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Abstract:  
An essential component in the analysis of (hedge) fund returns is to measure its 
performance with respect to the group of peer funds. Through the analysis of risk-
adjusted return percentiles an answer is given to the question how many funds are out-
performed by the focal fund. In case all funds perform equally well, this approach will 
lead a random number between zero and one, depending on how lucky the fund is. We 
use the false discovery rate approach to construct relative performance ratios that 
account for the uncertainty in estimating the performance differential of two funds. Our 
application is on hedge funds, which leads us to develop a test for equality of the 
modified Sharpe ratio of two funds. The effectiveness of the method is illustrated with a 
Monte Carlo study and an empirical study is performed on the Hedge Fund Research 
database. 
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1. Introduction

Morningstar uses the Morningstar Category as the primary peer group for a num-
ber of calculations, including percentile ranks, fund-versus-category-average com-
parisons, and the Morningstar RatingTM.

(The Morningstar RatingTM methodology)

How does a fund rank compared to its peers in terms of performance? The industry standard
to answer this question is to study the fund’s rank and estimate the percentage of funds that are
out-performed by the focal fund as the percentage of funds for which the performance measure
of the focal fund is higher. We call this a naive approach to peer fund analysis, as it completely
ignores the estimation uncertainty in performance measures, such as the (modified) Sharpe ratio
or Jensen’s alpha.

A less naive solution would be to calculate the percentage of funds for which the performance
of the focal fund is significantly higher, say at a 10% level. However, also this measure is not
acceptable as it can be biased for two reasons. First, because of the multiple testing on a large
number of peer funds, we have that under the null of no significant difference in talent, the es-
timated percentage of out-performance is on average 10%, while it truly is 0%. Second, in the
case where the focal fund is truly out-performing its peers, it might be that because of bad luck,
the test statistic lies in the region of non-rejection. The same problems arise when testing for the
significance of Jensen’s alpha of single funds.

The “Out-performance Ratio” that we propose uses the false discovery rate (FDR) approach
by Storey (2002) to avoid these problems. It is inspired by the earlier work of Barras et al. (2010)
in which the FDR methodology is used to estimate the percentage of truly skilled funds, which
requires performance evaluation of individual funds. The building block of the proposed out-
performance ratio is the p-value of a two-sided test of equal performance between the focal fund,
on the one hand side, and the funds in the peer group, on the other hand.

This two-sided test can take many forms, as long as it is sufficiently powerful such that p-
values on pairs of funds with truly different performance tend to be small. Ledoit and Wolf (2008)
recommend a bootstrap method to test for the equal Sharpe ratio performance of two funds, ac-
counting for the finite sample properties of the return distribution and the potential autocorrelation
and heteroskedasticity. If one of the funds has non-normally distributed returns, comparing funds
based on the Sharpe ratio is often not enough, as it ignores investors’ positive preferences for odd
moments (mean, skewness) and aversion to even moments (variance, kurtosis). This weakness of
the Sharpe ratio is well known and several alternatives have been proposed. For the analysis of
hedge fund returns, the modified Sharpe ratio proposed by Favre and Galeano (2002) and Grego-
riou and Gueyie (2003) is now increasingly popular. It is defined as the ratio between the excess
return of the hedge fund and its modified Value-at-Risk. The latter is an estimator for Value-at-
Risk based on the Cornish-Fisher expansion and the first four moments of the return distribution.
A statistical test for equal modified Sharpe ratio performance is missing. We fill this gap, and,
illustrate its usefulness to analyze performance of hedge funds through an extensive Monte Carlo
simulation and empirical application on the Hedge Fund Research (HFR) database.

The remainder of the article is organized as follows. Section 2 introduces the equal-performance
ratio’s methodology. Section 3 derives the asymptotic and bootstrap tests for the equality of mod-

2



ified Sharpe ratio of two funds. In Sections 4 and 5 we report the results of Monte Carlo study
investigating the finite-sample performance of the proposed estimators. Section 6 illustrates the
application of the proposed peer performance measures to analyze the relative performance of Eq-
uity Hedge, Event-Driven, Relative Value and Macro hedge funds. An accompanying R package
is available from the authors’ website.1 Section 7 concludes and sketches directions for further
research.

2. The peer performance ratios

We consider a universe with a total of n + 1 funds, where for each we can compute a risk-
adjusted performance measure. This measure can take various forms, as long as there exists a
valid two-sided test for equal performance of two funds. In practice, it can be e.g. the alpha of a
factor model or, as we will see later, the (modified) Sharpe ratio. We denote by ∆•i−j the (true)
difference of this performance measure between fund i and j (i 6= j) and ∆i−j is the corresponding
estimate. Throughout the paper, we use the subscript symbol • to distinguish population-values
(such as parameters ∆•i−j) from sample-based estimates (such as ∆i−j).

We wish to estimate the percentage of funds that have equal, less or greater risk-adjusted
performance than fund i. Denote by π0

•i (n0
•i), π

+
•i (n+

•i) and π−•i (n−•i) the proportion (number) of
funds for which ∆•i−j = 0, ∆•i−j > 0 and ∆•i−j < 0, respectively.

2.1. The equal performance ratio
The building block of the proposed equal–performance ratio estimating π0

•i are the p-values
pi−j associated to a two-sided test of the null hypothesis H0 : ∆•i−j = 0, for j = 1, . . . , n. A
crucial feature of the proposed estimators will be the difference in distribution of the p-values pi−j
when ∆•i−j = 0 versus ∆•i−j 6= 0.

If the test is sufficiently powerful, there exists a threshold value λ such that almost surely the
p-value of the two-sided equal performance test is less than λ if the two funds have a different
performance:

(A1) : P(pi−j < λ |∆•i−j 6= 0) = 1 . (1)

The validity of this assumption will depend on the magnitude of ∆•i−j , the test-statistic itself, the
calculation of its p-value (asymptotic versus bootstrap methods) and the sample size.

The second assumption that we make is that, for the chosen threshold value 0 < λ < 1, the
probability of pi−j exceeding λ, when ∆•i−j = 0, is 1− λ:

(A2) : P(pi−j ≥ λ |∆•i−j = 0) = 1− λ . (2)

1All computations are performed in the R statistical computing language (R Development Core Team, 2011) with
the package CompStrat (Ardia and Boudt, 2013). We rely on compiled functions for the bootstrap methodology and
parallelize the computations using the package snow (Tierney et al., 2012).
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This assumption is satisfied when, for a given pair (i, j), the p-values are uniformly distributed
under the null of equal performance. To see that this is a realistic assumption, suppose that the
p-values can be computed as pi−j ≡ F•i−j(∆i−j), with F•i−j(·) the cumulative distribution of
∆•i−j . Those p-values have by construction a uniform distribution, since:

P(p•i−j < pi−j) = P(p•i−j < pi−j)

= P(F•i−j(∆•i−j) < pi−j)

= P(∆•i−j > F−1•i−j(1− pi−j))
= 1− F•i−j(F−1•i−j(1− pi−j)) = pi−j .

(3)

In practice, F•i−j(·) and hence the p-values are estimated and assumption A2 will only be approx-
imately satisfied.

Under (A1) and (A2) we have that the expected number of p-values exceeding λ is (1− λ)n0
•i:

E

(∑
j 6=i

I[pi−j ≥ λ]

)
=
∑
j 6=i

E(I[pi−j ≥ λ] |∆•i−j = 0)

+
∑
j 6=i

E(I[pi−j ≥ λ] |∆•i−j 6= 0)

=(1− λ)n0
•i ,

(4)

where I[·] denotes the indicator function. Hence a natural estimator for n0
•i is the number of

estimated p-values exceeding λ, divided by 1− λ:

n0
i ≡ min

{∑
j 6=i I[pi−j ≥ λ]

1− λ
, n

}
. (5)

The corresponding estimate for the proportion of equal performance is:

π0
i ≡

n0
i

n
. (6)

The estimation of parameters based on the extrapolation of the highest p-values of multiple tests
goes back to the false discovery rate (FDR) approach proposed by Storey (2002), and to the esti-
mation of the percentage of talented mutual funds in Barras et al. (2010).2

The accuracy of the equal performance ratio estimator depends on both the accuracy of the pair-

2Since the estimator π0
i has the form of a sample average, we expect, that in most relevant cases, the estimator π0

i

is not only unbiased but also consistent for π0
•i. The proof of this requires a suitable law of large number allowing for

the dependence in the p-values. Indeed, even though each p-value is uniformly distributed under the null hypothesis,
because of the correlation across hedge funds and the comparison with a common peer, the p-values corresponding
to the different tests ∆•i−j = 0, for different i and j, are not uniform distributed. In case of too strong dependence,
it may make the estimator inconsistent (e.g. when all p-values are identical). In our sample, the average correlation
between pairs of p-values with a common fund is 0.045. Because the dependence is not so extreme, we conjecture the
estimator will be consistent in the population corresponding to our sample.
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wise test for differences in the risk-adjusted performance measures, and hence the number of time
series observations T , as well as the the cross-sectional number of funds. To make the latter more
clear. Suppose we have a population of ni p-values obtained without estimation error, i.e. pi−j ≡
F•i−j(∆i−j) and define by nλi the number of funds in this population with p-value larger than λ.
Using a random sample of ni draws from the population (with replacement), S :=

∑
j 6=i I[pi−j ≥

λ] follows a binomial distribution with variance nnλi (n
λ
i −n), and hence the asymptotic distribution

of π0
i = S/(n(1− λ)) is:

π0
i
d∼ N

(
π0
•i,
nλi (n− nλi )
n3(1− λ)2

)
, (7)

for n large.

2.2. The out- and under-performance ratios
Given the estimate of the number of peer funds with equal performance, n0

i , and the observed
performance differences ∆i−j , we then estimate the number of funds that are out-performed by
the focal fund, i.e. n+

•i. The estimate is based on the fact that n+
•i corresponds to the naive estimate

of the number of peer funds that are significantly out-performed by the focal fund (at a one-
sided confidence level β, i.e. the number of funds for which ∆i−j exceeds the β-quantile of the
distribution of ∆i−j under the null hypothesis, and denoted qβi−j), adjusted for the number of funds
for which qβi−j > 0 by chance (when ∆•i−j ≤ 0) and the funds for which ∆i−j < qβi−j when
∆•i−j > 0:

n+
•i =

∑
j 6=i

I[∆•i−j > 0]

=
∑
j 6=i

I[∆i−j > qβi−j]−
∑
j 6=i

I[∆i−j > qβi−j |∆•i−j = 0]

−
∑
j 6=i

I[∆i−j > qβi−j |∆•i−j < 0] +
∑
j 6=i

I[∆i−j < qβi−j |∆•i−j > 0] .

(8)

Given n0
i , we can infer that, the number of false positives if ∆•i−j > 0 is n0

i (1 − β). The choice
of β is a trade-off. For increasing values of β, the number of false positives

∑
j 6=i I[∆i−j >

qβi−j |∆•i−j < 0] will converge to zero, but the number of false negatives
∑

j 6=i I[∆i−j < qβi−j |∆•i−j >
0] will increase. Throughout the paper, we take qβi−j = 0, corresponding to β = 0.5.3

This leads to the following definition of the out-performance ratio of fund i:

π+
i ≡

1

n
max

{∑
j 6=i

I[∆i−j ≥ qβi−j]− n0
i (1− β), 0

}
. (9)

3In small samples, the distribution of ∆i−j may be asymmetric and q0.5i−j could then be estimated by the bootstrap
procedure described in Subsection 3.1.
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Finally, the under-performance ratio of fund i is given by:

π−i ≡ 1− π0
i − π+

i , (10)

which can be interpreted as the adjusted frequency of peer funds that out-perform the focal fund i.
Indeed, note that in the most common case where

∑
j 6=i I[∆i−j ≥ qβi−j] > n0

i (1− β), then:

π−i =
1

n

(∑
j 6=i

I[∆i−j ≥ qβi−j]− n0
i (1− β)

)
. (11)

2.3. Choice of performance measure
The first step in the implementation of the out-performance ratio is the choice of performance

measure. Broadly speaking, the performance of a fund is today either measured unconditionally
using only the return series of the fund or conditionally by comparing the fund returns with a set
of risk factors.

Examples of the first approach are the Sharpe, modified Sharpe, Sortino and Treynor ratios of
the fund (Sharpe, 1994; Gregoriou and Gueyie, 2003; Sortino and Price, 1994; Treynor and Black,
1973). The previously mentioned performance measures have in common that the differential in
performance can be rewritten as the average difference of portfolio returns standardized by a risk
measure:

∆i−j =
1

T

T∑
t=1

(
ri,t

riski
− rj,t

riskj

)
, (12)

where ri,t and rj,t be the realized return of funds i and j at time t (t = 1 . . . , T ). with riski the
standard deviation, the modified value-at-risk, the target semideviation and the fund’s beta for the
Sharpe, modified Sharpe, Sortino and Treynor ratios, respectively.

Examples of the second category include the intercept of the least squares regression of the
fund returns on the four Carhart factors or the Fung and Hsieh hedge fund risk factors (Carhart,
1997; Fung and Hsieh, 2004). Let ft be the K × 1 vector of risk factors at time t. Then ∆i−j is the
intercept of the OLS regression of (ri,t − rj,t) on ft:

(ri,t − rj,t) = ∆i−j + β′i−jft + εi−j,t , (13)

for t = 1, . . . , T , where βi−j denotes the K × 1 vector of factor exposures and:

∆i−j =
1

T

(
T∑
t=1

(ri,t − rj,t)− β′i−jft

)
. (14)

For both categories, we thus have that ∆i−j can be rewritten as a time series average of potentially
serially dependent observations, such that suitable central limit theorems can be invoked to obtain
the (asymptotic) normal distribution of ∆i−j and calculate its p-values. In practice, the common
history of two fund returns is often short and bootstrap methods are expected to yield improved
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inference. In the sequel, we focus on one performance measure, namely the modified Sharpe ratio,
but the calculation of the proposed peer performance ratio’s is generally applicable to most of the
commonly used performance measures.

2.4. Choice of λ
Based on Storey (2002), Barras et al. (2010, footnote 10) propose a bootstrap procedure to

determine in a pure data driven way the value of λ that minimizes the estimated mean squared
error of π0

i . Alternatively, they recommend as a rule of thumb to use λ = 0.5. In the simulation
study and empirical application, we used the bootstrap procedure with B = 500 replications.

3. Testing the equality of modified Sharpe ratios

It is a stylized fact that the return distribution for many hedge funds is asymmetric and has
heavy tails. A typical investor has positive preferences for odd moments (mean, skewness) and
aversion to even moments (variance, kurtosis), as discussed by Scott and Horvath (1980). This
explains the rising popularity of Value-at-Risk as a measure to evaluate the risk of hedge funds
rather than the standard deviation. Value-at-risk is defined as the negative value of the hedge fund
return such that lower returns will only occur with at most a preset probability level denoted α.
Common choices for α are 1%, 2.5%, 5% and 10%. Because fund returns are often only available
at the monthly frequency and the higher estimation uncertainty of modfied VaR for smaller values
of α (Boudt et al., 2008), especially in small samples, we will use α = 10% in the application.

Of course, when estimating the Value-at-Risk, the non-normality of the return distribution
should be accounted for. In many cases, the return distribution is unknown. A popular semi-
parametric approach is then to approximate the true (unknown) distribution with the second order
Cornish-Fisher expansion, i.e. the normal distribution plus some correction terms that account
for the skewness and excess kurtosis of the return distribution (Cornish and Fisher, 1937). The
resulting risk measure is called modified VaR, and was proposed by Zangari (1996). The modified
VaR estimator is usually constructed by replacing the population moments with the corresponding
sample moments. The modified VaR owes its popularity in practical work to its precision and,
especially, to its explicit form, which makes it straightforward to compute and interpret. In our
application, it allows for an explicit derivation of the standard error of the test statistic of equal
modified Sharpe ratio performance.

The definition of modified VaR requires the first four moments. Let Ri be the return of hedge
fund manager i. Let m•i be the population mean for hedge fund manager i. Denote the q-th
centered portfolio moment m•q,i ≡ E [(Ri −m•,i)q]. For a loss probability α, the modified VaR
estimate is:

mVaR•i(α) ≡ −m•i +
√
m•2,i

[
−zα −

1

6
(z2α − 1)s•i −

1

24
(z3α − 3zα)k•i +

1

36
(2z3α − 5zα)s2•i

]
,

(15)
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with s•i and k•i the skewness and excess kurtosis:

s•i ≡
m•3,i

m
3/2
•2,i

, k•i ≡
m•4,i
m2
•2,i
− 3 , (16)

and where zα denotes the α-percentile of the standard normal distribution. Based on the large
acceptance of modified VaR as a relevant hedge fund risk management tool, Gregoriou and Gueyie
(2003) proposed the modified Sharpe ratio as a more suitable tool for assessing the hedge fund
performance than the usual Sharpe ratio. The modified Sharpe ratio is defined as the ratio between
the excess return of the hedge fund and its modified Value-at-Risk:

mSR•i(α) ≡ m•i − rf
mVaR•i(α)

, (17)

where rf is the average risk-free rate at the corresponding horizon.

3.1. Pairwise test for equality of modified Sharpe ratios
Let ri,t and rj,t be the realized return of funds i and j at time t (t = 1 . . . , T ). Replacing

the population moments with sample moments in (15) and (17) provides us with estimates of the
modified VaR and the modified Sharpe ratio. Denote these sample moments as mi, m2,i ,m3,i,
m4,i, si and ki, and the resulting modified VaR and Sharpe ratio as mVaRi(α) and mSRi(α).

We are interested in testing the null hypothesis of equal modified Sharpe ratios for fund i and
j:

H0 : ∆•i−j ≡ mSR•i(α)−mSR•j(α) =
m•i

mVaR•i(α)
− m•j

mVaR•j(α)
= 0 , (18)

based on the observed difference in the cross-product of the fund’s return and the other fund’s
mVaR:

∆i−j ≡ mi mVaRj(α)−mj mVaRi(α) . (19)

The test statistic we recommend to use for evaluating the null hypothesis is the ratio between ∆i−j
and its standard error. Under regularity conditions, the Delta method implies that this studentized
test statistic is asymptotically normally distributed. However, because of the rather small samples
for which hedge fund return data are typically available, we follow the proposal of Ledoit and
Wolf (2008) and use a bootstrap methods for calculating the appropriate p-values, accounting for
the finite sample size and temporal dependence in the data.

Standard error of ∆i−j . To compute the standard error of ∆i−j , we first express all centered
moments as uncentered moments gq,i ≡ 1

T

∑T
t=1 r

q
i,t:

m2,i = g2,i −m2
i (20)

m3,i = g3,i − 3mi g2,i + 2m3
i (21)

m4,i = g4,i − 4mi g3,i + 6m2
i g2,i − 3m4

i . (22)
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It follows that ∆i−j is a function of the mean and second to fourth moment about the origin of the
two series:

∆i−j ≡ f(mi, g2,i, g3,i, g4,i,mj, g2,j, g3,j, g4,j) . (23)

If Ψi−j is a consistent estimator of the asymptotic covariance matrix between these arguments,
then an estimate for the standard error of ∆i−j is:

s(∆i−j) ≡
√
∇′i−jΨi−j∇i−j

T
, (24)

with∇i−j the gradient of f with respect to (mi, g2,i, g3,i, g4,i,mj, g2,j, g3,j, g4,j)
′. In this case,∇i−j

is given by:

∇i−j ≡ (mVaRj dmi −midmVaRj)− (mVaRi dmj −mjdmVaRi) , (25)

with:

dmVaRi =− dmi − zα
1

2
√
m2,i

dm2,i

− 1

6
(z2α − 1)

(
1

2
√
m2,i

sidm2,i +
√
m2,idsi

)
− 1

24
(z3α − 3zα)

(
1

2
√
m2,i

kidm2,i +
√
m2,idki

)
+

1

36
(2z3α − 5zα)

(
1

2
√
m2,i

s2i dm2,i + 2
√
m2,isidsi

)
,

(26)

and:

dsi =
m

3/2
2,i dm3,i − 1.5m3,im

1/2
2,i dm2,i

m3
2,i

(27)

dki =
m2

2,idm4,i − 2m4,im2,idm2,i

m4
2,i

, (28)
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and similarly for j. The gradient for the underlying moments is:

dmi = (1, 0, 0, 0, 0, 0, 0, 0)′ (29)
dmj = (0, 0, 0, 0, 1, 0, 0, 0)′ (30)
dm2,i = (−2mi, 1, 0, 0, 0, 0, 0, 0)′ (31)
dm2,j = (0, 0, 0, 0,−2mj, 1, 0, 0)′ (32)
dm3,i = (−3g2,i + 6m2

i ,−3mi, 1, 0, 0, 0, 0, 0)′ (33)
dm3,j = (0, 0, 0, 0,−3g2,j + 6m2

j ,−3mj, 1, 0)′ (34)

dm4,i = (−4g3,i + 12mig2,i − 12m3
i , 6m

2
i ,−4mi, 1, 0, 0, 0, 0)′ (35)

dm4,j = (0, 0, 0, 0,−4g3,i + 12mig2,i − 12m3
i , 6m

2
i ,−4mi, 1)′ . (36)

Alternative test statistic. An alternative way to test the difference in (23) is to consider directly
the observed difference in modified Sharpe ratios:

∆i−j ≡ mSRi(α)−mSRj(α) . (37)

In this case,∇i−j is given by:

∇i−j ≡
(

mVaRi dmi −midmVaRi

mVaR2
i

)
−

(
mVaRj dmj −mjdmVaRj

mVaR2
j

)
, (38)

with the expressions for mi, mVaRi, dmi, and dmVaRi (i = 1, . . . , n) being the same.
The apparent advantage of this alternative test statistic is that its construction is similar as the

traditional one used by Ledoit and Wolf (2008) to test for the equality of two Sharpe ratios. The
disadvantage however is that both the numerator and denominator depend on the inverse of the
modified Value-at-Risk. For funds with positive sample skewness, the modified Sharpe ratio can
be close to zero, and extremely fat tailed. By considering the test statistic that cross-multiplies the
mean and mVaR of the two funds, we obtain a test statistic that is analytically more simple and
better behaved. We confirm this statement in the simulation study.

Estimation of the covariance matrix. For i.i.d. data we use the sample estimator of the covariance
matrix. For time series data with possible dependence, we follow Ledoit and Wolf (2008) in using
the heteroscedasticity and autocorrelation robust (HAC) kernel estimators of Andrews (1991) and
Andrews and Monahan (1992).

Calculation of p-values. Because of the small sample size in our empirical application, we use the
bootstrap method to compute the p-values of the test statistics under the null of equal Sharpe ratios.
To generate bootstrap data, we resample with replacement either individual pairs, as in the i.i.d.
bootstrap of Efron (1979), or blocks of fixed size l ≥ 1, following the circular block bootstrap of
Politis and Romano (1992). Based on the B bootstrap pairs (r∗bt,i, r

∗b
t,j) the bootstrap test statistics

10



are computed:

t∗bi−j ≡
∆∗bi−j
s(∆∗bi−j)

, (39)

where ∗b denotes the estimators computed on the b-th bootstrap data set. Since the distribution of
the test statistic may be asymmetric in small samples, we follow Barras et al. (2010) in computing
the p-value as:

pi−j ≡ 2×min

(
1

B

B∑
b=1

I[t∗bi−j > ti−j],
1

B

B∑
b=1

I[t∗bi−j < ti−j]

)
, (40)

where I[t∗bi−j > ti−j] is an indicator function that takes the value of one if the bootstrap test statistic
t∗bi−j is higher than the estimated test-statistic ti−j .

Choice of peer funds. Hoberg et al. (2013) review the two main approaches towards specifying
peer funds. One approach uses historical returns and obtain the peer funds through cluster analysis
of the returns or an analysis of the coefficients in a regression of fund returns on benchmark indices.
The second approach classifies funds based on the fund holdings.

4. Size and power of pairwise test for equal modified Sharpe ratios

Ledoit and Wolf (2008) perform an extensive study on the size properties of different tests for
equal Sharpe ratios and recommend the use of a studentized time series bootstrap approach. In
Subsection 4.1 we do a similar size study for the proposed test on equal modified Sharpe ratio
performance (at the 90% risk level, i.e. α = 10%). In particular, we provide evidence in favor of
the particular test statistic using the cross-product of average return and modified Value-at-Risk
in (19) rather than the difference in the sample-based modified Sharpe ratios in (38). Then, in
Subsection 4.2 we document the similarity in power of the proposed modified Sharpe ratio test
and the Sharpe ratio test of Ledoit and Wolf (2008) in case of normality and illustrate the impact
of skewness and kurtosis. In the simulation studies, we set the number of Monte Carlo replications
to five hundred. For the bootstrap test we set B = 500.

4.1. Modified Sharpe - Size

In the scenarios testing the size of the different tests, we need that the null hypothesis of equal
(modified) Sharpe ratios is true and achieve this by generating the returns of fund i and j from
an identical marginal return process, that are joined together in a bivariate distribution using a
Gaussian copula with correlation of 0.5.

The marginal return process have an unconditional mean and variance equal to one. They
are either (i) i.i.d., or (ii) follow an AR(1) model with auto-regressive parameter equal to 0.4 or
(iii) a GARCH model with parameters ω = 0.20, α = 0.10 and β = 0.70. The conditional
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marginal innovations are either: (i) normal, (ii) standardized Student-twith six degrees of freedom
or (iii) standardized skewed Student-t with six degrees of freedom and asymmetry parameter ξ =
0.75 (negative skewness). The standardized skewed Student-t distribution is the one proposed
by Fernández and Steel (1998) and Lambert and Laurent (2001). Its density function has two
parameters: ξ and ν. The parameter ξ > 0 is defined as the square root of the ratio of probability
masses above and below the mode of the distribution such that the sign of log ξ indicates the sign
of skewness. The parameter ν > 0 models the tail thickness. Holding ξ fixed, we have that the
smaller ν is, the thicker the tails are. When ξ = 1, the standardized skewed Student-t distribution
coincides with the standardized Student-t distribution, and for ν → ∞, the standard Gaussian
distribution is the limiting case. Overall, this leads to nine data generating processes. The size of
the simulated DPGs is set to T = 60 (five years of monthly data as this is typical for hedge funds
data) and T = 500 to see the asymptotic properties of the estimators.

For each DGP, we report in Figure 1 the 95% confidence bands of the rejection rate using four
different test statistics at a significance level of 5%:

• [blue solid]: Mean-modified VaR (at the 90% risk level)cross-product test statistic in (19),
with critical values from the asymptotic normal with HAC standard errors;

• [blue dashed]: Difference in mean-modified VaR (at the 90% risk level) ratios test statistic
in (38), with critical values from the asymptotic normal with HAC standard errors;

• [red solid]: Block-bootstrap implementation of mean-modified VaR (at the 90% risk level)
cross-product test statistic in (19);

• [red dashed]: Block-bootstrap implementation of mean-modified VaR (at the 90% risk level)
ratios test statistic in (38).

In the block-bootstrap, the block size have been defined with the automatic block-length approach
by Politis and White (2004). As the methodology is computationally costly, we have taken the
average block-length obtained over ten Monte Carlo replications. For the i.i.d. DGP we set the
block-size to one. For the AR model, to block-size 15 (for T = 60) and 20 (for T = 500), and for
the GARCH to block-size 20 (for T = 60) and 30 (for T = 500). Alternative approaches such as
the T 1/3 rule of thumb yield slightly more liberal results.

In order to save space, we report size results at the 5% level and using the 90% risk level in the
modified VaR calculation; results at the 10% levels and/or 95% risk level are qualitatively similar
and are available from the authors upon request. We verified also the size properties of the Sharpe
ratio test and found confirmation of the good size properties of the Sharpe ratio test using HAC
standard errors and bootstrapped p-values, as in Ledoit and Wolf (2008). The Sharpe ratio test
has correct size both in the case of using the difference in Sharpe ratios and the difference in the
cross-product of returns and volatility as a test statistic. We will therefore use in the application
and power analyis of the next section, the standard implementation of the equal Sharpe ratio test
using the ratio test statistic.

For the equal modified Sharpe ratio test, the conclusions are different. The first important
result that we can see in Figure 1 is that the test statistic using the difference in mean-modified
VaR ratios is not reliable. If we calculate its p-values under the normal distribution with HAC
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standard errors, then the test statistic is too conservative. For all nine DGP’s considered, the 95%
confidence interval for the percentage number of rejections is systematically below 5%. When the
p-values are computed using the block bootstrap approach, then the test is too liberal and rejection
frequencies tend to be above 20%.

A second finding is that the test statistic based on the cross-product of the average return and
modified VaR of the two funds is slightly oversized in small samples and, except for the GARCH
cases, it has correct size in the large sample case. For the DGPs with GARCH dynamics in the
volatility, the test is oversized. One should not worry too much about this, as in applications on
monthly (hedge) fund returns, the GARCH dynamics (if any) are less pronounced than the ones
simulated here (see e.g. Barras et al., 2010, footnote 15).

Overall, we can thus conclude that the test statistic based on the cross-product of the average
return and modified VaR of the two funds is certainly preferable to the one using the difference of
ratios. In small samples, it tends to be slightly too liberal.

In the next subsection, we analyze the power of the modified Sharpe ratio test using the rec-
ommended implementation with the cross-product test statistic and compare it with the power of
the usual Sharpe ratio test.4

4We did the same analysis for the Sharpe test and found similar size properties for the test statistic based on the
ratio and the cross-product.
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Figure 1: Monte Carlo analysis: size results for the modified Sharpe ratio (at the 90% risk level, i.e. α = 10%). The
bars represent the 95% confidence bands of the frequency of rejecting the null hypothesis at the 5% significance level
(over the five hundred Monte Carlo replications). The first two bands are for the HAC test (in blue, product in solid
line and quotient in dashed line) while the last two bands are for the block-bootstrap (in red, product in solid line and
quotient in dashed line). The DGPs are either (i) i.i.d., (ii) AR(1) or (iii) GARCH with innovations being either (i)
normal, (ii) Student-t or (iii) skewed Student-t. Marginals are linked by a Gaussian copula with correlation coefficient
set at 0.5.
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4.2. Modified Sharpe - Power

The previous subsection confirmed the good size properties of the test for equality of modified
Sharpe ratios of the focal fund i and the alternative peer fund j. In Figures 2 and 3 we study
the power of the test when the difference in Sharpe ratio between the two funds increases. As
a reference point, we take for fund i the returns from a skewed Student-t distribution with mean
µ = 0.445%, standard deviation σ = 1.07%, skewness parameter ξ = 1 (no skewness) and degrees
of freedom parameter ν = 500 (close to normal tails). This parameter setup corresponds to one of
the out-performing funds in our empirical database. We consider the following variations to test
the power of the test statistics:

SC1 µi = 0.445%, σi = σj = 1.07%, ξi = ξj = 1, νi = νj = 500 and, for several values of γ
between 1 and 0.1, µj is such that the Sharpe ratio of fund j equals γ times the Sharpe ratio
of fund i;

SC2 µi = 0.445%, σi = σj = 1.07%, ξi = 1, ξj = 0.75, νi = νj = 500 and, for several values
of γ between 1 and 0.1, µj is such that the Sharpe ratio of fund j equals γ times the Sharpe
ratio of fund i;

SC3 µi = 0.445%, σi = σj = 1.07%, ξi = 1, ξj = 0.75, νi = 500, νj = 6 and, for several values
of γ between 1 and 0.1, µj is such that the Sharpe ratio of fund j equals γ times the Sharpe
ratio of fund i;

SC4 µi = µj = 0.445%, σi = 1.07%, ξi = ξj = 1, νi = νj = 500 and, for several values of γ
between 1 and 0.1, σj is such that the Sharpe ratio of fund j equals γ times the Sharpe ratio
of fund i;

SC5 µi = µj = 0.445%, σi = 1.07%, ξi = 1, ξj = 0.75, νi = νj = 500 and, for several values
of γ between 1 and 0.1, σj is such that the Sharpe ratio of fund j equals γ times the Sharpe
ratio of fund i;

SC6 µi = µj = 0.445%, σi = 1.07%, ξi = 1, ξj = 0.75, νi = 500, νj = 6 and, for several values
of γ between 1 and 0.1, σj is such that the Sharpe ratio of fund j equals γ times the Sharpe
ratio of fund i;

Under SC1 en SC4 the (population) Sharpe ratio and modified Sharpe ratio of fund i and fund j
are the same for γ = 1. For SC2, SC3, SC5 and SC6, the modified Sharpe ratios are different for
funds i and j, and we expect to see a gain in power using the modified Sharpe ratio test rather than
the Sharpe ratio test, already for γ = 1.

The power is computed as the average frequency of rejection of the null hypothesis at the 5%
level. The solid blue lines with and without symbols in Figure 2 and 3 shows the evolution of the
power of the modified Sharpe ratio and standard Sharpe ratio test when the two fund returns are
normally distributed (SC1, SC4). We see that the power of the two tests is similar.

If we allow for positive skewness in fund i and keep close to normal tails (SC2, SC5), we see
that, especially in large samples, the modified Sharpe ratio test is slightly more powerful.
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In case of fat tails (SC3, SC6), there is a higher estimation uncertainty in the modified Sharpe
ratio estimates, leading to a lower power of the modified Sharpe ratio test compared to the Sharpe
ratio test.

Overall, we find that for increasing differences in the mean parameter µ and volatility param-
eter σ, the increase in power of both the equal Sharpe ratio test and modified Sharpe ratio test is
rather slow. In the next subsection, we will see that the slope of the out-performance ratio is much
more steep.
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Figure 2: Monte Carlo analysis: power results when varying parameter µ for the modified Sharpe ratio (at the 90%
risk level, i.e. α = 10%) and Sharpe ratio. The plot displays the frequency of rejections (over the five hundred Monte
Carlo replications) at the 5% significance level of the null hypothesis of equal performance for deflated modified
Sharpe funds, i.e. for γ ranging from 1 (equal performance) to 1/10 (under-performance). For each value of γ, µ is
determined for the deflated fund. The draws from the focal fund and the alternative fund are generated using a skewed
Student-t distribution with i) approximative normal (ξ = 1, ν = 500) in solid blue line with bullet, ii) skewed normal
(ξ = 0.75, ν = 500) in dashed blue line with point, and iii) skewed fat-tailed (ξ = 0.75, ν = 6) in dotted blue line
with circle. Top: results for T = 60; Bottom: results for T = 500. The number of Monte Carlo replication is set
to five hundred. For the modified Sharpe, the bootstrap test is used with block of size one and B = 500 bootstrap
replications.
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Figure 3: Monte Carlo analysis: power results when varying parameter σ for the modified Sharpe ratio (at the 90%
risk level, i.e. α = 10%) and Sharpe ratio. For details on the Monte Carlo study see the caption of Figure 2.
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5. Sensitivity of the out-performance ratio

The peer performance ratios for a focal fund i result from the aggregation of the p-values of the
pairwise test of equal performance between fund i and j. Suppose fund i out-performs all peers.
For the estimated out-performance ratio to be close to 100%, relatively large sample sizes and/or
substantial large differences in true performance are needed.

We illustrate this in Figure 4 where we consider the first three scenarios of the power analysis
in Subsection 4.2, with the only difference that the pair-wise test is performed between fund i and
n = 10 peer funds j. We see that the out-performance ratio behaves as expected. It increases
smoothly to one when we increase the differential in performance between fund i and its peer
funds. Increasing the sample size increases sharply the speed of convergence. Importantly, from
the comparison of the power curve in Figure 2 with the out-performance ratio curve in Figure 4,
we see that the out-performance ratio curve is much more steep.
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Figure 4: Monte Carlo analysis: out-performance ratio π+ in (9) when varying parameter µ for the modified Sharpe
ratio (at the 90% risk level, i.e. α = 10%) and Sharpe ratio. The number of peer funds is set to n = 10. The number
of observations is set to T = 60 (top plot) and T = 500 (bottom plot). For details on the Monte Carlo study see the
caption of Figure 2.
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6. Empirical illustration

We now provide examples of diagnostic plots and tables that can be useful in the peer perfor-
mance analysis of hedge funds in practice.

Our dataset is composed by two hundred funds taken from the HFR database for T = 60
monthly net returns computed over a period ranging from November 2006 to November 2011; see
Guidotti and Nagy (2011) for the details.5 We focus on the following strategies: Equity Hedge (50
funds), Event-Driven (50 funds), Relative Value (50 funds) and Macro (50 funds).

The main plot we recommend to use is in Figure 5. It displays in the left panel the monthly
modified Sharpe ratio of the different funds (at the 90% risk level, i.e. α = 10%), sorted in
descending order such that ”Fund 1” has the highest modified Sharpe ratio. In the right panel, a
barplot shows the estimated out-, equal and under-performance ratios in black, light gray and dark
gray, respectively. These performance ratios are estimated taking all other hedge funds as the peer
category. The equal performance ratio is obtained with the block-bootstrap test with B = 500 and
block-size set to four (which is dT 1/3e); alternative specifications lead to similar results. The out-
and under-performance ratios are obtained via the attributions (9) and (10).

It is also insightful to do the peer performance analysis relative to all funds belonging to the
same hedge fund investment style. The resulting analysis could be presented in a similar plot as
the one in Figure 5, but also in tabular form, as we show in Table 1. As in Figure 5, funds are
sorted in descending order. The first column contains the name of the funds.6 The second column
shows the reported investment style. The third column and fourth columns report the percentile
and the out- and under-performance compared to all funds. The fifth and sixth columns do the
same, but with peer funds limited to be in the Equity Hedge investment style, and similarly for all
other funds.

As an example, take fund AI. This fund pursues an Event-Driven investment style. This
fund has the 9th highest modified Sharpe ratio of the 200 funds considered. Its estimated out-
performance ratio is 76%, its under-performance ratio is 0% and hence its equal performance ratio
is 24%. When its peer funds are limited to the Equity Hedge hedge funds, its estimated out-
performance ratio is 100%. In contrast, when we the peer funds corresponds to the relative value
style, its out-performance ratio is only 44% and its equal performance ratio is 66%.

Above, we have studied the relative performance of a fund compared to various universes
defined by the hedge fund style. It is clear that some hedge fund styles tend to out-perform others.
As an aggregate measure we propose to investigate in Table 2 the average relative performance
ratios of a fund belonging to the category in row, compared to the funds belonging to the category
in column. We notice that 36% of the Event-Driven strategies truly under-performed the Equity-
Hedge strategies, while 55% of the Event-Driven strategies truly out-performed the Relative Value
strategies.

5We are grateful to the authors for providing us with the dataset.
6Note that funds have been anonymized.
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Figure 5: Left: Monthly modified Sharpe ratios for the two hundred funds in our database, ranked by decreasing
modified Sharpe ratio. Right: Out-performance (black), equal performance (light gray) and under-performance (dark
gray) ratios corresponding to the funds. The equal performance ratio is obtained with the block-bootstrap test with
B = 500 and block-size set to four. The out- and under-performance ratios are obtained via the attributions (9)
and (10).
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Fund Strategy Overall Equity Hedge Event-Driven Relative Value Macro
AA Relative Value 1 [0.81;0.00] 1 [1.00;0.00] 1 [0.75;0.00] 1 [0.77;0.00] 1 [0.77;0.00]
AB Macro 2 [0.84;0.00] 1 [1.00;0.00] 1 [0.78;0.00] 2 [0.70;0.00] 1 [0.94;0.00]
AC Relative Value 3 [0.64;0.00] 1 [1.00;0.00] 1 [0.66;0.00] 2 [0.67;0.00] 2 [0.52;0.00]
AD Relative Value 4 [0.70;0.00] 1 [1.00;0.00] 1 [0.57;0.00] 3 [0.57;0.00] 2 [0.70;0.00]
AE Relative Value 5 [0.57;0.00] 1 [1.00;0.00] 1 [0.57;0.00] 4 [0.66;0.00] 2 [0.22;0.00]
AF Relative Value 6 [0.77;0.00] 1 [1.00;0.00] 1 [0.74;0.00] 5 [0.68;0.00] 2 [0.79;0.00]
AG Macro 7 [0.80;0.00] 1 [1.00;0.00] 1 [0.78;0.00] 6 [0.61;0.00] 2 [0.93;0.00]
AH Relative Value 8 [0.85;0.00] 1 [1.00;0.00] 1 [0.87;0.00] 6 [0.63;0.00] 3 [0.84;0.00]
AI Event-Driven 9 [0.76;0.00] 1 [1.00;0.00] 1 [1.00;0.00] 7 [0.44;0.00] 3 [0.68;0.00]
AJ Event-Driven 10 [0.76;0.00] 1 [1.00;0.00] 2 [0.98;0.02] 7 [0.50;0.00] 3 [0.68;0.00]

HI Macro 191 [0.00;0.53] 47 [0.00;0.09] 48 [0.00;0.55] 50 [0.00;0.78] 49 [0.00;0.86]
HJ Relative Value 192 [0.00;0.90] 47 [0.00;0.85] 48 [0.00;0.80] 50 [0.00;1.00] 50 [0.00;0.93]
HK Equity Hedge 193 [0.00;0.78] 47 [0.00;0.66] 48 [0.00;0.71] 51 [0.00;0.88] 50 [0.00;0.87]
HL Event-Driven 194 [0.00;0.83] 48 [0.00;0.63] 48 [0.00;0.87] 51 [0.00;0.89] 50 [0.00;0.95]
HM Equity Hedge 195 [0.00;0.93] 48 [0.00;0.92] 49 [0.00;0.92] 51 [0.00;1.00] 50 [0.02;0.98]
HN Equity Hedge 196 [0.00;0.89] 49 [0.00;0.83] 49 [0.01;0.92] 51 [0.00;0.95] 50 [0.00;0.95]
HO Macro 197 [0.02;0.98] 50 [0.02;0.98] 49 [0.04;0.96] 51 [0.00;1.00] 50 [0.00;1.00]
HP Event-Driven 198 [0.01;0.99] 50 [0.02;0.98] 49 [0.02;0.98] 51 [0.00;1.00] 51 [0.00;1.00]
HQ Equity Hedge 199 [0.01;0.99] 50 [0.00;1.00] 50 [0.02;0.98] 51 [0.00;1.00] 51 [0.00;1.00]
HR Event-Driven 200 [0.00;1.00] 51 [0.00;1.00] 50 [0.00;1.00] 51 [0.00;1.00] 51 [0.00;1.00]

Table 1: Fund vs peer universe. This table reports for the ten best and ten worst funds (in terms of modified Sharpe),
the ranking with respect to a given universe: overall (200 funds), Equity-Hedge (50 funds), Event-Driven (50 funds),
Relative Value (50 funds) and Macro (50 funds). The first number is the rank of the fund within the peer universe. The
square parenthesis reports the out-performance and under-performance ratios, respectively. The ratios are obtained
with the attribution rule in (9) and (10). The equal performance ratio is obtained with the block-bootstrap approach
with block-size set to four.

Equity Hedge Event-Driven Relative Value Macro Diff Strat

Equity Hedge [0.10;0.17] [0.03;0.32] [0.01;0.31] [0.00;0.25] [0.01;0.26]
Event-Driven [0.27;0.11] [0.19;0.24] [0.07;0.21] [0.05;0.17] [0.10;0.13]
Relative Value [0.32;0.04] [0.17;0.13] [0.17;0.15] [0.13;0.07] [0.17;0.07]
Macro [0.21;0.02] [0.09;0.04] [0.08;0.04] [0.10;0.07] [0.11;0.04]

Table 2: Strategy vs. strategy (peers vs. peers) analysis. The square parenthesis reports the average out-performance
and under-performance ratios, respectively. The ratios are obtained with the attribution rule in (9) and (10). The equal
performance ratio is obtained with the block-bootstrap approach with block-size set to four. Diff Strat aggregates the
peer performance ratios computed using funds belonging to a different investment style.
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7. Conclusion

The false discovery rate (FDR) approach of Storey (2002) is known to be a powerful tool to
control the size in multiple testing. It has been recently applied by Barras et al. (2010) to estimate
the proportion of truly out-performing mutual funds and by Bajgrowicz and Scaillet (2012) for the
selection of out-performing technical trading rules. As we show in this paper, the FDR approach
has also important applications in the analysis of peer performance of (hedge) funds as it allows
to characterize the peer performance of a fund accounting for the estimation uncertainty in the
performance measure used. We develop the estimator and analyze its properties in an extensive
simulation study. In the empirical application we provide example graphs and tables that show
how the proposed measures can be used as a screening tool in practice. The proposed tool is
implemented in the open source (R Development Core Team, 2011) package CompStrat (Ardia
and Boudt, 2013), soon available from the authors’ website.
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