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Abstract: 
We study investment and consumption decisions in a dynamic game under learning. To 
that end, we present a model in which agents not only extract a resource for 
consumption, but also invest in technology to improve the future stock. At the same time, 
the agents learn about the stochastic process governing the evolution of public capital,  
including the effect of investment in technology on future stock. Although the 
characterization of an infinite-horizon game with Bayesian dynamics (and without the 
assumption of adaptive learning) is generally intractable, we characterize the unique 
Cournot-Nash equilibrium for general distributions of the random variables. The addition 
of learning to a stochastic environment is shown to have a profound effect on the 
equilibrium. 
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1 Introduction

The evolution of public capital such as infrastructures, roads, telecommu-

nications, energy, and common-pool natural resources plays a key role in

economic analysis. While agents derive utility from the utilization of pub-

lic capital, they also have the ability to invest in technology to increase the

productivity of future stocks of public capital, thereby expanding future pro-

duction and consumption possibilities. Because several agents contribute to

the technological progress for the stock of a public capital, there is an ex-

ternality contained in this investment. Indeed, investment in public good is

an important economic activity with externalities. Fesselmeyer et al. (2012)

consider strategic interactions in capital utilization for public capital with

endogenous technological progress. They consider a deterministic framework

to isolate the effect of games and strategic interactions on consumption, tech-

nological changes, stock of capital in the dynamics and in the steady state.

However, while agents have a certain control over technological progress, the

evolution of public capital is highly uncertain. Indeed, the evolution of public

capital depends on random shocks, which implies that agents make decisions

without knowing the realizations of these shocks, i.e., they face uncertainty

in outcomes. However, agents generally face more than just uncertainty in

outcomes since the true distributions of these shocks are never known exactly.

In other words, agents generally face structural uncertainty because they do

not know the structure of the economy. Unlike uncertainty in outcomes,

structural uncertainty evolves through learning. Indeed, the agents gather

and analyze data in order to learn the distribution of the random shocks. In

that case, agents make consumption and investment decisions as well as learn

simultaneously about the stochastic process. In general, decision-making and

learning are nonseparable and influence each other.1

It is the purpose of this paper to study endogenous technological progress

in a dynamic game of capital utilization with learning. Our model adds two

1There is a two-way interaction between decision making and learning. On the one
hand, decision making may have an effect on learning, which is referred as experimentation.
On the other hand, the presence of learning adds risk which affects future payoffs and thus
behavior.
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important features by allowing agents to strategically invest in technology,

while at the same time learning about the stochastic process governing the

evolution of public capital, including the effect of investment in technology on

future stock. Strategic utilization of public capital has already been studied

without the issue of endogenous technological change and learning, beginning

with the Great Fish War model of Levhari and Mirman (1980) in the deter-

ministic case. Recently, Antoniadou et al. (2012) studies strategic exploita-

tion of a common-pool natural resource under uncertainty in outcomes but

without the inclusion of technological progress or learning. In their model,

the distribution of the random shock is known and the agents have no need

to learn about the structure of the economy.2 The issue of learning has gen-

erally been addressed in dynamic single-agent problems, thereby removing

the issue of strategic interactions and externalities.3 In particular, the effect

of learning on consumption only (without the inclusion of an investment de-

cision) has already been studied in the context of the Mirman-Zilcha model

in Koulovatianos, Mirman, and Santugini (2009).

In our model, agents not only extract a resource for consumption, but also

invest to improve the future stock. Hence, the model has both a dynamic

externality (i.e., consumption of an agent affects the payoff of the other

agent through the evolution of the stock) and an investment externality

(i.e., investment of one agent has a positive effect on the public good and

thus future payoffs of the other agent). Moreover, agents face structural

uncertainty because the distributions of the shocks affecting the evolution of

the stock are unknown. However, agents observe past shocks and learn using

Bayesian methods.4 Agents are fully rational and anticipate learning, which

entwines decision-making with learning.5 That is, the learning activity due

2In a different context, Mirman and To (2005) has addressed the issue of investing in
capital in an overlapping generation model.

3See Bernhardt and Taub (2011) for a recent paper on learning in oligopoly when the
firms learn from prices.

4There is no experimentation in our model. For the literature on single-agent exper-
imentation with capital accumulation , see Freixas (1981), Bertocchi and Spagat (1998),
Datta et al. (2002), El-Gamal and Sundaram (1993), Huffman and Kiefer (1994), and Beck
and Wieland (2002).

5There is no adaptive learning. Under adaptive learning, agents are bounded because
they assume that beliefs will not change over time, i.e., they do not anticipate learning.
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to structural uncertainty is directly embedded in a dynamic game of public

capital utilization. The agents’ learning activity entwine with the strategic

interaction adds an element of risk to the decision making process.

We first derive and characterize the unique recursive learning Cournot-

Nash equilibrium for general distribution of the shocks and the beliefs. In

particular, we do not rely on conjugate families for distribution, i.e., we al-

low for the prior and posterior p.d.f.’s to belong to different families. This

generality is important since the use of conjugate priors are restrictive.6 In

addition to providing a detailed guide to the derivation of the equilibrium

under learning when beliefs are anticipated to be updated many times, we

study the effect of learning on behavior, both consumption and investment.

The addition of learning has a profound change on equilibrium values. With-

out learning, the Levhari and Mirman (1980) framework (with or without the

investment externality) displays certainty equivalence, i.e., the random pro-

duction shocks affect the optimization problem through their means. When

distributions of the shocks are unknown and agents learn about them, there

is no certainty equivalence and higher moments of the distribution for beliefs

have an effect on the equilibrium values. In particular, we show that the

anticipation of learning generates more risk about the future, which induces

agents to decrease consumption, increase investment, while overall extraction

is ambiguous.

The paper is organized as follows. Section 2 presents the model and de-

fines the recursive learning Cournot-Nash equilibrium. Section 3 derives and

characterize the equilibrium for both finite and infinite horizons. Section 4

studies the effect of learning on the equilibrium when beliefs are unbiased.

2 Model and Equilibrium Definition

In this section, we embed learning in a dynamic game in which agents make

both consumption and investment decisions and at the same time learn about

See Evans and Honkapohja (2001) for a detailed exposition of adaptive learning.
6One popular approach is to rely on the fact that the family of normal distributions

with an unknown mean is a conjugate family for samples from a normal distribution.
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the stochastic process governing the evolution of the capital. We first present

the model. We then define the recursive learning Cournot-Nash equilibrium.

2.1 Model

Consider the Great Fish War dynamic game of Levhari and Mirman (1980)

in which several agents derive utility from the consumption of a common

capital stock. Formally, let yt be capital stock available at the beginning of

period t. If the capital goes unexploited in period t, then the stock evolves

stochastically according to the rule

ỹt+1 = y
η̃β,t

t (1)

where η̃β,t is a random shock in period t, i.e., the shock is realized in period

t + 1.7

In period t, agent j extracts a quantity cj,t from the stock yt, which

yields utility u(cj,t) = ln cj,t, j = 1, 2. In addition to consuming the stock,

agent j extracts additional ij,t units that are immediately invested in order

to increase the future stock. Hence, a total
∑2

j=1 ij,t is invested back, and the

remaining yt−
∑2

j=1 (cj,t + ij,t) is left for future use. The present consumption

and investment of the capital by the two agents have an effect on the future

stock. The evolution of an exploited stock follows the stochastic rule

ỹt+1 =
(∑2

j=1
ij

)η̃α,t (
y −

∑2

j=1
(cj,t + ij,t)

)η̃β,t

(2)

where η̃t = [η̃α,t, η̃β,t] is random iid over time. Let the p.d.f. of η̃t be

φ(ηt|θ∗),ηt ∈ R
2
+ which depends on θ∗ ∈ Θ ⊂ R

N for N ∈ N.

To simplify notation, the t-subscript for indexing time is hereafter re-

moved and the hat sign is used to indicate the value of a variable in the

subsequent period, i.e., y is stock today and

ŷ =
(∑2

j=1
ij

)ηα (
y −

∑2

j=1
(cj + ij)

)ηβ
(3)

7A tilde sign is used to distinguish a random variable from its realization.
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is stock tomorrow. From (3), the shocks ηα and ηβ measure the contributions

of the unexploited stock and the investment goods, respectively, toward the

new capital. Specifically, from (3), for a given shock ηα, investment improves

the renewability of the stock through the investment component (i1 + i2)
ηα

such that investment goods are perfect substitutes.

Having described the stochastic evolution of the stock, we next explain

the information available to the agents and their learning process. The agents

do not know the value of θ∗ (i.e., they do not know the distribution of η̃),

but they have common prior beliefs about its value expressed as a prior

p.d.f. ξ on Θ. That is, the probability that θ∗ ∈ S is
∫
θ∈S ξ(θ)dθ for any

S ⊂ Θ. Because the shock η is observable, the agents update their beliefs

using Bayesian method. Here, the agents learn about the stochastic process

that governs the evolution of the stock. In particular, the agents learn about

the impact of their investment on the future stock through the distribution

of η̃α. Given a prior ξ and the observation η today, the posterior tomorrow

is

ξ̂(θ|η) = φ(η|θ)ξ(θ)∫
x∈Θ φ(η|x)ξ(x)dx (4)

for θ ∈ Θ, by Bayes’ Theorem.

To distinguish among different horizons of the dynamic game, we use

the index τ = 0, 1, . . . , T . Given the present stock of the capital, agent

j maximizes the expected sum of discounted utilities. The anticipation of

acquiring and using data is embedded directly in the value function. Hence,

for j, k = 1, 2, j �= k, the τ -period-horizon value function for agent j is

vτj (y; ξ) = max
cj ,ij

{
ln cj + δ

∫
η∈R2

+

vτ−1
j

(
(i1 + i2)

ηα
(
y −

∑2

j=1
(cj + ij)

)ηβ
; ξ̂(·|η)

)

·
[∫

θ∈Θ
φ(η|θ)ξ(θ)dθ

]
dη

}
, (5)

where
∫
θ∈Θ φ(η|θ)ξ(θ)dθ is the expected p.d.f. of the shocks. From (5), learn-

ing is anticipated using Bayesian updating. In a dynamic context, rational

expectations imply that the information contained in the future production
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shock is anticipated. The anticipation of learning is integrated into (5) by an-

ticipating the updated beliefs from ξ to ξ̂(·|η) using (4). As shown by Koulo-

vatianos, Mirman, and Santugini (2009) in a growth single-agent model with-

out investment, the anticipation of learning is related to the nonseparability

of control and learning since the dynamics given in (2) and (4) are entwined

through the shocks. The anticipation of learning generates more uncertainty

for the agents because future beliefs are treated as random variables from

today’s perspective.

2.2 Equilibrium Definition

We next define the recursive learning Cournot-Nash equilibrium for a T -

period-horizon game. The equilibrium consists of the strategies of the two

agents for every horizon from the first period (when there are T periods left)

to the last period (when there is no horizon). Without loss of generality, we

assume that the two agents split the stock equally and do not invest in the

last period. As in Levhari and Mirman (1980), the assumption of a log utility

function implies that the allocation of the stock in the last period has no effect

on the dynamic game. Condition 1 states the behavior in the last period,

i.e., when the horizon is τ = 0. Condition 2 states the recursive equilibrium

for every horizon of the game. Statement 2a is consistent with statement 1.

Statement 2b reflects the recursive nature of the equilibrium in which the

equilibrium continuation value function for a τ -period horizon depends on

the equilibrium strategies for τ ′-period horizons, τ > τ ′ ≥ 0. Learning is

embedded in the dynamic game through the anticipation of updated beliefs.
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Definition 2.1. The tuple {Cτ
1 (y; ξ), I

τ
1 (y; ξ), C

τ
2 (y; ξ), I

τ
2 (y; ξ)}Tτ=0 is a re-

cursive learning Cournot-Nash equilibrium for a T -period-horizon game if,

for all y and ξ,

1. For τ = 0, C0
1 (y; ξ) = C0

2 (y; ξ) = y/2, I01(y; ξ) = I02 (y; ξ) = 0.

2. For τ = 1, 2, . . . , T , for j, k = 1, 2, j �= k, given {Cτ
k (y; ξ), I

τ
k (y; ξ)}

and {Ct
1(y; ξ), I

t
1(y; ξ), C

t
2(y; ξ), I

t
2(y; ξ)}τ−1

t=0 ,

{Cτ
j (y; ξ), I

τ
j (y; ξ)}

= argmax
cj ,ij

{
ln cj

+ δ

∫
η∈R2

+

V τ−1
j

(
(ij + Iτk (y; ξ))

ηα (y − cj − ij − Cτ
k (y; ξ)− Iτk (y; ξ))

ηβ ; ξ̂(·|η)
)

·
[∫

θ∈Θ
φ(η|θ)ξ(θ)dθ

]
dη

}
(6)

where the posterior ξ̂(·|η) is consistent with (4). Moreover, for any y′

and ξ′,

(a) For τ ′ = 0,

V 0
1 (y

′; ξ′) = V 0
2 (y

′, ξ′) = ln(y′/2). (7)

(b) For τ ′ = 1, 2, . . . , T − 1,

V τ ′
j (y′; ξ′) = lnCτ ′

j (y′; ξ′)+δ

∫
η′∈R2

+

V τ ′−1
j

(
Γ(η′); ξ̂′(·|η′)

)⎡⎣ ∫
θ′∈Θ

φ(η′|θ′)ξ′(θ′)dθ′
⎤
⎦ dη′,

(8)

such that ξ̂′(·|η′) is consistent with (4) and

Γ(η′) ≡
(∑2

s=1
Iτ

′−1
s (y′; ξ′)

)η′α
·
(
y −

∑2

s=1

(
Cτ ′−1

s (y′; ξ′) + Iτ
′−1

s (y′; ξ′)
))η′β

. (9)
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3 Equilibrium Characterization

In this section, we fully characterize the equilibrium for finite and infinite

horizons. We provide a detailed guide to the derivation of the equilibrium

and explain how to deal with the fact that the continuation value function

encompasses beliefs that have been updated many times. We finally give

several examples to show the generality of our results.

Proposition 3.1 provides the equilibrium for any finite horizon. The equi-

librium values hold for general distributions, i.e., no assumption is needed on

the production shock as well as on the distribution of prior beliefs beyond the

fact that integrals must exist. The model does away with all the difficulties

inherent in Bayesian analysis. In particular, the prior need not belong to

the conjugate family of the distribution of the production shock. In other

words, expression for equilibrium consumption and investment are valid for

a wide range of priors, even those that are outside of families of distributions

that are closed under sampling. Note that the equilibrium values depend

on the mean of the shocks (conditional on the unknown parameter) and the

distribution of beliefs. In other words, the conditional mean shocks

μs(θ̃) ≡
∫
η∈R2

+

ηsφ(η|θ̃)dη, (10)

s ∈ {α, β} are random variables becauce θ̃ is unknown and random from the

agents’ point of view.

Proposition 3.1. Suppose that for 0 < μα(θ) + μβ(θ) < ∞ for all θ ∈
Θ. There exists a unique recursive Cournot-Nash equilibrium for a T -period

game, T = 1, 2, . . . In equilibrium, for τ = 0, 1, . . . , T , each agent consumes

Cτ (y; ξ) =

⎛
⎝∫
θ∈Θ

2− δ(μα(θ) + μβ(θ))(1 + δτ (μα(θ) + μβ(θ))
τ )

1− δ(μα(θ) + μβ(θ)
ξ(θ)dθ

⎞
⎠

−1

y,

(11)
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and invests

Iτ (y; ξ) =

δ
∫

θ∈Θ

μα(θ)(1−δτ (μα(θ)+μβ(θ))
τ )

1−δ(μα(θ)+μβ(θ))
ξ(θ)dθ

2
∫

θ∈Θ

2−δ(μα(θ)+μβ (θ))(1+δτ (μα(θ)+μβ(θ))τ ))

1−δ(μα(θ)+μβ (θ))
ξ(θ)dθ

y, (12)

for s ∈ {α, β},
Proof. We first derive equilibrium consumption, investment, and value func-

tion in the one-period horizon. We then consider a τ -period horizon and solve

for equilibrium consumption, investment and value functions recursively. We

finally impose the initial condition given by the equilibrium for the one-period

horizon to characterize the equilibrium for any horizon. To simplify notation

in the proof, let φe(η) ≡ ∫
θ∈Θ

φ(η|θ)ξ(θ)dθ.

1. Consider first the one-period-horizon game. Using (6) and (7), for

j, k = 1, 2, j �= k, given {C1
k(y; ξ), I

1
k(y; ξ)}, agent j’s one-period-horizon

optimal policies satisfy

{C1
j (y; ξ), I

1
j (y; ξ)}

= argmax
cj ,ij

⎧⎨
⎩ln cj + δ

⎛
⎝∫
θ∈Θ

μα(θ)ξ(θ)dθ

⎞
⎠ ln(ij + I1k(y; ξ))

+ δ

⎛
⎝∫
θ∈Θ

μβ(θ)ξ(θ)dθ

⎞
⎠ ln(y − cj − ij − C1

k(y; ξ)− I1k(y; ξ)) + δ ln 2

⎫⎬
⎭ ,

(13)

μs(θ) ≡
∫

η∈R+

ηsφ(η|θ)dη, s ∈ {α, β}. The first-order conditions corre-

sponding to (13) are

cj :
1

cj
=

δ
∫

θ∈Θ
μβ(θ)ξ(θ)dθ

y − cj − ij − C1(y; ξ)− I1(y; ξ)
, (14)

ij :

δ
∫

θ∈Θ
μα(θ)ξ(θ)dθ

ij + I1(y; ξ)
=

δ
∫

θ∈Θ
μβ(θ)ξ(θ)dθ

y − cj − ij − C1(y; ξ)− I1(y; ξ)
, (15)
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evaluated at cj = C1(y; ξ) and ij = I1(y; ξ). Rearranging (14) and (15)

yields

C1(y; ξ) =
y − 2I1(y; ξ)

2 + δ
∫

θ∈Θ
μβ(θ)ξ(θ)dθ

, (16)

and

I1(y; ξ) =

(y − 2C1(y; ξ))
∫

θ∈Θ
μα(θ)ξ(θ)dθ

2
∫

θ∈Θ
(μα(θ) + μβ(θ))ξ(θ)dθ

. (17)

Solving (16) and (17) for equilibrium one-period-horizon consumption

and investment yields

C1(y; ξ) =
y

2 + δ
∫

θ∈Θ
(μα(θ) + μβ(θ))ξ(θ)dθ

, (18)

I1(y; ξ) =

δ(
∫

θ∈Θ
μα(θ)ξ(θ)dθ)y

2(2 + δ
∫

θ∈Θ
(μα(θ) + μβ(θ))ξ(θ)dθ)

. (19)

Since the equilibrium is symmetric, plugging (18) and (19) into the

objective function in (13) yields

V 1(y; ξ) =

⎛
⎝1 +

∫
θ∈Θ

(μα(θ) + μβ(θ))ξ(θ)dθ

⎞
⎠ ln y +Ψ1(ξ), (20)

where Ψ1(ξ) depends on beliefs but not on the stock.

2. Having solved for the one-period-horizon, we consider next a τ -period-

horizon where the continuation value function is V τ−1(y; ξ) = κτ−1(ξ) ln y+

Ψτ−1(ξ) where κτ−1(ξ) and Ψτ−1(ξ) are unknown functions of ξ. Given

V τ−1(y; ξ) = κτ−1(ξ) ln y + Ψτ−1(ξ) and {Cτ (y; ξ), Iτ(y; ξ)}, agent j’s

12



τ -period-horizon optimal policies satisfy

{C1(y; ξ), I1(y; ξ)}

= argmax
cj ,ij

⎧⎪⎨
⎪⎩ln cj + δ

⎛
⎜⎝ ∫
η∈R2

+

κτ−1(ξ̂(·|η))ηαφe(η)dη

⎞
⎟⎠ ln(ij + Iτ (y; ξ))

+ δ

⎛
⎜⎝ ∫
η∈R2

+

κτ−1(ξ̂(·|η))ηβφe(η)dη

⎞
⎟⎠ ln(y − cj − ij − Cτ (y; ξ)− Iτ (y; ξ))

+ δ

∫
η∈R2

+

Ψτ−1(ξ̂(·|η))φe(η)dη

⎫⎪⎬
⎪⎭ . (21)

The first-order conditions corresponding to (21) are

cj :
1

cj
=

δ
∫

η∈R2
+

κτ−1(ξ̂(·|η))ηβφe(η)dη

y − cj − ij − Cτ (y; ξ)− Iτ (y; ξ)
, (22)

ij :

δ
∫

η∈R2
+

κτ−1(ξ̂(·|η))ηαφe(η)dη

ij + Iτ (y; ξ)
=

δ
∫

η∈R2
+

κτ−1(ξ̂(·|η))ηβφe(η)dη

y − cj − ij − Cτ (y; ξ)− Iτ (y; ξ)

(23)

evaluated at cj = Cτ (y; ξ) and ij = Iτ (y; ξ). From (22) and (23),

Cτ (y; ξ) and Iτ (y; ξ) are linear in y. Solving (22) and (23) yields

Cτ (y; ξ) =
y

2 + δ
∫

η∈R2
+

κτ−1(ξ̂(·|η))(ηα + ηβ)φe(η)dη
, (24)

Iτ (y; ξ) =

δ

( ∫
η∈R2

+

κτ−1(ξ̂(·|η))ηαφe(η)dη

)
y

2

(
2 + δ

∫
η∈R2

+

κτ−1(ξ̂(·|η))(ηα + ηβ)φe(η)dη

) . (25)
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Plugging (24) and (25) into the objective function in (21) yields

V τ (y; ξ) =

⎛
⎜⎝1 + δ

∫
η∈R2

+

κτ−1(ξ̂(·|η))(ηα + ηβ)φ
e(η)dη

⎞
⎟⎠ ln y

+ δ

∫
η∈R2

+

Ψτ−1
j (ξ̂(·|η))φe(η)dη + Γ(ξ), (26)

≡ κτ (ξ) ln y +Ψτ (ξ), (27)

where Γ(ξ) is a cumbersome function of ξ that has no effect on the

equilibrium and is not characterized here. Hence,

κτ (ξ) = 1 + δ

∫
η∈R2

+

κτ−1(ξ̂(·|η))(ηα + ηβ)φ
e(η)dη (28)

with, from (20), initial condition

κ1(ξ) = 1 + δ

∫
θ∈Θ

(μα(θ) + μβ(θ))ξ(θ)dθ, (29)

= 1 + δ

∫
η∈R2

+

(ηα + ηβ)φ
e(η)dη. (30)

where recall that μs(θ) ≡ ∫
η∈R+

ηsφ(η|θ)dη, s ∈ {α, β}. From (28)

and (30), it follows that

κτ (ξ) =

∫
θ∈Θ

τ∑
t=0

δt(μα(θ) + μβ(θ))
tξ(θ)dθ. (31)
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Plugging (4) and (31) into (24) yields

Cτ (y; ξ)

=

(
2 + δ

∫
η∈R2

+

⎛
⎝∫
θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))
t φ(η|θ)ξ(θ)∫

x∈Θ φ(η|x)ξ(x)dxdθ
⎞
⎠

· (ηα + ηβ)

(∫
x∈Θ

φ(η|x)ξ(x)dx
)
dη

)−1

y, (32)

=
y

2 + δ
∫

θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))t
∫

η∈R2
+

(ηα + ηβ)φ(η|θ)dηξ(θ)dθ
,

(33)

=
y

2 + δ
∫

θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))t(μα(θ) + μβ(θ))ξ(θ)dθ

, (34)

=
y∫

θ∈Θ

2−δ(μα(θ)+μβ (θ))(1+δτ (μα(θ)+μβ (θ))τ )

1−δ(μα(θ)+μβ(θ))
ξ(θ)dθ

, (35)
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as in (11). Similarly, plugging (4) and (31) into (25) yields

Iτ (y; ξ) (36)

=

δ

⎛
⎝ ∫

η∈R2
+

⎛
⎝ ∫

θ∈Θ

τ−1∑

t=0
δt(μα(θ)+μβ(θ))

tφ(η|θ)ξ(θ)
∫
x∈Θ φ(η|x)ξ(x)dx dθ

⎞
⎠ ηα

∫
x∈Θ φ(η|x)ξ(x)dxdη

⎞
⎠ y

2

⎛
⎝2 + δ

∫
η∈R2

+

⎛
⎝ ∫

θ∈Θ

τ−1∑

t=0
δt(μα(θ)+μβ (θ))tφ(η|θ)ξ(θ)

∫
x∈Θ

φ(η|x)ξ(x)dx dθ

⎞
⎠ (ηα + ηβ)

∫
x∈Θ φ(η|x)ξ(x)dxdη

⎞
⎠
,

(37)

=

δ

( ∫
θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))
t
∫

η∈R2
+

φ(η|θ)ηαdηξ(θ)dθ
)
y

2

(
2 + δ

∫
θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))t
∫

η∈R2
+

(ηα + ηβ)φ(η|θ)dηξ(θ)dθ
) ,

(38)

=

δ

( ∫
θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))
tμα(θ)ξ(θ)dθ

)
y

2

(
2 + δ

∫
θ∈Θ

τ−1∑
t=0

δt(μα(θ) + μβ(θ))t(μα(θ) + μβ(θ))ξ(θ)dθ

) , (39)

=

δ
∫

θ∈Θ
μα(θ)

1−δτ (μα(θ)+μβ (θ))
τ

1−δ(μα(θ)+μβ (θ))
ξ(θ)dθ

2
∫

θ∈Θ

2−δ(μα(θ)+μβ (θ))(1+δτ (μα(θ)+μβ(θ))τ )
1−δ(μα(θ)+μβ (θ))

ξ(θ)dθ
y, (40)

as in (12).

Proposition 3.2 provides the equilibrium for an infinite horizon, i.e., the

limits of the equilibrium outcomes in Proposition 3.1. As in the finite-

horizon games, the random production shock enters the optimization problem

through its mean. In other words, the model displays conditional certainty

equivalence, i.e., only the mean of the shocks conditional on the parame-

ter θ affects consumption and investment. However, the whole distribution

defining prior beliefs have an effect on behavior.
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Proposition 3.2. Suppose that 0 < μα(θ) + μβ(θ) < 1 for all θ ∈ Θ. Then,

from (11) and (12), limT→∞CT (y; ξ) ≡ C∞(y; ξ) and limT→∞ IT (y; ξ) ≡
I∞(y; ξ) exists. In the infinite horizon, each agent consumes

C∞(y; ξ) =

⎛
⎝∫
θ∈Θ

2− δ(μα(θ) + μβ(θ))

1− δ(μα(θ) + μβ(θ)
ξ(θ)dθ

⎞
⎠

−1

y, (41)

and invests

I∞(y; ξ) =

δ
∫

θ∈Θ
μα(θ)

1−δ(μα(θ)+μβ (θ))
ξ(θ)dθ

2
∫

θ∈Θ

2−δ(μα(θ)+μβ (θ))

1−δ(μα(θ)+μβ (θ))
ξ(θ)dθ

y. (42)

Proof. Taking limits of (11) and (12) yields (41) and (42).

We present three examples that show the wide applicability of our model,

not only in terms of distributions, but also in terms of general unknown

structures. For instance, normal distributions are not needed to get analytic

results. In Example 3.3, the case of learning about the contribution of invest-

ment but learns about several parameters of the distribution. Example 3.4

deals with a uniform distribution for η̃ with unknown support. Example 3.5

illustrates the case in which the learning planner does not know to which

family η̃ belongs, as well as not knowing the parameters characterizing each

family.

Example 3.3. Let η̃α have a beta distribution with unknown parameters

θ = (θ1, θ2), and beliefs ξ(θ1, θ2), θ1, θ2 > 0. Then, μα(θ) = θ1/(θ1 + θ2). Let

μβ(θ) = μβ be independent of θ and thus known. Hence,

C∞(y; ξ) =

(∫
R2
++

2− δ(θ1/(θ1 + θ2) + μβ)

1− δ(θ1/(θ1 + θ2) + μβ)
ξ(θ1, θ2)dθ1dθ2

)−1

y, (43)

I∞(y; ξ) =
δ
∫
R2
++

θ1/(θ1+θ2)
1−δ(θ1/(θ1+θ2)+μβ)

ξ(θ1, θ2)dθ1dθ2

2
∫
R2
++

2−δ(θ1/(θ1+θ2)+μβ)

1−δ(θ1/(θ1+θ2)+μβ)
ξ(θ1, θ2)dθ1dθ2

y. (44)
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Example 3.4. Let η̃ have a uniform distribution with unknown support [0, θα]

and [0, θβ ], and beliefs ξ(θα, θβ), θα, θβ ∈ (0, 1). Then, μα(θα) = θα/2 and

μβ(θβ) = θβ/2. Hence,

C∞(y; ξ) =

(∫ 1

0

∫ 1

0

4− δ(θα + θβ)

2− δ(θα + θβ)
ξ(θα, θβ)dθαdθβ

)−1

y, (45)

I∞(y; ξ) =
δ
∫ 1

0

∫ 1

0
θα/2

1−δ(θα/2+θβ)
ξ(θα, θβ)dθαdθβ

2
∫ 1

0

∫ 1

0

4−δ(θα+θβ)

2−δ(θα+θβ)
ξ(θα, θβ)dθαdθβ

y. (46)

Example 3.5. Let Θ = {θ1, θ2} where θ1 and θ2 refer to two distinct families

of distributions. If 0 ≤ ρ ≤ 1 is the prior probability that the production shock

has distribution θ1, then

C∞(y; ξ) =

⎛
⎝ρ

∫
θ1∈Θ

2− δ(μα(θ1) + μβ(θ1))

1− δ(μα(θ1) + μβ(θ1)
ξ(θ1)dθ1

+(1− ρ)

∫
θ2∈Θ

2− δ(μα(θ2) + μβ(θ2))

1− δ(μα(θ2) + μβ(θ2)
ξ(θ2)dθ2

⎞
⎠

−1

y, (47)

I∞(y; ξ) =
δ

2

⎛
⎜⎝ρ

∫
θ1∈Θ

μα(θ1)
1−δ(μα(θ1)+μβ(θ1))

ξ(θ1)dθ1∫
θ1∈Θ

2−δ(μα(θ1)+μβ(θ1))

1−δ(μα(θ1)+μβ(θ1))
ξ(θ1)dθ1

+ (1− ρ)

∫
θ1∈Θ

μα(θ2)
1−δ(μα(θ2)+μβ (θ2))

ξ(θ2)dθ2∫
θ1∈Θ

2−δ(μα(θ2)+μβ (θ2))

1−δ(μα(θ2)+μβ (θ2))
ξ(θ2)dθ2

⎞
⎟⎠ y.

(48)

4 Analysis

Having characterized the equilibrium for general distributions of the random

variables and provided some examples, we study the effect of learning on the

equilibrium. To that end, we compare equilibrium outcomes under learning

as defined by (41) and (42) with their counterparts under full information,

i.e., θ∗ is known by both agents.

Before proceeding with the comparison, we state the equilibrium out-

comes under full information. Since our model encompasses the case of in-

formed agents with degenerate beliefs, Proposition 4.1 presents the special
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case in which the agents knows the distribution of η̃. When there is no

learning, the equilibrium solution displays certainty equivalence, and there is

no substantial effect of uncertainty on behavior, i.e., higher moments of the

random shocks do not influence the equilibrium.

Proposition 4.1. Let the beliefs be degenerate at θ∗. Then,

C∞(y; θ∗) =
1− δ(μα(θ

∗) + μβ(θ
∗)

2− δ(μα(θ∗) + μβ(θ∗))
y, (49)

I∞(y; θ∗) =
δμα(θ

∗)
2(2− δ(μα(θ∗) + μβ(θ∗)))

y. (50)

Proof. Evaluating (41) and (42) at the true distribution (i.e., θ∗ is known)

yields (49) and (50).

Proposition 4.2 states that learning with unbiased beliefs about the shocks

induces both agents to consume less. As in the single-agent case studied

in Koulovatianos, Mirman, and Santugini (2009), the risk emanating from

learning increases the marginal cost of extraction, which leads to less con-

sumption.

Proposition 4.2. Suppose that beliefs about the sum of the mean shocks is

unbiased, i.e., μα(θ
∗) + μβ(θ

∗) =
∫
θ∈Θ(μα(θ) + μβ(θ))ξ(θ)dθ. Then, learning

(with nondegenerate beliefs) decreases consumption, i.e.,

C∞(y; ξ) < C∞(y; θ∗). (51)

Proof. Applying Jensen’s inequality on (41) and (49) yields (51).

We next turn to the effect of learning on investment. To understand how

learning influences behavior, we compare the first-order conditions under

learning and full information. Under learning, the value function for any
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agent evaluated at the equilibrium continuation value function is8

V (y, ξ) = max
cj ,ij

ln cj + δ

∫
θ∈Θ

μα(θ)

1− δ(μα(θ) + μβ(θ))
ξ(θ)dθ ln(i1 + i2)

+ δ

∫
θ∈Θ

μβ(θ)

1− δ(μα(θ) + μβ(θ))
ξ(θ)dθ ln(y − c1 − i1 − c2 − i2).

(52)

In equilibrium, I∞(y; ξ) equates the marginal benefit of investing with the

marginal cost of extraction, i.e.,

∫
θ∈Θ

μα(θ)
1−δ(μα(θ)+μβ(θ))

ξ(θ)dθ

2I∞(y; ξ)
=

∫
θ∈Θ

μβ(θ)

1−δ(μα(θ)+μβ (θ))
ξ(θ)dθ

y − 2C∞(y; ξ)− 2I∞(y; ξ)
. (53)

Under full information, the value function for any agent evaluated at the

equilibrium continuation value function is9

V (y, ξ) = max
cj ,ij

ln cj + δ
μα(θ

∗)
1− δ(μα(θ∗) + μβ(θ∗))

ξ(θ)dθ ln(i1 + i2)

+ δ
μβ(θ

∗)
1− δ(μα(θ∗) + μβ(θ∗))

ln(y − c1 − i1 − c2 − i2). (54)

In equilibrium, I∞(y; θ∗) equates the marginal benefit of investing with the

marginal cost of extraction, i.e.,

μα(θ∗)
1−δ(μα(θ∗)+μβ(θ∗))

2I∞(y; θ∗)
=

μβ(θ
∗)

1−δ(μα(θ∗)+μβ(θ∗))

y − 2C∞(y; θ∗)− 2I∞(y; θ∗)
. (55)

To clarify the discussion, we consider two special cases of structural un-

certainty. In the first case, the agents do not know the stochastic process

governing the contribution of the investment goods toward new capital, i.e.,

from (3), the agents know the distribution of η̃β and learn about the distribu-

tion of η̃α. In the second case, the agents do not know the stochastic process

governing the contribution of the unexploited stock toward new capital.

Suppose first that μβ is independent of θ and thus known. Suppose fur-

8Plugging (31) into (21) (ignoring the constant) and taking limits yields (52).
9Evaluating (52) at the true distribution (i.e., θ∗ is known) yields (54).
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ther that beliefs about the distribution of η̃α are unbiased, i.e., μα(θ
∗) =∫

θ∈Θ μα(θ)ξ(θ)dθ. From (53) and (55), the effect of learning is three-fold.

First, learning increases the marginal benefit of investing, i.e., by Jensen’s

inequality,

∫
θ∈Θ

μα(θ)

1− δ(μα(θ) + μβ)
ξ(θ)dθ >

μα(θ
∗)

1− δ(μα(θ∗) + μβ)
. (56)

Second, learning increases the marginal cost of investing directly, i.e.,

∫
θ∈Θ

μβ

1− δ(μα(θ) + μβ)
ξ(θ)dθ >

μβ

1− δ(μα(θ∗) + μβ)
, (57)

by Jensen’s inequality. Learning also increases the marginal cost of extraction

indirectly through lower consumption, i.e., from Proposition 4.2, C∞(y; ξ) <

C∞(y; θ∗). While there are partial effects that pull in opposite directions,

Proposition 4.3 states that the overall effect of learning increases investment.

Proposition 4.3. Suppose that μβ is independent of θ and that μα(θ
∗) =∫

θ∈Θ μα(θ)ξ(θ)dθ. Then, learning increases investment, i.e.,

I∞(y; ξ) > I∞(y; θ∗). (58)

Proof. The proof applies Jensen’s and Holdër’s inequalities. Specifically,
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from (42) and (50),

I∞(y; θ∗) =
δ

2

μα(θ
∗)

2− δ(μα(θ∗) + μβ)
y (59)

=
δ

2

∫
θ∈Θ μα(θ)ξ(θ)dθ

2− δ
(∫

θ∈Θ μα(θ)ξ(θ)dθ + μβ

)y, (60)

<
δ

2

(∫
θ∈Θ

μα(θ)

2− δ(μα(θ) + μβ)
ξ(θ)dθ

)
y, (61)

=
δ

2

⎛
⎝∫

θ∈Θ

μα(θ)
1−δ(μα(θ)+μβ)

2−δ(μα(θ)+μβ)

1−δ(μα(θ)+μβ)

ξ(θ)dθ

⎞
⎠ y, (62)

<
δ

2

(∫
θ∈Θ

μα(θ)

1− δ(μα(θ) + μβ)
ξ(θ)dθ

)⎛⎜⎝∫
θ∈Θ

1
2−δ(μα(θ)+μβ)
1−δ(μα(θ)+μβ)

ξ(θ)dθ

⎞
⎟⎠ y,

(63)

<
δ

2

⎛
⎝
∫
θ∈Θ

μα(θ)
1−δ(μα(θ)+μβ)

ξ(θ)dθ∫
θ∈Θ

2−δ(μα(θ)+μβ)

1−δ(μα(θ)+μβ)
ξ(θ)dθ

⎞
⎠ y = I∞(y; ξ) (64)

where the first inequality comes from Jensen’s inequality and the fact that
μα(θ)

2−δ(μα(θ)+μβ )
is convex in μα(θ), the second inequality comes from Holdër’s

inequality, and the third inequality comes from Jensen’s inequality and the

fact that
(

2−δ(μα(θ)+μβ)

1−δ(μα(θ)+μβ)

)−1

is concave in μα(θ).

Suppose next that μα is independent of θ and thus known and that

μβ(θ
∗) =

∫
θ∈Θ μβ(θ)ξ(θ)dθ. As in the first case, learning induces more in-

vestment.

Proposition 4.4. Suppose that μα is independent of θ and that μβ(θ
∗) =∫

θ∈Θ μβ(θ)ξ(θ)dθ. Then, learning increases investment, i.e.,

I∞(y; ξ) > I∞(y; θ∗). (65)

Proof. The proof follows the same steps as the proof of Proposition 4.3. That
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is, from (42) and (50),

I∞(y; θ∗) =
δ

2

μα

2− δ(μα + μβ(θ∗))
y (66)

=
δ

2

∫
θ∈Θ μαξ(θ)dθ

2− δ
(
μα +

∫
θ∈Θ μβ(θ)ξ(θ)dθ

)y, (67)

<
δ

2

(∫
θ∈Θ

μα

2− δ (μα + μβ(θ))
ξ(θ)dθ

)
y, (68)

=
δ

2

⎛
⎜⎝∫

θ∈Θ

μα

1−δ(μα+μβ(θ))

2−δ(μα+μβ(θ))
1−δ(μα+μβ(θ))

ξ(θ)dθ

⎞
⎟⎠ y, (69)

=
δ

2

(∫
θ∈Θ

μα

1− δ(μα + μβ(θ))
ξ(θ)dθ

)⎛⎜⎝∫
θ∈Θ

1
2−δ(μα+μβ(θ))
1−δ(μα+μβ(θ))

ξ(θ)dθ

⎞
⎟⎠ y,

(70)

<
δ

2

⎛
⎜⎝
∫
θ∈Θ

μα

1−δ(μα+μβ(θ))
ξ(θ)dθ∫

θ∈Θ
2−δ(μα+μβ(θ))
1−δ(μα+μβ(θ))

ξ(θ)dθ

⎞
⎟⎠ y = I∞(y; ξ). (71)

While learning with unbiased beliefs unambiguously decreases consump-

tion and increases investment, the effect on total extraction is ambiguous. To

see how the ambiguity arises, consider the case in which μβ is independent

of θ and thus known. From (41) and (42), total extraction under learning is

2 (C∞(y; ξ∗) + I∞(y; ξ∗)) =

∫
θ∈Θ

2−δ(μα(θ)+2μβ )

1−δ(μα(θ)+μβ )
ξ(θ)dθ∫

θ∈Θ
2−δ(μα(θ)+μβ )

1−δ(μα(θ)+μβ )
ξ(θ)dθ

y, (72)

while, from (49) and (50), total extraction under full information is

2 (C∞(y; θ∗) + I∞(y; θ∗)) =
2− δ(μα(θ

∗) + 2μβ(θ
∗))

2− δ(μα(θ∗) + μβ(θ∗))
y. (73)

Suppose now that μβ(θ) is independent of θ and that μα(θ
∗) =

∫
θ∈Θ μα(θ)ξ(θ)dθ.
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Then, observe first that, by Jensen’s inequality,

2 (C∞(y; θ∗) + I∞(y; θ∗)) =
2− δ(μα(θ

∗) + 2μβ)

2− δ(μα(θ∗) + μβ)
y,

=

∫
θ∈Θ (2− δ(μα(θ) + 2μβ)) ξ(θ)dθ∫
θ∈Θ (2− δ(μα(θ) + μβ)) ξ(θ)dθ

y,

>

∫
θ∈Θ

2− δ(μα(θ) + 2μβ)

2− δ(μα(θ) + μβ)
ξ(θ)dθy,

=

∫
θ∈Θ

2−δ(μα(θ)+2μβ )

1−δ(μα(θ)+μβ )

2−δ(μα(θ)+μβ )

1−δ(μα(θ)+μβ )

ξ(θ)dθy,

(74)

since
2−δ(μα(θ)+2μβ )

2−δ(μα(θ)+μβ )
is concave in μα(θ). Next, observe that, by Holder’s in-

equality,

∫
θ∈Θ

2−δ(μα(θ)+2μβ )

1−δ(μα(θ)+μβ )

2−δ(μα(θ)+μβ )

1−δ(μα(θ)+μβ )

ξ(θ)dθy <

(∫
θ∈Θ

2− δ(μα(θ) + 2μβ)

1− δ(μα(θ) + μβ)
ξ(θ)dθ

)

·
⎛
⎝∫

θ∈Θ

1
2−δ(μα(θ)+μβ )

1−δ(μα(θ)+μβ )

ξ(θ)dθ

⎞
⎠ y,

<

∫
θ∈Θ

2−δ(μα(θ)+2μβ )

1−δ(μα(θ)+μβ )
ξ(θ)dθ∫

θ∈Θ
2−δ(μα(θ)+μβ )

1−δ(μα(θ)+μβ )
ξ(θ)dθ

y

= 2 (C∞(y; ξ∗) + I∞(y; ξ∗)) .

(75)

Statements in expressions (74) and (75) cannot be reconciled, which illus-

trates the ambiguity of the effect of learning on total extraction.
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