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Abstract:  
We analyze firms’ entry, production and hedging decisions under imperfect competition. 
We consider an oligopoly industry producing a homogeneous output in which risk-averse 
firms face an entry cost upon entering the industry, and then compete in Cournot with 
one another. Each firm faces uncertainty in the input cost when making production 
decision, and has access to the futures market to hedge the random cost. We provide 
two sets of results. First, under general assumptions about risk preferences, demand, 
and uncertainty, we characterize the unique equilibrium. In contrast to previous results in 
the literature (without entry), production and output price depend on uncertainty and risk 
aversion. Specifically, when entry is endogenized and the futures price is not actuarially 
fair, access to the futures market does not lead to separation. Second, to study the 
effect of access to the futures market on entry and production, we restrict attention to 
constant absolute risk aversion (CARA) preferences, a linear demand, and a normal 
distribution for the spot price. In general, the effect of access to the futures market on 
the number of firms and production is ambiguous.  
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1 Introduction

Recent financial literature on firms’ risk management of market risk has

focused on the determinants of hedging and the economic value of financial

coverage. The two main questions in this literature are: Why do firms hedge?

and Does hedging increase the economic value of the firms? Firms’ hedging is

explained by managerial risk aversion (Stulz, 1990; Tufano, 1996) or market

imperfections such as corporate income taxation (Smith and Stulz, 1985;

Graham and Smith, 1999; Graham and Rogers, 2002), financial distress costs

(Smith and Stulz, 1985), corporate governance (Dionne and Triki, 2013),

investment opportunity costs (Froot et al., 1993; Froot and Stein, 1998), and

information asymmetries (DeMarzo and Duffie, 1991). The empirical effect of

hedging on firm value is rather mixed (Hoyt and Liebenberg, 2011; Campello

et al., 2011).

Another strand of the literature analyzes the joint production and hedging

decisions of the firm under uncertainty about output price (Holthausen, 1979;

Feder et al., 1980). The main result from this literature is that optimal output

production is independent of the probability distribution of the output price

and the manager’s risk aversion. The distribution of the output price and

risk aversion have an effect only on firms’ involvement in futures trading.

Hence, with access to the futures market, uncertainty does not introduce

any efficiency loss in production. The same separation result is obtained

under perfect competition and input price uncertainty (Holthausen, 1979;

Katz and Paroush, 1979; Paroush and Wolf, 1992). Paroush and Wolf (1992)

show, however, that the separation result does not hold in the presence of

basis risk, while Anderson and Danthine (1981) obtain a similar negative

result with production uncertainty. Different extensions have been proposed

by considering multiple risky inputs, background risk, and joint output price

and input price uncertainty.1

Although there are many contributions regarding firms’ hedging in both

literatures, to our knowledge there are few analyses of firms’ hedging behav-

1See Viaene and Zilcha (1998) for instance. See also Alghalith (2008) for a review of
the literature with competitive markets.

3



ior under imperfect competition, and none that considers entry in the output

market.2 We propose to fill the gap by analyzing firms’ entry, production

and hedging decisions under imperfect competition. Specifically, we consider

an oligopoly industry producing a homogeneous output in which risk-averse

firms face an entry cost upon entering the output industry, and, then, com-

pete in Cournot with one another.3 Each firm faces uncertainty in the input

cost when choosing production, and has access to the futures market to hedge

the random cost. There is only one source of risk in our analysis.4 One ap-

plication of our model is the airline market for which it has been verified in

empirical investigations of the U.S. airline industry that Cournot competi-

tion is present (Brander and Zhang, 1990; Fisher and Kamerschen, 2003). In

this market, airline companies face future fuel price uncertainty when they

make their optimal routes decisions for the next few months, and purchase

futures contracts for jet fuel (Morrell and Swan, 2006).5 Here, entering or

exiting the output market is mainly interpreted as route decisions.

We provide two sets of results. First, under general assumptions about

2There are three notable exceptions for imperfect competition. First, Eldor and Zilcha
(1990) study the hedging behavior of an oligopoly under uncertainty in the output sector.
However, while the spot price is endogenous (and the firms exercise market power under
uncertainty), the futures (or forward) price is exogenous and fixed. In other words, the
firms exercise market power in the spot output market, but behave perfectly competitively
for the futures market of the same good. In addition, Eldor and Zilcha (1990) do not
consider entry, which is our main focus in this paper. Second, in a very different setting,
Allaz and Villa (1993) isolate the strategic reasons for using futures contracts. By selling
futures contracts, Cournot firms attach a lower value to a high spot price and commit
to aggressive behavior on the spot price yielding more production at a lower price in
equilibrium, which benefits consumers but not producers. Third, the effect of strategic
hedging on Cournot and Bertrand competition is studied in Léautier and Rochet (2012).
We compare Léautier and Rochet (2012) model with our model and results later in the
introduction.

3In this study, we assume that the firms have a concave payoff due to managerial risk
aversion. Concavity can be explained by different market imperfections. See Froot et al.
(1993) for a discussion.

4For the case of two types of risk (e.g., a risk that can be hedged through a finan-
cial derivative and a risk that can be insured by an insurance contract), see Rochet and
Villeneuve (2011).

5Fuel cost represents about 15% of the airlines’ costs. Other costs are usually less
volatile so hedging fuel costs guarantees stable profits. Usually, airlines do not hedge
business cycle risk. Airline companies can also purchase other derivatives products such
as options and even collars. These options would introduce more flexibility for the firm at
a higher cost, but would not affect the main results of the paper.
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risk preferences, demand, and uncertainty, we show that there exists a unique

equilibrium in which a finite number of firms enter the market as long as the

entry cost is not too high (the standard case) or not too low. Indeed, if

the cost of entry in the output industry is too low, an infinite number of

firms may enter the output industry and engage in speculation in the futures

market, which yields the competitive outcome in the real sector. That is,

the price of the output is equal to the marginal cost and the firms only

make profits from speculating on the input market. We also show that, in

contrast to previous results in the literature, production and output price

depend on uncertainty and risk preferences. In particular, production and

output price depend on the distribution of the spot price and risk aversion.

The key element is that the entry decision coupled with a non-actuarially

fair futures price limits the ability of the firms to adjust their production

decisions, which implies that output is no longer independent of uncertainty

and risk aversion. One implication is that access to the futures market alters

the comparative analysis. If there is no access to the futures market, either a

mean-preserving increase in risk or an increase in risk aversion induces each

firm to produce less. If there is access to the futures market, such changes

imply an increase (rather than a decrease) in per-firm production.6

The second set of results concern the effect of access to the futures market

on entry, production, and prices. To study this effect, we restrict attention

to constant absolute risk aversion (CARA) preferences, a linear demand,

and a normal distribution for the spot input price. The effect of access to

the futures market on the number of firms is ambiguous depending on the

value of the futures price and the parameters of the model. Further, the

equilibrium number of firms is convex in the futures price when the firms

partially hedge. In particular, an increase in the futures price of the input

can yield an increase in the number of firms in the output sector. This is

due to the fact that an increase in the futures price induces firms to produce

less, which reduces the market externality in a Cournot game and induces

6The result without financial access is consistent with classical results obtained in a
static environment (i.e., without entry decision) for perfect competition (Sandmo, 1971;
Batra and Ullah, 1974) and quantity-setting monopoly (Leland, 1972).
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more firms to enter while hedging their cost. Moreover, hedging induces each

risk-averse firm to produce more.

As noted, very few articles study the interaction of real and financial

activities when the firms exert market power. One exception is a recent paper

by Léautier and Rochet (2012) which studies the effect of committing to a

hedging strategy on production or pricing strategies. Specifically, Léautier

and Rochet (2012) considers a two-stage game in which each firm commits to

a hedging strategy in the first stage and then chooses production or pricing

strategies in the second stage. As in our model, the firms have market power

in the output sector but are perfectly competitive in the input market. There

are however main differences in the setups as well as in the issues studied.

Regarding the model, Léautier and Rochet (2012) considers a market with

a fixed number of firms, each one committing to a hedging strategy before

production or pricing strategies. In our model, entry is a decision variable in

the first stage whereas hedging and production are chosen simultaneously in

the second stage.

Beyond the differences in modeling, we study different and complemen-

tary aspects of the link between real and financial activities when the firms

exert market power. Léautier and Rochet (2012) shows that strategic hedg-

ing (when used as a strategic commitment device) has a profound effect on

the real decisions of the firms. Specifically, under actuarially fair pricing,

when the firm commits to a hedging strategy, hedging toughens quantity

competition, but softens price competition. We also consider issues related

to risk management and real activities but of different nature. Specifically,

we show that the separation result does not hold in the long-run when mar-

ket structure is endogenized and the futures price is not actuarially fair.7 We

then study the effect of access to the futures market on entry and production

decisions.8

7As noted, separation means that production decisions are independent of uncertainty
and risk preferences, and depend only on the futures price (Danthine, 1973; Holthausen,
1979; Feder et al., 1980).

8In other words, we show how commitment in entry removes the separation result
obtained in the literature (i.e., production strategies depend on uncertainty and risk pref-
erences in the long run) whereas Léautier and Rochet (2012) shows that commitment in
hedging has a profound effect on Bertrand or Cournot competition.
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The paper is organized as follows. Section 2 presents the model and de-

fines the equilibrium. Section 3 states the equilibrium and presents results

related to the issue of separation. Section 4 discusses the effect of access

to futures market on entry. Section 5 concludes the paper. Main proofs are

found in the Appendix of this paper whereas the remaining proofs and exten-

sions are found in the online Appendix provided by Dionne and Santugini

(2014).

2 Model

In this section, we present the model and define the free-entry equilibrium

with access to the futures market. In the next sections, we analyze the

equilibrium. Under a general characterization of the unique equilibrium, we

show that the entry decision links production and output price to uncertainty

and risk aversion.

2.1 Preliminaries

We embed access to the futures market in a two-stage entry game. At the first

stage, all potential firms decide whether to enter an industry in the output

sector. Each entering firm faces an exogenous entry cost.9 At the second

stage, all firms that have entered make production and financial decisions

while competing in Cournot in the output sector. The firms face uncertainty

in the input price, but have access to perfectly competitive spot and futures

markets. Figure 1 describes the timeline of the model.10

We now describe the second stage of the game. In an industry with J

firms, firm j produces qj ≥ 0 units of output and faces the inverse demand

p = P
(∑J

k=1 qk

)
where p is the output price and qk is the output sold by firm

9The case of no entry cost is excluded. In the data, industries with access to and
participation in the futures market generally comprise a small number of large firms. See
Campello et al. (2011). It is well documented in the literature that large firms hedge
(Stulz, 1996).

10We abstract from bankruptcy or solvency problems that could arise after the spot
input price is realized. Because we use futures contracts, there is no credit risk in the
financial market.
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Stage 1:
All potential
firms decide
entry.

Stage 2:
All entering
firms make
production
and financial
decisions.

All firms observe the entry cost, the futures
price and the distribution of the spot price.

The spot price is realized and trading
occurs in the output and input markets.

Figure 1: Timeline

k. The technology to transform the input into the output is assumed to be

linear and deterministic. A unit of input can be purchased in the spot market

at price S̃, which is unknown at the time of setting output.11 In addition to

the spot market, there is a futures market for the input. A futures contract

can be purchased at known price F for delivery of one unit of input.

The decisions of the firm can be summarized by two variables: one related

to production and another one related to financial activity. Specifically, firm

j sets output qj ≥ 0 and chooses the hedge coverage ωj ∈ R for the random

cost so that firm j purchases (1− ωj)qj units of input in the spot market at

the random spot input price S̃, and buys futures contracts at the futures price

F for the remaining ωjqj units of input.12 Given production and financial

decisions, the random profit of firm j when there are J firms in the industry

is

π
(
J, qj , ωj,

∑J

k �=j
qk, S̃, F

)
= P

(
qj+

∑J

k �=j
qk

)
qj− S̃(1−ωj)qj−Fωjqj (1)

where the firms compete in Cournot in the output market, but are price-

takers in the (spot and futures) input markets.13

11A tilde sign distinguishes a random variable from a realization.
12In other words, firm j purchases xj ≡ (1−ωj)qj units of input in the spot market, and

the remaining yj ≡ ωjqj units are purchased in the futures market. Hence, qj = xj + yj
units of output are produced.

13This situation is representative of industries that participate in the futures input
markets. For instance, while airline companies have market power in providing their
services, they cannot have an effect on the financial prices of the futures contracts for fuel
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Firms may engage in various types of financial activities. Specifically,

firm j may decide not to access the futures market, i.e., ωj = 0. It may

also partially hedge (ωj ∈ (0, 1)) or fully hedge (ωj = 1).14 It may finally

engage in two forms of speculation, i.e., buying or selling futures contracts

to generate pure financial profits without any link to profits derived from real

production. First, when ωj < 0, firm j sells futures contracts at price F

which are deliverable by purchasing the input in the spot market.15 Second,

when ωj > 1, firm j fully hedges, and buys additional units of input in the

futures market for resale in the spot market.16 While firms whose main ac-

tivity is production rarely speculate (e.g., the board often prevents the firm’s

managing team from speculating), it occurs and has occurred (Stulz, 1996).

For our analysis, it turns out that allowing firms to engage in speculation

simplifies the characterization of the equilibrium (i.e., no corner solution),

and, more importantly, has no effect on most of our results.17

Note that the literature linking real decisions with access to futures mar-

kets uses the term speculation in two distinct ways. In Holthausen (1979) and

Feder et al. (1980), ωj ∈ (0, 1) is interpreted as partial hedging or hedging

less than the entire quantity, whereas the firm speculates when ωj /∈ [0, 1].

However, in Anderson and Danthine (1983), a different interpretation is of-

fered. Specifically, ωj ∈ (0, 1) is interpreted as speculation.18 To understand

because many other industries interact in these futures market.
14Full hedging means that the input is purchased only in the futures market, whereas,

under partial hedging, the input is purchased in both the spot and the futures markets.
15Consistent with Footnote 12, ωj < 0 implies that xj > 0, yj < 0, so that production

is qj = xj + yj < xj because some of the input purchased in the spot market is used for
delivery via the futures market whereas the remaining input is used for production.

16Consistent with Footnote 12, ωj > 1 implies that xj < 0, yj > 0.
17Assuming CARA preferences, a linear demand, and a normally distributed spot price,

online Appendix 5 provides a full characterization of the equilibrium when the firms have
restricted access to the futures market, i.e., the firms may hedge but cannot speculate.

18On pp. 375-376 of Anderson and Danthine (1983) (in the case of farmers selling output
on spot and futures markets), it is written farmers hedge the totality of their output prior
to readjusting their position, as speculators, on the basis of the expected futures-cash price
differential.
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the Anderson and Danthine (1983) interpretation, (1) is rewritten as

π
(
J, qj , ωj,

∑J

k �=j
qk, S̃, F

)
= P

(
qj +

∑J

k �=j
qk

)
qj −Fqj +(F − S̃)(1−ωj)qj .

(2)

From (2), the profit of a firm is the sum of the real profit under full hedging

and the financial payoff from not hedging a fraction 1− ωj of the input, i.e.,

the terms P(qj +
∑J

k �=j qk)qj − Fqj and (F − S̃)(1− ωj)qj , respectively. Al-

though expressions (1) and (2) are equivalent, expression (2) is an alternative

decomposition of profits, which offers another interpretation for the behav-

ior of the firm. That is, the firm purchases all input for production in the

futures market and takes advantage of any opportunities in expected returns

between spot and futures markets. In our paper, we refer to speculation as

in Holthausen (1979) and Feder et al. (1980).

2.2 Assumptions

Each firm is managed by a risk-averse officer (e.g., the CEO) whose objective

is to maximize the firm’s expected utility of profit over output and hedge

coverage. The next four assumptions hold for the remainder of the paper.

Assumption 2.1. The utility function for profit π is u(π) such that u′ >

0, u′′ < 0.

Assumption 2.2. Inverse demand p = P(Q), Q ≡ ∑J
k=1 qk is twice contin-

uously differentiable such that

1. P(0) <∞,

2. P ′(Q) < 0 in the interval for which p = P(Q) > 0, and

3. P ′′(Q)qj + P ′(Q) < 0 for all j.

Assumption 2.3. The p.d.f. of the random spot price S̃ is φ(S) for S ∈
(0, P(0)).

Assumption 2.4. F ∈ (0, P(0)).

10



We make three comments regarding our assumptions. First, Assump-

tions 2.1 and 2.2 yield a unique number of firms entering the market in the

first stage of the game and ensures the existence of a unique Cournot equi-

librium in the second stage. In particular, Condition 3 in Assumption 2.2

ensures that a firm’s best-response function to the total output of the other

firms have a nonpositive slope greater than −1. Second, from Assump-

tions 2.3 and 2.4, there always exists an output price high enough to cover

the input cost using both input markets so that trivial cases for which the

output market does not exist are ignored. Third, Assumption 2.4 implies

that no restriction is imposed on the futures price.19 Specifically, in addition

to having an actuarially fair futures price, i.e., F = ES̃ where E is the expec-

tation operator, the futures market may be either in normal backwardation

(i.e., F < ES̃) or in contango (i.e., F > ES̃).20

2.3 Definition of Equilibrium

Definition 2.5 provides the free-entry equilibrium with access to the futures

market, i.e., ωj ∈ R. The term free entry means that there is no institutional

constraint on firms entering the market, i.e., firms may enter the market in

response to profit opportunities. The equilibrium consists of the number of

firms entering the industry, J∗; the Cournot strategies, {q∗(J∗), ω∗(J∗)}; and
the output price, p∗(J∗).21 To simplify the notation, the integral over S is

replaced by the expectation operator E over the random spot price S̃. Note

that we choose to model the entry cost as an opportunity entry cost. Here,

K > 0 is the entry cost and u(K) is the utility level corresponding to the

19To discard uninteresting cases in which the firms do not produce, the futures price is
restricted to be below the reservation price of the output.

20The futures markets for oil were in contango in 2011. This situation is gener-
ally explained by the recent political situation in Arab countries. Other futures mar-
kets (e.g., gold and silver) were in normal backwardation during the same period. See
http://www.zacks.com/stock/news/57493/Backwardation-and-Contango.

21Since the equilibrium is symmetric, the summation operator is no longer needed, i.e.,∑J∗

k �=j q
∗(J∗) = (J∗ − 1)q∗(J∗).
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best alternative activity.22

Definition 2.5. The tuple {J∗, q∗(J∗), ω∗(J∗), p∗(J∗)} is an equilibrium if

1. For all j, given J∗ ≥ 1 and the strategies {q∗(J∗), ω∗(J∗)} of firm k �= j,

q∗(J∗) and ω∗(J∗) solve

max
qj≥0,ωj∈R

Eu(π(J∗, qj , ωj, (J∗ − 1)q∗(J∗), S̃, F )). (5)

2. Given J∗ ≥ 1 and q∗(J∗), p∗(J∗) = P(J∗q∗(J∗)).

3. Given the strategies {q∗(J∗), ω∗(J∗)}, J∗ ≥ 0 is an integer that satisfies

Eu(π(J∗, q∗(J∗), ω∗(J∗), (J∗ − 1)q∗(J∗), S̃, F )) ≥ u(K) (6)

for J∗ ≥ 1, and

Eu(π(J∗ + 1, q∗(J∗ + 1), ω∗(J∗ + 1), J∗q∗(J∗ + 1), S̃, F )) < u(K) (7)

for J∗ ≥ 0.

From Definition 2.5, Conditions 1 and 2 define the Cournot equilibrium

at stage 2 of the game. Condition 3 is related to the entry decision at stage

1. Specifically, the equilibrium number of firms in the industry is such that,

from (6), each entering firm receives an expected utility weakly greater than

the utility derived from the best alternative activity, and, from (7), further

entry yields an expected utility strictly smaller than the utility derived from

the best alternative activity.

In our model, the firms do not enter the product market in order to have

access to the futures market. Their main expertise is to offer goods and

22More generally, (6) and (7) could have been replaced by

Eu(π(J∗, q∗(J∗), ω∗(J∗), (J∗ − 1)q∗(J∗), S̃, F )−K) ≥ ū (3)

and
Eu(π(J∗ + 1, q∗(J∗ + 1), ω∗(J∗ + 1), J∗q∗(J∗ + 1), S̃, F )−K) < ū (4)

where K is the setup cost and ū is the opportunity cost. Our approach simplifies the
analysis and has no bearing on the results.
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services in the output market. In other words, if the firms do not produce,

they have no need or demand for futures contracts. The firms face a risk

emanating from the product market and, due to risk aversion, they develop

a demand for financial products. However, the firms are not on the supply

side of financial markets because they do not have any expertise to enter

into the financial market and to become an investment bank or an insurance

company. For example, they do not have the actuarial expertise to compute

insurance premiums for pure or accident risks or to underwrite debt contracts

or derivative products.23 Hence, these firms have no intention or ability to

trade financial assets if they do not enter the product market.

3 Equilibrium and Separation

In this section, we provide a general characterization of the free-entry equi-

librium with access to the futures market. We also discuss the effect of en-

try on the separation property as defined in the literature (Danthine, 1973;

Holthausen, 1979; Feder et al., 1980; Viaene and Zilcha, 1998).

Definition 3.1. There is separation when production and output price are

independent of uncertainty and risk aversion.

We show that, whenever the free-entry equilibrium exists and the futures

price is not actuarially fair, the entry decision links production and output

price to the distribution of the spot price as well as risk aversion. We proceed

in two steps. We first show that the separation property holds at the second

stage of the game, i.e., for a given number of firms. We then show that,

once the number of firms is endogenized, the separation property no longer

23According to Freixas and Rochet (2008), banks differ from other firms because they
have expertise for managing loans and deposits, for choosing their level of monitoring of
different clients and for choosing their level of investment in specific relationships with
their clients. These specificities are forms of entry barriers in the banking industry. Banks
also have expertise in risk management of large portfolios of derivatives with market,
liquidity, and default risks. For an empirical analysis on scale economies in the provision
of underwriting services by banks and related entry barriers in the banking industry,
see Santos and Tsatsarinis (2003).
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holds because both uncertainty and risk aversion alter market concentration,

which, in turn, affects both production and output price.

Proposition 3.2 provides the firm’s production and hedge coverage in the

Cournot equilibrium at the second stage of the game, i.e., for a given number

of firms. In equilibrium, the firms always produce regardless of the type of

financial activity, i.e., q∗(J) > 0.

Proposition 3.2. Suppose that there are J ≥ 1 firms in the industry at

the second stage of the game. Then, there exists a unique Cournot-Nash

equilibrium. In equilibrium, q∗(J) > 0 and ω∗(J) are defined respectively by

P ′(Jq∗(J))q∗(J) + P(Jq∗(J))− F = 0 (8)

and

E

[
(F − S̃) · u′(Π∗ + (F − S̃)(1− ω∗(J))q∗(J))

]
= 0, (9)

Π∗ ≡ P(Jq∗(J))q∗(J)− Fq∗(J).

Proof. See Appendix A.

Using Proposition 3.2, Remark 3.3 states the separation property at the

second stage of the game. That is, the distribution of the spot price and risk

aversion have no effect on production and output price. The futures price is

the sole driving force for production because, from (8), the marginal revenue

of output is equal to the futures price.24 The separation property is consistent

with the case of perfect competition either when there is uncertainty about

the output price (Ethier, 1973; Danthine, 1973; Holthausen, 1979; Feder et al.,

1980) or the input price (Holthausen, 1979; Katz and Paroush, 1979; Paroush

24Note that at stage 2 of the game, the separation property holds unconditionally be-
cause firms may either hedge or engage in speculation. Assuming CARA preferences, a
linear demand, and a normally distributed spot price, online Appendix 4 shows that if
firms can only hedge (i.e., have restricted access to the futures market), then produc-
tion and output price are only conditionally independent of uncertainty and risk aversion.
That is, conditional on hedging, production and output price remains independent of
uncertainty and risk aversion. However, the upper bound of the range of futures prices
yielding hedging is increasing in the mean and the variance of the spot price as well as
risk aversion.
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and Wolf, 1992) as long as there is no other source of uncertainty (e.g.,

uncertainty in production or basis risk).

Remark 3.3. From (8), at the second stage of the game, production and

output price are independent of uncertainty and risk aversion.

Having shown that separation occurs when there is no entry, we next

show that, when the firms make a decision on entry, the futures price is no

longer the driving force for the production decision. In fact, there is always

nonseparation because the distribution of the spot price and the utility func-

tion have an effect on the production decision (and, thus, the output price)

through the number of firms entering the industry. We proceed as follows.

We first characterize the number of firms entering the market at the first

stage of the game (Proposition 3.4). We then provide a comparative analysis

of the effect of changes in the distribution of the spot price for the input

as well as changes in risk aversion on the number of firms (Propositions 3.5

and 3.6). This comparative analysis establishes directly the nonseparation

result on production and output price (Proposition 3.7).

Proposition 3.4 states that there exists a unique free-entry equilibrium

with access to the futures market as long as the entry cost is not too high

to prevent at least one firm from entering the industry. The entry cost must

also be not too low to ensure a finite number of entering firms.

Proposition 3.4. Suppose that

lim
J→∞

Eu(P(Jq∗(J))q∗(J)− Fq∗(J) + (F − S̃)(1− ω∗(J))q∗(J)) < u(K)

≤ Eu(P(q∗(1))q∗(1)− Fq∗(1) + (F − S̃)(1− ω∗(1))q∗(1)). (10)

Then, there exists a unique equilibrium with 1 ≤ J∗ <∞ firms in the industry

such that J∗ = 	N∗
 where N∗ is implicitly defined by

Eu(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S̃)(1− ω∗(N))q∗(N)) = u(K) (11)

evaluated at N = N∗.

Proof. See Appendix A.
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Propositions 3.5 and 3.6 state that, when the futures price is not actuar-

ially fair, market concentration depends on uncertainty and risk aversion.25

In particular, from Proposition 3.5, an increase in the mean of S̃ weakly

decreases (weakly increases) the number of firms when the futures market

is contango (normal backwardation). Indeed, when the market is contango

(normal backwardation), the firms are net buyers (net sellers) on the spot

market for the input. Hence, an increase in the mean of the spot price for the

input decreases (increases) the expected utility in the second stage, which

induces less (more) firms to enter the industry.

A riskier spot price weakly decreases the number of firms in the industry.26

From Proposition 3.6, an increase in risk aversion also weakly decreases the

number of firms in the industry. The similar result comes from the fact that

a mean-preserving increase in risk or an increase in risk aversion both reduce

the expected utility in the second stage, which induces less firms to enter the

industry.

We begin with the effect of uncertainty on market concentration. To

that end, suppose that φ(S) = ψ(S;m, r) where an increase in m implies an

increase in the mean of S̃ whereas an increase in r implies a mean-preserving

increase in the risk of S̃ in the sense of Rothschild and Stiglitz (1971).

Proposition 3.5. Suppose that φ(S) = ψ(S;m, r). Then, for F �= ES̃,

1. An increase in the mean of S̃ weakly decreases (weakly increases) J∗

when F > ES̃ (F < ES̃).

2. A mean-preserving increase in the risk of S̃ weakly decreases J∗.

Proof. See Appendix A.

Proposition 3.6 states the effect of increasing risk aversion on the number

of firms in the industry. Using the notation in Diamond and Stiglitz (1974),

suppose that u(π) = v(π; ρ) with v1 > 0, v11 < 0 and ∂ (−v11(π; ρ)/v1(π; ρ)) /∂ρ >
0. Hence, an increase in ρ implies an increase in risk aversion.

25If F = ES̃, then market concentration is independent of uncertainty and risk aversion.
26We adopt the expression weakly decrease or weakly increase because J∗ is an integer.
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Proposition 3.6. Suppose that u(π) = v(π; ρ) such that v1 > 0, v11 < 0

and ∂ (−v11(π; ρ)/v1(π; ρ)) /∂ρ > 0. Then, for F �= ES̃, an increase in risk

aversion weakly decreases J∗.

Proof. See Appendix A.

Using Propositions 3.5 and 3.6, Proposition 3.7 states that as long as

the futures price is not actuarially fair, the separation property does not

hold when entry is considered. The negative effect of mean (in a contango

situation), riskiness, or risk aversion on the number of firms implies that the

remaining firms can exercise more market power. Specifically, when there is

access to the futures market, higher riskiness induces each remaining firm to

produce more. However, while per-firm production increases along with more

riskiness, the number of firms decreases, which is the dominant effect, and

the equilibrium output price unambiguously increases along with an increase

in the riskiness of the spot price. The result also holds for an increase in the

mean of the spot price in a contango situation or an increase in risk aversion.

Proposition 3.7. Suppose that the futures price is not actuarially fair, i.e.,

F �= ES̃. Then, when entry is endogenized, production and output price

depend on uncertainty and risk aversion. In particular,

1. An increase in the mean of S̃ weakly increases (weakly decreases) q∗(J∗)

and p∗(J∗) when F > ES̃ (F < ES̃).

2. A mean-preserving increase in the risk of S̃ or an increase in risk aver-

sion weakly increases q∗(J∗) and p∗(J∗).

Proof. From (39) and (40), q∗(J∗) and p∗(J∗) = P(J∗q∗(J∗)) are both de-

creasing in J∗. Using Proposition 3.5 and 3.6 yields the results stated in

Proposition 3.7.

The result stated in Proposition 3.7 is in sharp contrast to the separation

result obtained in the literature in the absence of another source of uncer-

tainty (e.g., uncertainty in production or basis risk). In other words, once

firms are allowed to make entry decisions, the futures price is no longer the
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driving force for the production decision (even with one source of uncer-

tainty). Indeed, conditional on the number of firms, each firm is able to fully

adjust production in such a way that it is independent of uncertainty and

risk aversion. When firms also make entry decisions, production decisions

becomes less flexible. Hence, the endogenization of the number of firms in

an industry with a cost of entry yields nonseparation.27

4 The Effect of Access to Futures Market

In this section, we study the effect of access to the futures market on entry.28

To simplify the discussion, we make the following restrictions. Managers’

risk preferences on profit exhibit constant absolute risk aversion. Output

demand is linear and the firms’ beliefs about the spot price for the input are

normally distributed. These restrictions are consistent with Assumptions 2.1,

2.2, and 2.3 except for the fact that the support of the spot price is the real

line. Although the spot price can be negative, the values of the parameters

of the model can be restricted to ensure that the probability of such events

be arbitrarily close to zero. Moreover, it turns out that, by assuming a

positive mean of the spot price, equilibrium values for the number of firms,

the production, and the output price are always positive.

Formally, our restrictions are as follows. The coefficient of absolute risk

aversion is α > 0.29 Inverse demand is linear, i.e.,

P
(∑J

k=1
qk

)
= θ − γ

∑J

k=1
qk, (12)

where θ, γ > 0 are demand parameters. The spot price for the input is

normally distributed, i.e., S̃ ∼ N(μS, σ
2
S), μS ∈ (0, θ). Given our restrictions,

the certainty equivalent has a closed-form solution. Using (2), the certainty

27If entry were not costly, the number of firms would be infinity in our case. In the
limit, total production and output price would be independent of the distribution of the
spot price and risk aversion.

28The effect of access to the futures market on production and output price is discussed
in online Appendix 7.

29In other words, the utility function for profit π is exponential: u(π) = −e−απ.

18



equivalent of firm j is

CE
(
J, qj, ωj,

∑J

k �=j
qk

)
= P

(
qj +

∑J

k �=j
qk

)
qj − μS(1− ωj)qj

− Fωjqj − ασ2
S(1− ωj)

2q2j /2 (13)

as shown in online Appendix 2.

Since J∗ = 	N∗
 is an integer, we use the continuous variable N∗ when-

ever we need to approximate the effect of any parameter on J∗ by computing

the partial derivative of N∗ with respect to that parameter. In addition,

we use N∗ instead of J∗ to approximate the remaining equilibrium variables,

e.g., q∗(J∗) ≈ q∗(N∗). This approximation has no bearing on the results since

the number of firms is not bounded between two integers. Hence, changes in

N∗ are informative about changes in J∗.30

We first characterize the equilibrium with and without access to the fu-

tures market. We then compare the equilibrium values under access and

under no access to the futures market on entry. The effect of financial access

on production and output price is found in online Appendix 7.

4.1 Equilibrium Characterization

Access to Financial Market. Proposition 4.1 states the unique free-entry

equilibrium with access to the futures market.

Proposition 4.1. For F ∈ (0, θ), there exists a unique equilibrium with

1 ≤ J∗ <∞ firms in the industry if and only if

(F − μS)
2

2ασ2
S

< K ≤ (θ − F )2

4γ
+

(F − μS)
2

2ασ2
S

. (14)

In equilibrium, J∗ = 	N∗
 firms enter the industry where

N∗ =
θ − F√(

K − (F−μS)2
2ασ2S

)
γ

− 1. (15)

30Moreover, since the equilibrium is symmetric, the summation operator is not present
in the equilibrium values.
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Each firm produces

q∗(J∗) ≈ q∗(N∗) =

√(
K − (F − μS)2

2ασ2
S

)
/γ (16)

at output price

p∗(J∗) ≈ p∗(N∗) =

√(
K − (F − μS)2

2ασ2
S

)
γ + F. (17)

Hedge coverage is

ω∗(J∗) ≈ ω∗(N∗) = 1−
√
γ(F − μS)

ασ2
S

√
K − (F−μS)2

2ασ2S

. (18)

Proof. See online Appendix 3.

We now discuss several properties of the equilibrium. From condition (14)

in Proposition 4.1, there exists an equilibrium with access to the futures

market as long as the entry cost is not too high to prevent at least one firm

from entering the industry. The entry cost must also be not too low to ensure

a finite number of entering firms.

Condition (14) is depicted in Figure 2, where F ∈ (0, θ) is on the x-axis,

and K > 0 is on the y−axis.31 The two convex lines depict the lower and

upper bounds in (14).32 Hence, the darker shaded area between the two

curves encompasses the points {K,F} for which the equilibrium exists, and,

in particular, a finite number of firms enter the industry. Note that entry may

occur for all values of F , whether the futures market is normal backwardation

(F ∈ (0, μS)), actuarially fair (F = μS), or contango (F > μS). Note as well

that, while the upper and lower bounds of (14) depends on the mean and

variance of the spot price (and risk aversion), the darker shaded area between

31To generate Figure 2, we set {θ, γ} = {7, 1}, and {μS , σ2
S , α} = {2, 1, 1}. Although

Figure 2 is generated with specific values, the shapes of the curves hold in general. The
same comment applies to all figures.

32Note that the lower and upper bounds do not require to be approximated. Hence, we
use the variable J∗ in Figure 2.
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Figure 2: Entry, Access to the Futures Market

the two curves,∫ θ

0

(
(θ − x)2

4γ
+

(x− μS)
2

2ασ2
S

− (x− μS)
2

2ασ2
S

)
dx =

θ3

12γ
(19)

is unaffected by changes in the mean and variance of the spot price as well

as risk aversion. In other words an increase in any of these three parameters

does not reduce the possibility of entry. Below the lowest convex curve, there

is no equilibrium with a finite number of firms. In other words, all potential

entrants have an incentive to enter. Because unlimited entry (with K > 0) is

solely due to speculative motives, we delay our discussion about the limiting

case (i.e., J∗ → ∞).

Having discussed the condition for entry, we provide information about

the types of financial activities in which the firms engage in equilibrium.

Proposition 4.2 states that, whenever the equilibrium exists, the firms may
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hedge or speculate (or both) depending on the structure of the futures market

and the value of the entry cost.

Proposition 4.2. Suppose that (14) holds. Then, in equilibrium,

1. For F ∈ (0, μS), the firms fully hedge production and, at the same time,

speculate by buying in the futures market to sell in the spot market, i.e.,

ω∗(N∗) > 1.

2. For F = μS, the firms fully hedge production, i.e., ω∗(N∗) = 1.

3. For F ∈ (μS, θ), there are three exclusive outcomes.

(a) The firms partially hedge, i.e., ω∗(N∗) ∈ (0, 1).

(b) The firms do not access the futures markets, i.e., ω∗(N∗) = 0.

(c) The firms speculate by buying in the spot market to sell in the

futures market, i.e., ω∗(N∗) < 0.

Proof. See online Appendix 3.

Figure 3 illustrates Proposition 4.2 by providing information about the

firms’ financial activity when there is a finite number of firms entering the

industry.33 Note that Figure 3 uses the value of ω∗(N∗) (as provided by (18))

to approximate ω∗(J∗). If the futures market is in normal backwardation

(i.e., F < μS), then the firms fully hedge and speculate. That is, the input is

purchased only on the futures market, some of which is used for production

and the remaining is sold on the spot market. Whenever the futures price is

actuarially fair (i.e., F = μS), the firms fully hedge. See the dashed vertical

line in Figure 3 for which ω∗(N∗) = 1.

A contango futures market (i.e., F > μS) yields either partial hedging or

speculation (with no hedging) depending on the value of the entry cost and

the futures price. The division between these two outcomes is depicted by

the dashed increasing convex line K =
(2γ+ασ2S )(F−μS)2

2α2σ4S
, intersecting with the

33Figures 2 and 3 are generated using the same parameter values.
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Figure 3: Financial Activity, Access to the Futures Market

minimum of the upper bound for K in (14), i.e., when F = F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
.34

From Figure 3, in a contango situation, hedging is possible only for lower

values of the futures price, while speculation (buying from the spot market

to sell on the futures market) can occur at any futures price as long as the

entry cost is low enough.

Remark 4.3. For F ∈ [
F 1, θ

)
, hedging is no longer chosen regardless of the

value of the entry cost

The entry cost influences the type of financial activity. In Figure 3, con-

sider a point {K,F} in the area for partial hedging (i.e., ω∗(N∗) ∈ (0, 1)). A

decrease in the entry cost while keeping the futures price constant eventually

leads to a switch from hedging to speculation. This is due to the fact that a

34The points {K,F} on the dashed increasing line that intersects the upper bound
of (14) at its minimum refer to cases for which the firms do not access the futures market,
i.e., ω∗(N∗) = 0.
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Figure 4: Financial Activity, Hedging vs. Speculation

lower K yields more entry, which reduces profit from selling the output, and,

thus, raises the opportunity cost of hedging (instead of speculating) under

contango.

Remark 4.4. For F ∈ (μS, F 1], a lower entry cost can induce the firms not

to hedge, but to engage in speculation instead.

Finally, hedging becomes more likely under contango along with an in-

crease in the variance of the spot price or risk aversion. This is illustrated

in Figure 4, which shows that an increase in the variance of the spot price

moves F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
to the right, which increases the darker shaded area

(partial hedging) and reduces the lighter shaded area (speculation).35

Remark 4.5. For F ∈ [μS, θ), an increase (decrease) in σ2
S or α makes it

more likely for hedging (speculation) to occur.

35To generate Figure 4, we set {θ, γ} = {10, 1} and{μS, α} = {5, 1}.
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It remains to discuss the limiting case below the lowest convex curve in

Figure 2. Specifically, the lighter shaded area in Figure 2 combines the points

{K,F} for which entry is always beneficial regardless of the number of firms

active in the market. In other words, the stage-2 certainty equivalent is high

enough to cover the entry cost for any number of firms, which yields the

case of perfect competition. Due to unlimited entry, the profit from the out-

put sector approaches zero (i.e., the perfect competition outcome drives the

output price to the marginal cost), while the firms engage in speculation to

generate revenue from the financial sector. Consistent with Figure 2, this is

only possible when the futures price is not actuarially fair. From Figure 2,

there are two outcomes under the limiting case of perfect competition (i.e.,

in the lighter shaded area). The firms speculate by selling futures contracts

under contango (i.e., F > μS), while buying them under normal backwar-

dation (i.e., F < μS). Although K > 0, speculation on the futures market

makes it possible for the output market to approach perfect competition in

the limit.

Proposition 4.6. For F ∈ (0, θ), F �= μS, and 0 < K ≤ (F−μS)2
2ασ2

, J∗ → ∞
yielding the perfectly competitive outcome in the output sector. Further, firms

always engage in speculation in the futures market.

Proof. Suppose that F ∈ (0, θ), F �= μS and 0 < K ≤ (F−μS)2
2ασ2

. From (17) in

online Appendix 3, CE∗(J) = (θ−F )2

(1+J)2γ
+ (F−μS)2

2ασ2S
> K for any J . Hence, J∗ →

∞. From (12) and (13) in online Appendix 3, limJ∗→∞ x∗(J∗) = F−μS
ασ2S

and

limJ∗→∞ y∗(J∗) = −F−μS
ασ2S

, while, from (14) and (16) in online Appendix 3,

limJ∗→∞ q∗(J∗) = 0, and limJ∗→∞ p∗(J∗) = F .36

No Access to Financial Market. Next, we turn to the characterization

and discussion of the benchmark equilibrium when the firms have no access

to the futures market. Proposition 4.7 characterizes the unique equilibrium.

To clarify the analysis, the hat sign is used on equilibrium values when there

is no access to the futures market.

36Recall that q∗(J∗) = x∗(J∗) + y∗(J∗) where x∗(J∗) is the amount of input purchased
(or sold) in the spot market and y∗(J∗) is the amount of input purchased (or sold) in the
futures market.
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Proposition 4.7. Suppose that no firm has access to the futures market, i.e.,

the constraint ωj = 0 holds for all j. Then, there exists a unique equilibrium

with 1 ≤ Ĵ∗ <∞ if and only if

0 < K ≤ K̂ ≡ (θ − μS)
2

2(2γ + ασ2
S)
. (20)

In equilibrium, Ĵ∗ = 	N∗
 firms enter the industry where

N̂∗ =
(θ − μS)

√
2γ + ασ2

S

γ
√
2K

− ασ2
S

γ
− 1. (21)

Each firm produces

q̂∗(Ĵ∗) ≈ q̂∗(N̂∗) =

√
2K√

2γ + ασ2
S

(22)

at output price

p̂∗(Ĵ∗) ≈ p̂∗(N̂∗) = μS +

√
2K(γ + ασ2

S)√
2γ + ασ2

S

. (23)

Proof. See online Appendix 3.

Two comments about Proposition 4.7 are warranted. First, there exists

an equilibrium as long as the entry cost is not too high to prevent at least

one firm from entering the industry.37 Condition (20) is depicted in Figure 5,

where F ∈ (0, θ) is on the x-axis, and K > 0 is on the y−axis. Given that

the firms do not access the futures market, the condition is independent of

F and the firms enter as long as K ≤ K̂ ≡ (θ−μS )2
2(2γ+ασ2S )

.38

Second, access to the futures market alters the comparative analysis

on the effect of uncertainty and risk preferences stated in Propositions 3.5

37An equilibrium with a finite number of firms exists as long as the entry cost is strictly
greater than zero, otherwise an infinite number of potential firms would enter the industry.

38Unlike the case of access to the futures market, an increase in the mean or variance of
the spot price, or an increase in risk aversion under no access to the futures market reduces
the possibility of entry. Indeed, from (20), ∂K̂/∂μS < 0, ∂K̂/∂σ2

S < 0, ∂K̂/∂α < 0.
See (19) for the case of access to the futures market.
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and 3.6. Indeed, recall from Propositions 3.5 and 3.6 that a riskier spot price

or an increase in risk aversion yields more production under access to the

futures market. However, without financial access, an increase in risk or risk

aversion induces the firms to produce less. That is, using (22), ∂q̂∗(N̂∗)
∂σ2S

< 0,

∂q̂∗(N̂∗)
∂α

< 0.39 In other words, financial access reverses the effect of riskiness

and risk aversion on per-firm production.

4.2 Entry

Using Section 4.1, we can now study the effect of access to the futures market

on entry. Before proceeding with the analysis, it is useful to recall how the

39The result without financial access is consistent with classical results obtained in a
static environment (i.e., without entry decision) for perfect competition (Sandmo, 1971;
Batra and Ullah, 1974) and quantity-setting monopoly (Leland, 1972).
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number of firms is determined in equilibrium. Given an entry cost K > 0,

the variables N∗ (the number of firms with access to the futures market) and

N̂∗ (i.e., the number of firms without access) are uniquely defined by

CE∗(N∗) = K (24)

and

ĈE
∗
(N̂∗) = K, (25)

respectively. Here, from (17) and (26) in online appendix 3, for any N ,40

CE∗(N) =
(θ − F )2

(1 +N)2γ
+

(F − μS)
2

2ασ2
S

, (26)

ĈE
∗
(N) =

(2γ + ασ2
S)(θ − μS)

2

2((1 + J)γ + ασ2
S)

2
. (27)

We provide two results about entry. First, access to the futures market

allows the industry to bear a higher entry cost. Second, access to the futures

markets can increase or decrease the number of firms entering the industry.

These two seemingly contradictory results are in fact consistent with (24)

and (25) and the behavior of the stage-2 certainty equivalent as a function

of the number of firms. Specifically, from (26) and (27), it is not always true

that CE∗(N) > ĈE
∗
(N) for all N . While CE∗(N) and ĈE

∗
(N) are both

decreasing in N and CE∗(1) > ĈE
∗
(1), it is possible for CE∗(N) to decrease

more rapidly than ĈE
∗
(N) and thus cross ĈE

∗
(N) from above. Hence, for

low values of the entry cost, a greater number of firms enter the industry

when there is no access to the futures market. We now present our two

results in detail.

Combining the information of Figures 2 and 5 into Figure 6 shows that

(anticipated) access to the futures market can facilitate entry. In particular,

for futures prices F ∈ (μS, F 1], F 1 ≡ 2γμS+ασ
2
Sθ

2γ+ασ2S
, partial hedging (without

speculation) allows firms to enter for an entry cost above K̂, which would have

been otherwise impossible without access to the futures market. See area A

40Notation has been simplified to CE∗(N) ≡ CE(N, q∗(N), ω∗(N), (N − 1)q∗(N)) and

ĈE
∗
(N) ≡ ĈE(N, q̂∗(N), ω̂∗(N), (N − 1)q̂∗(N)).
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in Figure 6 such that F ∈ (μS, F 1). Moreover, for futures prices F ∈ (0, μS)

or F ∈ (F 1, θ), speculation induces firms to enter for an entry cost above

K̂. See area A such that F ∈ (0, μS) and area B in Figure 6. As noted,

Proposition 4.8 does not imply that access to the futures market always

increases the stage-2 certainty equivalent. That is, from (26) and (27), it is

not true that CE∗(N) > ĈE
∗
(N) for all N . While one firm always benefits

from access to the futures market (i.e., CE∗(1) > ĈE
∗
(1)), the presence of

several firms interacting strategically may change the ordering. The reason

is that access to the futures market reduces the cost of bearing risk and

intensifies the Cournot game, which decreases stage-2 certainty equivalent.

In some cases, the benefit from reducing risk through hedging is outweighed

by the loss due to more intensive Cournot competition. This important point

is discussed again when we explain the ambiguous effect of the futures price

on the number of firms at the end of this section and in online Appendix 6.

Proposition 4.8. Access to the futures market allows firms to bear a higher

entry cost, i.e., entry of at least one firm is possible for K > K̂. In partic-

ular, access to the futures market under partial hedging can generate higher

expected profits, which compensates for a higher fixed cost of entry.41

While the industry can bear a higher entry cost, the effect of access to

the futures market on the number of firms is ambiguous. To see this, we

begin by comparing the number of firms under an actuarially fair futures

price with the number of firms when there is no access to the futures market.

Proposition 4.9 states that the number of firms is greater with an actuarially

fair futures price as long as the entry cost is high enough.

Proposition 4.9. Suppose that 0 < K < K̂ ≡ (θ−μS)2
2(2γ+ασS )

. Then, N∗|F=μS >

N̂∗ if and only if

(θ − μS)
2

2(
√
2γ + ασ2

S +
√
2γ)2

< K ≤ (θ − μS)
2

2(2γ + ασ2
S)
. (28)

Proof. From (15) and (21), N∗|F=μS > N̂∗ if and only ifK >
(
√

2γ+ασ2S−
√
2γ)2(θ−μS)2

2α2σ4S
,

41This situation arises in area A in Figure 6 such that F ∈ (μS , F 1).
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Figure 6: Entry, Access vs. No Access to the Futures Market

which is the same as the lower bound in (28). The inequality (θ−μS)2
2
(√

2γ+ασ2S+
√
2γ

)2 <

(θ−μS)2
2(2γ+ασS )

holds always.

To understand why access to the futures market may lead to a lower

number of firms, we need to show how the ordering of (15) and (21) depends

on the value of the futures price. To that end, we first illustrate the pattern

graphically. We then study in details the effect of F on N∗ and show that

due to the convex shape of N∗ as a function of F , N∗ can be either below or

above N̂∗.

Consider Figure 7, where F ∈ [μS, θ) is on the x-axis, while N∗ > 0 is

on the y-axis. The convex solid line plots N∗ as a function of F , which is

the general shape of (15). The straight dash-dot line is the number of firms

under no access to the futures market. From (21), N̂∗ is independent of F .
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Figure 7: Number of Firms

When the convex curve intersects the straight line from below at F = F ′′

in Figure 7a, the firms switch from partial hedging to speculation, i.e., from

ω∗(N∗) ∈ (0, 1) to ω∗(N∗) < 0.42

Consider first the case in which N∗|F=μS > N̂∗ as depicted in Fig-

ure 7a. Here, the entry cost is high in the sense that K ∈ (K, K̂], K ≡
(θ−μS)2

2(
√

2γ+ασ2S+
√
2γ)2

, as in (28). Note that, as long as the futures price is close

enough to μS, hedging yields more firms in the industry. Consider next the

case in which N∗|F=μS < N̂∗ as depicted in Figure 7b. Here, the entry cost

is low, i.e., K ∈ (0, K). Regardless of the futures price, hedging always

yields fewer firms in the industry. While access to the futures market may

increase or decrease the number of firms when partial hedging occurs,43 it is

clear from Figures 7a and 7b that speculation in a contango situation always

yields more firms.44

Having shown graphically that the ordering of N∗ and N̂∗ depends on F ,

we now provide the derivative of N∗ with respect to F in Proposition 4.10.

Consistent with Figure 7, N∗ first decreases, then increases. We then explain

42Hence, F ′′ is the largest value of the futures price such that N∗ = N̂∗ and ∂N∗/∂F >
0. From (18), ω∗(N∗)|F=F ′′ = 0.

43Recall that ω∗(N∗) ∈ (0, 1) when F ∈ (μS , F
′′).

44Recall that ω∗(N∗) < 0 when F ∈ (F ′′, θ).
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why an increase in F can lead to a higher number of firms in the industry

even when the firms partially hedge (for F ∈ (μS, F
′′)).

Proposition 4.10. Suppose that firms have access to the futures market.

Then,

1. For F ∈ (0, μS),
∂N∗
∂F

< 0.

2. For F ∈ [μS, θ),
∂N∗
∂F

> 0 if and only if F > μS +
2ασ2S
θ−μS .

Proof. Differentiating (15) yields

∂N∗

∂F
=

−
√(

K − (F−μS)2
2ασ2S

)
γ + (F−μS)

2ασ2S
(θ − F )

(
K − (F−μS)2

2ασ2S

)− 1
2 √

γ(
K − (F−μS)2

2ασ2S

)
γ

, (29)

which yields the cases stated in Proposition 4.10.

Before proceeding with a detailed explanation of this result, note that

the positive relationship between the futures price and the number of firms

entering the industry may occur not only when firms speculate, but also

when firms partially hedge in a contango futures market. See conditions (20)

and (22) in online Appendix 3.45 Note also that an increase in F does

not yield the same effect as a decrease in μS. The reason is that, due to

the separation result at stage 2 of the game, a change in μS alters stage-

2 certainty equivalent directly. However, a change in F has both a direct

effect and an indirect effect (through policy functions) on stage-2 certainty

equivalent.

45To obtain ∂N∗
∂F > 0 when the firms hedge, the following must hold

(F − μS)(θ − μS)

2ασ2
S

>
(2γ + ασ2

S)(F − μS)
2

2α2σ4
S

. (30)

Rearranging (30) yields

F <
2γμS + ασ2

Sθ

2γ + ασ2
S

≡ F 1, (31)

which, from Remark 4.3, is a necessary condition on the value of the futures price for
hedging to occur. See also Figure 3.
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We now provide an explanation for the positive relationship between the

futures price and the number of firms entering the industry. Due to strategic

interactions, an increase in F might increase stage-2 certainty equivalent for

a given N , which enables more firms to cover the entry cost, and, thus, enter

the industry. To show this, we study the effect of F on the stage-2 certainty

equivalent for a given number of firms in the industry. Indeed, if F increases

CE∗(N), then N∗ implicitly defined by CE∗(N∗) = K increases as well.

Using (26), CE∗(N) is strictly increasing in F if and only if

(1 +N)2γμS + 2ασ2
Sθ

(1 +N)2γ + 2ασ2
S

< F < θ. (32)

Hence, the firms might not necessarily benefit from a lower futures price due

to a more competitive futures market.46 In other words, stage-2 certainty

equivalent is not necessarily decreasing in the futures price. In fact, CE∗(N)

is convex in F , so that a lower futures price may lead to a lower stage-

2 certainty equivalent. This effect occurs sometimes when firms partially

hedge, and always when firms speculate. Further, it can only occur in a

contango situation. In other words, CE∗(N) is decreasing in F under normal

backwardation and actuarially fair pricing.

The positive relationship between stage-2 certainty equivalent and F

when the firms partially hedge is due to the fact that an increase in the cost

of hedging induces firms to decrease output, which can mitigate the effect of

increasing output due to the strategic interaction of the firms.47 Specifically,

the effect of an increase in the futures price on the stage-2 certainty equiv-

alent is two-fold. First, an increase in F directly decreases stage-2 certainty

equivalent. Second, there is an indirect effect through the behavior of the

firms, i.e., an increase in F induces firms to decrease production. This, in

turn, mitigates the externality that the firms have on one another, which

may increase stage-2 certainty equivalent. Both effects pull in opposite di-

rections and the overall effect is ambiguous. See online Appendix 6 for a

46A more competitive futures market might arise in the presence of risk-neutral specu-
lators.

47The firms partially hedge when F is such that
(1+N)2γμS+2ασ2

Sθ

(1+N)2γ+2ασ2
S

< F <
(1+N)γμS+ασ2

Sθ

(1+N)γ+ασ2
S

.
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Figure 8: The Effect of F on CE∗(N)

formal exposition.

Figure 8 depicts the effect of the futures price on the stage-2 certainty

equivalent resulting from the strategic interaction of the firms in a non-

cooperative game. Specifically, Figures 8a and 8b depict the stage-2 cer-

tainty equivalent of a firm with contango for an industry with N = 3 firms

and N = 4 firms, respectively.48 For low futures prices, the firm hedges. For

prices greater than FN ≡ (1+N)γμS+ασ
2
Sθ

(1+N)γ+ασ2S
, the firm produces without hedging

the random cost, but speculates.

For the case in which there is no speculation in equilibrium (i.e., F ∈
[μS, FN ]), we make an additional comment. In Figure 8a, with N = 3, each

firm attains his highest stage-2 certainty equivalent when the price of hedge

coverage is actuarially fair, F = μS. Here, hedging results in higher stage-2

certainty equivalent as long as μS ≤ F ≤ F ′. However, in Figure 8b, with

N = 4, CE∗|F=μS is not the highest value. The ambiguous effect of the cost

of hedging on stage-2 certainty equivalent implies that a more competitive

futures market due in part to risk-neutral speculators might be detrimental

to the firms.

48The values of the remaining parameters of the model are θ = 10, γ = μS = σ2
S = α = 1.
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5 Final Remarks

This paper provides an analysis of the firms’ production and hedging de-

cisions under imperfect competition with potential entry. Entry is shown

to remove the separation result, i.e., although the firms have access to the

futures market, their production decisions depend on uncertainty and risk

aversion through the determination of the number of firms in the industry.

We also show that the use of futures contracts have an ambiguous effect on

the market structure of the industry. For instance, access to the futures mar-

ket may increase or decrease the number of entering firms. For the effect of

access to futures market, it is worth exploring in future whether our results

hold in general.

To study the interaction between entry and the futures market, we have

abstracted from three important aspects. First, we have assumed that the

spot and futures prices were exogenous. However, these prices are determined

by markets as well, which, in turn, affects resources allocation, production

decisions, and risk-taking. Extending the model to include suppliers of the

input along with speculators is an avenue for future research. While the de-

termination of spot and futures prices has already been studied by Turnovsky

(1983), the output producers are assumed to be passive, i.e., their demand for

the input is given. In fact, output producers are active and forward-looking

and, as shown in this paper, their output and input decisions are entwined.

Second, we have ignored the role of financial decisions in deterring entry. It

would also be interesting to study how strategic hedging from an incumbent

firm may alter the decision entry of a potential entrant. For instance, Maskin

(1999) considers a model in which capacity installation by an incumbent firm

serves to deter others from entering the industry. Uncertainty about demand

or costs forces the incumbent to choose a higher capacity level than it would

under certainty. This higher requirement for capacity diminishes the at-

tractiveness of deterrence. It would be interesting to study the incumbent’s

incentive to deter entry when it has access to futures markets.

Finally, an empirical extension would be to test the model in the airline

industry or any industry with similar characteristics facing Cournot competi-
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tion. Recent empirical tests on hedging were limited to the effect of different

determinants such as CEO risk aversion, convexity of tax function, corporate

governance, distress costs, information asymmetry, and the effect of hedging

on firm value. To our knowledge, no study has analyzed the effect of hedging

on entry. The main empirical question would be: Do airline companies that

hedge (or speculate) enter different routes more aggressively? Our theoreti-

cal results are ambiguous on this question and an empirical prediction from

the model is that airline companies produces less in different routes when

futures prices are high, which induces more firms to enter and hedge their

fuel cost.
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A Proofs

Proof of Proposition 3.2. Letting xj ≡ (1− ωj)qj be the units of output

for which firm j does not hedge and using (2), (5) is rewritten as

max
qj ,xj

P(0)∫
0

u(P(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS (33)

where Q∗
−j ≡ (J − 1)q∗(J) is the total output of the other firms. Since the

Hessian matrix is negative definite,49 firm j’s best-response is defined by the

first-order conditions

qj :

P(0)∫
0

(P ′(qj +Q∗
−j)qj + P(qj +Q∗

−j)− F )

× u′(P(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS = 0 (34)

and

xj :

P(0)∫
0

(F − S) · u′(P(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS = 0. (35)

First, consider expression (34). Since u′ > 0, it follows that

P(0)∫
0

u′(P(qj +Q∗
−j)qj − Fqj + (F − S)xj) · φ(S)dS > 0. (36)

Hence, (34) holds if and only if

P ′(qj +Q∗
−j)qj + P(qj +Q∗

−j)− F = 0 (37)

since (37) is not a function of S. From Assumption 2.2, firm j’s best-response

function to the output of the other firms has a nonpositive slope larger than

49See online Appendix 1.
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−1, i.e., from (37), ∂qj/∂Q
∗
−j ∈ (−1, 0). Hence, q∗(J) is uniquely defined

by (37) evaluated at qj = q∗(J), which yields (8). Second, consider expres-

sion (35). Since u′′ < 0 and given that q∗(J) exists and is unique, x∗(J) exists

and is unique. Since x∗(J) = (1 − ω∗(J))q∗(J), it follows that ω∗(J) exists

and is uniquely defined by (9).

Proof of Proposition 3.4. We need to show that the left-hand side

of (11) is strictly decreasing in N .

1. The term P(Nq∗(N))q∗(N) − Fq∗(N) in the left-hand side of (11) is

strictly decreasing in N , i.e.,

∂ (P(Nq∗(N))q∗(N)− Fq∗(N))

∂N
< 0 (38)

since, from (8), ∂q∗(N)/∂N < 0 and ∂ (Nq∗(N)) /∂N > 0.50

2. Plugging x∗(N) ≡ (1 − ω∗(N))q∗(N) into the left-hand side of (11)

and applying the envelope theorem, the derivative of the left-hand side

50Given Conditions 2 and 3 of Assumption 2.2 and q∗(N) > 0, differentiating (8) yields

∂q∗(N)

∂N
= − P ′′(Nq∗(N))q∗(N) + P ′(Nq∗(N))

P ′′(Nq∗(N))Nq∗(N) + (N + 1)P ′(Nq∗(N))
q∗(N) < 0. (39)

Hence,

∂ (Nq∗(N))

∂N
=

P ′(Nq∗(N))

P ′′(Nq∗(N))Jq∗(N) + (N + 1)P ′(Nq∗(N))
q∗(N) > 0. (40)
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of (11) with respect to N is

∂
P(0)∫
0

u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · φ(S)dS
∂N

=
∂x∗(N)

∂N

P(0)∫
0

(F − S) · u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · φ(S)dS
︸ ︷︷ ︸

=0 from (9)

+

P(0)∫
0

∂ (P(Nq∗(N))q∗(N)− Fq∗(N))

∂N

× u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · φ(S)dS. (41)

Using (38) and the fact that u′ > 0 implies that (41) is strictly negative.

Since (10) holds, and given (41), it follows that the left-hand side of (11)

crosses the u(K)-line from above only once. Hence, N∗ (as defined by (11))

is unique and so is J∗ = 	N∗
.
Proof of Proposition 3.5. Since J∗ = 	N∗
, we use (11) to derive the

effect of an increase in m and r on J∗. The proof has two steps. First, we

establish the sign of x∗(N). Second, we show the effects of an increase in m

and an increase in r on the left-hand side of (11), which depends on the sign

of x∗(N).

1. We first sign x∗(N) ≡ (1 − ω∗(N))q∗(N). Plugging x∗(N) ≡ (1 −
ω∗(N))q∗(N) into expression (9) (evaluated at J = N) yields

cov[(F−S̃), u′(Π∗+(F−S̃)x∗(N))]+(F−ES̃)·Eu′(Π∗+(F−S̃)x∗(N)) = 0,

(42)

where E and cov are, respectively, the expectation operator and the

covariance operator. Here, Π∗ ≡ P(Nq∗(N))q∗(N) − Fq∗(N), and

Eu′(Π∗ + (F − S̃)x∗(N)) > 0.

(a) Suppose first that F = ES̃. Then, from (42), it must be that

x∗(N) = 0 so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(N))] = 0.
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(b) Suppose next that F > ES̃. Then, from (42), it must be that

x∗(N) > 0 so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(N))] < 0.

(c) Suppose that F < ES̃. Then, from (42), it must be that x∗(N) < 0

so that cov[(F − S̃), u′(Π∗ + (F − S̃)x∗(N))] > 0.

2. Next, plugging x∗(N) ≡ (1 − ω∗(N))q∗(N) and φ(S) = ψ(S;m, r)

into (11) yields

P(0)∫
0

u(P(Nq∗(N))q∗(N)−Fq∗(N)+(F−S)x∗(N))·ψ(S;m, r)dS = u(K)

(43)

evaluated at N = N∗. Using the sign of x∗(N), the proof consists in

showing that an increase in m or an increase in r changes the left-hand

side of (43) thereby changing N∗, which in turn changes J∗ = 	N∗
.
To that end, let

Γ ≡
P(0)∫
0

u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ψ(S;m, r)dS

(44)

be the left-hand side of (43).
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(a) Consider first an increase in m. From (44),51

∂Γ

∂m
=
∂q∗(N)

∂m
(P ′(Nq∗(N))Nq∗(N) + P(Nq∗(N))− F )

×
P(0)∫
0

u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ψ(S;m, r)dS

+
∂x∗(N)

∂m

×
P(0)∫
0

(F − S)u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ψ(S;m, r)dS

−
P(0)∫
0

u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ∂ψ(S;m, r)
∂m

dS

(45)

where ∂q∗(N)
∂m

= 0 due to the separation property stated in Re-

mark 3.3, and, from (9),

P(0)∫
0

(F−S)·u′(P(Nq∗(N))q∗(N)−Fq∗(N)+(F−S)x∗(N))·ψ(S;m, r)dS = 0.

(46)

Hence, (45) simplifies to

∂Γ

∂m
=

P(0)∫
0

u(P(Nq∗(N))q∗(N)−Fq∗(N)+(F−S)x∗(N))·∂ψ(S;m, r)
∂m

dS.

(47)

The sign of (47) is for the moment ambiguous because ∂ψ(S;m,r)
∂m

may be positive or negative depending on the value for S. Inte-

51Here, the notation ∂ψ(S;m,r)
∂m refers to the difference between two p.d.f.’s, i.e., for

m1 > m2, ψ(S;m1, r) − ψ(S;m2, r) as used in Laffont (1989).
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grating by parts (47) yields

∂Γ

∂m
= u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))

∂Ψ(S;m, r)

∂m

∣∣∣∣P(0)
0

+ x∗(N)

P(0)∫
0

u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))
∂Ψ(S;m, r)

∂m
dS

(48)

where Ψ(S;m, r) is the c.d.f of S̃ and ∂Ψ(S;m,r)
∂m

refers to the differ-

ence between two c.d.f.’s. Since Ψ(0;m, r) = 0 and Ψ(P(0);m, r) =

1 for all m, the first term in (48) is equal to zero. Moreover, using

the definition of first-order stochastic dominance and the fact that

an increase in m induces an increase in the mean of S̃, it follows

that ∂Ψ(S;m,r)
∂m

< 0.

i. Suppose first that F = ES̃ so that x∗(N) = 0. Then, from (48),

∂Γ/∂m = 0, Hence, from (11), N∗ and thus J∗ = 	N∗
 remain

unchanged with a change in m.

ii. Suppose next that F > ES̃ (F < ES̃) so that x∗(N) > 0

(x∗(N) < 0). Then, from (48), ∂Γ/∂m < 0 (∂Γ/∂m > 0).

Hence, from (11), N∗ and thus J∗ = 	N∗
 are weakly de-

creasing (weakly increasing) along with an increase in m.
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(b) Consider next an increase in r. From (44),

∂Γ

∂r
=
∂q∗(N)

∂r
(P ′(Nq∗(N))Nq∗(N) + P(Nq∗(N))− F )

×
P(0)∫
0

u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ψ(S;m, r)dS

+
∂x∗(N)

∂r

×
P(0)∫
0

(F − S)u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ψ(S;m, r)dS

−
P(0)∫
0

u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N)) · ∂ψ(S;m, r)
∂r

dS

(49)

where ∂q∗(N)
∂r

= 0 due to the separation property stated in Re-

mark 3.3, and, from (9),

P(0)∫
0

(F−S)·u′(P(Nq∗(N))q∗(N)−Fq∗(N)+(F−S)x∗(N))·ψ(S;m, r)dS = 0.

(50)

Hence, (49) simplifies to

∂Γ

∂r
=

P(0)∫
0

u(P(Nq∗(N))q∗(N)−Fq∗(N)+(F−S)x∗(N))·∂ψ(S;m, r)
∂r

dS.

(51)

The sign of (51) is for the moment ambiguous because ∂ψ(S;m,r)
∂m

may be positive or negative depending on the value for S. Inte-
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grating by parts (51) yields

∂Γ

∂r
= u(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))

∂Ψ(S;m, r)

∂r

∣∣∣∣P(0)
0

+ x∗(N)

P(0)∫
0

u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))
∂Ψ(S;m, r)

∂r
dS.

(52)

As in (48), the first term in (52) is equal to zero. We cannot

sign directly (52) because, by the definition of a mean-preserving

spread, ∂Ψ(y;m,r)
∂r

may be positive or negative depending on the

value of S. Integrating by parts (52) yields

∂Γ

∂r
= x∗(N) · u′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))

×
(∫ S

0

∂Ψ(y;m, r)dy

∂r

)∣∣∣∣P(0)
0

+ (x∗(N))2 ·
∫ P(0)

0

u′′(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N))

×
(∫ S

0

∂Ψ(y;m, r)dy

∂r

)
dS. (53)

Since Ψ(0;m, r) = 0 and Ψ(P(0);m, r) = 1 for all r, the first

term in (53) is equal to zero. Moreover, using the definition of a

mean-preserving spread and the fact that an increase in r induces a

mean-preserving increase in the risk of S̃, it follows that ∂Ψ(S;m,r)
∂r

>

0 for all S < P(0).52 From (53), ∂Γ/∂r < 0 since x∗(N) �= 0 (from

F �= ES̃) and u′′ < 0. Hence, from (11), N∗ and thus J∗ = 	N∗

are weakly decreasing along with an increase in r.

Proof of Proposition 3.6. Plugging x∗(N) ≡ (1 − ω∗(N))q∗(N) and

52We recall the integral definition of a mean-preserving spread. Suppose that for x ∈
[a, b], G(x) is a mean-preserving spread ofH(x). Then,

∫ b
a
(G(x)−H(x))dx = 0 to preserve

the same mean between the two distributions and, for all z ∈ [a, b),
∫ z
a (G(x)−H(x))dx > 0

so that G(x) has more weight in the tails than H(x).
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u(π) = v(π; ρ) into (11) yields

P(0)∫
0

v(P(Nq∗(N))q∗(N)−Fq∗(N) + (F −S)x∗(N); ρ) · φ(S)dS = u(K) (54)

evaluated at N = N∗. Let

Γ ≡
P(0)∫
0

v(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ) · φ(S)dS (55)

be the left-hand side of (54). From (55),

∂Γ

∂ρ
=
∂q∗(N)

∂ρ
(P ′(Nq∗(N))Nq∗(N) + P(Nq∗(N))− F )

×
P(0)∫
0

v1(P(Nq
∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ) · φ(S)dS

+
∂x∗(N)

∂ρ

P(0)∫
0

(F − S) · v1(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ) · φ(S)dS

+

∫
∂v(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ)

∂ρ
· φ(S)dS

(56)

where ∂q∗(N)
∂ρ

= 0 due to the separation property stated in Remark 3.3, and,

from (9),

P(0)∫
0

(F − S) · v1(P(Nq∗(N))q∗(N)−Fq∗(N) + (F − S)x∗(N); ρ) · φ(S)dS = 0.

(57)

Hence, (45) simplifies to

∂Γ

∂ρ
=

∫
∂v(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ)

∂ρ
· φ(S)dS. (58)
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Since an increase in ρ means an increase in risk aversion, it follows that

for F �= ES̃, (58) is negative for all N .53 Hence, from (11), N∗ and thus

J∗ = 	N∗
 are weakly decreasing in ρ because a more risk-averse firm requires

a higher risk premium to remain in the market.

53Since x∗(N) �= 0 when F �= ES̃, it follows that v is strictly concave in S. Hence, for
any ρ1, ρ2 : ρ2 > ρ1 and as long as x∗(N) �= 0,∫

v(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ2) · φ(S)dS

<

∫
v(P(Nq∗(N))q∗(N)− Fq∗(N) + (F − S)x∗(N); ρ1) · φ(S)dS. (59)
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