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Abstract:  
We study the issue of integrating real and financial decisions in the monopoly 
framework. To that end, we combine the decisions of the firm with the decisions of the 
shareholders. When the managing shareholder chooses production, risk allocation, and 
the total number of shares for the risky asset, we show that there is no Nash equilibrium 
with a competitive financial market. Existence is reestablished under various restrictions 
on the set for the total number of shares. Moreover, there exists a Stackelberg 
equilibrium when the managing shareholder is the leader. In addition to discussing the 
issue of existence, we compare the equilibrium outcomes for each restriction we impose. 
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1 Introduction

Uncertain and risky events are ubiquitous in society. While economic agents

cannot eliminate all of the exogenous source of risk, they can exercise a

certain control over the amount of risk they face through the market process.1

Specifically, markets and prices allocate resources to different risky activities,

and among different agents. For instance, when a firm undertakes a risky

project in the real sector, the size of the project as well as the share of

risk borne by each shareholder depend on market forces in both the real and

financial sectors. In particular, the choice and allocation of risk depend on the

prices of goods in the real sector as well as the prices of financial instruments.

These prices depend, in turn, on the preferences of agents, the alternative

assets of the shareholders, the market structure, and the exogenous source

of risk.

Yet, in the standard framework of industrial organization, markets and

prices play no role in determining which types of risk are undertaken by firms

and which groups of agents bear the risk. Rather, risk vanishes under the

postulate that firms maximize expected profit, even if their shareholders are

risk-averse. The risk-neutrality of firms owned by risk-averse shareholders is

generally justified on the grounds that the shareholders’ portfolios of assets

are well-diversified, to the point of eliminating any exposure to, and concern

for risk.2 In other words, while the shareholders are risk-averse, portfolio di-

versification induces their firms to act as risk-neutral, and, thus, to maximize

expected profit.3

There are two main issues with this justification. First, the market pro-

cess by which shareholders diversify their portfolio is not modeled. The

1The reduction of risk comes at a cost, so that, even if feasible, an economic agent
would not necessarily eliminate risk all together.

2See Tirole (1988, pp. 34-35), including footnote 61, and Salanié (1997, p. 53).
3Another argument in support of the risk-neutrality of firms is that shareholders are

risk-neutral. If risk-averse agents owned shares of a risky asset, they could benefit from
an arbitrage opportunity as well as rid themselves of any exposure to risk by selling their
shares to risk-neutral agents. Hence, all risky assets would be owned by risk-neutral
shareholders. Risk-neutral shareholders would invest all of their wealth in the asset with
the highest expected return, and, thus, all assets would have the same rate of return,
which is inconsistent with observed behavior.
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diversification of assets is costly and might not benefit all shareholders in

the same way. Moreover, the interplay between the shareholders’ portfolio

selection and the firms’ decisions is an important link. On the one hand, the

interaction of the shareholders in the financial market influence the behavior

of the firms in the real market, which is not necessarily one of maximizing

expected profit. On the other hand, the allocation of risk through the fi-

nancial market depends on the distribution of real profit, which, in turn,

depends on the decisions of the firms. Second, the high variability of all

market indicators makes it difficult to believe that portfolio diversification

renders shareholders immune to risk. Indeed, the allocation of wealth among

many assets only reduces, but cannot eliminate, the unsystematic risk that

emanates from each risky asset. Moreover, systematic risk remains and af-

fects the payoffs of all assets. Thus, despite the availability of a wide range of

financial instruments, shareholders must accept risk. Recent financial events

have further called into question the belief that risk can be eliminated. For

instance, The Economist writes:4

American mutual-fund assets have declined by $2.4 trillion–a fifth

of their value–since the start of 2008; in Britain, the drop is more

than a quarter, or almost £130 billion ($195 billion). [...] Nor has

the bad news been confined to equities. This year the value of all

manner of risky investments, from corporate bonds to commodi-

ties to hedge funds, has been clobbered. The belief that diver-

sification into “alternative assets”could prevent investors losing

money in bear markets has proved false.

It is the purpose of this paper to address explicitly the issue of risk and

the mechanism by which risk-averse shareholders diversify their portfolio

of assets, in the theory of the firm. In particular, we study the role of

markets and prices on the type of risky activities undertaken by a firm and

the allocation of profit among shareholders. From a financial point of view,

this is equivalent to studying the influence of markets and prices on the choice

4The excerpts are from the article “Where have all your savings gone?”of December 6,
2008 on page 13 (emphasis added).
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and allocation of a risky asset issued by a firm. To that end, we embed a

mean-variance approach to the shareholders’ portfolio selection, pioneered

by Markowitz (1952) and Tobin (1958), into the theory of the firm. By

establishing an explicit link between the behavior of the shareholders and

the firm’s, the real and financial sectors are integrated. In particular, the

payoff of the risky asset depends on the level of output, and reflects the

uncertainty that emanates from the real sector.

To that end, we consider a monopoly initially owned by an entrepreneur

(the managing shareholder) who has the ability to issue shares of a risky asset

(tied to the random profit of the monopoly). In our model, the deciding share-

holder of a firm, called the entrepreneur, undertakes a risky project in the

real sector and interacts with the remaining shareholder, called the investor,

in the financial sector. The project is risky because the firm faces a random

price in the real market. The allocation of risk among risk-averse sharehold-

ers is achieved by selling shares of a risky asset in the financial market. Shares

of the risky asset define the ownership structure of the firm and represent

claims to the profit derived in the real sector. While the entrepreneur allo-

cates the profit of the firm among the shareholders, the entrepreneur retains

control of the firm’s decisions. Specifically, the entrepreneur decides both the

level of output and the ownership structure of the firm.

We begin by studying the Nash equilibrium with a competitive financial

market. We first show that there is in general no Nash equilibrium. The

reason is that, if the financial price is given, the firm has an incentive to

increase the total number of shares to infinity, which yields no solution for

the managing shareholder. We then consider two types of restrictions. The

first type of restriction is to equate the total number of shares to output so

that each share is a claim to the profit of one unit of output. The second

type of restriction is to set exogenously the number of shares. We show that

both restrictions yield existence of a Nash equilibrium with a competitive

financial market. Also, in both cases, financial access, i.e, floating part of the

shares, leads to the global acceptance of more risk and, hence, to an increase

of equilibrium output. However, the limits of this increase in output, as the

fraction of stock floated tends to 1, are different according to the assumption
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made. With a fixed number of shares output equals the monopoly solution,

with or without risk depending on the risk-aversion of the investor. With

the number of shares equal to total output the latter approaches the perfect

equilibrium solution, again with or without risk.

We then consider the Stackelberg equilibrium under two scenarios. In

the first one, the entrepreneur is the leader (sophisticated agent) whereas

the investor is the follower (naive agent). In the second one, we reverse

roles by having the investor as the leader. These scenarios lead to the basic

results stated above, but differ about the particular optimal solutions. Only

the competitive equilibrium is Pareto efficient; both Stackelberg equilibrium

lead to smaller output levels. In the competitive market, the fraction of

shares allocated to each agent is directly proportional to their respective

coefficient of risk aversion; when any of the agents assumes a leading role,

that fraction is distorted to favor the leader goals. There are also differences

on how the fraction of shares floated and the equilibrium output change with

the risk aversion coefficients. The fraction of shares floated always increases

when risk aversion of the entrepreneur also increases and decreases when risk

aversion of the investor increases. In the competitive market and when the

entrepreneur is leading, that fraction varies from zero to 1 when the risk

aversion coefficient of the entrepreneur goes from zero to infinity (or the risk

aversion coefficient of the investor goes from infinity to zero). But when the

leader is the investor, the fraction of shares sold varies from zero to one half;

the investor never demands more than half the shares in order to depress the

financial price.

The relationship between risk and firm behavior has been present in the

literature for some decades. Baron (1970), Baron (1971), Sandmo (1971),

and Leland (1972) studied the impact of risk aversion on the decisions of

a risk averse firm in a competitive and in an imperfectly competitive mar-

ket. However, these early works made no attempt to relate behavior of the

firm with its ownership structure or the functioning of the financial mar-

ket. Later works have established a relationship between real and financial

sectors: Dotan and Ravid (1985), Prezas (1988), Brander and Lewis (1986)

and Showalter (1995), arrived there while studying the problem of optimal
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debt-equity allocation; Jain and Mirman (2000) work on insider trading also

shows that both sectors are related. Mirman and Santugini (2013) (hereafter

referred as MS) on risk-sharing and financial markets goes much further.

They analyze a model with a risk-averse owner of a monopolist firm (the

entrepreneur) facing the option of selling part of the stock of his firm to a

risk-averse outside investor. The entrepreneur retains control over all de-

cisions of the firm, notably on the quantity of output supplied in the real

market. To optimize his utility this entrepreneur must take into account, si-

multaneously, his decisions on the real and on the financial market, because

his final expected wealth depends on both. This dual perspective distin-

guishes this model from most of the previous literature and integrates real

and financial equilibrium.

The paper is organized as follows. After this introduction, Section 2

studies the Nash equilibrium with a competitive financial market, whereas

Section 3 considers the Stackelberg equilibrium. We provide concluding re-

marks in Section 4.

2 Nash Equilibrium with Competitive Finan-

cial Market

In this section, we present a general model combining the behavior of the firm

(in the real and financial sectors) and the behavior of the shareholders. We

then establish conditions under which there exists a Nash equilibrium with

a competitive financial market. In the next section, we provide conditions

under which there exists a Stackelberg equilibrium with a non-competitive

financial market.

2.1 Set Up

Consider a firm that is a monopoly in a real market and has access to the

financial market.5 In the real market, the firm faces a random demand with

5The adjective real refers to the sector of goods and services other than those of financial
nature.
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known distribution and chooses the level of output q ≥ 0. Specifically, the

random price corresponding to supplying q units is p̃R = PR(q) + ε̃ where

PR(q) is the expected inverse demand and ε̃ is a normally-distributed shock.6

Assumption 2.1. ε̃ ∼ N(0, σ2).

The random profit of the firm is thus π(q, ε̃) = (PR(q) + ε̃)q. The expected

profit is assumed to be strictly concave in the level of output.

Assumption 2.2. P ′′
R(q)q + 2P ′

R(q) < 0.

In the financial sector, the firm issues S ∈ ΩS ⊆ �+ equity shares.7

Each share is a claim of 1
S
of the total profit so that each share receives a

random payoff π(q, ε̃)/S. In addition to choosing the total number of shares,

the firm decides on the fraction 1 − ω ∈ [0, 1] of the shares to be sold in

the financial market at unit price pF .
8 Hence, the variable ω defines the

ownership structure of the firm, which specifies the allocation of the random

profit among the shareholders.

The objective of each shareholder is to maximize the expected utility

of final wealth. Each shareholder diversifies wealth between the risky asset

issued by the firm and a risk-free asset. Without loss of generality, we assume

that there are only two shareholders, i.e., an entrepreneur and an investor.

The entrepreneur is the founder of the firm and the original claimant of the

profit generated by his entrepreneurial prospects. The entrepreneur is also

the managing shareholder of the firm, making the output decision, issuing the

total number of shares, and deciding on the number of shares to be floated.

Having no initial wealth, the entrepreneur’s random final wealth is

W̃ ′
E = ω · π(q, ε̃) + pF · (1− ω) · S (1)

where ω ·π(q, ε̃) is the entrepreneur’s portion of the random profit of the firm

and pF · (1− ω) · S is the wealth generated from selling (1− ω) · S shares at

6The subscript R refers to the real sector and the tilde sign differentiates a random
variable from its realization.

7The type of restriction imposed on the set ΩS turns out to be key for the existence of
the equilibrium and the comparative analysis.

8The subscript F refers to the financial sector.
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unit price pF , and investing pF · (1− ω) · S in a risk-free asset with a rate of

return normalized to one.

Unlike the entrepreneur, the investor does not have entrepreneurial prospects

and has no direct control over the decisions of the firm. The investor uses his

initial wealth WI > 0 to purchase shares of the risky asset and the risk-free

asset. Hence, the investor’s random final wealth is

W̃ ′
I = WI + π(q, ε̃)z/S − pFz (2)

where z is the number of shares purchased by the investor. Here, WI −
pF z is invested in the risk-free asset and π(q, ε̃)z/S is the random payoff

corresponding to z shares of the risky asset. Note that the return on a share

of the firm is π(q, ε̃)/S − pF .

Each shareholder maximizes the expected utility of final wealth defined

by (1) or (2). The shareholders are assumed to be risk-averse in final wealth

with constant absolute risk aversion (CARA).

Assumption 2.3. The coefficients of absolute risk aversion are aE > 0 and

aI > 0 for the entrepreneur and the investor, respectively.9

From (1), given that p̃R = PR(q) + ε̃, the certainty equivalent of the en-

trepreneur is10

CEE = ω · PR(q)q + pF · (1− ω) · S − aEσ
2ω2q2/2. (3)

Here, ω · PR(q)q + pF · (1− ω) · S is the expected payoff to the entrepreneur

from the real and financial sectors weighted by the level of ownership. The

term aEσ
2ω2q2/2 is the risk premium of the entrepreneur. The risk premium

plays the role of a cost, due to risk aversion, imposed on the entrepreneur for

bearing part of the risk. From (2), the certainty equivalent of the investor is

CEI = WI + (PR(q)q/S − pF )z − aIσ
2(q/S)2z2/2 (4)

9In other words, utility functions for final wealth x are exponential: u(x; a) =
−e−ax, a ∈ {aE, aI}.

10The expected utility of the entrepreneur is Eu(W̃E ; aE) = −e−aECEE , where E is the
expectation operator.
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where WI + (PR(q)q/S − pF )z is the expected mean of final wealth and

aIσ
2(q/S)2z2/2 is the risk premium.

2.2 Equilibrium

Having described the model, we now define the Nash equilibrium with a com-

petitive financial market. The entrepreneur and the investor move simulta-

neously in a Nash equilibrium. The financial sector is perfectly competitive,

i.e., the financial price is given, and, thus, neither the entrepreneur nor the

investor can take into account the effect of their decisions on the financial

price. In equilibrium, the price of the risky asset clears the financial mar-

ket by equating the quantity demanded by the investor with the quantity

supplied by the firm (or the entrepreneur). The equilibrium consists of the

firms’ decisions made by the entrepreneur {q∗, ω∗, S∗}, the investor’s amount

of shares of the risky asset z∗, and the financial price p∗F . The entrepreneur’s

decisions {q∗, S∗} have a direct effect on the investor’s payoffs. However,

the investor’s decision has no influence on the entrepreneur’s payoffs. Both

shareholders are affected indirectly by each other through the financial price.

Definition 2.4. The tuple {q∗, ω∗, S∗, z∗, p∗F} is a Nash equilibrium with a

competitive financial market if

1. Given {q∗, S∗} and p∗F , the investor’s quantity demanded for the risky

asset is

z∗ = arg max
z≥0

{
WI + (PR(q

∗)q∗/S∗ − p∗F )z − aIσ
2(q∗/S∗)2z2/2

}
. (5)

2. Given p∗F , subject to q ≥ 0, ω ∈ [0, 1], S ∈ ΩS,

{q∗, ω∗, S∗} = arg max
q,ω,S

{
ω · PR(q)q + p∗F · (1− ω) · S − aEσ

2ω2q2/2
}
.

(6)

3. Given {ω∗, S∗, z∗}, p∗F > 0 satisfies the market-clearing condition z∗ =

(1− ω∗)S∗.
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Proposition 2.5 states that in the absence of a restriction on the set for

the total number of shares, there is no equilibrium. Allowing the firm to

optimize on the number of shares gives the entrepreneur the incentive to

increase S to infinity. The non-existence result is due to the fact the the

financial market is competitive, i.e., the financial price is taken as given.

Proposition 2.5. Suppose that ΩS = �+. Then, there exists no Nash equi-

librium with a competitive financial market.

Proof. From (6), given p∗F > 0, there is no solution for S∗.

In order to obtain existence of an equilibrium, the set ΩS must be re-

stricted. We consider two types of restrictions. Both types of restrictions

essentially reduce the number of decisions for the entrepreneur from three to

two. We first provide the equilibrium values under each restriction. We then

compare the two approaches.

The first is to equate the total number of shares to output so that each

share is a claim to the profit of one unit of output. This assumption retains

the idea that the firm wishes to increase the number of shares to increase

the proceeds from the financial market. At the same time, it allows for the

existence of an equilibrium. Indeed, the total number of shares cannot go

to infinity because, being equal to output, it is limited by the real demand

function. Proposition 2.6 characterizes the equilibrium as studied in Mir-

man and Santugini (2013). Note that existence is only possible when the

entrepreneur faces an unsharable cost of entrepreneurship. Otherwise, there

is no risk sharing.11

Proposition 2.6. Suppose that ΩS = {S|S = q ∈ �+}. Then, there exists a

Nash equilibrium with a competitive financial market as long as there is an

unsharable cost of entrepreneurship. In equilibrium, q∗ satisfies

ω∗ · (P ′
R(q

∗)q∗ + PR(q
∗)) + (1− ω∗) · PR(q

∗) = ω∗aEσ2q∗, (7)

11The presence of the unsharable cost of entrepreneurship is necessary for the Hessian
matrix to be negative definite.
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the allocation of risk is defined by

ω∗ =
aI

aI + aE
, (8)

and S∗ = q∗. Moreover, the investor’s quantity demanded is

z∗ =
PR(q

∗)− p∗F
aIσ2

(9)

and the financial price is

p∗F = PR(q
∗)− (1− ω∗)aIσ2q∗. (10)

Proof. See Mirman and Santugini (2013).

The second type of restriction is to set exogenously the number of shares.

Proposition 2.7 characterizes the equilibrium when the total number of shares

is fixed. Hence, the firm chooses only output and ownership, i.e., {q, ω}.12

Proposition 2.7. Suppose that ΩS = {S|S = S ∈ �+}. Then, there exists a

Nash equilibrium with a competitive financial market. In equilibrium, output

q∗ satisfies

P ′
R(q

∗)q∗ + PR(q
∗) = ω∗aEσ2q∗, (11)

the allocation of risk is defined by

ω∗ =
aI

aI + aE
, (12)

and S∗ = S. Moreover, the investor’s quantity demanded is

z∗ =
PR(q

∗)q∗/S − p∗F
aIσ2(q∗/S)2

(13)

and the financial price is

p∗F = PR(q
∗)q∗/S − (1− ω∗)aIσ2q∗2/S. (14)

12Alternatively, setting an exogenous upper bound on the number of shares also yields
existence, i.e., ΩS = [0, S], S ∈ (0,∞).

12



Proof. Given ΩS, S
∗ = S. The first-order condition corresponding to (5)

evaluated at S∗ = S yields (13). Next, plugging (13) and S∗ = S into

the market-clearing equilibrium z∗ = (1 − ω∗)S∗ yields (14). Finally, the

first-order conditions corresponding to (6) evaluated at S = S are

q : ω · [P ′
R(q)q + PR(q)]− ω2aEσ

2q = 0, (15)

ω : PR(q)q − p∗FS − aEσ
2ωq2 = 0, (16)

evaluated at q = q∗ and ω = ω∗. Rearranging (15) yields (11). Plugging (14)

into (16) and solving for ω∗ yields (12).

2.3 Discussion

Having characterized the equilibrium under two types of restrictions for ΩS,

we now use Propositions 2.6 and 2.7 to compare the equilibrium values.

We begin by noting that the restriction for ΩS has an effect on the level

of output, but not on the allocation of risk. Indeed, from (8) and (12), the

fraction of shares to be floated is independent of the choice of ΩS and depends

only on the relative size of the risk aversion coefficients. If aE/aI → 0,

then ω∗ → 1 and the entrepreneur bears all the risk, i.e., no floating. If

aE/aI → ∞, then ω∗ → 0 and the investor bears all the risk, i.e., 100%

floating. Unlike the allocation of risk, the level of output does depend on

the choice of ΩS . Specifically, under ΩS = {S|S = q ∈ �+}, from (7), access

to a financial market induces hybrid behavior for a monopolist, that is, a

convex combination of monopoly and perfect competition in the real sector.

Under ΩS = {S|S = S ∈ �+}, from (11), setting an exogenous number of

shares removes this hybrid behavior. It follows that the output level is always

smaller under ΩS = {S|S = S ∈ �+} than under ΩS = {S|S = q ∈ �+}.
Moreover, the equilibrium output under (11) is Pareto optimal. Indeed,

substituting (12) into (11) and rearranging the left-hand side yields

P ′
R(q

∗)q∗ + PR(q
∗) = aEσ

2ω2q∗ + aIσ
2 · (1− ω)2q∗. (17)
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Result (17) indicates that the total marginal revenue of output (the left-hand

side of (17)) is equal to the total marginal cost of risk for both agents (the

right-hand side (17)).13

Next, from (7) and (11), the restriction on ΩS has no effect on most of

the comparative analysis for output. Indeed, the direction of the effect of an

increase in aI or σ2 is independent of the choice of ΩS . Specifically, a more

risk-averse investor induces the firm to decrease production, i.e., ∂q∗/∂aI < 0.

Similarly, regardless of the choice of ΩS, an increase in the variance of the

shock increases the marginal cost of bearing some risk, i.e., it increases the

right-hand side of both (7) and (11). This induces the firm to decrease

output, i.e., ∂q∗/∂σ2 < 0.

However, the effect of the entrepreneur’s risk aversion on the level of

output depends on the restriction imposed on the total number of shares.

Indeed, under ΩS = {S|S = q ∈ �+}, from (7) and (8), the sign of ∂q∗/∂aE
is ambiguous.14 However, under ΩS = {S|S = S ∈ �+}, from (11) and (12),

∂q∗/∂aE < 0. When the number of shares is tied to the level of output, an

increase in aE has an effect on both sides of (7). Specifically, an increase

in aE induces the entrepreneur to sell a larger fraction of the firm, i.e., ω∗

decreases. This, in turn, has an effect not only on the cost of risk (the right-

hand side of (7)), but also on the firm’s ability to exercise market power (the

left-hand side of (7)).

To understand this difference in the comparative analysis, consider now

the variance of profit (which is linked to the risk premium paid to the in-

vestor). Letting V be the variance operator, VπR(q
∗, ε̃) = σ2q∗2 reflects the

degree to which the entrepreneur takes risk on behalf of the firm, which is

different from the risk borne by the entrepreneur. Note that the effect of

risk aversion on risk-taking depends on the restriction imposed on the set ΩS

through the level of output. As discussed, under ΩS = {S|S = q ∈ �+}, it
is possible for ∂q∗/∂aE > 0, which implies that ∂VπR(q

∗, ε̃)/∂aE > 0 if and

only if −P ′
R(q

∗) > aIσ
2.

Although risk-averse shareholders have an aversion for risk, their rewards

13See Appendix A.
14Specifically, ∂q∗/∂aE > 0 if and only if −P ′

R(q
∗) > aIσ

2.
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(expected return) depend positively on the amount of risk the firm takes.

In other words, the higher the risk premium of an investor, the higher the

premium (in terms of expected returns) given to a shareholder to bear part

of the risk of the firm. This conflict between shareholders disdain for risk

and the increase in the payment when risk increases is important. Under

ΩS = {S|S = q ∈ �+}, the entrepreneur increases output in order to increase

the expected payment for risk sharing and thus to induce the investor to take

on more risk. This is only possible if the entrepreneur makes the firm riskier,

i.e., offers a higher risk premium. A more risk-averse entrepreneur makes

the firm’s variance greater in order to increase risk sharing by increasing

the risk premium corresponding to each share sold to the investors. For

ΩS = {S|S = S ∈ �+}, the entrepreneur decreases output so that the firm

takes on less risk, i.e., ∂q∗/∂aE < 0 implies that ∂VπR(q
∗, ε̃)/∂aE < 0. That

is, with a fixed total number of shares, the entrepreneur only reacts to an

increase in his risk aversion but has no concern for encouraging the investor

to take on more risk.

We conclude this discussion by comparing the limiting cases. We begin

with the restriction ΩS = {S|S = S ∈ �+}. As σ2 → 0, the level of

output equals the solution for a risk-averse monopoly facing no risk, i.e.,

P ′
R(q

∗)q∗ + PR(q
∗) = 0. As aI = 0, ω∗ = 0 and the level of output tends to

the solution for a monopoly facing no risk, i.e., P ′
R(q

∗)q∗ + PR(q
∗) = 0. As

aI → ∞, ω∗ → 1 and the level of output tends to the solution of a monopoly

owned solely by a risk-averse entrepreneur, i.e., P ′
R(q

∗)q∗+PR(q
∗) = aEσ

2q∗.

This is shown in Figure 1.15

As aE = 0, ω∗ = 1 and the level of output equals the solution for a risk-

averse monopoly facing no risk, i.e., P ′
R(q

∗)q∗ + PR(q
∗) = 0. As aE → ∞,

ω∗ → 0 the level of output tends to the solution of a risk-averse monopoly

owned by the investor who takes on all the risk, i.e., PR(q
∗) = aIσ

2q∗. See

Figure 2.

The limiting cases for ΩS = {S|S = q ∈ �+} are as follows. As σ2 → 0,

the level of output is a linear combination of the solution for a risk-averse

monopoly facing no risk and for a competitive firm also facing no risk, i.e.,

15In the following graphs we assumed, for simplicity, that real demand is linear.
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Figure 1: The Effect of aI on q∗ and ω∗ when ΩS = {S|S = S ∈ �+}.

Figure 2: The Effect of aE on q∗ and ω∗ when ΩS = {S|S = S ∈ �+}

ω∗ · (P ′
R(q

∗)q∗ + PR(q
∗)) + (1 − ω∗) · PR(q

∗) = 0. As aI = 0, ω∗ = 0 and

the level of output equals the solution for a risk-averse perfectly competitive

firm facing no risk, i.e., PR(q
∗) = 0. As aI → ∞, ω∗ → 1 and the level of

output tends to the solution of a risk-averse monopoly facing risk who does

not share risk, i.e., P ′
R(q

∗)q∗ + PR(q
∗) = aEσ

2q∗. See Figure 3.

Finally, as aE = 0, ω∗ = 1 and the level of output equals the solution for a

risk-averse monopoly facing no risk, i.e., P ′
R(q

∗)q∗+PR(q
∗) = 0. As aE → ∞,

ω∗ → 0 the level of output tends to the solution of a risk-averse competitive

firm owned by the investor who takes on all the risk, i.e., PR(q
∗) = aIσ

2q∗.16.

See Figure 4.

16This is the case in which output may go up or down, depending on which of the
extreme solutions is larger
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Figure 3: The Effect of aI on q∗ and ω∗ when ΩS = {S|S = q ∈ �+}

Figure 4: The Effect of aE on q∗ and ω∗ when ΩS = {S|S = q ∈ �+}

3 Stackelberg Equilibrium with Non-Competitive

Financial Market

In this section, we consider the Stackelberg equilibrium in which one agent

is sophisticated whereas the other agent is naive. In other words, one of

the agents is a leader and the other one is a follower. The Stackelberg en-

vironment is not compatible with a competitive financial market. Hence,

the leader (whether the entrepreneur or the investor) has market power in

the financial sector. We begin by showing that there exists a Stackelberg

equilibrium with a leading entrepreneur without the need to impose any re-

strictions on the ΩS . However, the total number of shares and the financial

17



price remain undetermined. i.e., one depends on the arbitrary choice of the

other. We then show that there is no Stackelberg equilibrium with a leading

investor unless restrictions are imposed on the ΩS.

3.1 Leading Entrepreneur

We first define the Stackelberg equilibrium with the entrepreneur as the

leader. We then provide equilibrium values.

Definition 3.1. The tuple {q∗, ω∗, S∗, z∗(q∗, ω∗, S∗), p∗F} is a Stackelberg equi-

librium (leading entrepreneur) with a non-competitive financial market if

1. Given {q∗, ω∗, S∗} and p∗F , the investor’s quantity demanded for the

risky asset is

z∗(q∗, ω∗, S∗) = arg max
z≥0

{
WI + (PR(q

∗)q∗/S∗ − p∗F )z − aIσ
2(q∗/S∗)2z2/2

}
.

(18)

2. Given z∗(q, ω, S), subject to q ≥ 0, ω ∈ [0, 1], S ∈ ΩS,

{q∗, ω∗, S∗} = arg max
q,ω,S

{
ωPR(q)q +D∗(q, ω, S) · (1− ω) · S − aEσ

2ω2q2/2
}

(19)

where pF = D∗(q, ω, S) is the inverse financial demand defined by

z∗(q, ω, S) = (1− ω)S.

3. Given {q∗, ω∗, S∗, z∗(q∗, ω∗, S∗)}, p∗F > 0 satisfies the market-clearing

condition z∗(q∗, ω∗, S∗) = (1− ω∗)S∗.

Proposition 3.2 states that there exists an equilibrium when the en-

trepreneur is the leader. Hence, another way to reestablish existence with-

out any restriction on the total number of shares is to assume that the en-

trepreneur has market power in the financial sector. However, the total num-

ber of shares and the financial price cannot be uniquely and independently

determined. The reason is that the inverse financial demand is inversely pro-

portional to S so that, from (19), the total number of shares has no effect on

the entrepreneur’s certainty equivalent.
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Proposition 3.2. Suppose that ΩS = �+. Then, there exists a Stackel-

berg equilibrium with a sophisticated entrepreneur. In equilibrium, output q∗

satisfies

P ′
R(q

∗)q∗ + PR(q
∗) = ω∗aEσ2q∗, (20)

the allocation of risk is defined by

ω∗ =
2aI

2aI + aE
. (21)

Moreover, the investor’s quantity demanded is

z∗(q∗, ω∗, S∗) =
PR(q

∗)q∗/S∗ − p∗F
aIσ2(q∗/S∗)2

. (22)

and

S∗p∗F = PR(q
∗)q∗ − (1− ω∗)aIσ2q∗2 (23)

where the total number of shares and the financial price cannot be determined

separately.

Proof. The first-order condition corresponding to (18) yields (22). Next,

plugging (22) (for any q, ω, and S) into z∗(q, ω, S) = (1 − ω)S and solving

for the inverse financial demand function yields

D∗(q, ω, S) = PR(q)q/S − (1− ω)aIσ
2q2/S. (24)

Plugging (24) into (19) yields the entrepreneur’s maximization problem

max
q,ω

{
PR(q)q − (1− ω)2aIσ

2q2 − aEσ
2ω2q2/2

}
(25)

where S has no effect on the entrepreneur’s certainty equivalent. From (23),

it follows that

p∗F =
(
PR(q

∗)(q∗)− aIσ
2ωq∗2

)
/S∗ (26)

S∗ and thus p∗F are undefined. The first-order condition corresponding to (25)
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are

q : P ′
R(q)q + PR(q)− 2(1− ω)2aIσ

2q − aEσ
2ω2q = 0, (27)

ω : 2(1− ω)aIσ
2q2 − aEσ

2ωq2 = 0, (28)

evaluated at q = q∗ and ω = ω∗. Solving (28) for ω∗ yields (21). Plugging (21)

into (27) and rearranging yields (20). Plugging q∗ and ω∗ into (24) and

multiplying by S∗ yields (23).

Having characterized the Stackelberg equilibrium, we now compare equi-

librium values under Nash and Stackelberg. First, comparing (8) or (12)

with (21), it follows that the entrepreneur shares less risk under Stackelberg

than under Nash (regardless of the restriction on ΩS for Nash). This is due

to the fact that the investor’s coefficient of risk aversion is weighed twice

under Stackelberg. Under Stackelberg, the entrepreneur takes into account

the effect of an increase in shares offered in the financial price through the

marginal risk cost of the investor. Hence, the entrepreneur sets a smaller

float of shares in order to increase the financial price. The firm’s output is

thus lower under Stackelberg than under Nash because the right-hand side

in (20) is now bigger than in (7) or (11)17. The signs of the effects of the risk

coefficients on ω∗ and q∗, as well as the limits of ω∗ (when the risk coefficients

approach zero or infinity) remain unchanged. The limits of q∗ when aE or aI

tend to zero or when aI tends to infinity are also left unchanged. However,

under Stackelberg, when aE tends to infinity, ω∗ → 0 and output q∗ satisfies

P ′
R(q

∗)q∗ + PR(q
∗) = 2aIσ

2q∗ in the limit.

3.2 Leading Investor

Having considered the case of a leading entrepreneur, we now study the

Stackelberg equilibrium with a leading investor.

Definition 3.3. The tuple {q∗(z∗), ω∗(z∗), S∗(z∗), z∗, p∗F} is a Stackelberg

equilibrium (leading investor) with a non-competitive financial market if

17From expression (20), it can be shown that the equilibrium output is no longer Pareto
optimal.
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1. Given {q∗(z), ω∗(z), S∗(z)}, the investor’s quantity demanded for the

risky asset is

z∗ = arg max
z≥0

{
WI + (PR(q

∗(z))q∗(z)/S∗(z)−D∗(z))z − aIσ
2(z/S∗(z))2/2

}
(29)

where pF = D∗(z) is the inverse financial demand defined by z = (1 −
ω(z))S(z).

2. Given p∗F , subject to q ≥ 0, ω ∈ [0, 1], S ∈ ΩS,

{q∗(z), ω∗(z), S∗(z)} = arg max
q,ω,S

{
ωPR(q)q + p∗F · (1− ω) · S − aEσ

2ω2q2/2
}

(30)

3. Given {q∗(z∗), ω∗(z∗), S∗(z∗), z∗}, p∗F > 0 satisfies the market-clearing

condition z∗ = (1− ω∗(z∗))S∗(z).

Proposition 3.4. Suppose that ΩS = �+. Then, there exists no Stackelberg

equilibrium with a leading investor.

Proof. From (30), given p∗F > 0, there is no solution for S∗.

In order to obtain an equilibrium for 3.3 with a leading investor, we must

guaranty there is a solution for the entrepreneur’s optimization problem. As

we have seen before, this requires some kind of constraint on S. For instance,

Proposition 3.5 provides the equilibrium values under Stackelberg when the

total number of shares is set exogenously. In equilibrium, the decisions of

the entrepreneur do not depend on z directly. Hence, notation is simplified

by writing {q∗, ω∗, S∗}.
Proposition 3.5. Suppose that ΩS = {S|S = S ∈ �+}. Then, there exists

a Stackelberg equilibrium with a leading investor. In equilibrium, output q∗

satisfies

P ′
R(q

∗)q∗ + PR(q
∗) = ω∗aEσ2q∗, (31)

the allocation of risk is defined by

ω∗ =
aI + aE
aI + 2aE

, (32)
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and S∗ = S. Moreover, the investor’s quantity demanded is

z∗ =
aES

2aE + aI
, (33)

and the financial price is

p∗F = PR(q
∗)q∗/S − aE + aI

2aE + aI
aEσ

2q∗2/S. (34)

Proof. Given ΩS , S
∗(z) = S. The first-order conditions corresponding to (30)

are

q : ω · [P ′
R(q)q + PR(q)]− aEσ

2ω2q = 0, (35)

ω : PR(q)q − p∗FS − aEσ
2ωq2 = 0, (36)

evaluated at q = q∗(z) and ω = ω∗(z). Solving (36) yields

ω∗ =
PR(q

∗(z))q∗(z)− p∗FS
aEσ2q∗(z)2

, (37)

which does not depend on z directly. Next, plugging S∗(z) = S and (37)

into the market-clearing condition z = (1 − ω∗(z))S∗(z) and solving for the

inverse financial demand yields

D∗(z) = PR(q
∗(z))q∗(z)/S −

(
1− z

S

)
aEσ

2q∗(z)2/S. (38)

Plugging (38) into the investor’s maximization problem yields

max
z

{
WI +

(
1− z

S

)
aEσ

2q∗(z)2z/S − aIσ
2q∗(z)2z2/(2S

2
)

}
(39)

where, from (35), q∗(z) does not depend on z. The first-order condition is

(
1− 2z

S

)
aEσ

2q∗(z)2/S − aIσ
2q∗(z)2z/S

2
= 0 (40)

evaluated at z = z∗ yielding (33). Next, plugging (33) into (38) yields (34).
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Plugging (34) into (37) yields (32).

As in Nash and Stackelberg with a leading entrepreneur, the allocation of

risk under Stackelberg with a leading investor depends on the risk-aversion

coefficients. However, in Stackelberg with a leading investor, it is the investor

who has to take into account the effect of an increase in shares demanded in

the financial price through the marginal risk cost of the entrepreneur. Hence,

the fraction of shares sold under Stackelberg with a leading investor is less

than under Nash, regardless of the restriction imposed on ΩS .

Under Stackelberg, the fraction of shares sold can be smaller or bigger, de-

pending on the relative size of aI and aE . Since (32) is always larger than (8)

or (12), the right-hand side of (31) is also larger and so the equilibrium

output under Stackelberg with a leading investor is smaller18.

The signs of the effects of the risk coefficients on ω and q remain un-

changed. The value of ω∗ = aI+aE
aI+2aE

is 1 when aE tends to zero; but when aI

tends to zero ω equals 1/2. This is quite interesting, because now, even when

the investor is risk neutral, he does not buy all the shares. Indeed, acting as

a leader, he prefers to buy less than half the shares to force the entrepreneur

into selling with a greater discount. When aI approaches infinity, ω tends

to 1. However, when aE approaches infinity, ω tends 1/2, essentially for the

same reason.

A corresponding behavior can be inferred about q∗. When aE tends to

zero or when aI approaches infinity, ω∗ goes to 1 and q∗ solves P ′
R(q

∗)q∗ +

PR(q
∗) = aEσ

2q∗. When aI tends to zero, ω∗ goes to 1/2 and q∗ solves

P ′
R(q

∗)q∗ + PR(q
∗) = aEσ

2q∗/2. However, when aE approaches infinity,

the problem becomes more complicated: ω goes to 1/2, but as q∗ solves

P ′
R(q

∗)q∗ + PR(q
∗) = aEσ

2q∗, the right-hand side of the first-order condition

goes to infinity, forcing q∗ to tend to zero. This happens because, as the en-

trepreneur cannot sell all the shares, he must always support some of the risk;

when his risk aversion increases, the only way to compensate is to decrease

the output towards zero.

18From expression (31), it can be shown that the equilibrium output is no longer Pareto
optimal.
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4 Final Remarks

In this paper, we have discussed the issue of existence of an equilibrium

when integrating the real and financial markets. After showing that there

is in general no Nash equilibrium with a competitive financial market, we

impose several restrictions on the set for the total number of shares issued.

Each restrictions yields existence of an equilibrium. Another way to ensure

existence is to do away with the hypothesis of competitive financial market

by assuming instead that either the entrepreneur or the investor can influence

the financial price.

It is important to continue studying the interaction of shareholders in

markets and their influence on the behavior of the firm. The interaction

between real and financial markets deserves further researching, namely in-

troducing asymmetric information on some of the parameters, a multi-period

time horizon and the possibility of learning and experimenting.
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A Pareto Optimality

To see Pareto optimality, notice that (17) is the solution of

max
ω,q

CEE = max
ω,q

{
ω · PR(q)q + p∗F · (1− ω) · S − aEσ

2ω2q2/2
}

(41)

where S = S, and subject to W ∗ = WI+(PR(q)q/S−p∗F )z−aIσ
2(q/S)2z2/2,

for W ∗ > 0. Hence, the Lagrangian is

L = ω · PR(q)q + p∗F · (1− ω) · S − aEσ
2ω2q2/2

+ λ
(
W ∗ −WI − (PR(q

∗)q/S + p∗F )z + aIσ
2(q/S)2z2/2

)
, (42)

so that

∂L
∂q

= ω·[P ′
R(q

∗)q∗ + PR(q
∗)]−aEσ

2ω2q+λ
[
(−P ′

R(q
∗)q∗ − PR(q

∗))z/S + aIσ
2(z/S)2q

]
= 0.

(43)

Setting W ∗ so that λ = −1, and using the market-clearing condition z =

(1− ω)S or z/S = 1− ω into (43) yields (17).
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