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Abstract: 
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“The message on this World Health Day is loud and clear. The world is on

the brink of losing these miracle cures ... In the absence of urgent corrective

and protective actions, the world is heading towards a post-antibiotic era, in

which many common infections will no longer have a cure and, once again, kill

unabated.”

Dr Margaret Chan, director-general of the World Health Organzation,

on the occasion of the World Health Day, April 7, 2011

1 Introduction

Bacterial resistance has become a major problem in hospital and outpatient environments,

rendering existing antibiotic treatments less effective or even futile. Within its multiple

causes, one may refer to the misuse by patients and, what can be called, the overuse within

the community. More than “80 years after Hotelling,” economists now consider antibiotic

treatment efficacy, the mirror image of antibiotic resistance, as a valuable, scarce, biological

resource, which merits attention.

In the past, the pharmaceutical industry mostly kept pace with the rise of bacterial

resistance by introducing new antibiotics – so called analogues – which belonged to already

existing antibiotic classes (e.g. the penicillins form one class among the 15 existing antibiotic

classes). The development of completely new antibiotic classes has been considerably more

costly and has failed in many cases because of their toxicity to humans (Coates et al.,

2011). These authors also report on a study by Becker et al. (2006), which suggests that

no new classes can be developed in the future, as all “broad-spectrum antibacterials have

been discovered (page 191)”. This may explain why the pharmaceutical industry currently

concentrates on the development of analogues. However, there seems to exist a limit ”to

the number of analogues which can be made from a single chemical core ... and eventually,
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bacteria can evolve resistance beyond the scope of even the most ingenious medicinal chemist

(page 187)”, which implies that all analogues of a given class will eventually lose their

treatment effectiveness.

This paper addresses the incentives of a firm to innovate a new antibiotic analogue within

a given antibiotic class. We assume that all antibiotic analogues are linked to a common

pool of treatment effectiveness in the sense that their use causes the common pool to decline.

The innovating firm thus faces an externality as the use of antibiotics within the antibiotic

class impacts on the treatment effectiveness of the class in general, and on its own antibiotic

in particular. Furthermore, we make the simplifying assumption that the new antibiotic

analogue targets a distinct market from the one served by the existing antibiotic class such

that antibiotic analogues do not represent substitutes in fighting an infectious disease. While

the innovating firm is granted a patent of limited lifetime in its market, the other market

is assumed to be served by a generic industry which behaves as having open access to the

common resource pool of antibiotic treatment effectiveness.

A related example is that of the Quinolones antibiotic class, antibiotics of which serve

to fight human infections and, in the past, were often used to enhance growth of animals

by preventing infection within the livestock. Scientific evidence showed that the intake of

growth-promoted meat could enhance bacterial resistance in humans (Nelson et al., 2007),

suggesting that antibiotics belonging to the same class were linked to a common pool of

antibiotic efficacy. The fact that firms selling an antibiotic do not have an incentive to

account for this externality has lead to the question on “How broad should the scope of

patents be” (Laxminarayan 2002)?1

We show that the monopolist attaches an implicit value to the antibiotic treatment

efficacy which corresponds to the intertemporal sum, properly discounted, of the treatment

1In 2005, the US Food and Drug Administration withdrew the Quinolone Baytril (produced by Bayer) for
use in poultry water in order to prevent the spread of fluoroquinolone-resistant infections in humans (FDA
2005). The active antibacterial ingredient of Baytril is Enrofloxacin, which is also distributed by multiple
generic producers in the European Union (for generic versions sold in EU member states, see Annex 1 to EU
Directive 2001/82EC). Any development of a new fluoroquinolone antibiotic for human use earning a patent
would thus potentially be affected by the use of Enrofloxacin in the generic market for animal use.
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efficacy’s marginal profitability. The higher the endogenously determined relative impact

of the generic industry on the common resource pool, the heavier the monopolist discounts

future profits. The monopolist’s incentive to incur a higher innovation cost is determined

by the marginal avoided impact of the generic industry’s on the common resource pool of

treatment efficacy. While the monopolist accounts only for the impact of sharing the common

resource on his own profits, the social optimum accounts for the social welfare generated

in both markets. We determine the effects driving the order of the socially optimal use

of antibiotics and present an efficiency-inducing tax-subsidy mechanism for both markets,

operated by the monopolist and the generic industry. In the case that the regulator cannot

commit to a time-dependent correcting policy, the monopolistic firm may turn that policy to

its advantage. This points to the implementation of a “subgame-perfect,” state-dependent

mechanism, which we also characterize.

The socially optimal use of antibiotics when their treatment efficacy is non-renewable

has been modeled by Laxminarayan and Brown (2001). Wilen and Msangi (2003) extend

the analysis to the case of renewable antibiotic efficacy which gives rise to the existence of

a steady state, where antibiotic efficacy is not completely exhausted. The market outcome

and impact on treatment effectiveness have been modeled by Mechoulan (2007), Fischer

and Laxminarayan (2004), Herrmann and Gaudet (2009) and Herrmann (2010). Fischer

and Laxminarayan (2005) consider the sequential development of new antibiotics with ex-

haustible efficacy by a monopolistic firm. Rudholm (2002) characterizes antibiotic resistance

spillover across countries and proposes a correcting, dynamic Piouvian tax. See Herrmann

and Laxminarayan (2010) for a detailed review on the economics of antibiotic resistance.

This paper is structured as follows. Section 2 presents the model and proposes the

analysis of the monopolist’s as well as socially optimal incentives for antibiotic innovation

and use. Section 3 compares the outcomes and addresses economic instruments which are

susceptible to correct the industry’s suboptimal behavior. We conclude in section 4.
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2 Model

We propose a model in which two antibiotics i = A,B belong to the same antibiotic class

and are attached to a common pool of treatment efficacy. Use of antibiotic i at time t is

denoted fi(t) and decreases the common level of the antibiotic class’s efficacy w(t). The

distance in the biological formulas of the two antibiotics is measured by the parameter α,

which translates also the pressure that antibiotic B exerts on the common pool of antibiotic

efficacy relative to antibiotic A. The law of motion of the antibiotic class’s efficacy can then

be written as:

ẇ(t) = −fA(t)− αfB(t),

which implies that antibiotic efficacy is modeled as a non-renewable resource affected linearly

by the antibiotic use made in each market. We assume that parameter α satisfies α ≥ 0.

When α = 0, the antibiotic class has only one member (antibiotic A), and α = 1 implies

that the two antibiotics affect efficacy equally.

Each antibiotic is produced at a constant unit cost ci and is sold on a different market.

While market B is assumed to be served by a generic industry, market A is served by a

monopolistic firm, once innovation has occured. We follow Herrmann and Gaudet (2009)

and define a linear, inverse demand function for market i = A,B as:

Pi (fi(t), w(t)) = riw(t)(1− fi(t)), (1)

which has the choke price riw(t) at time t.2 The parameter ri is demand specific and relates

to the willingness to pay in each market which evolves in conjunction with the treatment

efficacy w(t).

2This inverse demand function can be motivated on the grounds of utility maximization of an infected
individual, who attributes a probability that the antibiotic will help him recover from infection. See Herrmann
and Gaudet (2009). Note that life-threatening conditions may be better modeled with a demand function
that does not have a choke price.
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2.1 Monopoly and generic industry

Economic incentives which characterize the antibiotic use made of each drug depend on the

market structure occurring in markets A and B. We assume that a generic industry currently

serves market B and will do so once the patent has expired and the monopolistic firm has

become a member of a generic industry in market A. In particular, we model the firms of the

generic industry as having open access to the common resource pool w(t). These firms do

not interact strategically and are not able to account for their impact of current antibiotic

use on future levels of the antibiotic class’s efficacy. In equilibrium, all economic rents are

dissipated, such that the price in market i is equal to the average production cost, i.e.:

Pi(fi(t), w(t)) = ci, (2)

where ci > 0 is the constant average production cost.3 Making use of our specification of the

price function in (1), the quantity fi served in market i can be determined from equilibrium

condition (2) as:

fi(w(t)) = max

{
1− ci

riw(t)
, 0

}
. (3)

As long as fi > 0, drug i is said to be economically viable in market i, which is assured as

long as the level of antibiotic efficacy satisfies w(t) > ci/ri.

While the equilibrium condition (and dynamics) of a generic industry can be determined

in a straightforward manner, modeling the intertemporal profit-maximizing behavior of a

monopolist resides in a formulation using optimal control techniques, to which we now turn.

We assume that the monopolist chooses initially the biological distance α of his drug A with

respect to the existing drug B. The controllable parameter α must satisfy 0 ≤ α ≤ ᾱ, where

ᾱ corresponds to the smallest distance between the two antibiotics warranting the creation

of a patent. The innovation cost is given by C(α) with C(0) =∞, C ′(α) < 0 and C ′′(α) > 0,

where C(0) =∞ precludes the development of a new antibiotic class, which will be assumed

in what follows. Having entered market A, the monopolist decides on the quantity fA(t) as

3See Herrmann and Gaudet (2009) for a detailed analysis of this market type.
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long as the patent has not expired, which occurs at time T . We write the instantaneous profit

function as π(fA(t), w(t)) = (PA(fA(t), w(t))− cA)fA(t), and the intertemporal objective as:

max
{α,fA(t)}

Π =

∫ T

0

e−δtπ(w(t), fA(t))dt− C(α) + e−δTV oa
A (w(T )) (4)

s.t ẇ(t) = −fA − αfB(w(t)), w(0) = w0, w(T ) ≥ 0

0 ≤ α ≤ ᾱ

where δ is the monopolist’s discount rate and V oa
A is the monopolist’s residual value, properly

discounted, once the patent has expired and the monopolist has become a member of a generic

industry. As, by assumption, a generic industry behaves blackas in market B like having

open access to the common resource pool, all economic rents are dissipated beyond time T

and we have V oa
A ≡ 0.4

We write the current-value Hamiltonian

H(·) = [P (fA(t), w(t))− cA]fA − λ(t)[fA(t) + αfB(w(t))] (5)

where λ(t) is the shadow price associated to the use of the antibiotic class’s efficacy. Necessary

conditions for an optimum are

fA ≥ 0,
∂H

∂fA
≤ 0,

∂H

∂fA
fA = 0, (6)

fA ≤ 1,
∂H

∂fA
≥ 0,

∂H

∂fA
(1− fA) = 0, (7)

λ̇− δλ = −∂H
∂w

, (8)

ẇ = −fA − αfB, (9)

where
∂H

∂fA
= rAw(1− 2fA)− cA − λ and

∂H

∂w
=
∂π

∂w
− αλ∂fB

∂w
, as well as the condition for

the controllable parameter5

α ≤ ᾱ, (ᾱ− α)

(∫ T

0

e−δt
∂H

∂α
dt− ∂C

∂α

)
= 0, −∂C

∂α
+

∫ T

0

e−δt
∂H

∂α
dt ≥ 0. (10)

4We abstract for now from the possibility that a monopolist does not invest to develop a new drug. The
condition for this to hold will be specified later.

5See theorem 7.11.1 of Léonard and Long (1992) for this condition.
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and the transversality condition

w(T ) ≥ 0, λ(T ) ≥ 0 and w(T )λ(T ) = 0. (11)

Note that it is not economically viable in any market to extract antibiotic efficacy completely

as ci > 0, i = A,B. It follows that we must have w(T ) > 0, such that λ(T ) = 0.

Conditions (6) and (7) represent the Kuhn-Tucker conditions which guarantee the static

efficiency of the monopolist’s choice of the quantity sold. For an interior solution 0 < fA < 1,

it reads as rAw(1− 2fA) = cA + λ, i.e. the marginal revenue from selling antibiotic A must

equal the total marginal cost of doing so, which comprises the marginal production cost and

the implicit value associated to antibiotic efficacy.

Condition (8) assures the dynamic efficiency of the monopolist’s program. It represents

a differential equation in λ which can be rewritten as λ̇(t)−β(t)λ(t) = − ∂π
∂w

, where we have

defined β(t) ≡ [δ + α ∂fB/∂w]. Multiplying this equation by the integration factor I(t) =

exp
∫ T
t
β(s)ds and integrating both sides, we obtain the expression λ(t)I(t) =

∫ T
t

∂π
∂w
I(s)ds+

I(T )λ(T ), from which we calculate:

λ(t) =

∫ T

t

∂π

∂w
exp

(
−
∫ s

t

β(τ)dτ

)
ds, (12)

where we have used the boundary condition λ(T ) = 0 in order to obtain the last equality.

The implicit value λ(t) thus corresponds to the intertemporal sum, “properly” discounted

of the marginal profitability of antibiotic efficacy. This value constitutes the monopolist’s

opportunity cost of decreasing the quality of the antibiotic over time as its profits will be

necessarily lower. Note that this value is said properly discounted at the rate β(t) in the

sense that it accounts for the discount rate δ, but also for the generic industry’s response

to a change in antibiotic efficacy, weighted by its impact on the common pool of efficacy

α ∂fB/∂w = α cB/(rBw
2). The higher the pressure exerted by industry B on the common

pool, or the lower the value of efficacy, the lower is the weight attached by the monopolist

to future profitability of antibiotic efficacy.
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The evolution of λ(t) is ambiguous, at least at the beginning of the time horizon. Making

use of (12) and the definition of β(t) in conjunction with (8), we obtain:

λ̇(t) = − ∂π
∂w

+ β(t)

∫ T

t

∂π

∂w
exp

(
−
∫ s

t

β(τ)dτ

)
ds.

As the first term on the right-hand-side of the former equation is negative, while the second

term is positive and converges to 0 as t approaches T , we can state that the shadow price

decreases towards the end of the patent life and reaches λ(T ) = 0 when the patent expires.

We now turn to the controllable parameter α, which represents the biological distance within

the two antibiotics A and B and determines how antibiotic B affects the common pool of the

class’s treatment efficacy as compared to antibiotic A. In developing the new antibiotic A,

the monopolist choses this relative distance α, which is characterized by necessary condition

(10). Caculating ∂H/∂α = −λ(t)fB(t), we find for an interior solution 0 < α < ᾱ after

rearranging condition (10):

−∂C
∂α

=

∫ T

0

λ(t)fB(w(t))e−δtdt.

When this last condition holds, the monopolist chooses α such that the marginal cost of

innovating antibiotic A, i.e. the marginal cost of increasing its relative distance with re-

spect to antibiotic B, equals the inter-temporal marginal benefit, properly discounted, of

industry’s B avoided impact on the common pool resource, evaluated at the shadow price

λ(t). Whenever the marginal cost of innovation outweighs the marginal benefit, a corner so-

lution applies such that α = ᾱ, where we recall that ᾱ corresponds to the minimal distance

prescribed by law. Finally, the condition that assures the monopolist’s investment to be

profitable is given by C(αm) <
∫ T

0
e−δtπ(wm(t), fmA (t))dt, where (wm(t), fmA (t), αm) satisfies

the conditions defined in equations (6) to (11). Whether this last condition holds or not is

an empirical question, which however lies outside the scope of this paper.

We have made use of numerical simulations in order to address the outcome in both

markets, as well as the choice of α.6 Many parameter values are conceivable for this stylized

6In particular, time and state space, as well as the controllable parameter space for α were discretized
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model and have been analyzed. We will concentrate on the baseline parameters as given in

the following table which will apply unless specified otherwise.

w0 rA rB cA cB δ T ᾱ

18.5 0.31 0.30 3 3 0.04 20 2

Antibiotics A and B differ slightly as the willingness to pay for antibiotic A is bigger than

that of antibiotic B, which follows from rA > rB, while production costs are equal. This

implies that cA/rA < cB/rB in the baseline case, such that the production of antibiotic A can

be sustained at lower levels of antibiotic treatment effectiveness. Furthermore, we postulate

the functional form for the innovation cost as C(α) = 1/α. Figure 1 shows the results for

the baseline case. We find that the monopolist chooses αm = 1.09 and sells at a decreasing

rate given by the continuous line fmA . Treatment rates in market B are initially higher than

in market A, as the generic industry does not account for the cost of using up antibiotic

effectiveness. Once the patent expires at T = 20, a generic industry takes over in market

A, such that an upwards jump occurs in the treatment rate in market A and continues to

evolve at a higher level than in market B as given by equilibrium condition (3).

We do not find any numerical evidence for λ̇ > 0. Rather, the level of the implicit value

λ increases as a response to a higher profitability of market A which is either implied by an

increase in rA and w0 or a decrease in cA. The level of λ then must decrease at a faster rate

in order to reach λ(T ) = 0 when the patent expires.

A dynamic comparative exercise reveals the intuitive result that the monopolist’s treat-

ment rate is increasing in rA and w0 and decreasing in cA. While the decreasing pattern of

the treatment rate fmA over time remains unaffected by an increase in rA, it can differ as a

response to changes in the initial levels of antibiotic treatment effectiveness and the average

production cost. Consider Figure 2, which has been drawn for various values of w0 and where

cA = 1.5. Here, the treatment rate fmA monotonically increases over time for relatively high

values of w0 and evolves non-monotonically when initial treatment effectiveness is low. In

and a forward-backward sweep method was applied to solve for the necessary conditions characterizing the
intertemporal objective in the monopoly and the social optimum case. For the forward-backward sweep
method, see Lenhart and Workman (2007).
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such a case, fmA first decreases and increases in a final phase. As shown in Appendix A, this

situation arises when rate of decrease in the level of treatment effectiveness is lower than the

rate of decrease of the full marginal cost.

Finally, we present the impact of a change in the patent length, T , and of the valuation

parameter, rA, on the monopolist’s profit-maximizing choice of αm in Figure 3. As can be

awaited, a longer patent duration or higher willingness to pay in market A increases the

monopolist’s profitability, such that a more distant antibiotic analogue is innovated, i.e. αm

decreases.

2.2 Social optimum

We now address how the new antibiotic analogue A should be positioned and sold in con-

junction with antibiotic B from a social point of view. This will serve as a benchmark for

comparison with the monopoly outcome just described. The social optimum to be charac-

terized is not constrained by the minimum distance between antibiotics nor by the patent

duration. For each market A and B we define the gross surplus from consumption as

Ui(fi, w) =

∫ fi

0

riw(1− f)df, (13)

which represents the surface below the price function Pi(fi, w) = ∂Ui/∂fi. The inter-

temporal social objective then consists in:

max
{α,TA,TB ,fA,fB}

BE =

∫ TA

0

e−δt [UA(fA, w)− cAfA] dt− C(α) +∫ TB

0

e−δt [UB(fB, w)− cBfB] dt (14)

s.t. ẇ(t) = −fA − αfB, w(0) = w0, w(T ) ≥ 0,

α ≥ 0,

where the bracketed terms in (14) represent the net social surplus from consumption in

market i = A,B, respectively. We also assume that the discount rate δ and the initially

available stock, w0, are identical to the monopoly case.
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A necessary condition for market i = A,B to be served at time t is that antibiotic i is

economically viable, i.e. w(t) ≥ ci/ri. We point out here that the time when it is socially

optimal to stop serving a market generally differs, i.e. TA 6= TB. Let T ∗ = max{TA, TB} be

the point of time when it is socially desirable to stop using antibiotic i characterized by the

minimum level ci/ri = min{cA/rA, cB/rB}.

We write the current-value Hamiltonian as:

H = w

[∫ fA

0

rA(1− f)df +

∫ fB

0

rB(1− f)df

]
− cAfA − cBfB − z[fA + αfB] (15)

where z(t) is the implicit value associated to the common pool resource in the social optimum.

The following conditions represent the necessary conditions for a social optimum:

fi ≥ 0,
∂H

∂fi
≤ 0 and fi

∂H

∂fi
= 0, for i = A,B (16)

fi ≤ 1,
∂H

∂fi
≥ 0 and (1− fi)

∂H

∂fi
= 0, for i = A,B (17)

−∂H
∂w

= −
[∫ fA

0

rA(1− f)df +

∫ fB

0

rB(1− f)df

]
= ż − δz, (18)

ẇ(t) = −fA − αfB, (19)

with
∂H

∂fA
= wrA(1−fA)− cA−z and

∂H

∂fB
= wrB(1−fB)− cB−αz, as well as the necessary

condition for the controllable parameter

α ≥ 0, α

(∫ T ∗

0

e−δt
∂H

∂α
dt− ∂C

∂α

)
= 0, −∂C

∂α
+

∫ T ∗

0

e−δt
∂H

∂α
dt ≤ 0. (20)

and transversality conditions

w(T ∗) ≥ 0, z(T ∗) ≥ 0 and w(T ∗)z(T ∗) = 0, (21)

to which we add the additional condition related to the free terminal time T ∗:

H(T ∗) = 0. (22)

As in the monopoly case, it is not economically viable for ci > 0 to have w(T ∗) = 0.

Consequently, we must necessarily have w(T ∗) > 0 and z(T ∗) = 0.
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Solving for z(t) in the differential equation (18), we make use of the fact that z(T ∗) = 0

as a boundary condition and obtain:

z(t) =

∫ T ∗

t

e−δ(s−t)
[
∂UA
∂w

+
∂UB
∂w

]
ds

=

∫ T ∗

t

e−δ(s−t)
[∫ fA

0

rA(1− f)df +

∫ fB

0

rB(1− f)df

]
ds. (23)

The implicit value z(t) thus represents the inter-temporal, discounted sum of the marginal

surplus related to the antibiotic efficacy in the two markets. Stated differently, it represents

the socially optimal opportunity cost associated to a decrease in the level of antibiotic efficacy

in terms of social surplus. As in the monopoly case, we can only establish analytically that

z(t) eventually decreases towards the end of the time horizon and converges towards 0 when

the economic viability of the last antibiotic has been extracted completely.

As the implicit value z is positive and ci > 0, a corner solution fi = 1 cannot be socially

optimal as the set of equations (17) does not hold. Using the inverse demand function given

in (1) and rearranging the set of equations (16) for both markets A,B, we can write:

PA 5 cA + z, if < then fA(t) = 0, (24)

PB 5 cB + αz, if < then fB(t) = 0. (25)

It is socially optimal to use antibiotic i, when its price is equal to its full marginal cost, where

the latter accounts for the social cost of using the common pool’s efficacy and is weighted

by the antibiotic’s relative pressure.

We calculate the difference in the socially optimal treatment rates, fA − fB, when both

antibiotics are used simultaneously, i.e. fA > 0 and fB > 0:

fA − fB =
1

w

(
cB
rB
− cA
rA

+ z(t)
αrA − rB
rArB

)
S 0, (26)

The sign of fA − fB depends on the model parameters, in particular the level of relative

economic viability and valuation in each market, as well as on the controllable parameter α

and the implicit value of antibiotic efficacy, z(t). Consider the case that antibiotic B is less
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economically viable as compared to antibiotic A, i.e. cB
rB
> cA

rA
, and that the relative pressure

exerted by antibiotic B on the common pool of efficacy guarantees αrA < rB. In this case,

the sign of the difference in the treatment rates may change. In particular, it can occur that

fA − fB < 0 during an early phase because the lower economic viability of antibiotic B is

outweighed by the relatively lower impact of antibiotic B on the common pool of antibiotic

efficacy. However, as z(t) eventually decreases, the difference in economic viability levels

becomes more and more important and eventually dominates, such that in a final phase, we

must have fA − fB > 0. Whenever economic viability is identical in both markets, cB
rB

= cA
rA

,

only the second effect exists, such that either fA − fB > 0 or fA − fB < 0 depending on

parameters related to the willingness to pay, rA, rB, and relative pressure α exerted by

antibiotic B. The socially optimal choice of α is given by: −∂C
∂α

=
∫ T ∗

0
z(t)fBe

−δtdt , which

indicates that the marginal cost of innovation is equal to the discounted inter-temporal social

value of treatment effectiveness, weighted by the marginal impact of antibiotic B. Finally,

we can use z(T ∗) = 0 in transversality condition (22) in order to find:

UA(fA, w)− cAfA + UB(fB, w)− cBfB = 0 (27)

where we recall for i = A,B that Ui =
∫ fi

0
riw(1 − f)df = riwfi[1 − fi/2]. Consequently,

equation (27) is satisfied when fA(T ∗) = fB(T ∗) = 0. When cA
rA
6= cB

rB
, the use of the less

economically viable antibiotic stops already before T ∗ is reached. However, when cA
rA

= cB
rB

,

numerical evidence suggests that the treatment rates fi converge simultaneously to 0 which

will occur when the level of antibiotic efficacy has reached w(T ∗) = ci/ri.

Two cases are illustrated in Figure 4. The continuous and dashed lines correspond to

the case of baseline parameters with rA = 0.31 > 0.3 = rB and cA = cB = 3 such that

cA/rA < cB/rB. In the baseline case, antibiotic B is used more intensively initially, but falls

below the use of antibiotic A at around T = 63. The critical level of economic viability of

antibiotic B will be reached first, while antibiotic A remains economically viable in a final

phase before its level of economic viability is reached. When both antibiotics have identical

levels of economic viability, cA/rA = cB/rB, the dotted and dash-dotted lines apply. Both

13



antibiotics are produced simultaneously up to T ∗. Numerical evidence suggests in this case

that antibiotic B should be used more intensively because it exerts relatively less pressure

on the common pool of treatment effectiveness as compared to antibiotic A (α∗ < 1).

Finally, numerical evidence suggests that an increase in rA, while all other parameters

remain at their baseline level, increases α∗ and decreases T ∗. The driving mechanism is that

the use of antibiotic B will decrease, and it is socially optimal to abandon market B and

concentrate on market A (for values rA ≥ 0.4). Higher valuation in market A then clearly

leads to an earlier exhaustion of antibiotic effectiveness. The following table summarizes

these results:

rA 0.3 0.31 0.35 0.4

α∗ 0.365 0.385 0.435 2
T ∗ 290 253 161 136

αm|T = 20 1.227 1.09 0.85 0.695

3 Economic instruments

Karp (1992a) and Karp (1992b) have looked at the welfare implications of economic agents

exploiting a common pool resource in an oligopolistic context and have proposed economic

instruments, like combined mechanisms of taxation and subsidy, which induce an efficient use.

Although we build on that approach, the novelty of the economic instruments developed here

relies on the fact that two different markets are served (either by a monopolist or a generic,

competitive industry), that demand is state-dependent and that resource use in each market

affects the common resource pool differently.

The economic instruments developed here can induce both markets to operate efficiently

if the monopolist positions its antibiotic A in a socially optimal way, i.e. αm = α∗. However,

as the discounted sum of inter-temporal monopolistic profits related to market A is clearly

lower than the social surplus associated to both markets A and B, the monopolist does not

have the incentives to innovate as “far” as it would be socially optimal. As a consequence,

a subsidy targeting the research and development of sufficiently differentiated products is

14



warranted.7.,8

In market B, where a generic industry operates without attributing any implicit value

to the common pool resource, a unitary tax set at a level

τB(t) = α∗z(t) (28)

will induce the industry to produce at the socially-optimal level as market incentives (see

equation (2)) and social optimum (see equation (25)) will coincide. In order to induce the

monopolist to sell antibiotic A at the socially optimal level, a tax-subsidy mechanism may

be implemented. Bergstrom et al. (1981) propose a unitary, time-dependent, mechanism, in

contrast to Karp and Livernois (1992) who propose a unitary, state-dependent mechanism.

The state-dependent mechanism has the desirable property to be Markov-perfect and to

prevent the potentially strategic behavior by the monopolist when facing a time-dependent

mechanism.

For later reference, we start with the unitary, time-dependent tax or subsidy, mA(t),

applied to sales of the antibiotic in market A. Assuming the cost of innovation to be sunk

(αm = α∗), the monopolist’s modified objective (omitting the constraints which remain

unchanged) then becomes:

max
{fA(t)}

∫ T

0

e−δt [π(w(t), fA(t)) +mA(t)fA(t)] dt+ e−δTV oa
A (w(T )), (29)

and the corresponding static efficiency condition is

∂H

∂fA
=
∂π(·)
∂fA

+mA(t)− λ(t) = 0, (30)

which holds for an interior solution 0 < fA < 1. Making use of the characterization of the

7An anonymous referee suggests that it may be impossible for the regulator to set up a subsidy implying
αm = α∗, in particular, when α cannot be measured adequately. In such a case, a second-best policy of
economic instruments would have to be developed which minimizes the intertemporal social loss resulting
from an inefficient level of innovation and antibiotic market supply.

8We do not claim that economic instruments are necessarily superior to other tools which a regulator
may apply (e.g. restricting the use of particular antibiotics for a precise infection). However, we believe that
economic instruments represent a good tool to prevent a misuse of antibiotics when they should be reserved
for last resort treatment.
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implicit value λ(t) given in equation (12), we can rearrange the last equation and obtain

m∗A(t) = − ∂π

∂fA
+

∫ T

t

∂π

∂w
exp

(
−
∫ s

t

β(τ)dτ

)
ds︸ ︷︷ ︸

≡λ∗

, (31)

where λ∗ is evaluated along the socially optimal values fA = f ∗A, fB = f ∗B and w = w∗. The

mechanism thus offsets the monopolist’s market power (the first term on the right-hand-side

of (31)) and sends the “corrected” signal with respect to the implicit value of the resource

(the second term of the right-hand side of (31)). Note that this second term is increasing in

the patent length, T , implying that a longer patent duration increases mA(t).9

The sign of m∗A(t) is not straightforward to determine analytically. We can state that

λ∗ ≥ 0 implying that the monopolist can benefit from a non-negative rent associated to

the resource pool, while the sign of −∂π/∂fA may be negative evaluated at fA = f ∗A. In

particular, whenever a tax should be levied on antibiotic sales (mA(t) < 0), that tax will

be lower the longer the patent duration, while a subsidy (mA(t) > 0) will be higher the

longer the remaining patent duration. We have implemented numerically the time-dependent

mechanism given in (31). Depending on the model parameters, many different configurations

for such a mechanism exist. Whether the mechanism turns out to be a pure tax, pure subsidy,

or a tax-subsidy combination depends on whether the monopolist over- or underproduces

antibiotic A as compared to the social optimum.

Consider again the baseline parameter case, where cA/rA < cB/rB. In Figure 5, we

present the mechanism mA(t) for t ∈ [0, T ], where various patent durations have been con-

sidered (T ∈ {20, 30, 50, 70, 90, 100, 150}). For relatively short patent durations, the policy

instrument turns out to be a tax, while for relatively long patent durations, a tax should be

levied initially, followed by a subsidy. The fact that the instrument tends to be a subsidy in

a final phase relies on the fact that for relatively long patent durations, it is socially optimal

9The observation that the level of the optimal time-dependent instrument depends on the remaining
patent length suggests a further economic instrument, which is patent length itself. As it impacts on the
antibiotic efficacy’s implicit value assigned by the monopolist, a continualblack “optimal” adjustment of the
patent length may induce a socially optimal implicit value for the resource. Using patent duration as an
economic instrument to manage resistance problems has been put forward by Kades (2005), the economic
analysis of which lies outside the scope of this paper.
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to produce antibiotic A only, as treatment effectiveness tends to have fallen below the eco-

nomic viability level of antibiotic B. At the beginning of the patent, while both antibiotics

are economically viable, a tax tends to apply on antibiotic A because it is socially optimal

to use antibiotic B more intensively.10

Karp and Livernois (1992) have pointed out that time-dependent mechanisms can only

induce socially optimal behavior by the monopolist, if the regulator can commit to the an-

nounced mechanism. In the opposite case, a monopolist may deviate from the optimal path

of extraction, forcing the regulator to adjust its policy, and “by choosing the correct ‘devi-

ation’, the monopolist can benefit from the change it forces upon the government (p.222).”

A linear, markov-perfect mechanism, as proposed by Karp and Livernois (1992), with total

payments of the form mA(w)fA precludes such strategic behavior because it is “subgame

perfect.” Replacing mA(t) in (29) by mA(w) gives the monopolist’s new objective when fac-

ing a state-dependent mechanism. Developing the necessary conditions which characterize

the monopolist’s solution, we find that the static and dynamic conditions now write for an

interior solution fA as:

λ(t) =
∂π(·)
∂fA

+mA(w) (32)

λ̇(t)− δλ(t) = −∂π(·)
∂w

− ∂mA(w)

∂w
fA + αλ(t)

∂fB(w)

∂w
(33)

As the monopolist’s current choice of fA depends on the current level of antibiotic efficacy,

we can write fA(t) = FA(w(t)), where FA is the optimal feedback rule followed by the

monopolist. In order to characterize the mechanism mA(w) described by the system of

(partial) differential equations (32) and (33), we first differentiate equation (32) with respect

to time which yields

λ̇ =

(
∂2π

∂fA
2

∂FA
∂w

+
∂2π

∂fA∂w

)
ẇ +

∂mA(w)

∂w
ẇ. (34)

Substituting (32) and (34) into (33) allows to eliminate the co-state variable λ, and to find

10The reader may refer again to Figure 4 for the socially optimal evolution of treatment rates in the
baseline case.
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a functional equation characterizing mA(w), which is:

mA(w)+
αfB(w)

β(w)

∂mA(w)

∂w
= − ∂π

∂fA
+

1

β(w)

[
∂π

∂w
+ ẇ

(
∂2π

∂fA∂w
+
∂2π

∂fA
2

∂FA
∂w

)]
(35)

where we recall the monopolist’s endogenous discount rate, now defined with the argument

w as β(w) = δ + α∂fB(w)/∂w.

In order to interpret this functional equation, we start with the simplest case where it is

socially optimal to abandon market B, i.e. f ∗B(t) = 0, ∀t, for which we have ẇ = −FA, such

that equation (35) simplifies to

m∗A(w)|f∗B=0 = − ∂π

∂fA
+

1

δ

[
∂π

∂w
+ ẇ

(
∂2π

∂fA∂w
+
∂2π

∂fA
2

∂FA
∂w

)]
, (36)

where the terms on the right-hand side of equation (36) have to be evaluated along the

socially optimal values FA = f ∗A and w = w∗.

The first term on the right-hand side indicates that the state-dependent mechanism

again offsets the monopolist’s market power as is done by the time-dependent mechanism

in equation (31). The second term on the right-hand-side is of particular interest, as it

differs from the monopolist’s corrected implicit value λ∗ (i.e. the corrected opportunity

cost of decreasing antibiotic efficacy) included in the time-dependent mechanism (31). In

particular, it does not depend on the patent duration or, stated differently, on the remaining

patent life, a fact which emphasizes its state-dependent character. It can be interpreted

as the present value of a (hypothetically constant) corrective incentive, which accounts for

the marginal profitability of antibiotic efficacy, ∂π/∂w, on the one hand, as well as for

the efficacy’s evolution, ẇ, and impact on marginal profits on the other hand. Running

numerical simulations with rA = 0.5 while all other parameters take their baseline values,

we find that f ∗B(t) = 0, ∀t. Figure 6 shows that the state-dependent instrument is a subsidy,

suggesting that the unregulated monopolist tends to underproduce antibiotic A as compared

to the social optmum. In Figure 6, we also represent the time-dependant instrument, mA(t),

for various patent lengths. A shorter patent length (or remaining patent life) implies that

the monopolist attaches a lower value to antibiotic efficacy, which tends to mitigate the
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underproduction by the monopolist such that lower subsidies are required. As it turns out,

the time-dependent subsidy is always lower than m∗A(w), which implies that the monopolist

can capture higher rents when facing a state-dependent instrument.

The form of the unit tax-subsidy mechanism which applies to the present model with

f ∗B > 0 can also be derived. As it turns out, the mechanism makes intervene again the

– now corrected – endogenous discount rate β(w∗) as well as the relative pressure exerted

by market B on the common pool of antibiotic efficacy, αf ∗B. In order to find the general

solution to equation (35), we rearrange it first as:

∂mA(w)

∂w
+

β(w)

αfB(w)
mA(w) = − β(w)

αfB(w)

∂π

∂fA
+

1

αfB(w)

[
∂π

∂w
ẇ

(
∂2π

∂fA∂w
+
∂2π

∂fA
2

∂FA
∂w

)]
︸ ︷︷ ︸

≡Ω(w,fA,fB)

,

and define the integrating factor Γ(w) = exp

[∫ w

0

β(u)

αfB(u)
du

]
, which leads to

m∗A(w) = [Γ(w)]−1

∫ w

0

Γ(u)Ω(u, f ∗A, f
∗
B)du, (37)

where use has been made of m∗A(0) = 0 and where the terms on the right-hand side of equa-

tion (37) have again to be evaluated along the socially optimal values FA = f ∗A, fB = f ∗B

and w = w∗. As the resource pool has to be optimally shared whenever f ∗A, f
∗
B > 0, the

state-dependent policy will differ. As shown in Appendix B, the state-dependent policy is

greater than the time-dependent one, when ∂mA/∂w > 0. As the level of antibiotic effi-

cacy is decreasing inevitably (as long as fA, fB > 0), it goes in hand with a decrease in the

state-dependent subsidy or increase in the state-dependent tax when ∂mA/∂w > 0 holds.

The monopolist anticipates the decrease in the level of antibiotic efficacy, and attaches rela-

tively more value to the level of antibiotic efficacy when facing a state-dependent instrument

(λs(w(t)) > λo(t); for a proof, see Appendix B). Combining equations (30) and (32) evaluated

along the socially optimal values (for the treatment rates and antibiotic efficacy), it follows

that m∗A(w(t)) > mA(t), which states that taxes will be lower and subsidies will be higher

with a state-dependent instrument as compared to a time-dependent one. This result oc-

curs because of the interdependency of the monopolist’s implicit value for antibiotic efficacy
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and the anticipated evolution of the state-dependent economic instrument as determined by

the regulator (which does not exist in the context of a a time-dependent instrument). The

opposite result holds when ∂mA/∂w < 0.

4 Concluding remarks

We have modeled a monopolist’s incentives of innovation and use of a new antibiotic be-

longing to a class of existing antibiotics and compared the outcome to the social optimum.

Innovation occurs deterministically in the sense that the innovating firm can decide on the

biological distance between its drug and an already existing one which is sold by a generic

industry. The biological distance, or positioning, of the new drug determines how the already

existing antibiotic affects a pool of antibiotic efficacy which is common to both antibiotics.

We have addressed the simple case where each antibiotic serves a particular market. In

particular, markets are only related by the fact that antibiotic efficacy is a quality indicator

for each antibiotic, while antibiotics do not represent substitutes in use.

Our analysis has shown that the monopolist’s opportunity cost of marginally distancing

his drug from the existing one is given by the discounted, intertemporal sum of avoided im-

pacts by the generic industry, valued at the shadow price of antibiotic efficacy. The shadow

price of antibiotic efficacy as perceived by the monopolist captures the intertemporal value,

properly discounted, of the antibiotic efficacy’s marginal profitability. The monopolist’s

proper discount rate accounts for his pecuniary discount rate, as well as the generic indus-

try’s marginal pressure exerted on the common pool of antibiotic efficacy. The closer the

antibiotics, the higher the relative pressure exerted by the generic industry, implying that

lower weight is attached by the monopolistic firm to its future profits. The socially optimal

incentives account for the marginal impact of antibiotic efficacy on both markets and do not

make intervene an adjusted discount factor.

Market incentives of antibiotic use also differ from the social optimum and warrant the

application of corrective instruments, such as a combined tax and subsidy mechanism. We
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present a time- and a state-dependent mechanism targeting the market served by the mo-

nopolistic firm. The mechanism offsets the monopolist’s market power, corrects its implicit

value associated to antibiotic efficacy, and, when state-dependent, prevents the monopolist

from deviating strategically. We also calculate the time-dependent tax that must apply on

the generic market when the monopolist is subject to the described tax-subsidy mechanism.

Our analysis on corrective economic instruments assumes that the monopolist innovates

at the socially optimal distance from the existing drug which can be guaranteed by setting

the biological minimum distance appropriately or by introducing an additional R&D subsidy

enhancing the biological distance chosen. Only when this assumption is fulfilled, will our

proposed economic instruments correct both markets in conjunction. In the context of

antibiotic drugs which are related to a common pool of antibiotic treatment efficacy, this

points to the importance that warranting patents must not be guided by the marginal novelty

of products only, but also account for their related impact on that common pool.

Future research may look at efficiency-inducing economic instruments in a context where

the positive effect of antibiotic use on containing future prevalence of infection is accounted

for. The socially optimal breadth and length of a patent conferred to antibiotic analogues also

merits attention. A general model should address the possibility that antibiotics represent

substitutes for a given infection.
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Appendix

A Evolution of fA

We recall the static efficiency condition for an interior solution of antibiotic production by

the monopolist (0 < fA < 1), which is given by:

rAw(1− 2fA) = cA + λ.

In order to characterize the evolution of antibiotic use over time, we differentiate and rear-

range the former equation to get:

ḟA =
1

2rAw

[
rA(1− 2fA)ẇ − λ̇

]
=

1

2rAw

[
cA + λ

w
ẇ − λ̇

]
,

where use has been made of the static efficiency condition to obtain the last equality. It then

follows that

ḟA > (<) 0 ⇔ ẇ

w
> (<)

λ̇

cA + λ
.

As ẇ(t) ≤ 0, ∀t ∈ [0, T ], and λ̇(t) < 0 at least in a final phase when λ(t) converges to 0, we

can state that antibiotic production by the monopolist increases if the treatment effectiveness

of the antibiotic class decreases at a lower rate than the full marginal cost. The contrary

may occur if the pressure exerted on the common pool resource is important such that the

treatment effectiveness decreases at a higher rate. Finally, if the implicit value λ were to

increase, which cannot be excluded in an initial phase, the antibiotic production by the

monopolist necessarily decreases.
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B Comparison of m∗A(t) and m∗A(w)

Depending on whether ∂mA

∂w
> 0 or ∂mA

∂w
< 0, we can compare the state-dependent with

the time-dependent policy when treatment rates and antibiotic efficacy are at the socially

optimal level. Assume that ∂mA

∂w
> 0 and recall the monopolist’s modified dynamic efficiency

conditions which apply in each case:

λ̇s − β(t)λs = − ∂π
∂w
− ∂mA

∂w
fA, (38)

λ̇o − β(t)λo = − ∂π
∂w

, (39)

where λs and λo represent the monopolist’s shadow price attached to antibiotic efficacy

facing the state-dependent and time-dependent policies, respectively and where β(t) = δ +

α∗
dfB
dw

(w∗(t)).

When ∂mA

∂w
> 0, it follows from (38) and (39) that λ̇s−β(t)λs < λ̇o−β(t)λo. Multiplying

side by side this equation by the integrant factor J(t) = exp(
∫ T
t
β(s)ds), we derive

dλs(t)J(t)

dt
<
dλo(t)J(t)

dt
.

Integrating and using the fact that λo(T ) = λs(T ) = 0, this inequality leads us to λo(t) <

λs(t). It then follows that m∗A(w∗(t)) ≡ λs(t)− ∂π
∂fA

(t) > m∗A(t) ≡ λ0(t)− ∂π
∂fA

(t).

A similar argument applies for ∂mA

∂w
< 0 to get m∗A(w∗(t)) < m∗A(t).

25



5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

T
re

at
m

en
t r

at
es

 

 
f
A
m | αm

f
A
g

f
B
g  | αm

f
A
*

f
B
*

Figure 1: Market outcome in the baseline case
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