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Abstract:  
I propose a new measure of credit risk, model implied credit spreads (MICS), which can 
be extracted from any structural credit risk model in which debt values are a function of 
asset risk and the payout ratio. I implement MICS assuming a barrier option framework 
nesting the Merton (1974) model of capital structure. MICS are the increase in the 
payout to creditors necessary to offset the impact of an increase in asset variance on the 
option value of debt. Endogenizing asset payouts, my measure (i) predicts higher credit 
risk for safe firms and lower credit risk for firms with high volatility and leverage than a 
standard distance to default (DD) measure and (ii) clearly outperforms the DD measure 
when used to predict corporate default or to explain variations in credit spreads. 
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1. Introduction

Recent research has reported de�ciencies of structural models employed for quantify-

ing credit risk. Eom et al. (2004) use �ve structural models for bond pricing and conclude

that these tend to underestimate spreads of safe bonds while overstating credit spreads

for bond issues of �rms with high asset volatility and leverage. Bharath and Shumway

(2008) construct a naïve bankruptcy predictor as an alternative to the classical Mer-

ton distance to default (DD) model which outperforms the original. They reason that

�if the predictive power of our naïve probability is comparable to that of [the original

model], then presumably a more carefully constructed probability that captures the same

information should have superior power.� Campbell et al. (2008) construct the current

state-of-the-art statistical model for bankruptcy prediction using simple market and ac-

counting variables. They demonstrate a substantial underperformance of Merton's DD

model relative to theirs in terms of Pseudo-R2s and conclude that summarizing default

estimates in a single predictor is not feasible.

Addressing these concerns about the ability of structural models to appropriately

capture credit risk, I propose a new risk-neutral default measure based on model implied

credit spreads. Model implied credit spreads are the increase in the payout to debtholders

necessary to o�set the impact of an increase in asset variance on the option values of

debt and equity. I implement the approach using a barrier option framework which nests

the simple Merton model of capital structure and compare properties and explanatory

power of default probabilities estimated based on model implied credit spreads (πMICS)

to those estimated using a standard DD measure (πDD−B). I do not attempt to innovate

on structural models itself but rather on the method used for extracting credit spreads
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and probabilities of default from existing models. The intuition underlying my approach

can be applied to any structural model in which debt and equity are regarded as one or

multiple options and valued as a function of asset risk and payout- ratio.

My approach has several advantages over a DD measure. First, πMICS is higher than

πDD−B for relatively safe �rms and lower for �rms with high leverage and volatility,

as requested by Eom et al. (2004). Second, its estimation endogenizes asset payouts

and thus incorporates the partial redistribution of asset value to creditors that occurs

via interest payments made before debt maturity. Third, πMICS clearly outperforms

πDD−B when used for predicting corporate default in an empirical setting.1 The MICS

approach thus is a promising alternative for estimating credit risk based on structural

default models.

The paper is organized as follows. Section 2 lays the theoretical foundation of this

study by presenting an option model of capital structure similar to those found in pre-

vious literature. Section 3 then explains the estimation of default probabilities. After

establishing an extended DD measure nesting the standard Merton DD measure in Sec-

tion 3.1, Section 3.2 introduces a new probability measure based on model implied credit

spreads by �rst providing the underlying intuition (Section 3.2.1) and then deriving a

numerical solution of the measure (Section 3.2.2). Section 4 presents results of a numeri-

cal sensitivity analysis, comparing properties of πMICS and πDD−B. Section 5 compares

the measures' ability to predict corporate default in an empirical setting and includes

various robustness checks. Section 6 concludes.

1The measure's outperformance when employed for explaining variations in credit default swap (CDS)
rates. However, results are not yet included in this version of the article.
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2. An Option Model of Capital Structure

Debt and equity can be viewed as options on �rm assets. In the simple Black-Scholes-

Merton (BSM) framework, shareholders own a call option on the value of the �rm while

debtholders hold a combination of a risk-free asset and a short put option on �rm value.

This is due to their characteristic payout pro�les. Shareholders pro�t from positive �rm

developments but have a limited liability. In contrast, bondholders can lose their invested

money but have limited upside potential. Given a positive development of the �rm, they

will simply receive the pre-agreed payo� at maturity.

Under an option model of capital structure with no taxes, �rm value V is the sum of

equity and debt valued as contingent claims:

V = Ê + D̂. (1)

Assuming a simple BSM model, equity and debt values can be computed as

Ê = C +∆E , (2)

and

D̂ = De−rT − P +∆D, (3)

LGD = 1− e(µ−δV )T × V

D

N (−d1(V,D))

N (−d2(V,D))
(4)

where C is the value of a European call option on �rm assets, ∆E the present value

of dividend payouts to shareholders, D the face value of debt, r the risk-free rate, T the
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time to debt maturity, −P the value of a short European put option on �rm assets and

∆D the present value of interest rate payments to debtholders.

As outlined by Brockman and Turtle (2003), the BSM framework ignores the path

dependency of equity and debt. Speci�cally, it assumes the �rm to continue operating

until the expiration of debt contracts, no matter how low �rm values are. In reality

however, equity and debt can be knocked out whenever asset values fall below a legal

barrier. Barrier option pricing allows to incorporate the path dependency of corporate

securities.

In an extended framework,

Ê = CDO + CDI +∆E , (5)

D̂ = De−rT − PDO − PDI +∆D, (6)

where DO and DI index down-and-out and down-and-in options which stop (start)

existing once a prede�ned barrier B has been hit and pay a rebate θ to the option holder

if the barrier is (is not) breached before maturity, respectively. Equations 5-6 fully nest

Equations 2-3 which represent the case of a zero barrier, as this barrier is never hit by

the log-normal process underlying the pricing framework.

If �rm assets are liquidated upon default, down-and-in options � which can be in-

terpreted as options to continue �rm operations after bankruptcy � are never exercised.

Additionally assuming that payouts to claimholders are made only if the barrier has not

yet been hit (as indicated by ⋆), Equations 5-6 reduce to

Ê = CDO +∆⋆
E (7)
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and

D̂ = De−rT − PDO +∆⋆
D. (8)

Throughout this study, I use the pricing formulae derived by Black and Scholes (1973),

Merton (1974), and Rubinstein and Reiner (1991). In the plain vanilla framework, the

values of equity and debt as European call and put options C and P are functions of the

�rm value V , the face value of debt D, �rm risk σV , the risk-free rate r, the time to debt

maturity T , and the combined payout ratio to debt and equity holders δV :

C = V e−δV TN (d1(V,D))−De−rTN
(
d1(V,D)− σV

√
T
)
, (9)

and

P = De−rTN
(
−d1(V,D) + σV

√
T
)
− V e−δV TN (−d1(V,D)) , (10)

where

d1(X1, X2) = ln

(
X1

X2

)
1

σV

√
T

+ ησV

√
T (11)

η = .5 +
r − δV
σ2
V

, (12)

N (·) denotes the function describing the standard normal cumulative probability density,

and

δV =
E

V
δE +

D

V
δD. (13)

E denotes the market value of equity, δE the dividend yield, and δD the debt payout

ratio.

In the barrier pricing framework, I additionally incorporate information about bond-
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holders' expected loss given default in the put option's rebate θ, as well as the bankruptcy

barrier B, which is assumed to be equal to or below the face value of debt. The values

of down-and-out call and put options equal

CDO = C − CDI∗ +Θ (14)

and

PDO = P − PDI∗ +Θ. (15)

CDI∗ and PDI∗ denote the values of a down-and-in call and put option with zero rebate

equal to

CDI∗ = V e−δV T

(
B

V

)2η

N
(
d1(B

2, V D)
)

−De−rT

(
B

V

)2η−2

N
(
d1(B

2, V D)− σV

√
T
) (16)

and

PDI∗ = V e−δV T

[(
B

V

)2η (
N(d1(B

2, V D))−N(d1(B, V ))
)
−N(−d1(V,B))

]

−De−rT

[(
B

V

)2η−2 [
N
(
d1(B

2, V D)− σV

√
T
)

− N
(
d1(B, V )− σV

√
T
)]

−N
(
−d1(V,B) + σV

√
T
)]

.

(17)

The present value of a down-and-out option's rebate is

Θ = θ

[(
B

V

)η−1+ξ

N (d2) +

(
B

V

)η−1−ξ

N
(
d2 − 2 ξσV

√
T
)]

, (18)
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with

ξ =
1

σ2
V

√
(r − δV − .5σ2

V )
2 + 2rσ2

V (19)

and

d2 = ln

(
B

V

)
1

σV

√
T

+ ξσV

√
T . (20)

When valuing debt and equity as barrier options, I set the call option's rebate θE to

zero, as shareholders' claim is worthless in the case of bankruptcy. While counterintuitive

at �rst, the put option's rebate equals debtholders' loss given default (LGD) in dollar

terms

θD = LGD ×D. (21)

As debtholders are assumed to hold a short put, they have to pay the rebate in case the

bankruptcy barrier is hit and at the same time continue to hold the risk-free asset. In

sum, their claim thus reduces to the amount recovered in default.

3. Estimating Probabilities of Default

3.1. Distance to Default Measures

The previously described option model of capital structure assumes �rm value to

follow a a geometric Brownian Motion:

dV

V
= (µ− δV) dt+ σVdW, (22)

where µ− δV denotes the process' drift rate and dW is a standard Wiener process.

Based on this assumption, the probability of default can be calculated as the probabil-
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ity that �rm value falls below a certain bankruptcy threshold at or before debt expiration.

Under the simple BSM model, a �rm's probability of default is the probability that �rm

value is below the face value of debt at expiration. It is thus a function of Merton's DD

measure, de�ned as the number of standard deviations by which assets exceed liabilities:

DD =

(
ln
(
V
D

)
+
(
µ− δV − .5σV

2
)
T
)

σV

√
T

. (23)

The probability of default is then de�ned as

πDD = N (−DD) .2 (24)

Accounting for the path dependency of corporate securities in the barrier option

framework, I calculate the probability of default as

πDD−B = 1− (1− πDD)(1− πB) (25)

where the probability of a premature option knockout πB equals3

πB = N

(
ln
(
B
V

)
− (µ− δV − .5σV

2)T

σV

√
T

)

+ e
2(µ−δV −.5σ2

V )ln(B
V )

1

σ2
V[

1−N

(
−ln

(
B
V

)
− (µ− δV − .5σ2

V )T

σV

√
T

)]
.

(26)

2For a thorough derivation, see Vassalou and Xing (2004), pp.836f.
3Compare Brockman and Turtle (2003). My DD measure di�ers from theirs in that (i) it uses the

physical drift rate, (ii) it incorporates the payout ratio δV , and (iii) it combines the probability of
premature option knockout and the probability of default at maturity. In contrast to theirs, my DD
measure therefore fully nests the plain vanilla Merton measure.
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Again, the plain vanilla framework is fully nested in the extended framework: Assuming

B = 0, πB = 0, which implies πDD−B = πDD.

3.2. Model Implied Credit Spreads

While the theoretical framework underlying DD-like default measures is intuitively

appealing, their performance in empirical studies is unsatisfactory.4 In the following, I

therefore introduce model implied credit spreads as an alternative way to derive default

probabilities from any structural model in which debt is regarded as one or multiple

options and valued as a function of asset risk and payout ratio.

3.2.1. Intuition

Suppose creditors can adjust the cost of debt instantaneously and at all points in

time know the exact risk of a �rm, measured as the standard deviation of future asset

returns. Suppose further there exists a competitive market for credit with diversi�ed and

thus risk-neutral suppliers.5 Creditors would price any marginal change in asset � and

thus default � risk △σV by adjusting their required rate of return by △δD such that the

value of their claim D̂ is not a�ected:

△D̂ (△σV ) +△D̂ (△δD) = 0. (27)

Take as given D̂ (δD, σV , ·), describing bond value as a function of the cost of debt,

asset volatility, and other pricing parameters. Observing the risk-free rate r and the value

of a risk-free bond D̂ (δD = r, σV = 0, ·), it is (generally) possible to infer the cost of debt

4For example, compare Eom et al. (2004), Bharath and Shumway (2008), Campbell et al. (2008).
5These are hypothetical assumptions only used to provide an intuition.
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for any level of asset variance and given set of pricing parameters using Equation 27.6

In line with this intuition, I de�ne a model implied credit spread (MICS) λ∗ as the

premium that needs to be paid to bondholders on top of the risk-free rate to o�set the

impact of an increase in asset variance � from zero to the actual level � on the value

of debt. In a plain vanilla framework, �rm value is exogenous and λ∗ can therefore

equivalently be derived from equity values Ê (δD, σV , ·).

As an illustration, consider Figure 1, displaying isolines of debt and equity values as

a function of the risk premium on debt λ, and �rm risk σV as they are implied by plain

vanilla option pricing formulae.7 For the chosen set of parameters, the debt (equity)

claim of a �rm with zero asset variance σV (and thus no risk of default) is approximately

worth 100 (50). When increasing σV to σ∗
V = .4, approximately 15 units of wealth are

transferred from bond- to shareholders. This discount on debt re�ects the increased

risk of default faced by creditors. To o�set this wealth e�ect, λ needs to be raised to

approximately λ∗ = 4.2%.

[Figure 1 about here.]

While in the simple framework �rm value is exogenous and always totals 150, this is not

the case in a barrier option framework. In such a framework, λ∗ can therefore only be

directly inferred by considering the sensitivities of debt to changes in pricing parameters.

Figure 2, displays isolines of debt values as a function of λ and σV as implied by barrier

option pricing formulae.

6Restrictions on D̂ guaranteeing the existence and uniqueness of a solution are not discussed here
for brevity. D̂ as de�ned in this study meets these restrictions over the range of realistic parameter
combinations.

7λ enters the valuation of equity and debt as contingent claims via the aggregate payout ratio to debt
and equityholders, δV , as described by Equation 13.
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[Figure 2 about here.]

Here, the increased risk faced by debtholders due to a premature knockout of debt is

re�ected in a clearly higher premium λ∗ required to o�set the wealth e�ect on debt.

3.2.2. Calculation

MICS depend on the sensitivity of debt and equity to changes in �rm risk σV and

interest payments to debtholders δD. In a plain-vanilla pricing framework,

∂V

∂σV
=

∂C

∂σV
− ∂P

∂σV
(28)

and

∂V

∂δD
=

∂C

∂δD
− ∂P

∂δD
+

∂∆D

∂δD
. (29)

As �rm value is exogenous in a plain vanilla framework (∂V/∂σV = 0 and ∂V/∂δD =

0),

∂C

∂σV
= −

(
− ∂P

∂σV

)
(30)

and

∂C

∂δD
= −

(
− ∂P

∂δD
+

∂∆D

∂δD

)
, 8 (31)

where

∂∆D

∂δD
= TV e−δV T .9 (32)

8The two consecutive minus signs illustrate that an increase (decrease) in shareholder value due to
changes in δD or σV corresponds to a decrease (increase) in debtholder value.

9This follows from Equations 1-3. For a detailed derivation, see Appendix A-1.
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λ∗ can therefore be calculated by solving any of the following equations:

D̂δD=r

∣∣∣σV =σ∗
V

σV =0
= − D̂σV =σ∗

V

∣∣∣δD=r+λ∗

δD=r
(33)

ÊδD=r

∣∣∣σV =σ∗
V

σV =0
= − ÊσV =σ∗

V

∣∣∣δD=r+λ∗

δD=r
(34)

D̂δD=r

∣∣∣σV =σ∗
V

σV =0
= ÊσV =σ∗

V

∣∣∣δD=r+λ∗

δD=r
(35)

ÊδD=r

∣∣∣σV =σ∗
V

σV =0
= D̂σV =σ∗

V

∣∣∣δD=r+λ∗

δD=r
(36)

In the barrier option framework described by Equations 1, 5 and 6,

∂V

∂σV
=

∂CDO

∂σV
− ∂PDO

∂σV
+

∂∆⋆
D

∂σV
+

∂∆⋆
E

∂σV
(37)

and

∂V

∂δD
=

∂CDO

∂δD
− ∂PDO

∂δD
+

∂∆⋆
D

∂δD
+

∂∆⋆
E

∂δD
.10 (38)

Given asset liquidation at bankruptcy, �rm value is no longer exogenous. A premature

knock-out of the down-and-out call and put options destroys both debt- and shareholder

value. In this framework, it is thus possible that an increase in asset variance at the same

time decreases the value of both, the debt and the equity claim. Here, λ∗ therefore can

only be derived by solving Equation 33, describing changes in debt values. Speci�cally,

10The last two summands in both equations are not equal to zero as changes in σV and δV a�ect the
probability of a premature option knockout and thus the expected value of payouts.
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λ∗ can be obtained numerically by solving Equation 39 for λ∗:11

PDO(δD = r, σV = 0)−∆⋆
V (δD = r, σV = 0)

= PDO(δD = r + λ∗, σV = σ∗
V )−∆⋆

V (δD = r + λ∗, σV = σ∗
V ). (39)

Assuming all payouts to be made at debt maturity can substantially increase the

number of cases for which no solution to Equation 39 exists. This re�ects the fact that �

given the possibility of premature default in the barrier option framework � a �rm may

not be able to credibly commit to pay their interests in the far future and thus not be

able to access debt �nancing at all. To avoid this problem, I assume payouts to be made

on an annual basis until debt expiration.12 As payments are only made if the barrier

has not yet been hit, I calculate the value of ∆⋆
V as the sum of a series of down-and-in

options' rebates:

∆⋆
V =

T∑
t=1

[
∆V

T

(
N
(
d1(B, V )− σV

√
t
)
−
(
B

V

)2η−2

N
(
d1(V,B)− σV

√
t
))]

.13

(40)

Finally, I extract the probability of default from λ∗ as

πMICS =
1− e−λ∗

LGD
. (41)

11For a detailed derivation, see Appendix A-2. The level of tolerance for numerical convergence used
throughout the entire analysis is E-10.

12Changing the frequency of payments � for example to semi-annual payments � does not change
results signi�cantly.

13The annual payments ∆V /T are not discounted by e−rt, as the rebate is according to the valuation
formula, as they are present values. Their future value is ∆V /Tert which, discounted, equals ∆V /T .
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4. Numerical Analysis

Before applying the presented concepts to bankruptcy prediction in an empirical

setting, a brief numerical analysis of the sensitivity of πMICS and πDD to changes in

input parameters provides an understanding of the di�erences between the two underlying

approaches. As the simple Merton model of capital structure is clearly more widespread

in the literature than the barrier option framework, most of the analysis is restricted to

this simple model. An exception is the discussion of the sensitivity of πMICS and πDD

to changes to the most relevant parameters leverage and �rm risk.

Figure 3 displays the relationship between leverage and default probabilities πMICS

and πDD for low-risk (σV = .2), average-risk (σV = .4) and high-risk (σV = .8) �rms.

For any level of �rm risk, πMICS is higher than πDD for �rms with low leverage and

lower than πDD for �rms with high leverage. The higher �rm risk, the lower the leverage

ratio at which the two functions cross each other. For the �rms with the highest asset

variance displayed, πMICS is clearly above zero even for low-levered �rms, while πDD is

virtually equal to zero.

[Figure 3 about here.]

Figure 4 shows πMICS and πDD as a function of asset volatility σV for di�erent

leverage ratios. A similar e�ect as outlined before is observable. For low levels of asset

risk, πMICS is higher than πDD, while for high levels of asset risk it is lower. Analogous

to Figure 3, the higher the leverage, the lower σV at the intersection of the two functions.

[Figure 4 about here.]

Figure 5 presents these relationships in three dimensions. The clear di�erences in the
15



shapes of the two graphs illustrate that the two measures yield a di�erent ordering of

�rms according to their bankruptcy probability.

[Figure 5 about here.]

Leverage and �rm risk are two parameters intimately connected to the risk of default.

It is therefore worthwhile to examine the impact of the assumption of path dependency

has on the two measures of default probability. Figure 6 displays the relation between

these variables assuming a bankruptcy barrier equal to 50% of total debt. Not surpris-

ingly, the introduction of a positive barrier increases both measures. The graphs reveal

two important characteristics of πMICS and πDD−B. First, increasing the barrier level

increases the probability of default for �rms with low leverage or low volatility. While

this change is only marginal for πDD−B , the impact of a positive barrier on πMICS of

such safe �rms is strikingly pronounced for �rms with high debt loads and low asset risk.

Second, while the shape of the πMICS function evolves signi�cantly with changing barri-

ers, the shape of the πDD−B function remains very similar. Adding path dependency as

a feature to the simple model of capital structure can thus only have a little impact on

the performance of the DD measure applied to bankruptcy prediction or bond pricing,

while it signi�cantly a�ects the �t of πMICS to the data.

[Figure 6 about here.]

In the light of precedent empirical evidence, the observed behavior of πMICS relative

to πDD is appealing. Taken together, default estimates derived from model implied credit

spreads are higher for relatively safe �rms and lower for the riskiest �rms. Recalling the

previously cited conclusion by Eom et al. (2004), according to which structural models
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underestimate (real-world) credit spreads of safe bonds with low leverage and volatility,

a future application of model implied credit spreads to bond pricing seems promising.

Both πMICS and πDD are a decreasing function of the risk-free rate r, as shown in

Figure 7. The reason is, of course, that r is a component of the drift rate of the stochastic

process assumed in the pricing framework.14 The higher this drift rate, the faster the call

option moves deep into the money and the safer the debt. For �rms with relatively low

asset risk and leverage, πMICS is more sensitive to changes in r than πDD. For higher

numbers, the two functions are more parallel.15

[Figure 7 about here.]

As outlined in Section 5.2, when calculating πMICS (πDD), an equal time to maturity

of 6 years (1 year) will be assumed for all observations. While a sensitivity analysis in this

case does not tell anything about variations in the two measures across observations and

along time, it is useful to understand the term structures of default implied by the two

approaches. Those are depicted in Figure 8 for di�erent variance-leverage combinations.

[Figure 8 about here.]

The shapes of all functions share two common characteristics typical for structural mod-

els. First, all functions start in the origin. This implies that � even for high �rm risk

and leverage � the instantaneous probability of default is predicted to be zero. This

unsatisfactory feature can be improved by introducing jumps in the stochastic process

underlying the model. Second, the probability of default converges toward zero over very

long-term horizons (not displayed), assuming positive drift rates and reasonable asset

14As in Section 5.2, the drift rate assumed in the Merton model equals r plus an equity premium of
6%.

15Only moderate levels of �rm risk and leverage are shown for displaying purposes.

17



variances. The reason is that under these assumptions and given constant debt levels,

the distribution of asset values moves away from the strike price over time. Incorporating

mean-reverting leverage ratios, as done by Collin-Dufresne and Goldstein (2001), allows

for non-zero default probabilities over in�nite time horizons.16

In summary, the numerical analysis serves two purposes. First, it shows that there are

substantial di�erences between the πMICS and the πDD measure. Of course, this is the

necessary condition for an outperformance of the πMICS measure in an empirical context.

Furthermore, the analysis illustrates that the πMICS measure possesses desirable features

as compared to the πDD which can help to explain the empirical results discussed in the

following.

5. Empirical Analysis

5.1. Data and Sample Selection

Empirically testing the measures' ability to predict corporate default requires data

on defaults, as well as variables for calculating pricing parameters.

I construct a bankruptcy indicator for the years 1980 to 2008 based on the Altman-

NYU Salomon Center Bankruptcy list, including all Chapter 11 bankruptcy �lings made

by �rms with liabilities equal to or greater than $100 million at the time of default. I

extend this list to include smaller �rms relying on the sources used by Chava and Jarrow

(2004) to construct their bankruptcy indicator. Speci�cally, I add all bankruptcy �lings

reported in the Wall Street Journal Index, the SDC database, SEC �lings, and the CCH

Capital Changes Reporter. My indicator is set to one in a month a company �led for

16For details on the term structure of credit risk in structural and reduced form models, see Du�e
and Singleton (2003), pp.114-116.
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protection under Chapter 7 or Chapter 11 and to zero otherwise.17 If a �rm �les for

bankruptcy several times, only the earliest month is used. Following Campbell et al.

(2008), I additionally construct a broader indicator of corporate failure which extends

the bankruptcy indicator by delistings due to poor stock performance (I include all CRSP

delistings with delisting code 552), as well as D-ratings.

I construct pricing parameters on a monthly basis combining quarterly accounting

data from Compustat with daily and monthly stock data from CRSP.18 Furthermore, I

obtain interest rates on constant maturity treasury securities from the Federal Reserve

Board of Governors.19

While information on bankruptcies and failures is also available for the 60s and 70s,

I restrict my analysis to the period starting 1980 for two reasons. First, quarterly ac-

counting data is available for a broad cross-section only since the mid-seventies; including

earlier years requires combining supplementing quarterly data with less timely annual

data.20 Even on an annual basis, debt items are only scarcely available before 1971.21

Second, the Bankruptcy Reform Act of 1978 fundamentally changed the law governing

bankruptcies. It took e�ect in October 1979 and made it easier for companies to �le for

protection from creditors. This change is only one out of several reasons for the strong

increases in the number of defaults in later years.22 However, in contrast to other factors

� such as changes in capital structure and idiosyncratic risk � it is not captured by the

17The Chava and Jarrow (2004) indicator is also used in Campbell et al. (2008) and Campbell et al.
(2010). It comprises all �rms in the Shumway (2001) dataset and in Moody's public �rm database.

18Accounting items include total assets, debt in current liabilities, total long-term debt, total liabilities,
net income, and the primary SIC code (Compustat items ATQ, DLCQ, DLTTQ, LT, NI, and SIC
respectively). Equity data includes the number of shares outstanding, stock price, stock returns, returns
on the value weighted S&P500 index and its total market capitalization (CRSP items PRC, SHROUT,
RET, VWRETD, and TOTVAL) on a monthly, and stock returns (RET) on a daily level.

19Taken from the H.15 �le which can be downloaded at www.federalreserve.gov.
20See Wei (2006) and Campbell et al. (2010).
21See Vassalou and Xing (2004).
22See Campbell et al. (2008).
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pricing parameters.

After excluding all observations for which not all necessary data are available, my sam-

ple includes 1,647 failures, 959 bankruptcies and 1,625,169 �rm-months observations.23

In addition to the pricing parameters, I compute the set of variables which Campbell

et al. (2008) identify as powerful predictors of corporate failure. They are de�ned as

follows: TLMTA, NIMTA, and CASHMTA are measured as the ratios of total liabilities,

net income, as well as cash and short term assets to the market value of total assets (equal

to the sum of the market value of equity and the book value of liabilities), respectively.

Relative �rm size RSIZE is de�ned as the logarithm of the market value of a �rm's equity

relative to the market capitalization of the S&P500, MB as the market-to-book ratio,

PRICE as the logarithm of the stock price winsorized above $15, EXRET as a stock's

excess returns over the S&P500 during the last month, and SIGMA as the standard

deviation of daily stock returns over the last three months. All variables except for

PRICE are winsorized at their 5th and 95th percentile.

Campbell et al. (2008)'s logit regression of failure on the set of variables constitutes

the current state-of-the art statistical model for bankruptcy prediction and by far out-

performs the standard Merton (1974) DD measure. I therefore use their model as a

benchmark against which I test the performance of πMICS and πDD−B in a multivariate

setting. Table 1 displays descriptive sample statistics for the Campbell et al. (2008) set

of variables. Not surprisingly, the median defaulting �rm exhibits a lower pro�tability,

liquidity, stock price, size, and excess return, and higher leverage and asset risk than the

23In contrast to multiple related studies, I follow Campbell et al. (2008) and do not exclude �rms in
the �nancial services sector. While � due to their socio-economic importance � some �nancial services
�rms may receive some kind of governmental support or face additional restrictions when approaching
default, this argument only applies to very few �rms. All results are robust to excluding �nancial services
�rms and utilities, as shown in Section 5.4.
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median �rm of the aggregate sample.

[Table 1 about here.]

5.2. Parametrization

Similar sets of parameters need to be estimated for calculating probabilities of de-

fault based on the DD measure πDD−B and model implied credit spreads πMICS . The

assumptions underlying my estimates, their impact on the results, as well as alternative

de�nitions used in related literature are discussed in the following.

Strike Price Equivalents. In a �rm �nanced with equity and one zero coupon bond,

equity is a call option on the �rm with the strike price equal to the face value of total

debt. When debt matures, stockholders can choose to either buy the entire �rm from

bondholders by paying them o� the face value, or to roll over debt for another term. In

reality, capital structures are typically more complex and combine numerous �nancing

instruments with di�erent maturities, seniorities, and embedded options. The choice of

the strike price parameter thus depends on the perspective taken in a model.

When assessing a �rm's risk of defaulting during the next year using the DD model,

it makes sense not to consider the full amount of debt on the balance sheet. Long-term

debt provides a �rm in �nancial distress with additional breathing space, as the �rm

does not have to raise the cash for paying o� this debt in the near future. Most recent

studies computing Merton's DD measure therefore follow Crosbie and Bohn (2003), who

de�ne the strike price as the amount of short-term debt plus 50% of long-term debt.

In contrast, long-term debt does matter when assessing the impact of changes in asset

risk on the option value of debt in the derivation of πMICS . While the predictive power
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of πMICS increases when setting the strike price equal to total debt or total liabilities, I

compute both πDD−B and πMICS using the de�nition by Crosbie and Bohn (2003) for

the sake of comparability.24

Spot Price Equivalents. The spot price equals the � unobservable � market value of �rm

assets which in turn is the sum of the market value of equity and the market value of

debt. A simple way of de�ning the spot price is thus as the strike price plus the market

value of equity. However, as the strike price is correctly de�ned using book values,

this de�nition can overstate the market value of debt and thus the spot price, which

is particularly likely for �rms with deteriorating credit quality. Several recent studies

therefore derive asset values as they are implied by observable equity values. Assuming

that equity can be valued as a call option on �rm assets, the market value of assets can

be inferred numerically as the value that solves the according pricing equations for the

correct market value of equity.

I have two concerns about this approach. First, the resulting values are sensitive

to the underlying assumptions about the time to maturity of the option. Assuming

a time to maturity of one year consistent with the short-term view taken in the DD

model, the time values of equity and debt are relatively low such that this procedure

yields estimates fairly close to those using book values of debt. Second, this approach by

de�nition assumes book values of debt to be upward-biased estimates of market values

of debt if cash-payouts to bondholders are ignored, as they have been in recent research.

However, whether or not the book value of debt over- or understates its market value

depends on the conditions under which debt contracts were negotiated and on unexpected

24As explicitly discussed in Eom et al. (2004), pp. 524f, non-debt liabilities are relevant for the pricing
of debt, too.
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changes in �rm risk since the �nancing. I therefore follow Eom et al. (2004) and de�ne

spot prices as the sum of the strike price and the market value of equity.

Asset Variance. Several ways of estimating asset variance exist in the literature.25 Many

use the observable volatility of past stock returns as a starting point and derive estimates

of asset risk based on assumptions about the relation between equity and �rm returns.

One approach that accounts for the riskiness of distressed debt uses the �optimal

hedge equation� known from delta-hedging to describe the relationship between equity

and �rm risk:

σV =
σE(

1 + D
E

)
N (d1)

, (42)

where d1 is de�ned according to Equation 11.26 N (d1) measures the sensitivity of option

values to changes in the underlying. For zero drift rates, it is close to .5 for at the money

options � corresponding to �rms in or close to �nancial distress � and approaches one as

the moneyness increases. Equation 42 thus imposes an assumption about the riskiness of

debt consistent with the contingent claims framework. It implies that the value of debt

behaves in the same way as the value of a short put on �rm assets.

One concern about the application of this relationship is its stationarity. As known

from delta hedging, the relationship described by Equation 42 only holds instantaneously.

As soon as the value of the underlying changes, deltas change as well � especially for at

the money options. Crosbie and Bohn (2003) therefore conclude that �in practice, the

market leverage moves around far too much to provide reasonable results� and propose

alternative iterative estimation procedure. While the asset variance estimates based on

25The terms asset risk, asset variance, asset volatility and �rm risk are used equivalently in the
following.

26Note that, as N (d1) itself depends on σV , Equation 42 requires a numerical solution.
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their procedure are more constant over time, Bharath and Shumway (2008) label the

procedure �complicated�. After testing its empirical performance they conclude that

�the iterative procedure used to solve the Merton model for default probability does not

appear to be useful.� Eom et al. (2004) note that the resulting values for asset variance

actually do not di�er substantially from the ones computed using the optimal hedge

equation. I therefore de�ne asset volatility according to Equation 42, computing σE as

the standard deviation of the last three months' daily stock returns.27

Time To Maturity. In the simple case where a �rm is �nanced by equity and one zero

coupon bond, the most intuitive way of de�ning the time to maturity of equity as a call

option is as the maturity of the bond. At the time the bond expires � and not earlier

� shareholders have the possibility not to roll the bond over, but to acquire the entire

�rm by paying o� the entire debt. In reality, capital structures are more complex and

consist of instruments with di�erent maturities, coupon payments before maturity and

embedded options that allow for early redemption. Attempting to capture at least a part

of this complexity, Eom et al. (2004) price bonds with the Merton model by considering

each payment � including coupon payments and the �nal payment of the principal � as

an individual bond with a maturity equal to the date of the payment. As described in

Crosbie and Bohn (2003), a di�erent view underlies Moody's KMV model. Assuming

the previously described short-term perspective, it identi�es how distant a �rm is from

defaulting in one year. I therefore follow studies replicating their measure and adopt a

27Empirical results are robust to using the Crosbie and Bohn (2003) measure of asset volatility. The
predictive power of both πDD−B and πMICS slightly increases when using the simple but arbitrary
measure of �rm risk proposed in Bharath and Shumway (2008). As shown in an earlier version of
this paper, incorporating additional information � for example about pro�tability and �rm size � in the
estimation of σV can substantially increase their predictive power. Results based this innovative measure
of �rm risk are not presented in the current version of the article as they cannot be compared to the
results of related studies.
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one year time to maturity when computing πDD−B .

The intuition underlying πMICS requires a di�erent view. The measure is driven by

call option sensitivity to changes in volatility and the payout ratio. Simply assuming a

short-term horizon of one year despite of a far longer actual option term yields unrealistic

sensitivities and thus unprecise default estimates. Given limited availability of informa-

tion about the term structure of �rms' liabilities, I simply set the time to maturity to

six years.28 However, empirical results are not signi�cantly altered when assuming a

one-year time to maturity for the calculation of πMICS , too.

Drift Rate. The drift rate of the stochastic process is the di�erence between the as-

sumed growth rate µ and the weighted payout to shareholders and debtholders δV . It

determines how fast assets move toward or away from the bankruptcy threshold and is

therefore crucial to estimating the distance to default. However, recent literature does

not agree about the correct estimation of this parameter.29 Given empirical evidence

that underperforming �rms are more likely to default, it is tempting to use past asset

or equity returns as the future drift rate. However, projecting past under- or overper-

formance into the future implicitly requires the strong assumption of a misvaluation of

�rm assets today. When computing πMICS , I therefore follow Campbell et al. (2008)

and use the risk free rate (which I obtain as the interest rate paid on one year constant

28See, for example, Brockman and Turtle (2003). An alternative approach involves using a weighted
average measure of debt maturity based on the Compustat items debt due in one to �ve years from the
reporting year. However, these items are less frequently available and less consistent with data on total
liabilities for the early years of the sample period.

29Some studies suggested the use of past stock returns or the risk-free rate plus equity premium, while
others use only the risk-free rate, or even assume a zero drift in asset values; see Crosbie and Bohn
(2003), Vassalou and Xing (2004), Bharath and Shumway (2008) and Campbell et al. (2008), as well as
Brockman and Turtle (2003) and Brown et al. (1995), respectively. Cash payouts to shareholders and
debtholders are neglected in most studies. Amongst the studies cited in this article, only Eom et al.
(2004) use the actual time to maturity. They are also the only ones capturing the impact of cash payouts
in their model.
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maturity treasuries) plus an equity premium of .06 as growth rate instead. I reduce asset

growth by a cash payout rate equal to the weighted average of dividend and interest rate

payments (assumed to be equal to the 1-year risk-free rate plus a �at credit risk premium

of .03), as described in Equation 13.30

Fewer assumptions are needed when computing πMICS . First, the physical drift rate

in assets is not required as an input parameter, since the risk-neutral valuation framework

need not be abandoned. Instead, the assumed asset growth is risk-neutral and equal to

the risk-free rate matched to the maturity of the option. As no 6-year rates on constant

maturity treasuries are available, I construct a yield curve using cubic spline interpolation

to obtain an estimate of the 6-year risk-free rate.31 Second, no assumptions are required

about the payouts to debtholders. Rather, as described in Section 3.2, hypothetical

payouts are derived that o�set the reduction in bondholder wealth due to a positive

asset risk.

Given the endogeneity of dividend payments, I assume the dividends of all �rms to be

zero when computing both πDD−B and πMICS . As a �rm approaches �nancial distress,

it will most likely stop paying dividends. All �ndings are robust to using the actual

dividend rate instead.

5.3. Statistical Models for Default Prediction

Before presenting the results of the multivariate regression analysis, I comment on the

recent discussion about the adequacy of logit models for bankruptcy prediction and the

necessity of adjusting test statistics. Shumway (2001) criticizes probit and logit models

30Alternatively, payouts to debtholders can be approximated as accounting interest payments, which
is avoided due to very limited data availability in the early years of the sample period.

31For details on cubic spline interpolation for yield curve construction, see Ron (2000).
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for not taking into account the duration of survival if applied to single-period data and

proposes a hazard model instead. Even before his study, hazard models can be and have

been employed using simple logit programs. Shumway (2001) admits that �estimating

hazard models with a logit program is so simple and intuitive that it has been done by

academics and researchers without a hazard model justi�cation.�32 Following Shumway

(2001), Chava and Jarrow (2004) and Campbell et al. (2008), it therefore estimate the

marginal probability of bankruptcy (or failure) over the next period as

Pt(Yt+1 = 1) =
1

1 + e−α−β×Xt
, (43)

where Yt equals one if failure (or bankruptcy) occurs at time t and zero otherwise, α and

β are model parameters and Xt is a matrix of time-varying covariates. Higher values of

α+ β ×Xt imply a higher probability of failure (or corporate default).33

One important question arising when using a logit program to estimate a hazard rate

model is whether test statistics require adjustment. As argued by Shumway (2001), test

statistics need to be adjusted for the fact that observations are not independent over

time.34 He proposes to penalize the logit model for this lack of independence between

observations by simply de�ning the sample size used for calculating test statistics as

the actual sample size divided by the average number of monthly observations per �rm.

32The main di�erence between an adjusted logit and a hazard model is the way how �rm age can be
accounted for as a potential factor driving the probability of bankruptcy. While in a logit model, some
function of �rm age can be simply included as additional explanatory variable, it enters the estimation of
the hazard model more elegantly via the baseline hazard function. Given the insigni�cance of �rm age for
predicting bankruptcy reported by Shumway (2001), I follow Chava and Jarrow (2004) and Campbell
et al. (2008) and estimate a hazard model using a logit program excluding �rm age as explanatory
variable.

33As outlined in Section 5.1, I di�erentiate between corporate failure and corporate default in the
empirical analysis.

34A �rm-month observation only enters the model at time t if it has not defaulted at time t-1. In other
words, the possibility of observing default or survival at a certain time is conditional on �rm survival
prior to that point in time.
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While his article only considers the adjustment of the Chi-Square statistics, the same ar-

gument can be used to justify an adjustment of t-statistics or pseudo-R2s. Contradicting

his intuition, Chava and Jarrow (2004) argue that it is not necessary to assume inter-

dependence between all observations for the unadjusted test statistics to be valid and

conclude that �Shumway (2001)'s adjustment for the lack of the time series independence

of a �rm's bankruptcy variable is unnecessary.�

I empirically test whether the time series dependence of the dependent variable biases

regression results by comparing the results of the same regression model �tted using two

di�erent subgroups of my aggregate sample.35 The �rst (second) subsample is created

by randomly splitting my sample along the cross-section (the time series) into two parts

and dropping one of them. Given a one-to-one split, the second subsample thus contains

observations with only half the number of �rm-months per �rm on average. For exam-

ple, if ten monthly observations exist for the average �rm in the aggregate sample, only

approximately �ve monthly observations exist for the average �rm in subsample two.

In contrast, the �rst subsample still exhibits an average number of approximately ten

monthly observations per �rm, but only consists of half of the �rms. If an adjustment for

the lack of independence along the time series similar to the one proposed by Shumway

(2001) indeed was necessary, regression results for models �tted using the two di�erent

data sets without any adjustment should di�er signi�cantly. Repeating the procedure

1,000 times and comparing the resulting distributions of standard errors, coe�cient es-

timates, and pseudo-R2s, I do not �nd any signi�cant di�erence between models �tted

using the �rst and second subsample. In line with Chava and Jarrow (2004), I therefore

35While beyond the scope of this study, a more rigorous way to assess the necessity of adjustments is
to run a simulation. Then, the distributions of all variables together with their interdependence can be
de�ned a priori such that all statistics can be assessed given the knowledge of the true set of parameters.
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do not adjust regression results in any way.36

5.4. Results

In the following, the measures' abilities to forecast default are assessed in a bivariate

and multivariate setting. As outlined in Section 5.1, I use two di�erent proxies for default,

bankruptcy and failure. Bankruptcy is de�ned as any Chapter 7 or 11 �ling. Failure

extends bankruptcy by D-ratings and delistings due to poor stock performance.

Table 2 reports the results of a bivariate non-parametric test of πMICS , πDD−B , and

πDD to forecast bankruptcy and failure. To create this overview, I sort all �rm-month

observations by their π-value in a �rst step. In a second step, I count the number of

defaults observed over the next period in each decile. The reported numbers are the

percentages of all 959 bankruptcies (Panel 2(a)) and 1,647 failures (Panel 2(b)) assigned

to each decile in that way. To show the robustness of my results to the exclusion of

�nancial services �rms which is common in related literature, I report bivariate results

for the aggregate sample ("All"), as well as a sample excluding �rms in the �nancial

services sector (SIC codes 6000-6999). This restriction reduces the analysis to 1,363,268

�rm-month observations, 912 bankruptcies and 1,558 failures.

[Table 2 about here.]

Bivariate results indicate that πMICS separates defaulting from non-defaulting �rms

more precisely than πDD−B , and πDD for both the aggregate sample and the sample

excluding �nancial services �rms. Speci�cally, the share of bankruptcies and failures

observed in the top πMICS decile is higher than in the top πDD−B, and πDD deciles.

36Results of this random sampling procedure are not reported explicitly as they do not add any insights
beyond the non-necessity of adjustments.
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The superior performance of the πMICS measure is con�rmed in a multivariate setting.

Table 3 reports results of logit regressions of the bankruptcy indicator on πMICS , πDD−B,

πDD and the set of control variables taken from Campbell et al. (2008). To avoid problems

of multicolinearity, leverage TLMTA and volatility SIGMA are not included in models

with any of the three predictors. Multivariate results are only reported for the aggregate

sample but are robust to the exclusion of �nancial services �rms.

[Table 3 about here.]

Various aspects indicate that πMICS captures the probability of corporate default

better than πDD−B . First, the model including only πMICS as an explanatory variable

has a Pseudo R2 of 18.6% (Column 1). This is clearly above the R2 of 14.3% of the

second model, which only includes πDD−B (Column 2). Second, combining πMICS and

πDD−B in one model does not increase the model �t (compare Column 1 to Column 3 and

Column 4 to Column 6). Third, πDD−B does not enter regressions including both πMICS

and πDD−B signi�cantly, while πMICS does (see Column 3 and Column 6). Despite its

superior performance, πMICS predicts defaults less well as the set of predictors taken

from Campbell et al. (2008) (Colum 7). The superior �t to the data is at least partly

due to the fact that all predictors enter the regression independently.

Results of logit regressions including the failure indicator are almost identical to those

including the bankruptcy indicator and are presented merely as a robustness check (see

Table 4). While models 1 through 3 exhibit a slightly better �t to the data in terms of

their R2, πMICS remains a better predictor of default than πDD−B .

[Table 4 about here.]
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6. Conclusion

The contribution of this paper is threefold.

First, I propose a new method for extracting probability of default estimates from

structural credit risk models. The method is applicable to all models assuming a con-

tingent claims perspective on debt and equity and value these as a function of asset risk

and payout ratio. The estimation procedure consists of two parts. In a �rst step, I nu-

merically derive model implied credit spreads (MICS) from the increase in the payout to

debtholders necessary to o�set the impact of an increase in asset variance on the option

value of debt and equity. In a second step, I calculate a risk-neutral probability of default

from MICS in a similar way as default estimates are derived from credit spreads observed

at markets. In contrast to real-world credit spreads, MICS do not contain risk premia

for default timing and recovery uncertainty, thus yielding a purer estimate of physical

default probabilities.

Second, I compare the properties of MICS default estimates derived assuming a simple

Merton model of capital strucure to the expected default frequency from a Merton-type

distance to default (DD) measure in a numerical analysis. Addressing the requirements

highlighted in previous research, the proposed estimate takes on higher values for safe

�rms and lower values for �rms with high leverage and asset volatility.

Third, I assess my measure's ability to predict bankruptcy and corporate failure

relative to the DD measure in an empirical setting. As shown in both a bivariate and

a multivariate setting, the MICS measure proves to capture default probabilities better

than the DD measure. Results are robust to changes in the choice of pricing parameters

and to variations in the sample selection. Future research should further explore the
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potential of the MICS approach by applying it to alternative structural models and by

using it for the pricing of corporate bonds.
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Appendix

A-1. Aggregate Firm Payout

The present value of �rm payouts (∆V ) in a plain vanilla model of capital structure

is the sum of the present value of payouts to debt and equity holders:

∆V = ∆E +∆D. (44)

From Equations 1-3 follows:

∆V = V − C −D∗e−rT + P

= V −
[
V e−δV TN (d1(V,D))−De−rTN

(
d1(V,D)− σV

√
T
)]

−D∗e−rT

+
[
−V e−δV TN (−d1(V,D)) +De−rTN

(
−d1(V,D) + σV

√
T
)]

= V
[
1− e−δV TN (d1(V,D))− e−δV TN (−d1(V,D))

]
+D

[
e−rTN

(
d1(V,D)− σV

√
T
)
− e−rT + e−rTN

(
−d1(V,D) + σV

√
T
)]

= V
[
1− e−δV T

]
,

where N (·) denotes the function describing the standard cumulative probability density

and d1(V,D) is computed according to Equation 11. As the value of dividend streams

(∆E) is not a�ected by changes in bondholders' interest rates,

∂∆D

∂δD
=

∂∆V

∂δD
= V Te−δV T . (45)
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A-2. Calculating Model Implied Credit Spreads

MICS λ∗ can be calculated by numerically solving

D̂δD=r

∣∣∣σV =σ∗
V

σV =0
= − D̂σV =σ∗

V

∣∣∣δD=r+λ∗

δD=r

⇔
[
De−rT − PDO(δD = r) + ∆⋆

D(δD = r)
]σV =σ∗

V

σV =0

= −
[
De−rT − PDO(σV = σ∗

V ) + ∆⋆
D(σV = σ∗

V )
]δD=r+λ∗

δD=r

⇔ [−PDO(δD = r) + ∆⋆
V (δD = r)]

σV =σ∗
V

σV =0

= − [−PDO(σV = σ∗
V ) + ∆⋆

V (σV = σ∗
V )]

δD=r+λ∗

δD=r

⇔ −PDO(δD = r, σV = σ∗
V ) + ∆⋆

V (δD = r, σV = σ∗
V )

+PDO(δD = r, σV = 0)−∆⋆
V (δD = r, σV = 0)

= PDO(σV = σ∗
V , δD = r + λ∗)−∆⋆

V (σV = σ∗
V , δD = r + λ∗)

−PDO(σV = σ∗
V , δD = r) + ∆⋆

V (σV = σ∗
V , δD = r)

⇔ PDO(δD = r, σV = 0)−∆⋆
V (δD = r, σV = 0)

= PDO(σV = σ∗
V , δD = r + λ∗)−∆⋆

V (σV = σ∗
V , δD = r + λ∗).
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Figure 1: Values of equity and debt as plain vanilla options on �rm assets computed as a function of
asset volatility and the risk premium on debt.
The upper (lower) graph displays isolines of debt (equity) values as a function of asset volatility σV and
the risk premium on debt, λ.
(V = 150, D = 100, r = .05, T = 6).

38



40

50

60

60
70

70

80

80

80

90

90

100

100

100

110

110

120
130

14
0

σ
V

λ

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 2: Value of debt as a barrier option on �rm assets computed as a function of asset volatility and
the risk premium on debt.
The graph displays isolines of debt values as a function of asset volatility σV and the risk premium on
debt, λ.
(V = 150, D = 100, r = .05, T = 6, B=50, LGD=.75.).
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Figure 3: Estimated default probabilities as a function of leverage D / V for di�erent levels of asset
variance σV .
The solid and dashed lines are probabilities of default estimated based on model implied credit spreads
(πMICS) and the Merton distance to default model (πDD), respectively.
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Figure 4: Estimated default probabilities as a function of asset volatility σV for di�erent levels of leverage
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The solid and dashed lines are probabilities of default estimated based on model implied credit spreads
(πMICS) and the Merton distance to default model (πDD), respectively. The graph is cut-o� at π=.4
for displaying purposes.
(V = 100, r = .05, TMICS = 6, TDD = 1, µDD=r+.06, δE=0, LGD=.75).
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Figure 5: Estimated default probabilities as a function of asset volatility σV and leverage D/V .
The upper and the lower graph display probabilities of default estimated based on model implied credit
spreads (πMICS) and the Merton distance to default model (πDD), respectively.
(V = 100, r = .05, TMICS = 6, TDD = 1, µDD=r+.06, δE=0, LGD=.75).
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Figure 6: Estimated default probabilities as a function of asset volatility σV and leverage D/V .
The upper and the lower graph display probabilities of default estimated based on model implied credit
spreads (πMICS) and a distance to default model (πDD−B) and assuming a barrier option model of
capital structure.
(V = 100, r = .05, TMICS = 6, TDD = 1, µDD=r+.06, δE=0, B=50, LGD=.75).
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Figure 7: Estimated default probabilities as a function of risk-free rate r for di�erent levels of asset
volatility σV and leverage D/V .
The solid and dashed lines are probabilities of default estimated based on model implied credit spreads
(πMICS) and the Merton distance to default model (πDD), respectively.
(V = 100, TMICS = 6, TDD = 1, µDD=r+.06, δE=0, LGD=.75).
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Table 1: Descriptive sample statistics.
This table displays descriptive statistics for the following variables: TLMTA, NIMTA, and CASHMTA
are measured as the ratios of total liabilities, net income, as well as cash and short term assets to the
market value of total assets (equal to the sum of the market value of equity and the book value of
liabilities), respectively. Relative �rm size RSIZE is de�ned as the logarithm of the market value of
a �rm's equity relative to the market capitalization of the S&P500, MB as the market-to-book ratio,
PRICE as the logarithm of the stock price winsorized at $15, EXRET as a stock's excess returns over the
S&P500 during the last month, and SIGMA as the standard deviation of daily stock returns over the last
three months. All variables except for PRICE are winsorized at their 5th and 95th percentile. Panel 1(a)
contains statistics for the aggregate sample of 1,625,169 �rm-months. Panel 1(b) and Panel 1(c) show
statistics subsamples only containing bankruptcy and failure �rm-months.

(a) All observations

Median Mean Quartiles STD

First Third

NIMTA 0.004 −0.002 −0.006 0.012 0.023
CASHMTA 0.045 0.084 0.015 0.118 0.096
RSIZE −10.749 −10.591 −12.069 −9.272 1.887
MB 1.615 2.027 1.049 2.591 1.344
PRICE 2.442 1.995 1.447 2.708 0.891
EXRET −0.010 −0.012 −0.082 0.059 0.117
TLMTA 0.396 0.426 0.175 0.655 0.279
SIGMA 0.479 0.563 0.311 0.739 0.324

Observations 1,625,169

(b) Bankruptcies

Median Mean Quartiles STD

First Third

NIMTA −0.066 −0.045 −0.066 −0.026 0.027
CASHMTA 0.024 0.052 0.009 0.061 0.072
RSIZE −13.107 −12.627 −13.498 −12.060 1.107
MB 2.066 2.793 0.695 5.449 2.085
PRICE 0.000 0.450 0.000 0.724 0.655
EXRET −0.198 −0.121 −0.238 −0.027 0.147
TLMTA 0.872 0.773 0.707 0.913 0.202
SIGMA 1.292 1.106 0.953 1.292 0.274

Observations 959

(c) Failures

Median Mean Quartiles STD

First Third

NIMTA −0.066 −0.044 −0.066 −0.023 0.028
CASHMTA 0.031 0.072 0.010 0.086 0.097
RSIZE −13.498 −12.875 −13.498 −12.538 1.026
MB 1.505 2.434 0.567 5.285 2.025
PRICE 0.000 0.313 0.000 0.405 0.586
EXRET −0.189 −0.116 −0.238 −0.023 0.150
TLMTA 0.814 0.712 0.585 0.913 0.243
SIGMA 1.292 1.147 1.083 1.292 0.249

Observations 1,647
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Table 2: Failures and Bankruptcy per π-Decile.
This table assesses the ability of di�erent default measures to forecast failure and bankruptcy. Firm-
month observations are sorted according to their π-value. The reported numbers are the percentages of
all 959 (912) bankruptcies (Panel 2(a)) and 1,647 (1,558) failures (Panel 2(b)) observed for the aggregate
sample "All" (the sample excluding �nancial services �rms "Non-FS") over the subsequent period.

(a) Percentage of bankruptcy �lings per π-Decile

πMICS πDD−B πDD

Decile All Non-FS All Non-FS All Non-FS

1 0.763 0.747 0.731 0.715 0.717 0.697
2 0.100 0.105 0.118 0.124 0.119 0.132
3 0.050 0.057 0.053 0.059 0.062 0.055
4 0.021 0.021 0.027 0.027 0.026 0.036
5 0.008 0.010 0.012 0.012 0.014 0.014
6-10 0.057 0.060 0.059 0.063 0.063 0.025

(b) Percentage of failures per π-Decile

πMICS πDD−B πDD

Decile All Non-FS All Non-FS All Non-FS

1 0.741 0.725 0.729 0.712 0.713 0.695
2 0.095 0.107 0.103 0.112 0.106 0.119
3 0.044 0.048 0.044 0.049 0.051 0.050
4 0.018 0.019 0.023 0.022 0.021 0.026
5 0.009 0.010 0.010 0.014 0.013 0.015
6-10 0.092 0.092 0.092 0.091 0.095 0.020
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Table 3: Estimates of logit regressions of bankruptcy on πMICS , πDD−B, πDD.
This table displays the results of logit regressions of a bankruptcy indicator on πMICS , πDD−B , πDD

and the following control variables. TLMTA, NIMTA, and CASHMTA are measured as the ratios of
total liabilities, net income, as well as cash and short term assets to the market value of total assets
(equal to the sum of the market value of equity and the book value of liabilities), respectively. Relative
�rm size RSIZE is de�ned as the logarithm of the market value of a �rm's equity relative to the market
capitalization of the S&P500, MB as the market-to-book ratio, PRICE as the logarithm of the stock
price winsorized at $15, EXRET as a stock's excess returns over the S&P500 during the last month, and
SIGMA as the standard deviation of daily stock returns over the last three months. All variables except
for PRICE are winsorized at their 5th and 95th percentile.

(1) (2) (3) (4) (5) (6) (7)

(Intercept) −9.346 a −8.316 a −9.388 a −9.122 a −8.081 a −8.949 a −13.929 a

(0.077) (0.05) (0.084) (1.339) (1.33) (1.343) (1.414)
πMICS 29.592 a 30.972 a 19.534 a 16.400 a

(0.597) (1.166) (1.904) (3.238)
πDD−B 20.638 a −1.180 11.470 a 2.415

(0.379) (0.854) (1.12) (2.034)
NIMTA −28.508 a −30.015 a −28.565 a −28.071 a

(3.418) (3.488) (3.428) (3.463)

CASHMTA −3.111 a −3.800 a −3.132 a −2.232 b

(1.031) (1.026) (1.031) (1.049)
RSIZE −0.040 −0.043 −0.035 −0.061

(0.098) (0.099) (0.098) (0.095)
MB 0.195 a 0.195 a 0.197 a 0.228 a

(0.04) (0.041) (0.041) (0.039)

PRICE −0.564 a −0.741 a −0.569 a −0.359 b

(0.176) (0.173) (0.176) (0.182)
EXRET −1.406 a −1.563 a −1.426 a −0.973 c

(0.519) (0.527) (0.519) (0.52)
TLMTA 5.168 a

(0.446)
SIGMA 2.769 a

(0.426)

Pseudo R2 0.186 0.143 0.186 0.309 0.300 0.309 0.320

a, b, and c indicate signi�cance at the 1%, 5%, and 10% Level, respectively. Standard errors are
reported in parentheses.
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Table 4: Estimates of logit regressions of failure on πMICS , πDD−B, πDD.
This table displays the results of logit regressions of a failure indicator on πMICS , πDD−B , πDD and
the following control variables. TLMTA, NIMTA, and CASHMTA are measured as the ratios of total
liabilities, net income, as well as cash and short term assets to the market value of total assets (equal
to the sum of the market value of equity and the book value of liabilities), respectively. Relative �rm
size RSIZE is de�ned as the logarithm of the market value of a �rm's equity relative to the market
capitalization of the S&P500, MB as the market-to-book ratio, PRICE as the logarithm of the stock
price winsorized at $15, EXRET as a stock's excess returns over the S&P500 during the last month, and
SIGMA as the standard deviation of daily stock returns over the last three months. All variables except
for PRICE are winsorized at their 5th and 95th percentile.

(1) (2) (3) (4) (5) (6) (7)

(Intercept) −8.714 a −7.780 a −8.679 a −9.679 a −8.849 a −9.323 a −13.270 a

(0.057) (0.038) (0.06) (1.151) (1.147) (1.152) (1.185)
πMICS 28.837 a 27.584 a 15.066 a 9.161 a

(0.447) (0.885) (1.306) (2.351)
πDD−B 20.733 a 1.081 10.033 a 4.662 a

(0.29) (0.661) (0.819) (1.567)
NIMTA −23.652 a −24.241 a −23.694 a −22.345 a

(2.411) (2.431) (2.418) (2.413)

CASHMTA −1.066 c −1.521 b −1.113 c −0.626
(0.643) (0.637) (0.644) (0.651)

RSIZE −0.201 b −0.191 b −0.189 b −0.162 b

(0.085) (0.085) (0.085) (0.083)
MB 0.143 a 0.143 a 0.146 a 0.174 a

(0.033) (0.033) (0.033) (0.032)
PRICE −0.984 a −1.076 a −0.992 a −0.718 a

(0.147) (0.145) (0.147) (0.152)

EXRET −1.294 a −1.424 a −1.332 a −0.959 b

(0.395) (0.399) (0.396) (0.391)
TLMTA 3.442 a

(0.269)
SIGMA 3.075 a

(0.343)

Pseudo R2 0.190 0.155 0.190 0.316 0.315 0.318 0.317

a, b, and c indicate signi�cance at the 1%, 5%, and 10% Level, respectively. Standard errors are
reported in parentheses.
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