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Abstract:  
We study the effect of investment on the dynamics of aggregate capital when different 
sectors of the economy compete strategically for the utilization of non-excludable capital 
to produce both consumption and investment goods. We consider two types of 
investment goods: complements and substitutes. For each case, we derive the 
equilibrium and provide the corresponding stationary distribution. We then compare the 
equilibrium with the social planner’s optimal solution. 
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1 Introduction

Capital theory is an essential aspect of economics since it conveys the im-

portance of dynamics on the structure of the economy. It is the notion of

aggregate capital in which capital is fungible that is the basis of growth the-

ory as studied in Solow (1956) for the positive non-stochastic case, Mirman

(1972, 1973) for the positive stochastic case, Cass (1965) and Koopmans

(1965) for the optimal non-stochastic case, and Brock and Mirman (1972)

and Mirman and Zilcha (1975) for the optimal stochastic case. Although

it is important to understand the optimal path of aggregate capital, the ef-

fect of several sectors in the economy competing for the utilization of capital

should also be understood. Indeed, non-excludable capital structures such

as airports, harbors, roads, pipe lines, transmission grids, railroads, telecom-

munications lines, energy are ubiquitous. In utilizing non-excludable capital,

each sector of the economy needs to consider the interests of their competi-

tors. This is an important issue in macroeconomics because it has an effect

on the accumulation of capital and economic growth.

These strategic interactions for the use of non-excludable capital give rise

to different sorts of externalities. The first one to be studied in a dynamic

context was the dynamic externality (Mirman, 1979; Levhari and Mirman,

1980), i.e., the utilization of non-excludable capital by one sector has an

effect on the other sectors’ payoffs. Indeed, a sector which increases its usage

of telecommunication lines reduces the effective use of this capital structure

by the other sectors due to fact that too few lines are created. The dynamic

externality yields a greater utilization of the capital, and, therefore, a smaller

steady state of capital. In a more recent paper, Koulovatianos and Mirman

(2007) studies the link between market structure and industry dynamics.

For instance, the public and private sectors utilize capital to produce similar

final goods such as health goods. The interaction of entities in the market

for final goods gives rise to a market externality. Koulovatianos and Mirman

(2007) shows that the combination of market and dynamic externalities has

an ambiguous effect on the overall utilization of the capital as well as the

steady state.
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All these studies consider implicitly the utilization of non-excludable cap-

ital for the production of consumption goods. Yet, various sectors of the

economy also produce investment goods, engage in R&D and technological

progress, which has a profound effect on the dynamics of the stock of non-

excludable capital. The interaction of sectors for investing in capital gives rise

to an investment externality, i.e., the utilization of capital from one sector

in order to invest in future capital has an effect on the other sector’s payoff

through the appreciation of the future stock. For instance, if the productive

activities of one sector improves the effectiveness of telecommunication lines,

then all sectors benefit from it via a better stock of capital.

It is the purpose of this paper to study the dynamics of capital in a

situation in which different sectors of the economy compete strategically in

the utilization of capital to produce both consumption and investment goods.

To that end, we adapt the Levhari and Mirman (1980) framework to gain

insight into the effect of strategic investment on behavior and the dynamics

of capital. In our model, sectors not only utilize a stock for the production

of consumption goods, but also for the production of investment goods. The

evolution of capital depends on utilization, several random shocks, as well as

the investment goods, which gives rise to an investment externality.

We consider two types of investment goods: complements and substitutes.

For each case, we derive the dynamic Cournot-Nash equilibrium under finite

and infinite horizons. We also provide the stationary distribution corre-

sponding to the infinite-horizon equilibrium. We then compare the outcome

of the game with the social planner’s optimal solution. We show that there

is a tragedy of the commons in the sense that the game (compared to social

planning) yields more utilization. In addition, the game leads to an increase

in the production of consumption goods and a decrease in the production

of investment goods. As a result, the investment externality has a negative

effect on the stationary distribution of capital.

The framework we adopt is not only useful for the study of economic

growth in a macroeconomy with aggregate non-excludable capital being uti-

lized by several sectors. But it is also useful to study at the industry level in

which firms use industry-specific capital to produce both consumption and
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investment goods. Similarly, in the study of natural resources, exploiters

extract non-excludable capital goods such as stocks of fish, water, oil, which

is then used for production of consumption and investment goods.

The paper is organized as follows. Section 2 presents the model and

defines the equilibrium. Section 3 characterizes the equilibrium under for

both complements and substitutes and provides the stationary distributions

under a game. Section 4 studies the effect of the investment externality by

comparing the equilibrium outcomes with the optimal solution of the social

planner. Section 5 offers some concluding remarks.

2 Model and Equilibrium

In this section, we present a dynamic game in which two sectors compete in

the utilization of a non-excludable capital in order to produce consumption

and investment goods. Consumption goods yield immediate payoff whereas

investment goods have an effect on future payoffs through the dynamics of

the capital. We first present the general model. We then define the recur-

sive Cournot-Nash equilibrium. In the subsequent sections, we characterize

the equilibrium under both complementary and substitutionary investment

goods. We then compare the equilibrium outcomes with the social planner’s

solution.

Let yt be the stock of efficiency units of non-excludable capital available

at the beginning of period t. Absent utilization and investment, the stock of

units of capital evolves stochastically according to the rule1

ỹt+1 = f(yt, α̃t) (1)

where f(·) is the transition function and α̃t is an iid random technological

shock in period t, i.e., the shock is realized in period t + 1.

In period t, for j = 1, 2, sector j utilizes ej,t units of capital in order to

produce cj,t units of consumption goods and ij,t units of investment goods.

Production is linear so that ej,t = cj,t + ij,t. The production of consumption

1A tilde sign distinguishes a random variable from its realization.
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goods yields immediate payoffs π(cj,t). The sectors’ utilization of the capital

and their production of investment goods have an effect on the future stock.

Using (1),

ỹt+1 = g(i1,t, i2,t, η̃t) · f(yt − e1,t − e2,t, α̃t) (2)

where g(·) is the investment function and η̃t is a N -vector of iid shocks in

period t. To simplify notation, the t-subscript for indexing time is hereafter

removed and the hat sign is used to indicate the value of a variable in the

subsequent period, i.e., y is stock today and, given any realizations of η and

α,

ŷ = g(i1, i2,η) · f(y − e1 − e2, α) (3)

is stock tomorrow. From (3), investment is needed to maintain capital and

ensure its future use.

To distinguish among different horizons of the dynamic game, we use

the index τ = 0, 1, . . . , T . Given a horizon and the present stock of the

non-excludable capital, sector j maximizes the expected sum of discounted

payoffs over utilization and production of both consumption and investment

goods. Formally, for j, k = 1, 2, j �= k, the τ -period-horizon value function of

sector j is

vτj (y) = max
ej ,ij

{π(ej − ij) + δEvτ−1
j (g(ij, ik, η̃) · f(y − ej − ek, α̃))} (4)

where cj = ej − ij and E is the expectation operator for η̃ and α̃. From (4),

sector k’s choices have an effect on sector j’s expected sum of discounted

payoffs through the dynamics of capital.

In general, in a dynamic game, the value function defined in (4) might not

be concave (Mirman, 1979). In addition, our model includes two inherently

dynamic decisions for each sector as well as several random shocks. In order

to characterize the equilibrium and study its properties under different cases

of investment goods, we resort to a modified version of the Levhari and

Mirman (1980) framework. The following assumptions hold for the remainder

of the paper. We leave the investment function unspecified for the moment

and consider several types of investment goods in the next sections.
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Assumption 2.1. The joint p.d.f. of η̃ and α̃ is φ(η, α),η ∈ (0, 1)N , α ∈
(0, 1). Let η ≡ Eη̃ and α ≡ Eα̃ be the means of the random shocks.

Assumption 2.2. For j = 1, 2, π(cj) = ln cj.

Assumption 2.3. For α ∈ (0, 1), f(y − ej − ek, α) = (y − ej − ek)
α.

We now define the recursive Cournot-Nash equilibrium for a T -period-

horizon game (Levhari and Mirman, 1980). The equilibrium consists of the

strategies of the two sectors for every horizon from the first period (when

there are T periods left) to the last period (when there is no horizon). With-

out loss of generality, we assume that in the last period the two sectors split

the stock equally and do not invest. The assumption of a log utility function

implies that the allocation of the stock in the last period has no effect on the

dynamic game. Condition 1 states the behavior in the last period, i.e., when

the horizon is τ = 0. Condition 2 states the recursive equilibrium for every

horizon of the game. Expression (6) for τ = 1 is consistent with statement 1,

i.e., for all j, V 0
j (y) = ln(E0

j (y)− I0j (y)). Expression (6) for τ = 2, . . . , T − 1

reflects the recursive nature of the equilibrium in which the equilibrium con-

tinuation value function for a τ -period horizon depends on the equilibrium

strategies for τ ′-period horizons, τ > τ ′ ≥ 0.

Definition 2.4. The tuple {Eτ
1(y), I

τ
1(y), E

τ
2(y), I

τ
2(y)}Tτ=0 is a recursive Cournot-

Nash equilibrium for a T -period-horizon game if, for all y > 0,

1. For τ = 0, E0
1(y) = E0

2(y) = y/2, I01(y) = I02(y) = 0.

2. For τ = 1, 2, . . . , T , for j, k = 1, 2, j �= k, given {Eτ
k(y), I

τ
k(y)}

and {Et
1(y), I

t
1(y), E

t
2(y), I

t
2(y)}τ−1

t=0 ,

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{
ln(ej − ij)

+ δ

∫
V τ−1
j (g(ij, I

τ
k(y),η) · (y − ej − Eτ

k(y))
α) · φ(η, α)dηdα

}

(5)
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where, for any x > 0,

V τ−1
j (x) =

{
ln(x/2), τ = 1

ln(Eτ−1
j (x)− Iτ−1

j (x)) + δ
∫
V τ−2
j (Λ) · φ(η, α)dηdα, τ = 2, 3, ..., T

(6)

with

Λ ≡ g(Iτ−1
1 (x), Iτ−1

2 (x),η) ·
(
x−

∑2

s=1
Eτ−1

s (x)
)α

. (7)

3 Equilibrium Characterization

In this section, we fully characterize the equilibrium for any finite horizon.

We then show that the limit of the finite-horizon equilibrium exists. In other

words, there exists an equilibrium for the infinite horizon that is consistent

with the sequence of finite-horizon equilibrium. Hence, the existence and the

properties of the equilibrium are robust to any finite and infinite horizon.

We then provide the stationary distribution for capital corresponding to the

limiting case.

We begin with the case of complementary investment goods. We then re-

peat the analysis for the case of substitutionary investment goods. The main

difference between complements and substitutes concern uniqueness. When

investment goods are complementary, the equilibrium is unique whereas there

is a continuum of equilibrium points with substitutionary investment goods.

However, regardless of the type of investment goods, the stationary distri-

bution of capital is unique. In the next section, we compare the equilibrium

with the solution of the social planner.

3.1 Complementary Investment Goods

When investment goods are complementary, the investment function is spec-

ified as

g(i1, i2,η) = iη11 iη22 , (8)
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η ≡ [η1, η2]. Using (8), (3) is rewritten as

ŷ = iη11 iη22 (y − e1 − e2)
α. (9)

The investment term iη11 iη22 reflects the complementarity of the sectors’ in-

vestments. The shocks η1 and η2 measure the individual contribution of the

investment goods toward the future stock.

Proposition 3.1 provides the utilization level as well as the production

levels for consumption and investment goods corresponding to the unique

equilibrium for any finite horizon. The equilibrium displays certainty equiv-

alence, i.e., the means of the shocks are the only moments of the distribution

to have an effect on decisions. Moreover, the equilibrium is in general asym-

metric unless the means of the investment shocks are identical.

Proposition 3.1. Suppose that the investment goods are complementary.

Then, there exists a unique recursive Cournot-Nash equilibrium for a T -

period game, T = 1, 2, . . . In equilibrium, for τ = 0, 1, . . . , T , for j = 1, 2,

sector j utilizes

Eτ
j (y) =

1 + δηj

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)y (10)

units of capital for the production of

Cτ
j (y) =

1

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)y (11)

units of consumption goods and

Iτj (y) =

δηj

(
τ−1∑
t=0

δt(η1 + η2 + α)t
)

2 + δ(η1 + η2 + α)

(
τ−1∑
t=0

δt (η1 + η2 + α)t
)y (12)
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units of investment goods.

Proof. We first derive utilization, investment, and value functions in the one-

period horizon. We then consider a τ -period horizon and solve for utilization,

investment and value functions recursively. We finally impose the initial

condition given by the one-period-horizon solution.

1. Consider first the one-period horizon. Using (5), (6), and (9), for j, k =

1, 2, j �= k, given {E1
k(y), I

1
k(y)}, sector j’s one-period-horizon optimal

policies satisfy

{E1
j (y), I

1
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δηj ln ij + δηk ln I

1
k(y)

+δα ln(y − ej −E1
k(y))− δ ln 2

}
. (13)

The first-order conditions corresponding to (13) are

ej :
1

ej − ij
=

δα

y − ej −E1
k(y)

, (14)

ij :
1

ej − ij
=

δηj
ij

, (15)

evaluated at ej = E1
j (y) and ij = I1j (y). Since the Hessian matrix is

negative definite, the second-order condition holds. For j, k = 1, 2, j �=
k, solving (14) and (15) for the equilibrium yields the unique solution

for one-period-horizon utilization and investment,

E1
j (y) =

1 + δηj
2 + δ (η1 + η2 + α)

y, (16)

I1j (y) =
δηj

2 + δ (η1 + η2 + α)
y. (17)

Plugging (16) and (17) for the two sectors into the objective function

in (13) yields

V 1
j (y) = (1 + δ(η1 + η2 + α)) ln y +Ψ1, (18)

where Ψ1 is a constant for the one-period horizon that has no effect on
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the solution.

2. Having solved for the one-period horizon, we consider next a τ -period

horizon for which the continuation value function is of the form V τ−1
j (y) =

κτ−1 ln y+Ψτ−1 where κτ−1 and Ψτ−1 are constants. For j, k = 1, 2, j �=
k, given V τ−1

j (y) = κτ−1 ln y + Ψτ−1 and {Eτ
k (y), I

τ
k(y)}, sector j’s τ -

period-horizon optimal policies satisfy

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δηjκτ−1 ln ij + δηkκτ−1 ln I

τ
k(y)

+δακτ−1 ln(y − ej − Eτ
k(y)) + δΨτ−1} . (19)

The first-order conditions corresponding to (19) are

ej :
1

ej − ij
=

δακτ−1

y − ej − Eτ
k(y)

(20)

ij :
1

ej − ij
=

δηjκτ−1

ij
(21)

evaluated at ej = Eτ
j (y) and ij = Iτj (y). Since the Hessian matrix is

negative definite, the second-order condition holds. For j, k = 1, 2, j �=
k, solving (20) and (21) for the equilibrium yields the unique solution

for τ -period utilization and investment,

Eτ
j (y) =

1 + δηjκτ−1

2 + δκτ−1(η1 + η2 + α)
y (22)

Iτj (y) =
δηjκτ−1

2 + δκτ−1(η1 + η2 + α)
y. (23)

Plugging (22) and (23) for the two sectors into the objective function

in (19) yields

V τ
j (y) = (1 + δκτ−1(η1 + η2 + α)) ln y +Δτ , (24)

≡ κτ ln y +Ψτ , (25)

where Δτ and Ψτ are constants that we ignore since they have no effect
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on the solution. Hence,

κτ = 1 + δκτ−1(η1 + η2 + α) (26)

with, from (18), initial condition

κ1 = 1 + δ(η1 + η2 + α). (27)

From (26) and (27), it follows that

κτ =

τ∑
t=0

δt(η1 + η2 + α)t. (28)

Plugging (28) into (22) and (23) yields (10) and (12), respectively.

Plugging (10) and (12) into Cτ
j (y) = Eτ

j (y)− Iτj (y) yields (11).

We now show that there is no disparity between the finite and infinite

horizons. Specifically, using Proposition 3.1, we show that the limits of the

equilibrium outcomes exist. In other words, there exists a unique equilibrium

for the infinite horizon that is consistent with the sequence of finite-horizon

equilibrium. We then use these limiting outcomes to derive the unique sta-

tionary distribution for capital. Proposition 3.2 provides the limits of the

equilibrium outcomes.

Proposition 3.2. Suppose that the investment goods are complementary. If

η1 + η2 + α ∈ (0, 1), then for j, k = 1, 2, j �= k, limT→∞ET
j (y) ≡ E∞

j (y),

limT→∞CT
j (y) ≡ C∞

j (y), and limT→∞ ITj (y) ≡ I∞j (y) exist such that

E∞
j (y) =

1− δ(ηk + α)

2− δ(η1 + η2 + α)
y, (29)

C∞
j (y) =

1− δ(η1 + η2 + α)

2− δ(η1 + η2 + α)
y, (30)

I∞j (y) =
δηj

2− δ(η1 + η2 + α)
y. (31)
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Proof. Given that η1 + η2 + α ∈ (0, 1), taking limits of (10), (11) and (12)

yields (29), (30) and (31), respectively.

Using the limiting outcomes, Proposition 3.3 provides the stationary dis-

tribution of capital. Due to the fact that the equilibrium displays certainty

equivalence, the stationary distribution depends directly on the means of the

shocks. However, through (9), the stationary distribution of capital depends

on the distribution of the shocks, i.e., first and higher moments.

Proposition 3.3. Suppose that the investment goods are complementary.

Then, the stationary distribution of capital is defined by

Ỹ =

(
ηη̃11 ηη̃22 αα̃δη̃1+η̃2+α̃

(2− δ (η1 + η2 + α))η̃1+η̃2+α̃

) 1
1−(η̃1+η̃2+α̃)

. (32)

Proof. Plugging (29) and (31) into (9) and solving for Ỹ = ŷ = y yields (32).

3.2 Substitutionary Investment Goods

When investment goods are substitutionary, the investment function is spec-

ified as

φ(i1, i2,η) = (i1 + i2)
η, (33)

η ≡ η. Using (33), (3) is rewritten as

ŷ = (i1 + i2)
η(y − e1 − e2)

α, (34)

The investment term (i1 + i2)
η reflects the perfect substitutability of the

sectors’ investments.

Unlike the case of complementary investment goods, the equilibrium is

not unique. In fact, when investment goods are substitutionary, there is a

continuum of equilibrium that admits any allocation of the total investment

between the two sectors but leaves total investment unchanged. The mul-

tiplicity of the equilibrium has no bearing on the dynamics of the capital
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and thus on sectors’ future payoffs since, from (34), only total investment

matters.

Proposition 3.4 states the properties of the equilibrium. The multiplic-

ity of the equilibrium is reflected by the allocation of the investment goods

between sectors 1 and 2. That is, for j = 1, 2, γ1,τ ∈ [0, 1] is the fraction

of total investment undertaken by sector j when the horizon is τ periods.

Hence, γ1,τ + γ2,τ = 1.

Proposition 3.4. Suppose that the investment goods are substitutionary.

Then, there exists a continuum of recursive Cournot-Nash equilibrium for a

T -period game, T = 1, 2, . . . For any equilibrium, for τ = 1, ..., T ,

1. Cτ
1(y) = Cτ

2(y).

2. For j = 1, 2 and for any allocation {γ1,τ , γ2,τ} such that γ1,τ , γ2,τ ∈
[0, 1], γ1,τ + γ2,τ = 1, Iτj (y) = γj,τ · (Iτ1(y) + Iτ2(y)).

Proof. See the proof of Proposition 3.5.

Proposition 3.5 provides the utilization level as well as the production lev-

els for consumption and investment goods corresponding to the equilibrium

for any finite horizon. As in the case of complementary investment goods,

the equilibrium displays certainty equivalence.

Proposition 3.5. Suppose that the investment goods are substitutionary.

Then, in equilibrium, for τ = 0, 1, . . . , T , for j = 1, 2, given an allocation

{γ1,τ , γ2,τ}, sector j utilizes

Eτ
j (y) =

1 + γj,τδη

(
τ−1∑
t=0

δt (η + α)t
)

2 + δ(η + α)

(
τ−1∑
t=0

δt (η + α)t
)y (35)

units of capital for the production of

Cτ
j (y) =

1

2 + δ(η + α)

(
τ−1∑
t=0

δt (η + α)t
)y (36)
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units of consumption goods and

Iτj (y) =

γj,τδη

(
τ−1∑
t=0

δt (η + α)t
)

2 + δ(η + α)

(
τ−1∑
t=0

δt(η + α)t
)y (37)

units of investment goods.

Proof. We first derive utilization, investment, and value functions in the one-

period horizon. We then consider a τ -period horizon and solve for utilization,

investment and value functions recursively. We finally impose the initial

condition given by the one-period-horizon solution.

1. Consider first the one-period horizon. Using (5), (6) and (34), for

j, k = 1, 2, j �= k, given {E1
k(y), I

1
k(y)}, sector j’s one-period-horizon

optimal policies satisfy

{E1
j (y), I

1
j (y)} =arg max

ej ,ij

{
ln(ej − ij) + δη ln(ij + I1k(y))

+δα ln(y − ej − E1
k(y))− δ ln 2

}
. (38)

The first-order conditions corresponding to (38) are

ej :
1

ej − ij
=

δα

y − ej −E1
k(y)

, (39)

ij :
1

ej − ij
=

δη

ij + I1k(y)
, (40)

evaluated at ej = E1
j (y) and ij = I1j (y). Since the Hessian matrix is

negative definite, the second-order condition holds. However, individ-

ual investment cannot be determined because I1j (y) and I1k(y) have an

effect on equilibrium condition only through their sum. To see this,

for j = 1, 2, plugging C1
j (y) = E1

j (y) − I1j (y) into (39) and (40) and
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rearranging yields the system

1

C1
1(y)

=
δα

y − C1
1(y)− I11(y)− C1

2(y)− I12(y)
, (41)

δη

I11(y) + I12(y)
=

δα

y − C1
1(y)− I11(y)− C1

2(y)− I12(y)
, (42)

1

C1
2(y)

=
δη

y − C1
2(y)− I12(y)− C1

1(y)− I11(y)
, (43)

δη

I11(y) + I12(y)
=

δα

y − C1
2(y)− I12(y)− C1

1(y)− I11(y)
, (44)

which defines the one-period-horizon solution for the equilibrium, i.e.,

{C1
j (y), I

1
j (y)}2j=1. From (42) and (44), one equation is redundant,

which implies that there are three equations for four unknowns. In

fact, C1
j (y), C

1
k(y) and I1k(y) + I1j (y) have unique solutions, but I1j (y)

and I1k(y) cannot be determined separately.

Letting γj,1 ∈ (0, 1) be the fraction of total investment goods produced

by sector j in the one-period horizon, solving (39) and (40) for the

equilibrium yields the solution for one-period-horizon utilization and

investment:

E1
j (y) =

1 + γj,1δη

2 + δ (η + α)
y (45)

I1j (y) = γj,1
δη

2 + δ (η + α)
y. (46)

Plugging (45) and (46) for the two sectors into the objective function

in (38) yields

V 1
j (y) = (1 + δ (η + α)) ln y +Ψ1 (47)

where Ψ1 is a constant for the one-period horizon that has no effect on

the solution.

2. Having solved for the one-period-horizon, we consider next a τ -period-

horizon for which the continuation value function is of the form V τ−1(y) =

κτ−1 ln y + Ψτ−1 where κτ−1 and Ψτ−1 are unknown constants. For

j, k = 1, 2, j �= k, given V τ−1(y) = κτ−1 ln y +Ψτ−1 and {Eτ
k(y), I

τ
k(y)},
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sector j’s τ -period-horizon optimal policies satisfy

{Eτ
j (y), I

τ
j (y)} =arg max

ej ,ij

{ln(ej − ij) + δηκτ−1 ln(ij + Iτk(y))

+δακτ−1 ln(y − ej −Eτ
k(y)) + δΨτ−1} . (48)

The first-order conditions corresponding to (48) are

ej :
1

ej − ij
=

δακτ−1

y − ej −Eτ
k(y)

, (49)

ij :
1

ej − ij
=

δηκτ−1

ij + Iτk(y)
(50)

evaluated at ej = Eτ
j (y) and ij = Iτj (y). Since the Hessian matrix is

negative definite, the second-order condition holds. However, as noted

in the one-period-horizon, individual investment cannot be determined

because I1j (y) and I1k(y) have an effect on equilibrium condition only

through their sum. Letting γj,τ ∈ (0, 1) be the fraction of total invest-

ment goods produced by sector j in the τ -period horizon, Solving (49)

and (50) for the equilibrium yields the solution for utilization and in-

vestment,

Eτ
j (y) =

1 + γτ,jδηκτ−1

2 + δκτ−1 (η + α)
y (51)

Iτj (y) =
γτ,jδηκτ−1

2 + δκτ−1 (η + α)
y. (52)

Plugging (51) and (52) for the two sectors into the objective function

in (48) yields

V τ
j (y) = (1 + δκτ−1 (η + α)) ln y +Δτ (53)

≡ κτ ln y +Ψτ , (54)

where Δτ and Ψτ are constants that we ignore since they have no effect
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on the solution. Hence,

κτ = 1 + δκτ−1 (η + α) (55)

with, from (47), initial condition

κ1 = 1 + δ (η + α) . (56)

From (55) and (56), it follows that

κτ =

τ∑
t=0

δt(η + α)t. (57)

Plugging (57) into (51) and (52) yields (35) and (37). Plugging (35)

and (37) into Cτ
j (y) = Eτ

j (y)− Iτj (y) yields (36).

For each point in the continuum of finite-horizon equilibrium, the limits

to the finite-horizon equilibrium outcomes exist. As in the case of com-

plementary investment goods, the case of substitutionary investment goods

yields no disparity between the finite and infinite horizons. Proposition 3.6

provides the equilibrium for an infinite horizon, i.e., the limits of the equi-

librium outcomes in Proposition 3.5.

Proposition 3.6. Suppose that the investment goods are substitutionary. If

η + α ∈ (0, 1), then for j = 1, 2, limT→∞ET
j (y) ≡ E∞

j (y), limT→∞CT
j (y) ≡

C∞
j (y), and limT→∞ ITj (y) ≡ I∞j (y) exist such that, given an allocation {γ1,∞, γ2,∞},

E∞
j (y) =

1− δ ((1− γj,∞)η + α)

2− δ (η + α)
y (58)

C∞
j (y) =

1− δ (η + α)

2− δ (η + α)
y (59)

I∞j (y) =
γj,∞δη

2− δ (η + α)
y. (60)

Proof. Given that η + α ∈ (0, 1), taking limits of (35), (36), and (37)

yields (58), (59) and (60).
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Although the equilibrium is a continuum, the perfect substitutability of

the investment goods implies a unique stationary distribution of capital.

Hence,

Proposition 3.7. Suppose that the investment goods are substitutionary.

Then, the stationary distribution of capital is defined by

Ỹ =

(
δη̃+α̃ηη̃αα̃

(2− δ (η + α))η̃+α̃

) 1
1−(η̃+α̃)

. (61)

Proof. Plugging (58) and (60) into (34) and solving for Ỹ = ŷ = y yields (61).

Before proceeding with the comparison between the Cournot-Nash equi-

librium and the solution of the social planner, we compare differences be-

tween complements and substitutes. Apart from the uniqueness property,

by comparing Propositions 3.1 and 3.2 with Propositions 3.5 and 3.6, the

policy functions for the sectors’ behavior are of similar form. Similarly, by

comparing Propositions 3.3 and 3.7, the functional form of the stationary dis-

tribution is robust to the type of investment goods. Regardless of the belief

one can have about the type of investment goods that affect non-excludable

capital, the equilibrium outcomes and the stationary distribution for capi-

tal is robust (in terms of functional forms) to different types of investment

goods.

4 Investment Externality

Having characterized the recursive Cournot-Nash equilibrium, we study the

effect of the investment externality (combined with the dynamic externality)

on behavior and the stationary distribution of capital. To that end, we first

provide the optimal solution of a social planner in the infinite horizon case.2

We then characterize the tragedy of the commons when the utilization of

2To simplify the discussion, we omit the finite-horizon case. Our results on the tragedy
of the commons hold for any finite horizon.

19



capital produces both consumption and investment goods. We finally derive

the stationary distributions of capital corresponding to the social planner’s

optimal solution and compare them with the stationary distributions corre-

sponding to the recursive Cournot-Nash equilibrium.

Under social planning, the infinite-horizon value function of the social

planner satisfies

W∞(y) = max
{ej ,ij}2j=1

{
ln(e1 − i1) + ln(e2 − i2) + δEW∞(g(i1, i2, η̃) · (y − e1 − e2)

α̃)
}
,

(62)

where g(i1, i2, η̃) = iη̃11 iη̃22 if investment goods are complements and g(i1, i2, η̃) =

(i1 + i2)
η̃ if substitutes. For j = 1, 2, let E∗∞

j (y), C∗∞
j (y), and I∗∞j (y) be

the optimal solutions for utilization, consumption and investment where the

symbol ∗ distinguishes optimal behavior from behavior in the Cournot-Nash

equilibrium.

Proposition 4.1 provides the social planner’s optimal solution for total

utilization, and total production of consumption and investment goods un-

der complementary and substitutionary investment goods. The introduction

of the game has an effect on the comparative analysis. Under social plan-

ning with either complementary or substitutionary investment goods, there

is separation in the sense that the investment shock η has no effect on total

utilization whereas the shock α has no effect on total investment. However,

with a game, from Propositions 3.2 and 3.6, an increase in any of the means of

the investment shocks decreases total utilization and an increase in α causes

total investment to increase.

Proposition 4.1. There exists a unique optimal solution to (62).

1. Suppose that investment goods are complementary. If η1 + η2 + α ∈
(0, 1), then

E∗∞
1 (y) + E∗∞

2 (y) = (1− δα)y, (63)

C∗∞
1 (y) + C∗∞

2 (y) = (1− δ(η1 + η2 + α))y, (64)

I∗∞1 (y) + I∗∞2 (y) = δ(η1 + η2)y. (65)
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2. Suppose that investment goods are substitutionary. If η + α ∈ (0, 1),

then

E∗∞
1 (y) + E∗∞

2 (y) = (1− δα)y, (66)

C∗∞
1 (y) + C∗∞

2 (y) = (1− δ(η + α))y, (67)

I∗∞1 (y) + I∗∞2 (y) = δηy. (68)

Proof. See Appendix A.

Whether the investment goods are complementary or substitutionary, the

investment externality yields a tragedy in the commons in the following sense.

Under a game, total utilization increases. Moreover, the production of con-

sumption goods increases at the expense of investment goods.

Proposition 4.2. Suppose that investment goods are either complementary

or substitutionary. Then,

E∗∞
1 (y) + E∗∞

2 (y) < E∞
1 (y) + E∞

2 (y), (69)

and

C∗∞
1 (y) + C∗∞

2 (y) < C∞
1 (y) + C∞

2 (y), (70)

I∗∞1 (y) + I∗∞2 (y) > I∞1 (y) + I∞2 (y). (71)

Proof. Comparing Propositions 3.2, 3.6, and 4.1 yields inequalities (69), (70),

and (71).

The investment externality has an effect on the stationary distribution of

capital as well. Proposition 4.3 provides the stationary distribution of capital

under social planning.

Proposition 4.3. Under social planning, the stationary distribution of cap-

ital is unique.
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1. If investment goods are complementary, then

Y ∗ =
(
ηη̃11 ηη̃22 αα̃δη̃1+η̃2+α̃

) 1
1−(η̃1+η̃2+α̃)

. (72)

2. If investment goods are substitutionary, then

Y ∗ =
(
ηη̃αα̃δη̃+α̃

) 1
1−(η̃+α̃) . (73)

Proof. If investment goods are complementary, then plugging (63), (81),

and (82) into (9) and solving for Ỹ ∗ = ŷ = y yields (72). Next, if investment

goods are substitutionary, then plugging (66) and (68) into (34) and solving

for Ỹ ∗ = ŷ = y yields (73).

Regardless of the type of investment goods, the effect of the investment

externality on the stationary distribution is illustrated in Figure 1.3 The two

solid concave lines depict expression (2) evaluated at the highest and lowest

value of the realizations of the random shocks under social planning, i.e.,

yt+1 = g(I∗∞1 (yt), I
∗∞
2 (yt),η) · f(yt −E∗∞

1 (yt)− E∗∞
2 (yt), α). (74)

The two dotted concave lines also depict expression (2) evaluated at the

highest and lowest value of the realizations of the random shocks but under

a game, i.e.,

yt+1 = g(I∞1 (yt), I
∞
2 (yt),η) · f(yt −E∞

1 (yt)−E∞
2 (yt), α). (75)

The intersection of these lines with the 45 degree line defines the end-points

of the stationary distributions under social planning and under a game.4

Specifically, the stationary distribution under social planning has support

[Y ∗
min, Y

∗
max] whereas the stationary distribution under a game has support

[Ymin, Ymax]. Since Ymin < Y ∗
min and Ymax < Y ∗

max, the effect of the game with

3When investment goods are complementary, compare (32) and (72). With substitutes,
compare (61) and (73).

4Recall that in our model investment is required to maintain the capital. Without
investment, the stationary distribution is degenerate at zero.
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yt+1

yt

Ymin

Ymax

Y ∗
min

Y ∗
max

Figure 1: The Effect of the Investment Externality on the Stationary Distri-
bution

an investment externality is to reduce the effectiveness of the stock of non-

excludable capital. However, it is ambiguous whether the negative effect is

strongest with complements or substitutes, i.e., it depends on the values of

the parameters.

5 Final Remarks

In order to study the effect of the investment externality on utilization, pro-

duction and the dynamic path of non-excludable capital, we have considered

a stochastic environment in which agents know the true distribution of the

random shocks. However, agents generally face more than just uncertainty in

outcomes since the true distributions of these shocks are never known exactly.
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In other words, agents generally face structural uncertainty because they do

not know the structure of the economy. The issue of structural uncertainty

in a dynamic game with an investment externality is studied in a compan-

ion paper (Mirman and Santugini, 2013). Unlike uncertainty in outcomes,

structural uncertainty evolves through learning. In that case, agents make

utilization and production decisions as well as learn simultaneously about

the stochastic process. Although the characterization of a dynamic game

with Bayesian dynamics (and without the assumption of adaptive learning)

is generally intractable, we characterize the symmetric Bayesian-learning re-

cursive Cournot-Nash equilibrium. The addition of learning to a stochastic

environment is shown to have a profound effect on the equilibrium since

decision-making and learning are nonseparable and influence each other.
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A Optimal Solution of the Social Planner

In this appendix, we derive the social planner’s optimal solution in the

case of complementary and substitutionary investment goods. We consider

the infinite horizon by conjecturing that the value function is of the form

W∞(y) = κ∞ ln y + Ψ∞. As noted, the linear conjecture can be inferred by

solving the problem recursively.

Given W∞(y) = κ∞ ln y +Ψ∞, (62) is rewritten as

W∞(y) = max
{ej ,ij}2j=1

{ln(e1 − i1) + ln(e2 − i2) + δκ∞η1 ln i1 + δκ∞η2 ln i2

+δκ∞α ln(y − e1 − e2) + δΨ∞} (76)

if the investment goods are complementary and

W∞(y) = max
{ej ,ij}2j=1

{ln(e1 − i1) + ln(e2 − i2) + δκ∞η ln(i1 + i2)

+δκ∞α ln(y − e1 − e2) + δΨ∞} (77)

if the investment goods are substitutionary.

For complements, for j = 1, 2, the first-order conditions corresponding

to (76) are

ej :
1

ej − ij
=

δκ∞α

y − e1 − e2
, (78)

ij :
1

ej − ij
=

δκ∞ηj
ij

, (79)

which yields

E∗∞
j (y) =

1 + δκ∞ηj
2 + δκ∞(η1 + η2 + α)

y, (80)

I∗∞j (y) =
δκ∞ηj

2 + δκ∞(η1 + η2 + α)
y. (81)
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Plugging (80) and (81) back into (76) implies that

κ∞ =
2

1− δ(η1 + η2 + α)
. (82)

Plugging (82) into (80) and (81) and summing over j yields (63) and (65).

Plugging (63) and (65) into
∑2

j=1C
∗∞
j (y) =

∑2
j=1(E

∗∞
j (y)−I∗∞j (y)) yields (64).

For substitutes, for j = 1, 2, the first-order conditions corresponding

to (77) are

ej :
1

ej − ij
=

δκ∞α

y − e1 − e2
(83)

ij :
1

ej − ij
=

δκ∞η

i1 + i2
, (84)

which yields

E∗∞
j (y) =

2 + δκ∞η

4 + 2δκ∞(η + α)
y (85)

I∗∞1 (y) + I∗∞2 (y) =
δκ∞η

2 + δκ∞(η + α)
y (86)

since the social planner only needs to solve for total investment. Plug-

ging (85) and (86) back into (77) yields

κ∞ =
2

1− δ(η + α)
. (87)

Plugging (87) into (85) and summing over j yields (66). Plugging (87)

into (86) yields (68). Plugging (66) and (68) into
∑2

j=1C
∗∞
j (y) =

∑2
j=1(E

∗∞
j (y)−

I∗∞j (y)) yields (67).
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