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Abstract:  
This paper focusses on the theoretical and computational framework in order to estimate 
the impact of economic growth or that of the change in inequality on poverty. During the 
last few years, there was a growing interest to perform such estimations and to 
anticipate the implication of some strategic policies, that can be adopted to meet the 
Millennium Development Goal (MDG, henceforth), that is to cut poverty by half. As is 
illustrated in this paper, estimated poverty changes may be less precise or even wrong. 
Precisely, this bad estimation occurs when the distributive changes are non-marginal, 
whereas the used approach is based on the assumption of marginal changes. In an 
other case, and where the estimation is implicitly based on a parameterized model of the 
income distribution, results may be less precise when the predicted distribution cannot 
reproduce perfectly that derived with the sample. In this study, by using some popular 
methods, we have used some household surveys of the African countries, as well as, 
fictive data to show the error size that can occur. Further, we propose a new numerical 
method to allow to estimate accurately the impact of distributive changes on poverty. 
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1 Introduction

Algebraically, one can use the tangent or the first derivative of a given func-
tion to assess the impact of marginal change of the independent variable on the
dependant variable. Kakwani (1993) has developed the theoretical framework to
assess the impact of a marginal change in average income -growth- or in inequality
-redistribution- on poverty. This work was followed by others to show the impact
of other patterns of change on poverty1. The main assumption in these works
was the marginal nature of the simulated distributive change. However, empirical
works do not give much attention to this assumption and the developed methods
were applied even if the simulated changes are not marginal.

The literature looking at the nexus between growth, redistribution and poverty
distinguishes between two forms of explorations. The first one, is retrospective
and aims to show the contribution of growth and redistribution to the observed
change in poverty between two periods2. The second form is prospective and con-
cerns the projection of poverty by using the most updated distribution of income
and by simulating a predefined scheme of change in the distribution of incomes.

There are two main estimates of interest for the prospectiveform. The first
concerns simply the estimation of change in poverty impliedby the change in the
income distribution. This impact is also called the semi-elasticity of poverty with
respect to a given component of the distributive change, like growth. The other
estimate of interest is the elasticity of poverty with respect to a given compo-
nent. While the first estimate focusses on the absolute levelof change in poverty,
the second shows the relative change according to the initial level of poverty.
Klasen and Misselhorn (2008) discussed the advantage of estimating the semi-
elasticity. Indeed, the semi-elasticity is a straightforward indicator to anticipate
poverty reduction across regions and on the global level, and this is critical for
assessing the progress towards meeting the first MillenniumDevelopment Goal.
Usually, the MDG targets higher -non marginal- reductions in poverty, which re-
quires larger increases in long-term economic growth. Thisjustifies also the im-
portance to look for an accurate method to estimate the expected poverty changes
with the simulated non marginal distributive changes.

In this paper, our main objective is to recall the different methods used to
assess the projected change in poverty and their performance. Obviously, even if
the performance of these methods is discussed with the semi-elasticity estimator,

1See for this, Essama-Nssah and Lambert (forthcoming), Son (2006) and
Araar and Duclos (2010)

2See for instance Datt and Ravallion (1992), Duclos and Araar(2006) and Shorrocks (1999).
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these results are sufficient to develop a clear idea about theperformance of these
methods for the estimation of elasticity3.

The rest of the paper is organized as follow. In the next section, we will present
the theoretical framework for assessing the expected poverty changes with growth
or redistribution. In this section, we propose also a new numerical approach,
which is based mainly on the estimation of the density of distribution of incomes
with the corrected boundary Gaussian Kernel estimator. In Section 3, we will
illustrate the different methods by using real household surveys and fictive data.
Finally, some concluding remarks are reported in Section 4.

2 Anticipated changes in poverty: the theoretical
framework

Formally, for the class of additive poverty indices, if we denote the poverty
index byP (z), the change in poverty is defined as follows:

∆P (z) =

∫ z

0

π(z, y)∆f(y)dy (1)

whereπ(z, y) denotes the contribution to the total poverty of the individuals with
income equals toy . For instance, for the FGT index, this contribution is equalto
(1 − y/z)α+ andx+ = max(x, 0). Let M(γs) be the map of change in incomes
with the schemes -growth or redistribution-. We assume that the parameterγs
expresses the intensity of change4. The semi-elasticity of poverty with respect to
s will be defined as follows:

κs =
∂P

∂γs
(2)

whereas the elasticity of poverty with respect tos is given by:

ǫs =
κγs
P

(3)

The total impact on poverty implied by distributive change with the mapM(γs)
is:

∆P (z) = κγsdγs (4)

3Note that the elasticity is simply the estimated semi-elasticity normalized by the initial level
of poverty.

4For instance, in the case of growth, we have thatM(γgrowth) : yi → yi(1 + γgrowth).
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2.1 The counterfactual approach

At this stage, we present the estimation methods by beginning with the coun-
terfactual approach. This approach is based on the estimation of the difference
between the poverty under the counterfactual distributionand that of the initial
distribution. For instance, if our aim is to estimate the change in poverty gener-
ated by 1% of economic growth, we first begin by constructing the counterfactual
distribution. Formally, if we denote the level of economic growth byg, the coun-
terfactual incomeyc can be defined as follows:

ycg = (1 + g)y (5)

What is the pattern of change in the distribution in order to simulate the increase in
inequality? If inequality is measured by the Gini index, an increase in inequality
by 1%, say, can be done in a very large number of ways, each of them involving
different transformations of the original income distribution.

The different maps of change in inequality will generate different impacts on
poverty, depending on the precise nature of the distributive change. A general
type of distributive change that can be handled nicely from an analytical perspec-
tive spreads all incomes away from the mean by a proportionalfactorλ. It corre-
sponds, roughly speaking, to an increasedbi-polarization of incomes away from
an unchanged mean5. Such bi-polarization is equivalent to adding(λ− 1)(y− µ)
to each income. This implies also that the counterfactual distribution simulating
the redistribution effect is:

ycr = y + (λ− 1) (y − µ)
︸ ︷︷ ︸

increased bipolarization

. (6)

Note that this bi-polarization does not affect average income. Further, one can
easily prove that the proportional increase in Gini index with this scheme is equal
to (λ− 1)6.

Now, if one focusses on the precision of the counterfactual approach, we can
expect that, with the availability of large household surveys, the counterfactual ap-
proach will work better with both marginal and the non marginal changes. How-
ever, there is the exception for the estimation of the impactof change on headcount

5Here we recall that the derived elasticity of poverty with respect to inequality, proposed by
Kakwani (1993) have this scheme of change. For more details,see also Wolfson (1994) and
Duclos andÉchevin (2005).

6See for this Duclos and Araar (2006).
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index. Indeed, when the change is marginal, individuals that may escape poverty
are those whose income is closest to the poverty line. Formally, their proportion
is equal to the level of density function at poverty line. When we use the house-
hold surveys, we cannot observe directly this population group since the sample
may not contain the observations with incomes exactly equalto the poverty line.
In such case, and by assuming the continuity in the distribution of incomes at
population level, one can estimate the density function, byusing for instance the
Kernel estimator, and then, estimate the impact on poverty.In general this method
will give more accurate results to be inferred to the whole population, as we can
discover later.

2.2 Marginal changes and analytical approach

Under the assumption of marginal changes in average income or inequality,
the analytical -algebraical- approach may be used to assessthe impact of these
changes on poverty. These developments are useful to anticipate the impact of
different potential governmental reforms on poverty or inequality. For instance, as
already indicated, the estimated semi-elasticity of poverty with respect to income
growth can serve to assess the impact of an expected economicgrowth on poverty.
Further, this semi-elasticity can also be used to estimate the required growth to
achieve a given level of reduction in poverty. When the FGT poverty index is
used to assess poverty7 and when growth refers to the marginal change in average
income, the overall growth semi-elasticity (κg) of poverty is given by:

κg =

{
−zf(z) if α = 0
α [P (z;α)− P (z;α− 1)] if α ≥ 1

(7)

wherez is the poverty line,f(z) is the density function at income level equal toz.
The overall inequality semi-elasticity (κr) of poverty when growth is nil is given
by:

κr =

{
(µ− z)f(z) if α = 0
α [P (z, α) + (µ/z − 1)P (z;α− 1)] if α ≥ 1

(8)

As shown later, this analytical approach gives more accurate results when the
simulated growth or redistribution is small.

7See Foster, Greer, and Thorbecke (1984).
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2.3 The parameterized approach

Another way to estimate the expected changes in poverty is bymodeling the
distribution of income. Subsequently, one can derive the intrinsic formulas to de-
fine the expected change in poverty resulted from growth or redistribution. The lit-
erature proposes different functional forms to model the distribution of incomes8.
Among them, the popular Log-Normal distribution function.Bourguignon (2002)
shows that when income distribution follows a Log-Normal distribution with an
averageµ and a standard deviationσ, the headcount can be defined as:

P (z;α = 0) = Φ

[(
log(z/µ)

σ

)

+
σ

2

]

(9)

whereΦ denotes the cumulative normal distribution function. For the poverty
headcount index, its growth semi-elasticity is defined as follows:

κg =
1

σ
φ

[(
log(z/µ)

σ

)

+
σ

2

]

(10)

whereφ(.) denotes the normal density function. For the poverty gap andusing the
formulasP (z;α = 1) = (1 − µp/z)P (z;α = 0), whereµp denotes the average
income within the poor group, we find that:

κg = −µp

z
Φ

[(
log(z/µ)

σ

)

+
σ

2

]

(11)

As showed by Aitchison and Brown (1957), for the Log-Normal distribution, the
Gini index is defined as follows:

G = 2Φ
(√

σ/2
)

− 1 (12)

When it is assumed that the change in redistribution does notalter the Log-Normal
form of the distribution (changing simply the level of parameterσ), the semi-
elasticity due to inequality changes is defined as follows:

κσ = φ

[(
log(z/µ)

σ

)

+
σ

2

] [
1

2
−

(
log(z/µ)

σ2

)]

(13)

Of course, one can use the derivation in chain and assess the semi-elasticity of
poverty with respect to the Gini index when the change in inequality is controlled
by the parameterσ9.

8See for instance Chotikapanich (2008).
9Here we haveσ =

√
2Φ−1 ((G+ 1)/2).
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Is the parameterized approach better than the analytical one? As we will dis-
cover later in our application, even if the predicted distribution is slightly different
from the observed one, the estimated impact of distributivechanges on poverty
may contain a non neglected error term.

2.4 The numerical approach

The numerical approach, proposed in this paper, is based mainly on the estima-
tion of the proxy of the true density function of income distribution. Precisely, for
this end, we propose the use of the Gaussian Kernel estimator. Note that the usual
Kernel estimator is a straightforward method for estimating the density function
without specifying beforehand its form10. For more precision in the estimation of
this density, we propose to correct the bias of bounded distribution.11 Formally,
the expected change in headcount, resulted from economic growth, is equal to:

∆P (z;α = 0) = −
∫ z

z/(g+1)

f(y)dy (14)

For the numerical computation, one can estimate the kernel density function
within the income range[0, z]12, then can use the trapezoidal rule for the numerical
integration.

How about the impact of growth on poverty gap? This impact maybe defined
as follows:

∆P (z;α = 1) = −
∫ z

1+g

0

(gy/z)f(y)dy

︸ ︷︷ ︸

C1

−
∫ z

z

1+g

(1− y/z)f(y)dy

︸ ︷︷ ︸

C2

(15)

The componentC1 indicates the reduction in poverty gap attributed to the im-
provement in wellbeing of those that continue to be poor. ThecomponentC2
indicates the reduction in poverty gap attributed to those that escape from poverty
after the economic growth. When the growthg converges to zero, the component
C2 may be neglected. However, neglecting this part when growthis non marginal
may induce a non neglected error. Here also, we can use the numerical integration
to estimate the two componentsC1 andC2, and then, we can sum them in order

10See for instance Silverman (1986) and Duclos and Araar (2006).
11For more details, see the Appendix 1.
12For instance,y ∈ {0, a, 2a, ..., na = z} andn = 1000.
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to assess the total impact of growth on poverty. Using the same approach, one can
show that the impact of growth on poverty severity is as follows:

∆P (z;α = 2) = −
∫ z

1+g

0

(
gy(gy − 2(z − y))/z2

)
f(y)dy

︸ ︷︷ ︸

C1

−
∫ z

z

1+g

(1− y/z)2f(y)dy

︸ ︷︷ ︸

C2
(16)

For the increase in inequality with the bi-polarization scheme and whenz < µ,
the impact on headcount is:

∆P (z;α = 0) =

∫ (z+(λ−1)µ)/λ

z

f(y)dy. (17)

Thus, in this case, the headcount will increase. Whenz > µ, we will observe a
decrease in headcount and the impact is given by:

∆P (z;α = 0) =

∫ z

(z+(λ−1)µ)/λ

f(y)dy. (18)

As discussed also by Araar and Duclos (2010), the sign of the impact will depend
on the difference between the poverty line (z) and the average income (µ). For the
poverty gap and whenz < µ, the impact on poverty will take the following form:

∆P (z;α = 1) =

∫ z

0

(λ− 1)((µ− y)/z)f(y)dy

︸ ︷︷ ︸

C1

(19)

+

∫ (z+(λ−1)µ)/λ

z

[((z − µ) + λ(µ− y)) /z)] f(y)dy

︸ ︷︷ ︸

C2

In this case, all individuals of the poor group will experience an increase in their
poverty depth (componentC1). In addition, another part of the non poor group
will join the poor group (componentC2). The absolute depth of an individual
within this group is equal to(λ − 1)(µ − y) corrected by her/his initial surplus
(−(y−z)). In the case wherez > µ, the impact on poverty will take the following
form:
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∆P (z;α = 1) =

∫ µ

0

(λ− 1)((µ− y)/z)f(y)dy

︸ ︷︷ ︸

C1

(20)

−
∫ (z+(λ−1)µ)/λ

µ

[((λ− 1)(y − µ)) /z)] f(y)dy

︸ ︷︷ ︸

C2

−
∫ z

(z+(λ−1)µ)/λ

(1− y/z)f(y)dy

︸ ︷︷ ︸

C3

Here we find three main components. The first concerns the group with income
lower than the average and for which the poverty depth increases. The second
concerns the group whose income is higher than of the averageincome, but the
improvement in their incomes, due to the distributive change, is not sufficient to
enable them to escape from poverty. The third component concerns those that can
escape from poverty after the distributive change.

With an increase in inequality based on the bi-polarizationscheme and when
z < µ, the impact on poverty severity is as follow:

∆P (z;α = 2) =
1

z2

∫ z

0

[
(z − (λy − (λ− 1)µ))2 − (z − y)2

]
f(y)dy

︸ ︷︷ ︸

C1

+

∫ (z+(λ−1)µ)/λ

z

[
(1− y/z)2

]
f(y)dy

︸ ︷︷ ︸

C2

(21)

Whenz > µ, the impact on poverty severity is as follow:

∆P (z;α = 2) =
1

z2

∫ µ

0

[
(z − (λy − (λ− 1)µ))2 − (z − y)2

]
f(y)dy

︸ ︷︷ ︸

C1

+
1

z2

∫ (z+(λ−1)µ)/λ

µ

[
(z − (λy − (λ− 1)µ))2 − (z − y)2

]
f(y)dy

︸ ︷︷ ︸

C2

−
∫ z

(z+(λ−1)µ)/λ

[
(1− y/z)2

]
f(y)dy

︸ ︷︷ ︸

C3

(22)
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3 Application

We begin by illustrating the expected impacts of distributive changes on
poverty by using two fictive distributions. We denote the first distribution byA
and the second byB. These distributions were constructed in order to follow the
Log-Normal form and each contains 10000 observations. Means ofA andB are
the same and equal to one. The standard deviation ofA is one while that ofB is
two: this generates more inequality in the second distribution13. In Figure 1, we
show the link between the poverty gap and the economic growth(proportion of
change in average income). In this first application, we use the counterfactual ap-
proach. For instance, to estimate the expected poverty gap when economic growth
is 20 %, we use the initial income distribution multiplied by1.2. In Figure 2, we
show the proportional change in poverty gap according to theeconomic growth. It
is evident that the decrease in poverty is amplified when inequality is low, which
is the case for the distributionA. As reported above, with marginal changes in

Figure 1: Poverty gap and economic
growth
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Figure 2: Proportional change in
poverty according to growth
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average income, one can use the analytical approach (poverty semi-elasticity with
respect to growth) instead of the counterfactual approach,used in Figures 1 and 2.
However, how large is the error size when growth began non marginal? To show
this clearly, we present in Figure 3 the estimated proportional change in poverty

13For more details, see the Appendix 2.
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Figure 3: The proportional change in
poverty with the analytical and coun-

terfactual approaches
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Figure 4: The estimated error in the
proportional change in poverty with

the analytical approach
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gap with with the counterfactual and the analytical approaches for distributionA.
Starting from this figure, one can remark that, for small levels of growth, the two
approaches will practically give similar results. However, when growth is high
(20 % for instance), the estimates diverge. As shown also in Figure 4, with an
expected growth of 20%, the error is approximately 20%. In other words, if one
uses the Kakwani (1993) approach to estimate the impact of targeted economic
growth as by the first millennium development goal, the errorof estimation will
be high and the counterfactual approach with non marginal changes will give more
accurate results. Now, we focus on the change in poverty implied by an expected
increase in inequality. As shown in Figures 5 and 6, the analytical approach tends
to underestimate the expected increase in poverty. For instance, when the increase
in inequality is 20% the underestimation is about 7% with thefictive distribution
A. At this stage, let us focussing on the implication of using the parameterized
models. To this end, we use the national household surveys ofNigeria 2004 and
Burkina Faso 1994. For each of these two samples, we assume that per capita
expenditures follow the Log Normal distribution. The first exploration consists
in checking visually the pertinence of this assumption by plotting the corrected
boundary kernel density distribution and the predicted density with the Log Nor-
mal model.

As shown in Figure 7, the distribution of per capita expenditures in Nigeria of
2004 is close to that of the Log Normal. Thus, one can expect that the estimated
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impact of growth or redistribution on poverty will contain fewer errors with the
parameterized approach. However, this conclusion is not true in all cases. For
instance, in Figure 8, with the Burkina’s 1994 distribution, the predicted distribu-
tion with the Log-Normal model is far from the true distribution; this is true in
different parts of the distribution.

Figure 5: The proportional change in
poverty gap with the analytical and

counterfactual approaches
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Figure 6: The estimated error in the
proportional change in poverty with

the analytical approach
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Before estimating the impact of growth or redistribution onpoverty, let us fo-
cussing simply on the estimation of the FGT index. In addition to the counting
approach that uses the discrete data of the sample, one can follow the parameter-
ized approach or the numerical approach. In Figure 9 we estimate the headcount
according to the poverty line by using different approaches. The first remark is
about the perfect concordance of the true estimates with thenumerical approach.
As expected, the parameterized model is less flexible and fails to reproduce the
true distribution, and thus, the accurate results. With theofficial poverty line in
1994 (41099 F CFA), when we estimate the headcount with the parameterized ap-
proach, the generated error is about 20%. Let us continue with the Burkina Faso
survey to estimate the impact of a potential income growth onpoverty. To this
end, we use the different methods, presented above, in orderto show how well
each of them performs. These methods are:

A Counterfactual approach: We estimate the change in poverty gap after mul-
tiplying the vector income -per capita expenditures- by(1 + g), whereg

12



Figure 7: Estimated density function
of per capita expenditures

Nigeria (2004)
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Figure 8: Estimated density function
of per capita expenditures

Burkina Faso (1994)
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Figure 9: Estimated headcount with
the parameterized and discrete ap-

proaches:Burkina Faso (1994)
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Figure 10: The estimated error in the
proportional change in poverty with

the parameterized approach
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denotes the growth.

B Analytical approach: As indicated in section 2.2, with the analytical ap-
proach, the impact of growth on poverty gap equals to[P (z;α = 1) −
P (z;α = 0)]g. We recall here that, for the growth component, this ap-
proach was proposed by Kakwani (1993).

C Parameterized approach: Usually, in empirical applications, this method
implies an impact equal to:

∆P (z;α = 1) = −(µp/z)P (z;α = 0) (23)

where µp denotes the average income of poor group. The headcount
(P (z;α = 0)) is estimated by following Bourguignon (2002)’s parameter-
ized approach with the assumption of Log-normal distribution of incomes.

D Numerical approach: First, we estimate the third order corrected boundary
Gaussian Kernel estimator. Then, we integrate numericallythe impact as
defined by equation (15).

The results of estimations with the four approaches are reported in Figure 11.
Based on this, the main conclusions that one can draw are the following:

• The numerical approach gives more precise results for the marginal and
non-marginal distributive changes.

• The analytical approach gives better results when the distributive changes
are small. One must be prudent for the application of this approach when
the changes are not marginal.

• Based on what was proposed by Bourguignon (2002), we fail in some cases
to estimate the accurate changes in poverty because of the limitation to
model the income distribution.

At this stage, let us exploring the impact of changes in inequality on poverty.
To this end, we continue to use the Burkina’s data and we assume that the increase
in inequality modeled by the increase in bi-polarization, as defined by equation
(6). As shown in Figure 12, while the analytical approach contains a non neglected
error with the non-marginal changes, the numerical approach performs well and
gives more accurate results.

Note that for the estimation with the different approaches,a set of Stata mod-
ules are prepared for users. For more details, see the Appendix 3.
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Figure 11: Estimated impact of
growth on poverty gap: Burkina

Faso (1994)
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Figure 12: Estimated impact of in-
crease in Gini inequality on poverty

gap:Burkina Faso (1994)
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4 Conclusion and recommendations

During the last decades, there was an increasing preoccupation within the in-
ternational community towards the improvement of social wellbeing. Even if the
targeted objectives of the MDGs are not likely, for most of the cases, to be reached
by 2015, this international commitment is very benefic to promote the synergy of
incitation for stakeholders in general. This synergy constitutes also the main fac-
tor inciting national governments to improve the wellbeingof the most deprived
groups.

To assess the impact of some potential governmental programs on poverty, we
need to use the most updated and accurate methods. In this paper, we recall the
methods that were intensively used in empirical works. Obviously, more precise
estimations are necessary to have a clear judgment about thesocial efficiency of
different potential reforms and to assess their impact on poverty.

Amongst the objectives of this paper is to show the limitations of some meth-
ods used to estimate the impact of distributive changes on poverty, and where
these changes result from growth or redistribution -inequality-. Also, we propose
a new approach based on the numerical estimation of the impact. In summary, the
main conclusions found in this paper are:

• With the non-marginal distributive changes, the use of the analytical ap-
proach will induce a non neglected error in our estimates. This can be
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explained by the non linear link between poverty indices andcomponents
controlling for the change in distribution, like growth.

• The parameterized approach, proposed by Bourguignon (2002), will in gen-
eral generates a non neglected error term in the estimated impact. This is
especially the case when the predicted distribution is different from the ob-
served one.

• The numerical approach, proposed in this paper, gives accurate results for
the two forms of change (marginal and non-marginal). This numerical ap-
proach is promising in the sense that it can be extended to study other topics
of the distributive analysis.
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Appendix 1 The corrected boundary Gaussian Ker-
nel estimator

The Gaussian kernel estimator of a density functionf(x) is defined by:

f̂(x) =

∑

iwiKi(x)
n∑

i=1

wi

(A.1)

where

Ki(x) =
1

h
√
2π

exp
(
−0.5 λi(x)

2
)

and λi(x) =
x− xi
h

(A.2)

whereh is a bandwidth that acts as a “smoothing” parameter. A problem oc-
curs with kernel estimation when a variable of interest is bounded. It may be
for instance that consumption is bounded between two values, a minimum and a
maximum, and that we wish to estimate its density “close” to these two bounds. If
the true value of the density at these two bounds is positive,usual kernel estima-
tion of the density close to these two bounds will be biased. One way to alleviate
these problems is to use a smooth “corrected” Kernel estimator, following a pa-
per by Bearse and Rilstone (2007) (See also Jones (1993)). A boundary-corrected
Kernel density estimator can then be written as:

f̂(x) =

∑

i wiK
∗

i (x)Ki(x)
n∑

i=1

wi

(A.3)

The scalarK∗

i (x) is defined as:

K∗

i (x) = ψ(x)′ P (λi(x)) (A.4)

P (λ) =

(

1 λ λ2

2!
· · · λs−1

(s− 1)!

)

(A.5)

ψ(x) =M−1 l′s =

(∫ B

A

K(λ)P (λ)P (λ)′dλ

)−1

ls (A.6)
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A =
x−max

h
, B =

x−min

h
, l′s = (1, 0, 0 · · · , 0)

min is the minimum bound, andmax is the maximum one. This correction will
remove the boundary bias to orderhs.

Appendix 2 The Log-Normal income distribution

If x ∼ N(µx, σ
2
x), they = ex ∼ LN(µy, σ

2
y), and where:

• µy = eµx+0.5σ2
x

• σ2
y = e2µx+σ2

x(eσ
2
x − 1)

Conversely,µx andσ2
x can be found fromµy andσ2

y as follows:

• µx = 2ln(µy)− 0.5ln(σ2
y + µ2

y)

• σ2
x = −2ln(µy) + ln(σ2

y + µ2
y)

The Log-Normal distribution has the probability density function:

f(x, µy, σy) =
1

xσy
√
2π
exp

[

−(ln(x) − µy)
2

2σ2
y

]

(B.1)

The headcount poverty or the cumulative distribution function is given by:

H =
1

2
+

1

2
erf

(
ln(z − µy)

σy
√
2

)

(B.2)
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Appendix 3 Estimation of elasticity and semi-
elasticity with Stata

Two Stata modules (efgtgro andefgtine) are already programmed and can be
downloaded from internet.14 These two modules mainly enable the estimation
of elasticity and semi-elasticity of poverty with respect to growth or inequality,
and this, with the different approaches presented in this paper. For instance, to
produce the results of Figure 11, from the Stata command window, we have to
type the command line:db efgtgro, and then, we have to indicate the variables
of interest and to select the options, as shown in Figure 13. After clicking on the

Figure 13: The dialog box to estimate the elasticity of poverty with respect to
growth

button OK, the graph of Figure 11 is automatically generated(see the Figure 14).

14To install these two Stata modules, from the Stata command window, type the command:net
from http://dasp.ecn.ulaval.ca/efgtgi. Further, these two modules will be integrated of DASP 2.2
(see also the web page in DASP at:http://dasp.ecn.ulaval.ca).
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Figure 14: The reproduction of results of Figure 11
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15Note that, these two modules contain many other options. Theuser can consult the help for
more details on how to use these Stata modules.
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