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Abstract:  
The Entropy Pooling approach in Meucci (2008) is a versatile, general framework to 
process market views in portfolio construction and generalized stress-tests in risk 
management. Here we present an efficient algorithm to implement Entropy Pooling with 
fully general views in multivariate normal markets. 
Then we discuss two applications. First, we use normal Entropy Pooling to estimate a 
market distribution consistent with the CAPM equilibrium, which improves on the 
“implied returns” a-la-Black and Litterman (1990) and can be used as the starting point 
for portfolio construction. Second, we use normal Entropy Pooling to process ranking 
signals for alpha-generation. 
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1 Introduction
The combination of subjective views on the market within a prior risk model
to compute an optimal allocation that incorporates the views is one of the
main challenges in quantitative portfolio construction. Similarly, embedding
stress-tests in a risk model in a statistically sound way is key to a healthy risk
management process.
The generalized Bayesian approach "entropy pooling" (EP) is a general,

flexible framework to process views and generalized stress-tests.
The general theoretical framework for EP was laid out in Meucci (2008).

EP combines an arbitrary market model, which is referred to as the "prior" and
fully general views or stress-tests on the underlying market. The output is a
distribution, referred to as the "posterior", which incorporates all the inputs
and which can be used for risk management and portfolio optimization. In EP,
the posterior is obtained by warping the prior distribution so that the views are
fulfilled, in such a way that the prior is minimally distorted. Specifically, the
posterior distribution minimizes the entropy relative to the prior, which is the
natural measure of discrepancy between two distributions.
The EP framework can be implemented in two ways: non-parametrically,

by representing the prior and the posterior in terms of a scenarios-probabilities
pair; and parametrically, by making parametric assumptions on the prior and
the posterior.
The nonparametric implementation of EP was studied in the original article

Meucci (2008) and further extended to handle views on tail risk in Meucci,
Ardia, and Keel (2011). The non-parametric approach is very flexible, but
subject to the curse of dimensionality. Therefore, it is most effectively applied
in risk management contexts, see Meucci (2010).
The parametric implementation of EP was studied in the original article

Meucci (2008) under the normal assumption with views set as equalities on
expectations and covariances. Under these special types of views, the posterior
can be computed analytically.
In this article we study the parametric implementation of EP in normal

markets, but with more general views. To compute the posterior, we propose
an efficient numerical approach. First, we impose structure on the correlations,
thereby increasing the statistical efficiency of our estimates. Second, we compute
analytically the gradient of our objective function, namely the relative entropy
with the prior, thereby speeding the convergence of our numerical approach.
Third, we feed our inputs into an interior point optimizer.
Our framework, namely normal EP with general views, allows us to address

a variety of problems. In particular, we discuss two applications.
The first application is the estimation of a market distribution consistent

with equilibrium. Such equilibrium estimate is the starting point of portfolio
construction in Black and Litterman (1990). In the original paper a covariance of
returns is estimated and the "implied" expected returns are then computed ac-
cordingly. However, these expected returns are substantially different from their
historical counterparts. This issue has been addressed by Levy and Roll (2010)
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by simultaneously computing implied expected returns and implied volatilities.
Normal EP with general views computes at the same time implied expected
returns, implied volatilities and implied correlations, thereby obtaining a closer
distribution to the empirical observations.
The second application of the normal EP framework is the extraction of

ranking signals for alpha-generation. In the standard approach, discussed e.g.
in Grinold and Kahn (1999), the expected return of all the securities in a given
market is set proportional to the z-score of a given predictive signal. However,
assuming the expected return proportional to the z-score imposes spurious infor-
mation in the optimization process. Almgren and Chriss (2006) first addressed
this issue, obtaining expected returns that do not overly spurious information.
However, their solution does not take empirical data into account. EP effectively
estimates ranking-consistent expected returns that do not impose spurious in-
formation and at the same time starts from the empirical observations. The case
study in Meucci (2008) addresses the low-dimensional case non-parametrically.
The present normal EP framework overcomes the curse of dimensionality in
large markets.
We emphasize that the multivariate normal specification for the risk drivers

that lies at the foundation of our approach is by no means restricted to model
normal returns. By applying non-linear pricing functions to the drivers, the
normal specification is suitable to model for instance highly skewed markets of
options, see Meucci (2009).
The remainder of this article is organized as follows. In Section 2 we review

the original general EP framework. In Section 3 we discuss the normal EP
implementation. In Section 4 we show how to use normal EP to specify the
equilibrium prior. In Section 5 we illustrate how to use normal EP to process
ranking signals for portfolio construction.
Fully documented code is available at www.symmys.com/node/160.

2 Review of Entropy Pooling
In this section we draw from Meucci (2008), please refer to that publication for
more details.
EP proceeds in three main steps. The first step of EP is the estimation of a

"prior" distribution for a set of N risk drivers X ≡ (X1, . . . ,XN ) in the market,
as represented by its pdf, which we denote by f

X ≡ (X1, . . . ,XN ) ∼ f . (1)

The risk drivers are any set of random variables that fully determine the secu-
rities P&L, such as implied volatility surfaces, returns, etc.
The second step of EP is expressing the views or stress-tests V. These

are statements on expectations, correlations, tail risk conditions, etc. that we
want the yet to be defined posterior distribution to satisfy. Therefore, views
and stress-tests V are constraints on the posterior. We denote that a generic
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distribution f satisfies these constraints as follows

f ∈ V. (2)

The third step of EP is the computation of the posterior distribution f for
the risk drivers, which incorporates the views stress-tests V. To compute the
posterior, first we introduce the relative entropy, a measure of the similarity of
a distribution f with respect to a reference distribution, in our case the prior f

E(f |f) ≡
Z

f (x) ln
f (x)

f (x)
dx. (3)

Then we define the posterior f as the one distribution which is the most similar
to the prior f , but at the same time, unlike the prior, satisfies the views V.
Therefore, we define the posterior as follows

f ≡ argmin
f∈V

E(f |f). (4)

The posterior distribution f is then used as input to an optimizer to compute
the optimal portfolios that incorporate the views V, or to compute summary
statistics that reflect the stress-tests V for risk management purposes.
EP can be implemented in two ways: non-parametric and parametric.
In the non-parametric approach the prior f is represented in terms of a large

number S of joint scenarios for the risk drivers and the associated probabilities
{x1,s, . . . , xN,s; ps}s=1,...,S . Then the posterior (4) is represented by the same
scenarios with a new set of probabilities {x1,s, . . . , xN,s; ps}s=1,...,S defined as
follows

p ≡ argmin
p∈V

E(p|p), (5)

where with minor abuse we let E(p|p) ≡
PS

s=1 ps ln(ps/ps) denote the discrete
counterpart of the relative entropy (3). As it turns out, for several types of views
the optimization (5) can be transformed in an instance of linear programming
with a low number of variables, and thus it can be efficiently solved numerically.
In the parametric approach, all the distributions belong to a given parametric

class, i.e. f ≡ fθ, where the parameters θ span a set of values Θ. In particular,
the prior is represented by fθ and the posterior (4) becomes

fθ ≡ argmin
θ∈Θ
fθ∈V

E
¡
fθ|fθ

¢
. (6)

A special case of the parametric approach is the normal assumption

fµ,σ2 (x) = (2π)
−N

2 |σ2 |−
1
2 e−

1
2 (x−µ)

0σ2−1(x−µ), (7)

where µ is a N × 1 vector of expectations and σ2 is a N × N covariance ma-
trix. Therefore, the parameters are θ ≡ (µ,σ2), where σ2 is constrained to be
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symmetric and positive definite, which we denote by σ2Â 0. Accordingly, under
normality the parametric problem (6) becomes¡

µ, σ2
¢
≡ argmin

σ2Â0
µ,σ2∈V

E
¡
µ, σ2 |µ, σ2

¢
, (8)

where the relative entropy between two normal distributions can be computed
explicitly and reads

2E(µ, σ2 |µ, σ2) = tr(σ2σ2−1)− ln |σ2σ2−1|+ (µ− µ)0σ2−1(µ− µ)−N . (9)

The normal EP problem (8) can be solved analytically when the views are
equality statements on expectations E {aX} ≡ ξ and covariances Cov {bX} ≡φ2 ,
or

V : aµ ≡ ξ, bσ2b0 ≡ φ2 . (10)

Then the solution of (8)-(10) reads

µ = µ+ σ2a0 (aσ2a0)
−1 ¡

ξ − aµ
¢

(11)

σ2 = σ2 + σ2b0[(bσ2b0)
−1

φ2 (bσ2b0)
−1 − (bσ2b0)−1]bσ2 . (12)

It is immediate to check that the posterior
¡
µ, σ2

¢
satisfies the views (10).

3 Normal EP with fully flexible views
Here we address the parametric implementation of EP under normality (8), with
fully flexible views V beyond (10). In this case, the solution must be computed
numerically.
To this purpose, we impose that the covariances be of "low rank + diagonal"

type
σ2 ≡ bb0 + δ2, (13)

where b is a N×K matrix, δ is a N×N diagonal matrix, and, in large markets,
K ¿ N . With the parametrization (13), the EP problem (8) becomes¡

µ, b, δ
¢
≡ argmin

µ,b,δ∈V
E
¡
µ, bb0 + δ2|µ, σ2

¢
. (14)

The normal EP optimization (14) presents palatable statistical and numerical
features.
From a statistical perspective, the "low rank + diagonal" parametrization

of the normal distribution is fully determined by a relatively small number
N (K + 2) of parameters θ ≡ (µ, b, δ), instead of the large number N (N + 3) /2
of parameters in the full-blown specification θ ≡ (µ,σ2). The structure imposed
on the correlations by the limited number of parameters substantially enhances
the statistical efficiency of the estimates in large dimensional markets.
From a numerical point of view, the parsimonious parametrization θ ≡

(µ, b, δ) is unconstrained, as the parameters can freely range in the space Θ ≡
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RN × RN×K × RN . Instead, in the full specification θ ≡ (µ,σ2) the matrix
σ2 is constrained to be symmetric and positive definite. Furthermore, we can
enhance the computational efficiency of the optimization by feeding the analyt-
ical expression of the gradient in the interior point algorithms. Indeed, in the
technical appendix, we obtain the following results

∂

∂µ
E
¡
µ, bb0 + δ2|µ, σ2

¢
=

¡
µ− µ

¢0
σ2−1 (15)

∂

∂δ
E
¡
µ, bb0 + δ2|µ, σ2

¢
= 2diag

¡
σ2−1 − σ2−1

¢
δ (16)

∂

∂bn,k
E
¡
µ, bb0 + δ2|µ, σ2

¢
= 2

PN
m=1(σ

2−1 − σ2−1)n,mbm,k, (17)

where all the high-dimensional inverses σ2−1 and σ2−1 are easily obtained ana-
lytically in terms of a low-cost, low-dimensional inverses as follows

σ2−1 = δ−2 − δ−2b
¡
b0δ−2b+ iK

¢−1
b0δ−2, (18)

where iK is K ×K identity matrix.
The parsimonious number of entries N (K + 2) in the parameters (µ, b, δ),

the fact that the parameters span the unconstrained set Θ ≡ RN×RN×K×RN ,
the analytical expression of the gradient (15)-(17) and the analytical inversion
(18) makes it possible to converge efficiently to the optimal solution

¡
µ, b, δ

¢
in

the optimization (14) by means of off-the-shelf interior point algorithms. We
proceed to show this in two case studies.

4 Case study: the equilibrium prior
In our first case study we use the normal EP framework with general views to
determine the equilibrium distribution that lies at the foundation of the portfolio
construction approach in Black and Litterman (1990).
Under some assumptions on the market distribution and the preferences of

the investors, the capital asset pricing model purports that the market capital-
ization portfolio wMC is linked to the distribution of the market returns by the
identity

E {R}− γCov {R}wMC ≡ 0, (19)

where γ > 0 is a risk aversion parameter.
For portfolio construction purposes, the condition (19) guarantees that, in

the absence of specific views, a mean-variance optimization yields the portfo-
lio wMC . However, the condition (19) is not satisfied empirically by sample
estimates of the expectations and the covariances.
To enforce (19), Black and Litterman (1990) propose a two-step approach.

First, a covariance matrix Cov {R} is fitted to empirical observations by means
of standard techniques such as exponential smoothing or maximum likelihood;
then the equilibrium constraint (19) is solved for the expectations E {R}. This
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generates the so-called "implied expected returns". The implied expected re-
turns are consistent with equilibrium, but can differ substantially from the true
expected values, because no attempt is made to fit jointly covariances and ex-
pectations to the observed data.
To address this issue, Levy and Roll (2010), propose to fit a correlation ma-

trix bρ2 to empirical observations and then ensure that the equilibrium constraint
(19) is satisfied by modifying both the expectations and the variances. More
precisely, the authors introduce a distance D between the sample estimates of
the expectations and the standard deviations

¡
µ, σ

¢
and the yet to be defined

parameters (µ, σ) as follows

D
¡
µ, σ;µ, σ

¢
≡ (α

°°°°µ− µ

σ

°°°°2 + (1− α)

°°°°σ − σ

σ

°°°°2) 12 , (20)

where k·k denotes the standard Euclidean norm, the division is meant entry-by-
entry, and the authors set α ≡ 0.75. Then the authors minimize D with respect
to (µ, σ)

(µ, σ) ≡ argmin
µ,σ∈V

D
¡
µ, σ;µ, σ

¢
, (21)

where the equilibrium constraint (19) now reads1

V : µ− γ diag (σ) bρ2 diag (σ)wMC ≡ 0. (22)

Unlike in Black and Litterman (1990), the parameters (µ, σ) are statistically
indistinguishable from the sample estimates

¡
µ, σ

¢
and thus equally acceptable

from an estimation perspective. Furthermore, they give rise to better trading
strategies, see Ni, Malevergne, Sornette, and Woehrmann (2011).
To further improve the estimation of the equilibrium distribution we can

use our normal EP framework. Accordingly, we replace the Euclidean distance
minimization (21) with the relative entropy minimization (14), which we report
here ¡

µ, b, δ
¢
≡ argmin

µ,b,δ∈V
E
¡
µ, bb0 + δ2|µ, bb0 + δ2

¢
, (23)

where the equilibrium constraint (19) now becomes the following view

V : µ− γ
¡
bb0 + δ2

¢
wMC ≡ 0. (24)

The EP equilibrium estimates µ and σ2 ≡ bb
0
+ δ

2
improve on the previ-

ous approaches in three directions. First, EP replaces the somewhat arbitrary
Euclidean distance between sample and equilibrium estimates with relative en-
tropy, a statistically sound measure of discrepancy between distributions. Sec-
ond, EP simultaneously adjusts not only expectations and variances, but also
correlations. Third, the parsimonious "low rank + diagonal" specification (13)
improves the statistical efficiency of the estimates. As a result, the equilibrium
parameters

¡
µ, b, δ

¢
become less noisy and thus perform better out of sample.

1For simplicity, we drop an additional parameter that enforces beta-neutrality. That para-
meter, along with other constraints mentioned by the authors, can easily be encompassed in
our approach.
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Figure 1: Equilibrium expected returns: Black-Litterman vs. Entropy Pooling

To illustrate the normal EP approach (23)-(24) in practice, we consider a
market of N ≡ 30 equities in the Dow Jones Index. For those equities, we
consider the time series of the most recent two year of daily returns. Then
we fit the empirical prior parameter µ as the sample mean, and σ2 ≡ bb0 + δ2

by factor analysis decomposition of the sample covariance with K ≡ 3 hidden
factors. Then we determine the equilibrium parameters

¡
µ, b, δ

¢
. Please refer

to the code available at at www.symmys.com/node/160 for more details.
In Figure 1 we report the capitalization weights wMC , the sample means µ,

the implied expected returns a-la Black-Litterman µBL ≡ γσ2wMC , and the EP
equilibrium expected returns µ. As expected, the EP parameters µ are more in
line with the sample parameters µ than the Black-Litterman parameters µBL.
To illustrate the effect of EP on correlations, in Figure 2, we display the

location-dispersion ellipsoids that represent geometrically expectations and co-
variances, see Meucci (2005). We display the ellipsoids for the sample distribu-
tion

¡
µ, σ2

¢
, the Black-Litterman equilibrium (µBL, σ

2) and the EP equilibrium¡
µ, σ2

¢
of three stocks.

Notice how the center (expectation), dispersion (variance) and orientation
(correlation) of the ellipsoids are modified by the EP approach. Not only the
locations are impacted by the views on the tangent portfolio, but the overall
covariance structure is modified as well. Again, as expected, the EP parameters
are more in line with the sample parameters than the Black-Litterman parame-
ters. This illustrates that a constant correlation structure as in Levy and Roll
(2010) is restrictive.
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Figure 2: Equilibrium expected returns: Black-Litterman vs. Entropy Pooling

5 Case study: portfolios from sorts
The second case study addresses portfolio construction with predictive ranking
signals. The most standard approach to this problem, popularized by Grinold
and Kahn (1999), proceeds as follows.
First, an observable characteristic of a set of N securities, say for instance

the price/earnings ratio for stocks, is believed to have predictive power. Then,
the N securities are sorted according to the value of the given characteristic.
In our example, the stock n = 1 has the lowest price/earnings, the stock n = 2
has the second-lowest price/earnings, and so on, until the stock n = N has the
highest price/earnings ratio. Next, an assumption is made that the expected
returns of the securities are proportional to their relative ranking

E {Rn} ≡ σ̂n (n−N/2) , n = 1, . . . , N , (25)

where σ̂n is an estimate of the standard deviation of the n-th return; other spec-
ifications, where the expectation is set as proportional to the current historical
z-score, are also common, but we do not explore them here for simplicity. Next,
the correlation of the securities returns is estimated with standard techniques.
Finally, an optimal portfolio is constructed by mean-variance optimization.
The most sensitive step in the above process is setting the expectations

proportional to the ranking as in (25). The rationale behind this choice is that,
if the signal is truly predictive, a lower ranking should give rise to a lower return

E {Rn} ≤ E {Rn+1} , n = 1, . . . , N − 1. (26)
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However, the proportional assumption (25) is much more invasive than the
rationale (26).
To address this issue, Almgren and Chriss (2006) set the vector of expected

returns as the "centroid", i.e. the average among all possible expected returns
consistent with the ranking (26). However, the centroid does not depend on
the observed empirical data: two completely different sets of securities with the
same relative rankings give rise to the same expected returns.
EP allows us to process only the information available from the ranking

signal (26) without imposing the spurious proportional structure (25), but at
the same time keeping into full account the empirical data. To do so, we start by
fitting a prior estimate for the expectations µ and the covariances σ2 ≡ bb0 + δ2

to the data available. Then we compute the posterior parameters by minimizing
the relative entropy between the prior and the posterior as in (14), which we
report here ¡

µ, b, δ
¢
≡ argmin

µ,b,δ∈V
E
¡
µ, bb0 + δ2|µ, bb0 + δ2

¢
. (27)

In this case, the views are the ranking inequalities (26), which read as follows
on the parameters

V : µn ≤ µn+1, n = 1, . . . ,N − 1. (28)

The posterior distribution defined by
¡
µ, b, δ

¢
can then be used to optimize the

portfolio.
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Figure 3: Expected returns for portfolio from sorts

To illustrate how EP applies to building portfolios from sorts, we consider
again a market of N ≡ 30 equities in the Dow Jones Index. The prior is
constructed from the available sample as in the previous case study. In Figure
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3 we report the sample mean returns µ; the expected returns stemming from
the standard approach (25); the rescaled centroid; and the EP-ranked expected
returns (27)-(28), with the additional long-short constraint

PN
n=1 µn ≡ 0 to

better compare the results with the other cases.
As expected, the EP results respect the desired ranking, but at the same

time remain as close as possible to the empirical observations summarized by
the sample means. Interestingly, though not unexpectedly, the EP expected
returns appear to coincide with the centroid when the information from the
empirical data is disregarded. For more details, please refer to the code available
at www.symmys.com/node/160.
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A Gradient of relative entropy between normal
distributions

Consider the relative entropy between two multivariate normal distributions

2E(µ, σ2 |µ, σ2) = tr(σ2σ2−1)− ln |σ2σ2−1|+ (µ− µ)0σ2−1(µ− µ)−N . (29)

Recall the following differentials with respect to the posterior

d ln
¯̄
σ2σ2−1

¯̄
= tr

¡
σ2−1dσ2

¢
(30)

d tr
¡
σ2σ2−1

¢
= tr

¡
σ2−1dσ2

¢
(31)

d
³¡
µ− µ

¢0
σ2−1

¡
µ− µ

¢´
= 2

¡
µ− µ

¢0
σ2−1dµ. (32)

Then
dE = 1

2
tr
¡
(σ2−1 − σ2−1)dσ2

¢
+
¡
µ− µ

¢0
σ2−1dµ. (33)

We can impose
σ2 ≡ bb0 + δ2. (34)

Then the inversion is fast

σ2−1 = δ−2 − δ−2b
¡
b0δ−2b+ iK

¢−1
b0δ−2 (35)

and the differential reads

dσ2 = (db)b0 + b(db0) + 2δdδ. (36)

Therefore, we can minimize the relative entropy under linear constraints on σ2

and µ with steepest ascent.
To compute the gradient, we write the first term ("f.t.") in (33) more ex-

plicitly as

f.t. = tr
¡
(σ2−1 − σ2−1)dσ2

¢
=
P

n,m(σ
2−1 − σ2−1)n,mdσ2n,m

=
P

n,m(σ
2−1 − σ2−1)n,m (

P
k bm,kdbn,k +

P
k bn,kdbm,k + 2∆n.mδmdδm)

=
P

u,m,k(σ
2−1 − σ2−1)u,mbm,kdbu,k (37)

+
P

n,u,k(σ
2−1 − σ2−1)n,ubn,kdbu,k

+ 2
P

n(σ
2−1 − σ2−1)n,nδndδn

= 2
P

n,u,k(σ
2−1 − σ2−1)u,nbn,kdbu,k + 2

P
n(σ

2−1 − σ2−1)n,nδndδn

=
P

u,k qu,kdbu,k +
P

n pndδn,

where

qn,k ≡ 2
P

m(σ
2−1 − σ2−1)n,mbm,k (38)

pn ≡ 2(σ2−1 − σ2−1)n,nδn. (39)
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