear: f(k, r) = rk, r > 0.

Given Assumptions 2.3 and 2.4, the Euler equation can be used to derive

the infinite-horizon optimal policy function for any environment. Beginning

with the benchmark models, from (3) and (5), optimal policy functions are

linear in y, i.e., ρD∞(y; r̄) = ωD
∞(r̄)y and ρS∞(y; θ∗) = ωS

∞(θ∗)y, where

ωD
∞(r̄) = 1− δ

1

1−α r̄
α

1−α , (11)

ωS
∞(θ∗) = 1− δ

1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

. (12)

For the learning case, plugging the linear solution ρL∞(y; ξ) = ωL
∞(ξ)y into (9)

yields an implicit solution for ωL
∞(ξ):

ωL
∞(ξ)α−1

(1− ωL
∞(ξ))α−1

= δ

∫

r∈H

rαωL
∞(ξ̂(·|r))α−1

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr. (13)

However, the Euler equation method hides all the intricacies of learning and

prevents a thorough analysis of the effect of learning on dynamic program-

ming. In particular, it is not clear whether (13) is consistent with the limit of

the finite programs. To study the effect of learning on behavior, we proceed

as follows. Section 3 presents optimal behavior for the benchmark mod-
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els. The step-by-step analysis is necessary to understand how learning alters

dynamic programming, which is discussed in Section 4.

3 Benchmark Models

3.1 Deterministic Model

In a deterministic environment, given Assumptions 2.3 and 2.4, (2) is rewrit-

ten as

V D
τ (y; r̄) = max

c∈(0,y)

{
cα + δV D

τ−1(r̄(y − c); r̄)
}
. (14)

Using (14) and the fact that V D
0 (y; r̄) = yα,10 the one-period-horizon value

function is

V D
1 (y; r̄) = max

c∈(0,y)

{
cα + δV D

0 (r̄(y − c); r̄)
}
, (15)

= max
c∈(0,y)

{cα + δr̄α(y − c)α} , (16)

so that the first-order condition cα−1 − δr̄α(y − c)α−1 = 0 yields

ρD1 (y; r̄) =
y

1 + δ
1

1−α r̄
α

1−α

. (17)

Plugging (17) back into (16) yields

V D
1 (y; r̄) =

(

1 + δ
1

1−α r̄
α

1−α

)1−α

yα. (18)

Given that, from (18), the one-period-horizon value function is linear in

yα, we now consider a τ -period horizon where the continuation value function

is of the form V D
τ−1(y; r̄) = κD

τ−1y
α with constant parameter κD

τ−1 > 0. For

10When there is no horizon (i.e., τ = 0), it is optimal to consume the entire stock
regardless of the environment faced by the planner.
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τ = 2, 3, . . ., the τ -period-horizon value function is

V D
τ (y; r̄) = max

c∈(0,y)

{
cα + δV D

τ−1(r̄(y − c); r̄)
}
, (19)

= max
c∈(0,y)

{
cα + δκD

τ−1r̄
α(y − c)α

}
, (20)

so that the first-order condition cα−1 − δκD
τ−1r̄

α(y − c)α−1 = 0 yields

ρDτ (y; r̄) =
y

1 +
(
κD
τ−1

) 1

1−α δ
1

1−α r̄
α

1−α

. (21)

Plugging (21) back into (20) yields

V D
τ (y; r̄) =

(

1 +
(
κD
τ−1

) 1

1−α δ
1

1−α r̄
α

1−α

)1−α

yα, (22)

≡ κD
τ y

α, (23)

so that

κD
τ =

(

1 +
(
κD
τ−1

) 1

1−α δ
1

1−α r̄
α

1−α

)1−α

(24)

with, from (18), initial condition

κD
1 =

(

1 + δ
1

1−α r̄
α

1−α

)1−α

. (25)

Proposition 3.1 provides the optimal policy function for any finite horizon.

Proposition 3.1. In a deterministic environment, for τ = 0, 1, ...,

ρDτ (y; r̄) =
y

∑τ
t=0 δ

τ

1−α r̄
ατ

1−α

. (26)

Proof. Solving (24) and imposing the initial condition (25) yields

κD
τ =

(∑τ

t=0
δ

τ

1−α r̄
ατ

1−α

)1−α

. (27)

Plugging (27) back into (21) yields (26).

Proposition 3.2 provides the optimal policy function for an infinite hori-
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zon.

Proposition 3.2. Suppose that r̄
α

1−α ∈ (0, 1). Then, from (26), limτ→∞ ρDτ (y; r̄) ≡

ρD∞(y; r̄) exists and

ρD∞(y; r̄) = (1− δ
1

1−α r̄
α

1−α )y. (28)

3.2 Stochastic Model

In a stochastic environment, given Assumptions 2.3 and 2.4, (4) is rewritten

as

V S
τ (y; θ∗) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V S
τ−1(r(y − c); θ∗)φ(r|θ∗)dr

}

, (29)

Using (29) and the fact that V S
0 (y; θ∗) = yα, the one-period-horizon value

function is

V S
1 (y; θ∗) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V S
0 (r(y − c); θ∗)φ(r|θ∗)dr

}

, (30)

= max
c∈(0,y)

{

cα + δ

(∫

r∈H

rαφ(r|θ∗)dr

)

(y − c)α
}

(31)

so that the first-order condition cα−1 − δ
(∫

r∈H
rαφ(r|θ∗)dr

)
(y − c)α−1 = 0

yields

ρS1 (y; θ
∗) =

y

1 + δ
1

1−α

(∫

r∈H
rαφ(r|θ∗)dr

) 1

1−α

. (32)

Plugging (32) back into (31) yields

V S
1 (y; θ∗) =

(

1 + δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)1−α

yα. (33)

Given that, from (33), the one-period-horizon value function is linear in

yα, we now consider a τ -period horizon where the continuation value function

is of the form V S
τ−1(y; θ

∗) = κS
τ−1y

α with constant parameter κS
τ−1 > 0. For

14



τ = 2, 3, . . ., the τ -period-horizon value function is

V S
τ (y; θ∗) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V S
τ−1(r(y − c); θ∗)φ(r|θ∗)dr

}

, (34)

= max
c∈(0,y)

{

cα + δκS
τ−1

(∫

r∈H

rαφ(r|θ∗)dr

)

(y − c)α
}

, (35)

so that the first-order condition cα−1−δκS
τ−1

(∫

r∈H
rαφ(r|θ∗)dr

)
(y−c)α−1 = 0

yields

ρSτ (y; θ
∗) =

y

1 +
(
κS
τ−1

) 1

1−α δ
1

1−α

(∫

r∈H
rαφ(r|θ∗)dr

) 1

1−α

. (36)

Plugging (36) back into (35) yields

V S
τ (y; θ∗) =

(

1 +
(
κS
τ−1

) 1

1−α δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)1−α

yα, (37)

≡ κS
τ y

α, (38)

so that

κS
τ =

(

1 +
(
κS
τ−1

) 1

1−α δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)1−α

, (39)

with, from (33), initial condition

κS
1 =

(

1 + δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)1−α

. (40)

Proposition 3.3 provides the optimal policy function for any finite horizon.

Proposition 3.3. Suppose that
∫

r∈H
rαφ(r|θ∗)dr < ∞. In a stochastic en-

vironment, for τ = 0, 1, ...,

ρSτ (y; θ
∗) =

y
∑τ

t=0 δ
τ

1−α

(∫

r∈H
rαφ(r|θ∗)dr

) τ

1−α

. (41)

15



Proof. Solving (39) and imposing the initial condition (40) yields

κS
τ =

(
∑τ

t=0
δ

τ

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) τ

1−α

)1−α

(42)

Plugging (42) back into (36) yields (41).

Proposition 3.4 provides the optimal policy function for an infinite hori-

zon.

Proposition 3.4. Suppose that
∫

r∈H
rαφ(r|θ∗)dr ∈ (0, 1). Then, from (41),

limτ→∞ ρSτ (y; θ
∗) ≡ ρS∞(y; θ∗) exists and

ρS∞(y; θ∗) =

(

1− δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)

y. (43)

Before proceeding with the learning environment, we compare optimal

policy functions between deterministic and stochastic environments. First,

from (21) and (36) (or (28) and (43)), there is some sort of certainty equiva-

lence between deterministic and stochastic environments. That is, replacing

r̄α by
∫

r∈H
rαφ(r|θ∗)dr in (21) yields (36). Second, while adding uncertainty

does not alter the functional form of the policy, risk does have an effect on the

optimal amount consumed. To see this, suppose that r̄ =
∫

r∈H
rφ(r|θ∗)dr.

Then, from (21) and (36) and using the fact that α ∈ (0, 1), uncertainty

makes future payoffs riskier, which increases present consumption, i.e., for

τ = 1, 2, . . . ,∞, ρDτ (y; r̄) < ρSτ (y; θ
∗)|∫

r∈H
rφ(r|θ∗)dr=r̄.

4 Learning Model

Having fully characterized the optimal behavior under deterministic and

stochastic environments, we turn to the learning model. By considering finite

horizons, we show explicitly how learning alters the maximization problem.

In a learning environment, given Assumptions 2.3 and 2.4, (7) is rewritten

16



as

V L
τ (y; ξ) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V L
τ−1(r(y − c); ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(44)

Using (44) and the fact that V L
0 (y; ξ) = yα, the one-period-horizon value

function is the one-period-horizon value function is

V L
1 (y; ξ) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V L
0 (r(y − c); ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(45)

= max
c∈(0,y)

{

cα + δ

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

)

(y − c)α
}

,

(46)

so that the first-order condition cα−1 = δ
(∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr
)
(y−

c)α−1 yields

ρL1 (y; ξ) =
y

1 + δ
1

1−α

(∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr
) 1

1−α

(47)

Plugging (47) back into (46) yields

V L
1 (y; ξ) =

(

1 + δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

yα. (48)

For a one-period horizon, the presence of learning does not alter the func-

tional form of the policy function. Indeed, replacing r̄ in (17) or
∫

r∈H
rαφ(r|θ∗)dr

in (32) by
∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr (49)

yields (47). However, for higher horizon, learning considerably alters the

maximization problem of the planner. To see this, using (48), the two-

17



period-horizon value function is

V L
2 (y; ξ)

= max
c∈(0,y)

{

cα + δ

∫

r∈H

V L
1 (r(y − c); ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (50)

= max
c∈(0,y)

{

cα

+ δ

∫

r∈H





(

1 + δ
1

1−α

(∫

r′∈H

r′α
[∫

θ′∈Θ

φ(r′|θ′)ξ̂(θ′|r)dθ′
]

dr′
) 1

1−α

)1−α

rα(y − c)α





·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr,

}

(51)

where ξ̂(θ|r) is defined by (6).

Expression (51) has multiple integrals for the production shock. The outer

integral with dummy r reflects the uncertainty faced by the planner today

(i.e., in period 1) about today’s production shock which is revealed tomorrow.

The uncertainty emanating from today’s yet-to-be-realized production shock

has an effect on the stock tomorrow (through the term rα(y − c)α) and on

posterior beliefs (through the term ξ̂(θ|r)). The effect through posterior

beliefs complicates the maximization problem because updating beliefs has

an effect on the inner integral with dummy r′ that refers to the expectation

that the planner takes tomorrow (i.e., in period 2 or second-to-last period)

for tomorrow’s production shock affecting stochastically production in after

tomorrow (i.e., in period 3 or last period). To see this from another point of

view, (51) can be simplified to

V L
2 (y; ξ) = max

c∈(0,y)

{

cα + δ

∫

r∈H

(

ωL
1 (ξ̂(·|r))

)α−1

rα(y − c)α
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(52)

where, from (47),

ωL
1 (ξ̂(·|r)) =

(

1 + δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)−1

(53)
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is the optimal consumption rate for the one-period horizon. From (52), to-

day’s shock affects tomorrow’s payoff via the stock and via tomorrow’s opti-

mal behavior in a one-period horizon.

The first-order condition corresponding to (52) is

cα−1− δ

∫

r∈H

(

ωL
1 (ξ̂(·|r))

)α−1

rα(y− c)α−1

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr = 0, (54)

yielding the two-period-horizon policy

ρL2 (y; ξ) =
y

1 + δ
1

1−α

(
∫

r∈H

(

ωL
1 (ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr

) 1

1−α

.

(55)

Note that (55), retains the linearity in y, and, thus, the two-period-horizon

value function also retains the linearity in yα.

Given that, from (48), the one-period-horizon value function is linear in

yα, we now consider a τ -period horizon where the continuation value function

is of the form V L
τ−1(y; ξ) =

(
ωL
τ−1(ξ)

)α−1
yα, where, unlike the deterministic

and stochastic environments, ωL
τ−1(ξ) ∈ (0, 1) is not a constant, and depends

on beliefs that evolve over time. For τ = 2, 3, . . ., the τ -period-horizon value

function is

V L
τ (y; ξ) = max

c∈(0,y)

{

cα + δ

∫

r∈H

V L
τ−1(r(y − c), ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(56)

= max
c∈(0,y)

{

cα + δ

∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα(y − c)α
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

.

(57)

The first-order condition

cα−1 = δ(y − c)α−1

∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr (58)
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yields ρLτ (y; ξ) = ωL
τ (ξ)y where ωL

τ (ξ) is implicitly defined by

ωL
τ (ξ)

α−1 = δ(1−ωL
τ (ξ))

α−1

∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr.

(59)

Plugging ρLτ (y; ξ) = ωL
τ (ξ)y back into (57) yields

V L
τ (y; ξ) =

(

ωL
τ (ξ)

α + δ(1− ωL
τ (ξ))

α

∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα

·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

)

yα, (60)

≡
(
ωL
τ (ξ)

)α−1
yα, (61)

so that the optimal consumption rate for τ -period horizon is consistent with

the functional form of the continuation value function and implicitly charac-

terized by

ωL
τ (ξ)

α−1 = ωL
τ (ξ)

α + δ(1− ωL
τ (ξ))

α

∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα

·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr, (62)

ωL
τ (ξ) =

1

1 + δ
1

1−α

(
∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr

) 1

1−α

,

(63)

with, from (47), initial condition

ωL
1 (ξ) =

(

1 + δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)−1

. (64)

Proposition 4.1 provides the optimal policy function for any finite horizon.

Proposition 4.1. Suppose that
∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr < ∞. In a

learning environment, for τ = 0, 1, . . ., ρLτ (y; ξ) = ωL
τ (ξ)y, where ωL

τ (ξ) is
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recursively defined by

ωL
τ (ξ)

α−1 =

(

1 + δ
1

1−α

(∫

r∈H

(

ωL
τ−1(ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

,

(65)

with initial condition

ωL
1 (ξ) =

(

1 + δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)−1

. (66)

Proof. Rearranging (63) yields (65).

Proposition 4.2 provides the optimal policy function for an infinite hori-

zon.

Proposition 4.2. Suppose that
∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr ∈ (0, 1). Then,

from (65), limτ→∞ ρLτ (y; ξ) ≡ ρL∞(y; ξ) = ωL
∞(ξ)y exists and ωL

∞(ξ) ∈ (0, 1) is

implicitly defined by

ωL
∞(ξ)α−1 =

(

1 + δ
1

1−α

(∫

r∈H

(

ωL
∞(ξ̂(·|r))

)α−1

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

.

(67)

Proof. Let κτ (ξ) ≡ ωL
τ (ξ)

α−1 so that (65) is rewritten as

κτ (ξ) =

(

1 + δ
1

1−α

(∫

r∈H

κτ−1(ξ̂(·|r))r
α

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

.

(68)

1. Monotonicity of κτ (ξ). From (47) and (55), we know that

κ0(ξ) = 1 < κ1(ξ) =

(

1 + δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

.

(69)
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Suppose next that κτ (ξ) > κτ−1(ξ). Then,

κτ+1(ξ) =

(

1 + δ
1

1−α

(∫

r∈H

κτ (ξ̂(·|r))r
α

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

(70)

>

(

1 + δ
1

1−α

(∫

r∈H

κτ−1(ξ̂(·|r))r
α

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

(71)

= κτ (ξ). (72)

2. Boundedness of κτ (ξ). Let

M =




1

1− δ
1

1−α

(∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr
) 1

1−α





1−α

> 1 (73)

since
∫

r∈H
rα
[∫

θ∈Θ
φ(r|θ)ξ(θ)dθ

]
dr ∈ (0, 1). Hence, κ0(ξ) = 1 < M .

Suppose next that κτ (ξ) < M . Then,

κτ+1(ξ) =

(

1 + δ
1

1−α

(∫

r∈H

κτ (ξ̂(·|r))r
α

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

(74)

<

(

1 + δ
1

1−αM
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)1−α

,

(75)

= M. (76)

where the last equality comes from (73).

3. Since limτ→∞ κτ (ξ) exists, so does limτ→∞ ωL
τ (ξ). Since κτ (ξ) ≡ ωL

τ (ξ)
1−α,

taking the limits on both sides of (68) yields (67).
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Having studied the effect of learning on the planner’s maximization prob-

lem and characterized optimal behavior in a learning model, we now discuss

the effect of learning on optimal behavior. Specifically, we compare optimal

behavior under stochastic and learning environments (in the context of an

iso-elastic utility and linear production).

Proposition 4.3. Suppose that beliefs about the random production shock

are unbiased, i.e.,

∫

r∈H

r

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr =

∫

r∈H

rφ(r|θ∗)dr. (77)

Then, learning increases present consumption, i.e., ρL∞(y; ξ) > ρS∞(y; θ∗).

Proof. First, from (77) and the fact that α ∈ (0, 1), it follows that

∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr <

∫

r∈H

rαφ(r|θ∗)dr,

1− δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

> 1− δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

.

(78)

Second, from Proposition 4.2, ρL∞(y; ξ) = ωL
∞(ξ)y such that from the proof

of Proposition 4.2,

ωL
∞(ξ) =

1

κL
∞(ξ)

1

1−α

(79)

where from (74), (75), and (76), κL
∞(ξ) < M , M defined by (73). Since

κL
∞(ξ) ≡ ωL

∞(ξ)α−1, it follows that

ωL
∞(ξ) >

1

M
1

1−α

. (80)

Plugging (73) into (80) yields

ωL
∞(ξ) > 1− δ

1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

. (81)

Combining inequalities (78) and (81) with (43) implies that learning in-
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creases consumption, i.e.,

ρL∞(y; ξ) = ωL
∞(ξ)y (82)

>

(

1− δ
1

1−α

(∫

r∈H

rα
[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

) 1

1−α

)

y, (83)

>

(

1− δ
1

1−α

(∫

r∈H

rαφ(r|θ∗)dr

) 1

1−α

)

y (84)

= ρS∞(y; θ∗). (85)

5 Discussion: Learning in Mirman-Zilcha

We now compare the effect of learning on the maximization problem between

our model (with iso-elastic utility and linear production) and the Mirman-

Zilcha model (with log utility and Cobb-Douglas production). While the

planner’s policy function in the Mirman-Zilcha model is derived in KMS,

there is no explanation about how learning alters the maximization problem

in that context. Here, we show that the combination of a log utility and

Cobb-Douglas production removes some (but not all) of the effect of learning.

To consider the Mirman-Zilcha model, suppose that u(c) = ln c and ŷ =

(y − c)r, r ∈ (0, 1). Then, the τ -period-horizon value function is

WL
τ (y; ξ) = max

c∈(0,y)

{

ln c+ δ

∫ 1

0

WL
τ−1((y − c)r; ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(86)
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with WL
0 (y; ξ) = ln y. The one-period-horizon value function is

WL
1 (y; ξ) = max

c∈(0,y)

{

ln c+ δ

∫ 1

0

W 0((y − c)r, ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

,

(87)

= max
c∈(0,y)

{

ln c+ δ

∫ 1

0

r ln(y − c)

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (88)

= max
c∈(0,y)

{

ln c+ δ ln(y − c)

∫ 1

0

r

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (89)

= max
c∈(0,y)

{

ln c+ δ ln(y − c)

∫

θ∈Θ

[∫ 1

0

rφ(r|θ)dr

]

ξ(θ)dθ

}

, (90)

= max
c∈(0,y)

{

ln c+ δ

(∫

θ∈Θ

µ(θ)ξ(θ)dθ

)

ln(y − c)

}

, (91)

where µ(θ) ≡
∫ 1

0
rφ(r|θ)dr. The first-order condition 1

c
−

δ
∫
θ∈Θ

µ(θ)ξ(θ)dθ

y−c
= 0

yields

ρL1 (y; ξ) =
y

1 + δ
(∫

θ∈Θ
µ(θ)ξ(θ)dθ

) , (92)

≡ ωL
1 (ξ)y. (93)

Plugging (93) into (91) yields

WL
1 (y; ξ) = ln ρL1 (y; ξ) + δ

(∫

θ∈Θ

µ(θ)ξ(θ)dθ

)

ln(y − ρL1 (y; ξ)), (94)

= lnωL
1 (ξ)y + δ

(∫

θ∈Θ

µ(θ)ξ(θ)dθ

)

ln(y − ωL
1 (ξ)y), (95)

=

(

1 + δ

∫

θ∈Θ

µ(θ)ξ(θ)dθ

)

ln y

+ lnωL
1 (ξ) + δ

(∫

θ∈Θ

µ(θ)ξ(θ)dθ

)

ln(1− ωL
1 (ξ)). (96)
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Using (96), the two-period-horizon value function is

W 2(y; ξ)

= max
c∈(0,y)

{

ln c + δ

∫ 1

0

W 1((y − c)r, ξ̂(·|r))

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (97)

= max
c∈(0,y)

{

ln c + δ

∫ 1

0

(

1 + δ

∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

ln(y − c)r
[∫

θ′∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

+δ

∫ 1

0

(

lnωL
1 (ξ̂(·|r)) + δ

(∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

ln(1− ωL
1 (ξ̂(·|r)))

)

·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (98)

= max
c∈(0,y)

{

ln c + δ

(∫ 1

0

(

1 + δ

∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

r

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

)

ln(y − c)

+δ

∫ 1

0

(

lnωL
1 (ξ̂(·|r)) + δ

(∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

ln(1− ωL
1 (ξ̂(·|r)))

)

·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (99)

where ωL
1 (ξ̂(·|r)) is the optimal consumption rate for a one-period horizon

evaluated at the posterior beliefs.

Consider expression (99) more closely:

WL
2 (y; ξ)

= max
c∈(0,y)







ln c+ δ

(∫ 1

0

(

1 + δ

∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

r ln(y − c)

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

)

︸ ︷︷ ︸

=A

+δ

∫ 1

0

(

lnωL
1 (ξ̂(·|r)) + δ

(∫

θ′∈Θ

µ(θ′)ξ̂(θ′|r)dθ′
)

ln(1− ω1(ξ̂(·|r)))

)

︸ ︷︷ ︸

=B

·

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr

}

, (100)

where the planner anticipates the effect of today’s production shock using

the expected p.d.f. of r̃ given prior beliefs, i.e.,
∫

θ∈Θ
φ(r|θ)ξ(θ)dθ. From
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(100), the effect of learning is two-fold. First, the term A refers to the

anticipation of the planner about the stochastic effect of today’s production

shock r on tomorrow’s stock (i.e., r ln(y− c)), as well as the stochastic effect

of today’s production shock on tomorrow’s expectations about the last period

production shock, i.e.,
∫

θ′∈Θ
µ(θ′)ξ̂(θ′|r)dθ′. In the Mirman-Zilcha model, the

term A can be further simplified to

A =

∫ 1

0

(

1 + δ

∫

θ′∈Θ

µ(θ′)
φ(r|θ′)ξ(θ′)

∫

θ′′∈Θ
φ(r|θ′′)ξ(θ′′)dθ′′

dθ′

)

r ln(y − c)

[∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

dr,

(101)

=

∫ 1

0

([∫

θ∈Θ

φ(r|θ)ξ(θ)dθ

]

+ δ

∫

θ′∈Θ

µ(θ′)φ(r|θ′)ξ(θ′)dθ′
)

r ln(y − c)dr,

(102)

=

([∫

θ∈Θ

(∫ 1

0

rφ(r|θ)dr

)

ξ(θ)dθ

]

+ δ

∫

θ′∈Θ

µ(θ′)

(∫ 1

0

φ(r|θ′)rdr

)

ξ(θ′)dθ′
)

ln(y − c),

(103)

=

([∫

θ∈Θ

µ(θ)ξ(θ)ddθ

]

+ δ

∫

θ′∈Θ

µ(θ′)2ξ(θ′)dθ′
)

ln(y − c), (104)

which implies that the effect of the posterior beliefs enters through integrals of

functions of of the conditional mean production shock, i.e., µ(θ), θ ∈ Θ. Note

that from (52), for the case of iso-elastic utility and linear production with

multiplicative uncertainty, it is impossible to obtain this type of conditional

certainty equivalence.

The term B reflects the planner’s (stochastic) anticipation of the effect

of observing the production shock on the future optimal decision once he

reaches a one-period horizon program through the optimal consumption rate

ωL
1 (ξ̂(·|r)). This is the indirect effect of anticipation of learning on beliefs

through future optimal decisions, i.e., what the planner will do once he gets

to a one-period horizon program, observes r, and updates beliefs. From (100),

only the term A matters for optimization. In other words, optimal behavior

in shorter horizon or subsequent periods (embedded in the term B in (100))

do not matter. However, from (52), in the case of iso-elastic utility and linear

production, both the direct and the indirect effects remain. In particular,
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posterior beliefs cannot be simplified and optimal behavior in the future

remains affected by learning.
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