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Abstract:  
This paper extends a standard principal-agent model of CEO compensation by modeling 
the progressive attenuation of information asymmetries between firm insiders and 
shareholders in continuous time. In this setting, we show that the optimal timing of 
compensation results from a tradeoff between the progressive accumulation of noise in 
the stock price process and the progressive resolution of information asymmetries. 
Since all points in the stock price process are incrementally informative about the CEO 
action, we also show that the whole stock price process should a priori be used for 
compensation purposes. This may however lead CEOs to inefficiently divert resources 
to repeatedly manipulate the stock price, which is why it might be optimal to use only a 
few points in the stock price process instead. 
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The equity-based compensation of CEOs is typically viewed as a mechanism which aligns

their interests with shareholders’. Accordingly, CEO compensation contracts have often been

interpreted in the light of the principal-agent (shareholders-CEO) model of effort provision. In

particular, the literature has established why the stock price is used as a performance measure

(e.g. Holmstrom and Tirole (1993)), as well as the functional form which relates a given stock

price to the manager’s pay (e.g. Innes (1990), Hemmer, Kim, and Verrecchia (2000), Hall and

Murphy (2002), Dittmann and Maug (2007), Dittmann, Maug and Spalt (2010), Dittmann and

Yu (2011)). However, it is still unclear how firms select the stock price(s) used for compensation

purposes. In practice, CEO compensation is usually deferred,1 vesting schedules differ across

firms, and only a few points in the stock price process are used to determine CEO compensation.

This paper proposes a model which explains these facts.2

To this end, we add two essential ingredients to a standard principal-agent model of CEO

pay in the spirit of Holmstrom (1979) and Dittmann and Maug (2007). First, we assume that

investors face some initial uncertainty about the firm technology, whether because they are

initially asymmetrically informed (relative to firm insiders), or because all agents in the model

face this initial uncertainty – we will emphasize the asymmetric information interpretation

in what follows. Crucially, we also assume that investors progressively learn about the firm’s

technology and receive increasingly precise signals about the value of firm profits as time passes.

Second, following models of signal-jamming (Narayanan (1985), Stein (1989)), we assume that

the manager can divert resources to manipulate the information at the disposal of investors at

any point in time.

The first element, namely the progressive attenuation of information asymmetries via a

learning process, can explain why it may be optimal to defer CEO pay. Intuitively, this is

because the stock price is set endogenously by investors according to their information, so

1Deferred compensation is the norm for CEOs: restricted stock grants typically vest after three years, while
close to 90% of stock-options granted to S&P500 CEOs in 2006 had a maturity of 6 to 10 years.

2Deferred compensation is sometimes justified as a retention tool. However, this hypothesis can only explain
the progressive vesting of stocks and stock-options grants, not the fact that they are contingent upon the future,
as opposed to the current, stock price.
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that progressive learning will raise the informativeness of the stock price process over time.3

However, the progressive accumulation of noise in the stock price process due to the succession

of exogenous shocks to firm value progressively reduces its informativeness. The tradeoff that

ensues determines the optimal timing of compensation. If only one point in the stock price

process is used in the compensation contract, we find that CEO compensation is all the more

deferred that there is more learning over time, and that noise is weak – and conversely. In

particular, if noise accumulates at a constant rate over time and learning occurs at a decreasing

rate (i.e., there is more learning in the early stages of a project than in the latter stages), we

find that it is optimal to use the stock price at the point in time when both rates are equal.

This being said, in a model with a risk averse manager and a risk neutral principal in which

the stock price is affected both by noise and by learning, we show that it would be optimal to

use the whole stock price process for compensation purposes – as opposed to the stock price

at one or a few points in time only. This is because, in general, no subset of stock prices is

a sufficient statistic for the whole stock price process. Intuitively, using the whole stock price

process enables the manager to benefit from “temporal diversification.” For example, if the

manager were only compensated at one point in time, say τ , then he would be fully exposed to

the mispricing due to incomplete learning at time τ , and to the noise accumulated until time τ ,

but he would not be at all exposed to the extent of the mispricing eliminated by learning from

time 0 to time τ , or to the noise which accumulates after time τ . Compensating the manager at

different points in time enables to decrease his exposure to certain shocks, and to expose him (if

only slightly) to other shocks. Since risk aversion is second-order for small risks, we know that

it is optimal to reduce a significant exposure to certain shocks at the cost of (at least slightly)

exposing the manager to other shocks.

3We assume that the degree of information asymmetries is exogenous. However, in Holmstrom and Tirole
(1993), the degree of liquidity in the secondary market for the firm’s stocks determines the incentives of investors
to gather information. In Edmans (2009), large blockholders have strong incentives to gather information on
the firm’s fundamental value, which reduces information asymmetries and mitigates managerial short-termism.
Endogeneizing the degree of information asymmetries is a natural extension of the model. This being said, our
result that the timing of compensation depends on the equilibrium degree of information asymmetries relative
to the degree of noise would be robust to this extension.
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This raises the question as to why managers are only compensated based on the stock

price at a few points in time rather than on the whole stock price process. In that regard,

practitioners often mention the undesirable side effects that would be (and to some extent

already are) created by a constant managerial attention to changes in the stock price. It is often

alleged that managers would spend too much time and resources “managing” the stock price

rather than focusing on the fundamentals of the company if their compensation depended on

the day-to-day changes in the stock price. To incorporate this important limitation of such a

compensation scheme, we assume that, at any point in time, a manager can spend resources

to temporarily lift the stock price (this is similar to “manipulation” in Goldman and Slezak

(2006) and to “short-termism” in Edmans, Gabaix, Sadzik, and Sannikov (2011)).4 This is

wasteful and inefficient, but it may be in the manager’s interests, even if investors anticipate

this behavior. As a consequence, it may be optimal to use only one or a few points in the stock

price process for compensation purposes, so as to minimize the diversion of firm resources for

stock price manipulation. Thus, the model highlights an implication of short-termism that is

not captured by discrete time models. Whereas these models can typically only consider the

effect of short-termism on the timing of compensation, we emphasize that the possibility of

short-termism (in the form of signal jamming) need not affect the timing of compensation per

se. However, it will have an effect on the number of performance measures (i.e., the number of

points in the stock price process) to be included in the compensation contract.

Our main results are driven by the coexistence of the accumulation of noise and of the

learning process. This sets this paper apart from the rest of the literature. For example, in

the model of Dittmann and Maug (2007) in which there is no learning over time but only

an accumulation of noise, the stock price at any given time is a sufficient statistic for future

stock prices. This type of model can therefore explain why only one stock price is used for

compensation purposes, but it cannot explain deferred executive compensation. By contrast, a

4In the same vein, Peng and Roell (2008) study the implications of uncertainty on the equilibrium degree of
manipulation for managerial compensation contracts. When ex-post efficiency conflicts with ex-ante efficiency,
Axelson and Baliga (2009) emphasize that it may be optimal to allow for manipulation to prevent renegotiation.
They also derive implications for the timing of compensation.
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number of papers acknowledge that managers have private information (e.g., Narayanan (1985),

von Thadden (1995)). We adopt the same premise, but we also model learning about the firm

technology in continuous time, which may for example take the form of a progressive attenuation

of information asymmetries. This is crucial, as persistent uncertainty or persistent information

asymmetries would not be sufficient to explain deferred compensation in our setting. Indeed,

what matters is the variability of the stock price at a given point in time from the ex-ante

perspective of a risk averse CEO. The accumulation of noise progressively increases it, whereas

learning progressively decreases it.

More generally, this paper contributes to a large literature on the use of performance mea-

sures for evaluation and compensation purposes (Holmstrom (1979), Holmstrom and Tirole

(1993)). To our knowledge, it is the first to explicitly model the stock price process in contin-

uous time in a principal-agent model and to identify some tradeoffs associated with the use of

any given point in this process, and with the number of points of this process to be included in

the compensation contract.

This paper is also related to a more recent literature which discusses the advantages of

short-term versus long-term compensation. Long-term compensation may prevent managers

from overinvesting in general skills, at the expense of firm-specific skills (Giannetti (2009)). In

Bizjak, Brickley, and Coles (1993), higher (and persistent) information asymmetries translate

into greater managerial opportunities for short-termism, which can be addressed by postponing

compensation. Two more recent papers counter that stronger information asymmetries may on

the contrary result in more short-term compensation. In Bolton, Scheinkman and Xiong (2006)

and Gopalan, Milbourn, Song, and Thakor (2011), mispricing on the stock market enables a

better-informed manager to benefit from overvaluation by selling his stocks early. Bhattacharyya

and Cohn (2008) emphasize that short-term equity-based compensation also allows a risk averse

manager to quickly reduce his exposure to the firm’s risk, which enhances his willingness to

undertake risky but valuable projects. Nevertheless, Aghion and Stein (2008) warn that short-

term stock-based compensation may induce the manager to inefficiently cater to the stock
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market.

Since we assume that the manager takes only one action and is paid only once, we do not con-

sider the balance between short-term and long-term incentives (Holmstrom and Tirole (1993)),

consumption smoothing (Wang (1997)), borrowing and saving, or conditioning the manager’s

compensation on his past performances. These last three issues have been extensively studied

in the dynamic moral hazard literature, especially in Fama (1980) and Holmstrom (1999). In

these papers with repeated moral hazard, the passage of time enables a more precise assessment

of the agent’s talent, a result also obtained in Radner (1981). In a related paper, Edmans,

Gabaix, Sadzik, and Sannikov (2011) also focus on the temporal dimension of a principal-agent

model. The effects that they emphasize, however, are different, notably because the passage of

time is not accompanied by learning in their model.

This paper makes three contributions. The first is methodological: we model progressive

learning in continuous time with a Brownian motion process (learning can take the form of

a progressive elimination of information asymmetries). This new method has many potential

applications in the economics and finance literatures. Second, we identify the point in time

when the stock price process is “most informative” about the manager’s action. We argue that

it results from a tradeoff between the accumulation of noise in the stock price process and

progressive learning. The model thus generates a new theory which relates the optimal timing

of managerial compensation to firm characteristics and the degree of stock market efficiency.

Third, we present both a puzzle – why isn’t the whole stock price process used for compensation

purposes? – and a potential explanation – this would induce costly signal jamming on the part

of managers.

The paper proceeds as follows. The first section presents the model. The second section

derives the stock price process. The third section describes the optimal contract supposing that

the manager is paid at one point in time only. The fourth section determines under which

conditions this timing of compensation is optimal. The fifth section revisits the model under

an alternative information structure. The sixth section discusses the model’s predictions, and
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the seventh section concludes. All proofs are in the Appendix.

1 The model

Basic setup

We consider a firm initially controlled and at least partly owned by a risk-neutral “founder”,

whose objective is to maximize firm value net of compensation costs, and run by a risk averse

manager.5 More generally, the “founder” can be thought of as a large blockholder with a con-

trolling stake, or as a private equity fund which will take the firm public at time 0. Contracting

occurs between the founder and the manager, whom we refer to as firm insiders. This part of

the model is in the spirit of Holmstrom (1979) and Dittmann and Maug (2007).

Then we extend the model by explicitly modelling the stock price process, which is set con-

tinuously by a multitude of risk-neutral investors according to their information. An important

although not crucial assumption (as discussed in section 5) is that the manager and the founder

have inside information about the firm. This type of information structure with asymmetrically

informed investors has already been used in a large literature – it is notably a cornerstone of the

pecking order theory of the capital structure and of the dividend signaling theory. Furthermore,

the assumption that the founder (or blockholder) is better informed than outside investors is

consistent with a recent literature which finds that blockholders have strong incentives to acquire

information (Edmans (2009)), and that larger shareholders are indeed more informed (Parrino,

Sias, and Starks (2003) and Bushee and Goodman (2007)). In addition, we make the crucial

assumption that investors progressively learn about firm value. We will propose a new method

to model this learning process of the “marginal investor” in continuous time, and we will show

that it has important consequences for the timing of equity-based managerial compensation.

5It is crucial that the CEO be risk averse, otherwise the first-best outcome could be implemented and the
timing of compensation would not matter. The assumed risk neutrality of the founder could be microfounded
by viewing him as a well-diversified shareholder or private equity firm, say. These different risk preferences for
the principal (founder) and the agent (manager) with respect to firm risk is often used in the literature to obtain
a tradeoff between incentives and risk sharing and motivate why the structure of the compensation contract
matters.

7



Production technology, contracting, and trading on the stock market

The contracting stage involves a standard principal-agent relationship. At t = −2, the

founder offers a compensation contract to the manager. We assume that the manager has

CRRA utility and coefficient of relative risk aversion γ (so that u(x) = x1−γ

1−γ for γ 6= 1 and

u(x) = ln(x) for γ = 1)6 and outside employment opportunities which give him a reservation

utility of Ū . He will therefore accept the contract if and only if his expected utility is at least

equal to Ū in equilibrium. Define his reservation wage as W̄ , where u(W̄ ) ≡ Ū . For simplicity,

the pre-existing wealth of the manager is normalized at zero.7 If he accepts, the manager then

chooses and exerts the level of effort e ∈ [0,∞) at t = −1. The manager incurs a personal cost

of effort additive in the utility of wealth of C(e), where C is increasing and convex, and satisfies

the Inada conditions that lime→0C
′(e) = 0 and lime→∞C

′(e) = ∞ (this guarantees an interior

solution to the effort choice problem). Effort represents any action which increases firm value

but is personally costly to the manager.

Since the level of effort does not have any effect on the optimal timing of compensation, as

we make clear below, we focus on the first step of optimal contracting in Grossman and Hart

(1983), which consists of deriving the contract which induces a given level of effort e? from the

manager at the minimum expected cost. This approach is standard in papers which focus on

the structure of compensation (e.g. Hall and Murphy (2002), Dittmann and Maug (2007)).8

Besides, for any level of e?, any contract which does not satisfy this first step cannot be optimal.

We also assume that e? is common knowledge, although our results would be unchanged if the

investors had an improper prior about e? instead.

6The assumption of CRRA utility is common in the managerial compensation literature (e.g., Hall and
Murphy (2002), Dittmann and Maug (2007), Edmans, Gabaix, Sadzik, and Sannikov (2011)). We use it for
tractability: as explained further in section 3, it enables us to characterize the form of the optimal contract at
a point in time. However, our results related to the timing of compensation are robust to an alternative risk
averse utility function.

7This does not matter for our results related to the timing of compensation. It only matters insofar as the
functional form relating the stock price to the pay of the manager is concerned.

8Another approach is to rely on the “maximum effort principle”, whereby possible levels of effort are bounded
from above and it is optimal for the principal to induce the maximum possible effort from the manager (Edmans
and Gabaix (2011) and Edmans, Gabaix, Sadzik, and Sannikov (2011)).
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To simplify the exposition, we assume that the initial shareholders hedge at t = −2 the cost

of paying the manager. That is, at t = −2 they pay to a third party a premium equal to the

expected cost of managerial compensation given the contract offered to the manager. If the

manager were paid ex-post instead, a higher stock price would imply a higher compensation,

and therefore a higher cost to the firm which would diminish firm value correspondingly. With

this hedging assumption, we do not have to consider this feedback mechanism, whose influence

on the stock price is second-order in big companies in any case (since firm value is very large

relative to the cost of CEO compensation). Note that the risk neutral founder is indifferent

between hedging the cost of compensation and paying the manager ex-post.

At t = T , shareholders earn the noncontractible payoff produced by the firm,9 which is equal

to

a+ e+ σNBN
T (1)

where a is a constant which captures the productivity of the firm’s technology, and BN
t is an

unobserved Brownian motion defined on [0, T ].10 The assumption that the variability of the

stock price due to noise is increasing over time from an ex-ante perspective is standard in the

literature (e.g. Dittmann and Maug (2007)), and it could also be microfounded by assuming

that at every point in time firm value is affected by an exogenous shock, with i.i.d. shocks. We

also assume that a liquidation of the firm at any time is infinitely costly, so that investment is

irreversible, and no profitable renegotiation is possible in any case. For simplicity, the discount

9The assumption that a contract cannot be written on the payoff per se enables us to focus exclusively on the
stock price process as a performance measure. This is consistent with the fact that performance-based pay in big
US companies is primarily equity-based, as bonuses are largely independent of performance (Murphy (1999)).
The “payoff” of a project may not be contractible for several reasons. First, the payoff may not be purely
monetary – think about a project which provides private benefits of some kind to shareholders, say because
it is a “socially responsible investment”. Second, the project may benefit shareholders in ways which are not
captured by the profit and loss statement – think about a project which can generate synergies with other firms
that shareholders also own. Third, the payoff may not be realized at time T – in our model, time T is essentially
the time when the learning process stops, as we make clear below; the learning process obviously stops if the
payoff is realized at time T , but the payoff might also be realized after time T , in which case the expression in
(1) is merely the expectation of the payoff as of time T .

10It is therefore characterized by the standard properties of Brownian motions. In particular, it is equal to 0
at t = 0, and it writes as BN

t =
∫ t

0
dBN

s , for any t ≥ 0. For any s > t, the term BN
s −BN

t is normally distributed
with mean 0 and variance s− t.
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factor is zero.

From time t = 0 to t = T , the stock price is set by a multitude of risk-neutral, uncon-

strained, and competitive investors. As is standard in the literature (e.g. Edmans, Gabaix,

Sadzik, and Sannikov (2011)), the manager cannot trade the firm stock at any time, because

of the prohibition of insider trading, and because this would enable him to undo the contract.

Likewise, the founder cannot trade the firm stock at any time t ∈ [0, T ], unless he places a

market order prior to t = 0. For example, he may at t = −2 commit himself to selling part

or all of his stake at some time t ∈ [0, T ]. This assumption, which is relaxed in section 5, can

be microfounded by invoking the prohibition of insider trading, or by considering that no trade

can occur ex-post in equilibrium between a risk neutral founder with inside information and

asymmetrically informed risk neutral investors. This being said, trade can occur if the insider

places a market order ex-ante, before the investors receive a signal on firm value (as described

below) and set the stock price accordingly.

The information structure

Both the manager and the founder have inside information about the firm. More specifically,

at t = −2, only the manager and the founder know the noncontractible value of a in (1) while

the investors have an improper prior on a. This reflects information asymmetries on the firm’s

productivity. In addition, we assume that the founder cannot credibly communicate the value of

a to the investors, and that neither the founder nor the investors observe the manager’s choice

of effort e. We also assume that the investors have improper priors on Ū and C(e) (for any

e), so that they do not draw any inferences about a after observing the compensation contract.

Without these assumptions, there would not be any meaningful information asymmetries, since

investors could potentially infer the value of a by observing the compensation contract. In

an extension of the model without information asymmetries presented in section 5, all the

assumptions described in this paragraph are relaxed. It should be emphasized that the results

of this paper are not so much driven by the information asymmetries on a per se, but rather by
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the learning process of the investors that we describe in the next paragraphs. Once again, we

refer to section 5 for a more thorough discussion of the implications of these assumptions.

The investors progressively learn the value of the conditional expected payoff a+ e+σNBN
t :

for all t ∈ [0, T ], they all observe a noncontractible signal vt at time t. Their initial information is

therefore crystallized in the signal v0. (Since neither the manager nor the founder do anything

after t = −1, it is inconsequential whether or not they observe the process vt at any time

t ∈ [0, T ].) We assume that the time 0 signal, v0, and the time t signal, vt, are respectively

v0 = a+ e−
∫ T

0
σUs dB

U
s (2)

vt = a+ e+ σNBN
t −

∫ T

t
σUs dB

U
s (3)

where BU
t is a Brownian motion independent from BN

t , with time-varying, deterministic, and

common knowledge diffusion process σUt , which is continuous. The Brownian motion BU
t is

fully realized before t = 0, and never observed by any agent at any time (however, the signal

vt is observed by the investors at time t). As will be clear later, the assumption that σN is

constant (over time) is without loss of generality and can be viewed as a normalization, since

what matters at any time is the relative level of σN and σUt .

The dynamics of the σUt process determine whether most learning occurs at the beginning

or at the end of the time interval [0, T ]: it mostly occurs at the beginning if σUt is decreasing in

t, and mainly towards the end if σUt is increasing in t. The overall magnitude of σUt captures

the extent of learning, i.e., the extent of information asymmetries: the less private information

that firm insiders possess relative to the investors, the smaller the overall magnitude of σUt . If

σUt were identically zero, the investors would not learn anything over time, and the passage of

time would only add noise to the signal process vt, where noise is represented by the Brownian

motion BN
t .

This representation of the signal process has the advantage of being very tractable. It

also has the following properties. First, at any time t the signal vt is an unbiased estimate

11



of the conditional expected payoff, i.e., a + e + σNBN
t , since its probability distribution is

centered around this conditional expected payoff. Second, the variance between the signal vt

and the conditional expected payoff at time t is decreasing in t, which represents the progressive

attenuation of the mispricing due to learning.

2 The stock price

As already mentioned, the discount factor is zero, and the investors are competitive and risk-

neutral. For any t ∈ [0, T ] and τ ∈ [t, T ], we therefore have in equilibrium:

St = Et[Sτ |{vs : s ∈ [0, t]}, e?] (4)

At t = T , the payoff a+ e+ σNBN
T of the stock is known, so

ST = a+ e+ σNBN
T (5)

Setting τ = T in (4) and substituting,

St = Et[a+ e+ σNBN
T |{vs : s ∈ [0, t]}, e?] (6)

At any time t ∈ [0, T ], the market clearing price St, at which the net demand from the investors

equals the net supply of the stock, is equal to the conditional expectation of the final payoff.11

Moreover, vt is a sufficient statistic for {vs : s ∈ [0, t]}. Indeed, for any τ ∈ [0, t) we can write

vτ = ST + σN(BN
τ −BN

T )−
∫ T

τ
σUs dB

U
s (7)

11Since all investors have the same beliefs, there would admittedly not be any trading in the model, for any
t ∈ (0, T ]. This being said, we could postulate a mechanism in which a market-maker receives orders from
investors, which he must balance against a net supply of the stock of zero. The stock price announced by the
market-maker will therefore be the market clearing price, which ensures that the net demand from investors is
zero.
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vt = ST + σN(BN
t −BN

T )−
∫ T

t
σUs dB

U
s (8)

This implies that, conditional on ST , we can write vτ = vt + uτ,t for any τ ∈ [0, t), where uτ,t

is a (normally distributed) random variable independent from vt. Standard arguments (cf. the

Proof of Proposition 2) then show that vt is a sufficient statistic for {vs : s ∈ [0, t]}.

Using this fact, we substitute for vt (as defined in (3)) in (6) to rewrite it as

St = Et
[
vt +

∫ T

t
σUs dB

U
s + σN(BN

T −BN
t )|vt, e?

]
= vt (9)

where the second equality follows from investors’ improper prior on a, which implies an improper

prior on firm value. This assumption ensures that the updating of beliefs at time t is very simple.

We consider a different information structure in section 5, in which the stock price at any time

t is a weighted average of the prior belief on firm value and the signal vt. Applying the equality

in (9) to (2) and (3) respectively yields the time 0 and time t stock prices:

S0 = a+ e−
∫ T

0
σUs dB

U
s (10)

St = a+ e+ σNBN
t −

∫ T

t
σUs dB

U
s (11)

Note that, with a performance measure St additively separable into effort and a normally dis-

tributed random variable, the monotone likelihood ratio property is satisfied at any given time

t. Combining (10) and (11) gives another expression for St:

St = S0 + σNBN
t +

∫ t

0
σUs dB

U
s (12)

Finally, the dynamics of St may be derived from either (11) or (12):

dSt = σNdBN
t + σUt dB

U
t (13)
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This deserves clarification. The investors have an improper prior on firm value, and at time

t they do not observe any of the different terms on the right-hand-side of (11). Instead, at any

time t they observe vt, and set the stock price St according to this information. Equation (11)

neatly captures the two forces at play. On the one hand, the value of the conditional expected

payoff, a+ e+σNBN
t , progressively diverges from its ex-ante value of a+ e following the arrival

of additive shocks, so that noise accumulates at a constant rate in the stock price as time passes.

On the other hand, the investors progressively learn the value of the conditional expected payoff,

by continuously receiving signals whose precision is increasing over time. Loosely speaking, our

model uses the Brownian motion BU
t to reduce uncertainty as time passes – from the investors’

perspective.

It is noteworthy that our specification of the signal process vt in (3) ensures that the stock

price at any given time is normally distributed. This is not crucial for our main results. As

discussed in the next section, the form of the probability distribution affects the functional form

relating managerial compensation to the level of the stock price at a given point in time. But

our results related to the timing of managerial compensation are robust to the assumption of

a lognormally distributed stock price, which is more common in the literature (e.g. Hall and

Murphy (2002), Dittmann and Maug (2007)) and also follows from the assumption that stock

returns are i.i.d. and continuously compounded. To see why, for any t ∈ [0, T ], consider the

random variable Pt ≡ exp{St}. Since St is normally distributed, Pt is lognormally distributed.

In addition, since there is a one-to-one mapping between St and Pt, and denoting by W (St) the

optimal contract conditional on St, the optimal contract conditional on Pt is simply w(Pt) =

W (ln(Pt)). It is therefore equivalent to work with the lognormally distributed variable Pt or with

the normally distributed variable St (in addition, the limited liability constraint that w(Pt) ≥ 0

will be satisfied if W (ln(Pt)) = W (St) ≥ 0). The choice of a lognormal probability distribution

would only affect the results on the functional form relating managerial compensation to the

level of the stock price at a given point in time, which is not the issue that we focus on in this

paper.
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3 Stock price informativeness and the optimal timing of

compensation

Supposing that only one point in the stock price process is used in a compensation contract, this

section establishes which point in time is optimal, as well as the form of the contract conditional

on this stock price. Accordingly, we denote by 1t the dummy variable equal to one if the stock

price at time t ∈ [0, T ] is used in the compensation contract, and equal to zero otherwise.

Among the set of contracts which induce participation and effort e? from the manager, we

look for the contract which minimizes the cost of compensation.

At the first-best, the manager exerts effort e?. Since the manager is risk averse and the

founder is risk-neutral, the manager is paid a fixed wage which exactly compensates him for his

reservation utility Ū and the cost of effort C(e?). The timing of compensation therefore does

not matter in this case.

At the second-best, the provision of incentives via a compensation contract contingent upon

the manager’s performance, as reflected in the stock price, will necessitate a deviation from

the first-best risk sharing rule. Using standard arguments, it can be shown that this deviation

will be costly. The optimal contract associated with any given level of effort will minimize this

cost.12

Supposing that managerial compensation is contingent upon the time t stock price only

(1t = 1 and 1s = 0 for any s 6= t), the incentive constraint which guarantees that the manager

optimally exerts effort e? under the contract W (St) writes as

e? = arg max
e∈[0,∞)

E−1[u(W (St))] (14)

To solve the model, we rely on the validity of the first-order approach. As in Dittmann, Maug,

12More precisely, given a level of effort, we can decompose the expected payment to the manager at the
second-best into two components: the first-best payment, and the expected payment in excess of the first-best
payment. The latter is often referred to as the agency cost of the contract. Clearly, minimizing the expected
payment to the manager at the second-best is equivalent to minimizing the agency cost.
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and Spalt (2010), we assume that C ′′(e) is sufficiently high – i.e., the cost function C(e) is

sufficiently convex – for the second-order condition to the manager’s effort choice problem to be

satisfied, which guarantees the validity of the first-order approach. The optimal level of effort

e? given a contract W (St) then solves

d

de
E−1[u(W (St))|e?] = C ′(e?) (15)

Given (11), this rewrites as

d

dSt
E−1[u(W (St))|e?] = C ′(e?) (16)

Given a contract W (St) and an equilibrium effort e?, the manager accepts the contract if

and only if the following participation constraint is satisfied:

E−1[u(W (St))|e?] ≥ Ū (17)

Given the constraints in (16) and in (17) and the objective function of the founder, we can

determine the form of this optimal contract at a given point in time:

Proposition 1: If the first-order approach is valid, then the optimal contract which is such

that 1t = 1 for a given t ∈ [0, T ] and 1s = 0 for s 6= t has the form W (St) = max{(α0+α1St)
1
γ , 0}

for two constants α0 and α1.

This result is adapted from Dittmann and Maug (2007), who derive it with the conditions

described in Holmstrom (1979). Since the monotone likelihood ratio property is satisfied at any

given time t, as already noted, we know that the optimal compensation contract described in

Proposition 1 is increasing in St.

The curvature of the optimal contract depends on the assumed degree of relative risk aver-

sion. With CRRA utility and a level of relative risk aversion lower (respectively higher) than
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one, the contract is convex (resp. concave) on the region where the limited liability constraint

is not binding. With log utility (γ = 1), the optimal contract takes the form of a call option

on the stock price at time t. As already emphasized in Hemmer, Kim, and Verrecchia (2000)

and Dittmann and Maug (2007) for example, the functional form W (St) relating compensation

to the stock price at a given point in time is sensitive to the assumed managerial preferences.

Likewise, assuming another probability distribution would alter the form of the optimal contract

(see e.g. Dittmann and Maug (2007) in the case of the lognormal distribution, and Hemmer,

Kim, and Verrecchia (2000) in the case of the gamma distribution). We do not lay too much

emphasis on this result on the form of the optimal contract, because this issue has already been

addressed in the literature, and because this particular result is not required for our subsequent

analysis.

Given the form of the optimal compensation contract at a given point in time, we now ad-

dress the optimal timing of compensation. We first establish this important preliminary result:

Proposition 2: If 1t = 1 for a given t ∈ [0, T ] and 1s = 0 for s 6= t, then the optimal t? is

such that t? = arg mint var(St).

If the manager is only paid based on the stock price at one date, then Proposition 2 says

that it is optimal to select the date at which the variance of the stock price from an ex-ante

(t = −2) perspective is minimal. With the normal distribution, this means that the stock price

to select for contingent compensation is the one with the highest informativeness with respect to

e, which is intuitive. This is because, with the normal distribution, the variance fully captures

the dispersion of the stock price distribution around its mean.13

In turn, the date which minimizes the variance of the stock price depends on the relative

magnitudes of the accumulation of noise over time and of the learning process. From an ex-ante

13With other distributions which are not fully described by their mean and variance, this problem is potentially
more complex, since there may be tradeoffs between higher-order moments. For example, a given time t may
have a lower variance than another time s but a higher kurtosis. In this case, it is a priori not clear which one
is “more informative.”
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perspective, the variance of the stock price at any time t ∈ [0, T ] conditional on a and e writes

as

var(St) = var
(
σNBN

t −
∫ T

t
σUs dB

U
s

)
= σN

2
t+

∫ T

t
σUs

2
ds (18)

where we used (11). The optimal timing of compensation is the time t which minimizes this

expression. Note that the effect of an increase in σN on the variance of the time t stock price in

(18) is increasing in t, whereas the effect of a uniform increase in σUs on the variance of the time

t stock price in (18) is decreasing in t. This suggests that the optimal timing of compensation

is negatively related to the rate σN at which the noise accumulates, but positively related to

the overall magnitude of information asymmetries.

The economic intuition is the following: on the one hand, a manager is only exposed to the

noise which accumulates in the stock price until the time of compensation; on the other hand, a

manager is only exposed to the mispricing due to information asymmetries which have not yet

been resolved at this time. The optimal timing of compensation trades off these two sources of

risk, so that the point in time used in the contract is the one which minimizes the variability of

the stock price, and therefore the variability of the manager’s equity-based pay, from an ex-ante

(t = −2) perspective.

In the following Proposition, we distinguish between four especially interesting cases.

Proposition 3: If 1t = 1 for a given t ∈ [0, T ] and 1s = 0 for s 6= t, then the optimal

timing of compensation t? ≡ arg mint var(St) is as follows:

• If σUt ≥ σN for all t ∈ [0, T ], then t? = T .

• If σUt ≤ σN for all t ∈ [0, T ], then t? = 0.

• If none of the above applies and σUt is increasing in t on [0, T ], then t? = 0 if
∫ T

0 σUt
2
dt <

σN
2
T , and t? = T if

∫ T
0 σUt

2
dt > σN

2
T .

• If none of the above applies and σUt is decreasing in t on [0, T ], then t? is implicitly defined
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by σUt? = σN .

First, if information asymmetries outweigh noise, compensation should be contingent on

the end-of-period stock price, in order for learning to be complete. Second, if noise outweighs

information asymmetries, compensation should be contingent on the initial date’s stock price, so

that the manager is thoroughly protected from noise. Third, if the rate of learning increases over

time, the manager should be compensated either based on the initial or the end-of-period stock

price. Fourth, if the rate of learning decreases over time, the manager should be compensated

at the time when the rate in question is equal to the rate at which noise accumulates. As a rule,

the stronger the noise is relative to information asymmetries, the earlier the manager should be

paid.

At the second-best optimum, it is noteworthy that the first-best outcome of e? and a constant

managerial compensation is reached in two special cases. If there are no information asymmetries

(σUt ≡ 0), then compensation is contingent on S0 (t? = 0), so that the manager is not exposed

to the accumulation of noise, and does not bear any risk. In the absence of noise (σN = 0), it

is costless to wait for learning to be complete: compensation is then contingent on ST (t? = T ),

and the manager does not bear any risk either.

4 The tradeoff between manipulation and diversification

This section establishes the conditions under which it is optimal to use the stock price process at

one point in time only for compensation purposes. That is, it establishes the conditions under

which the results of the previous section apply.

To this end, we extend our stylized model by allowing for stock price “manipulation”. Our

objective is to capture a situation where the manager can divert firm resources to temporarily

increase the stock price. For the problem to be nontrivial, a few conditions need to be satisfied.

First, it must be in the interests of a manager with stock-based compensation to manipulate the
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stock price at some point, otherwise manipulation would not occur. Second, manipulation needs

to be costly for the firm, otherwise it would be inconsequential. Third, stock price manipulation

needs to be unobservable and undetectable, otherwise the firm could easily either prevent it or

prevent the manager from benefiting from it. We make a series of assumptions that guarantee

that these conditions are satisfied in our setting, and which are further discussed at the end of

this section.

First, for a given arbitrarily small ∆ > 0, we assume that the manager can at any time

t ∈ [0, T − 2∆] “manipulate” the stock price until time s, where s ∈ [t+ ∆, T −∆]. In this case,

the dynamics of the signal process become (where we used (9) and (13)):

dvτ = µdτ + σNdBN
τ + σUτ dB

U
τ for τ ∈ [t, t+ ∆]

dvτ = σNdBN
τ + σUτ dB

U
τ for τ ∈ [t+ ∆, s]

dvτ = −µdτ + σNdBN
τ + σUτ dB

U
τ for τ ∈ [s, s+ ∆]

For reasons that will become clear below, we assume that µ → 0. Notice that stock price

manipulation will not result in any jump in the stock price process. This assumption that

manipulation results in a temporary increase in the stock price is consistent with the empirical

evidence in Bhojraj, Hribar, Picconi, and McInnis (2009). Second, we assume that stock price

manipulation is costly, with an instantaneous cost of c, i.e., it reduces profits by c for each unit

interval where it is undertaken. For example, if the manager manipulates the stock price from

time t to time s, then the total cost is c(s − t). More generally, if stock price manipulation

is undertaken on intervals whose union has measure Λ, then the total cost is cΛ, so that the

payoff at time T becomes a+ e− cΛ + σNBN
T . Third, we assume that stock price manipulation

is unobservable per se, and that the manager cannot commit himself ex-ante not to manipulate

the stock price. Lastly, we assume that a manager who is indifferent between manipulating and

not manipulating does not manipulate.

With µ → 0, stock price manipulation cannot be detected. Indeed, if we denote by It the

dummy variable equal to one if stock price manipulation is occurring at a given time t, then,
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for any k,

Pr(dvt ≤ k|It = 1) −→µ→0 Pr(dvt ≤ k|It = 0) (19)

As µ→ 0, the distribution of dvt is independent from the value of It. There are two implications.

First, Pr(It = 1|dvt)→ Pr(It = 1), so that stock price changes are not informative about stock

price manipulation.14 Second, since stock price manipulation does not affect the distribution of

dvt in the limit as µ→ 0, the same arguments as in section 2 yield dSt = dvt.

First of all, we study the case in which manipulation does not occur because it is impossible

(µ = 0). In this case, we show that it is generically suboptimal to leave any point of the stock

price process out of the contract.

Proposition 4: If µ = 0 and if σUt is only constant on sets of measure zero, then any

optimal contract is such that 1t = 1 almost everywhere.15

This is a strong result, which implies that the whole stock price process should be used

for compensation purposes – as opposed to merely using the stock price at a few dates or on

some subintervals. The stock price at any given date contains some unique information because

of the coexistence of two processes – one which increases uncertainty, and one which reduces

uncertainty (with respect to a + e). Therefore, any subset of stock prices does not generate a

sufficient statistic for the whole stock price process. The informativeness principle (Holmstrom

(1979)) then dictates that the whole stock price process be used for compensation purposes.

14Without this assumption of µ → 0, changes in the stock price would be significantly (but not fully) infor-
mative about stock price manipulation, which shareholders want to discourage. In this case, it might become
optimal for shareholders to punish the manager following a temporarily large increase in the stock price. This
may however not be feasible in practice. First, any compensation scheme in which the manager’s pay is strictly
decreasing in the stock price (or profits) could induce the manager to either burn profits (in some way) at any
time t when dSt reaches a threshold. A similar argument was used more formally in Innes (1990) to rule out
compensation schemes in which the manager’s pay is a discontinuous function of profits. Second, any compen-
sation scheme which penalizes the manager for temporary bumps in the stock price process could induce him to
inefficiently spend resources to smooth out the stock price process (in our model, these “bumps” could indeed
occur in the absence of manipulation).

15Almost everywhere means on [0, T ], with the possible exception of subsets of measure zero. Note that the
condition that σU

t is only constant on sets of measure zero is sufficient but not necessary.
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We now study the case in which manipulation is possible (µ > 0). We show that, if ma-

nipulation is sufficiently costly for the firm (c is sufficiently high), then it is optimal to base

managerial compensation on the stock price at one point in time only.

Proposition 5: If µ > 0 and

c ≥ 1

∆
(E[α0 + α1(St?)]− W̄ ) (20)

then it is optimal to have 1t > 0 for t = t? and 1t = 0 for t 6= t?.

The intuition for this result is the following. If anticipated but impossible to detect (because

µ→ 0), stock price manipulations will significantly affect the level of the stock price, but they

will not significantly affect its dynamics. Given that manipulation nevertheless temporarily

increases the stock price slightly (because µ > 0), it is ex-post optimal for the manager to

manipulate the stock price at any time when his compensation depends on it. The assumption

that µ is positive but arbitrarily small is therefore crucial in our setting, because it makes

manipulation ex-post optimal for the manager and impossible to detect. Consequently, when

setting the optimal compensation contact, the firm needs to trade off the informativeness benefits

of using the whole stock price process (Proposition 4), or at least some points in this process,

against the cost of stock price manipulation. For a sufficiently high cost of manipulation c, the

latter outweighs the former so much that it is optimal to use only one point in the stock price

process for compensation purposes.

Proposition 5 proposes an explanation for the fact that managerial compensation is only

contingent on a small subset of stock prices – even though this set is not a sufficient statistic

for the whole stock price process, and current technology makes it feasible to write a contract

based on the whole stock price process. Indeed, this practice limits the extent of the diversion

of firm resources away from long-term profit maximization and toward the manipulation of the
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information at the disposal of investors. Put differently, it limits inefficient signal-jamming.

The first-best outcome with respect to stock price manipulation would be attained if stock

price manipulation were not costly to the firm in equilibrium. This would be the case if (i) the

manager could credibly commit not to manipulate the stock price, if (ii) stock price manipu-

lation or its manifestations were contractible, if (iii) manipulation were impossible (µ = 0), or

costless for the firm (c = 0), or if (iv) the manager could be monitored. In practice, none of

these conditions is likely to be easily satisfied. First, given the unobservability and the ex-post

optimality of stock-price manipulation, it is a priori not clear which mechanism could be put in

place to make such a commitment on the part of the manager possible. Second, it seems unlikely

that a contract could specify managers’ jobs to such an extent that it would make all instances

of manipulation impossible, or that manipulation could always be identified when it occurs.

Third, it seems reasonable to assume that, in most cases, stock price manipulation is possible to

some extent, and costly for the firm. Legislation such as Sarbanes-Oxley surely imposes some

limits on this practice, but it would be a stretch to argue that it is possible to effectively elim-

inate all instances of stock price manipulation. Fourth, since the manager has a lot of leeway

in that regard, it seems implausible that monitoring could completely solve this problem at a

reasonable cost. This being said, if a monitoring technology could detect manipulation with a

positive probability, we would have a tradeoff between the intensity of (costly) monitoring and

the informativeness benefits of using more stock prices for managerial compensation purposes.

Even in this case, Proposition 5 would still hold as long as monitoring is sufficiently costly.

In the remainder of this section, we discuss whether several stock prices could be used

in a contract. So far, we established that two polar cases are possible: when manipulation

is impossible, it is optimal to use the whole stock price process for compensation purposes

(Proposition 4); when manipulation is possible and sufficiently costly to the firm, it is optimal

to condition managerial compensation on the stock price at one point in time only (Proposition

5). Now suppose that manipulation is possible but less costly than in Proposition 5. Even

though positive costs of manipulation might make it too expensive to use the whole stock price
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process as a basis for compensation, the optimal contract may nevertheless use stock prices

at several different points in time (i.e., 1t = 1 for several t). In this case, for the benefits of

incremental informativeness to be maximal, we expect that the times t such that 1t = 1 will in

general not be clustered on a small subset of [0, T ], but rather spread out on the whole time

interval. This statement needs to be qualified, though. For example, consider the case of strong

information asymmetries at the beginning of the project’s life (relative to the noise), and a fast

learning process which results in information asymmetries being fully resolved at time T
2
, say.

In this case, there would be no benefits to setting 1t = 1 for any t > T
2
, since the stock price at

time T
2

would be a sufficient statistic for stock prices at times s > T
2
. Consequently, all times t

such that 1t = 1 would lie in [0, T
2
].

Another technical difficulty associated with the case in which several stock prices are used

in the contract is the fact that optimal compensation is not necessarily additively separable in

these stock prices. For example, suppose that 1t = 1 for t = {t1, t2} and for these dates only,

and denote the unconditional mean of the stock price by A ≡ a + e. Then, if the first-order

approach applies, the optimal contract takes the form:

1

u′(W (St1 , St2))
= λ+ µ

ϕe(St1 , St2 ;A)

ϕ(St1 , St2 ;A)
(21)

on the region where the limited liability constraint is not binding, where 1
u′(x)

= x with log

utility. Since the variables St1 and St2 are jointly Gaussian (cf. the proof of Proposition 4 with

T = t1 and τ = t2 for a formal demonstration) with an unconditional mean of A, their joint

density can be written as

ϕ(St1 , St2 ;A) =
exp

{
−

(St1
−A)2

σ2
t1

+
(St2

−A)2

σ2
t2

−2ρ
St1
−A

σt1

St2
−A

σt2

2(1−ρ2)

}
2πσt1σt2

√
1− ρ2

(22)

where ρ is the correlation coefficient between St1 and St2 , and σ2
t1

and σ2
t2

are their respec-

tive variances. In this case, if ρ 6= 0, then substituting from (22) in (21), we cannot write
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W (St1 , St2) = W (St1) +W (St2) (even with log utility). In our model, ρ = 0 if and only if t1 = 0

and t2 = T .

5 Initial uncertainty about firm value

In this section, we alter the model by assuming that all agents have the same information

about a at the contracting stage. That is, we consider the case where there are no information

asymmetries between firm insiders and investors at any time. This also enables us to relax

the assumption that the investors have improper priors on Ū and C(e), as well as the assump-

tion that firm insiders cannot trade the stock. Crucially, we will show that this alternative

information structure does not affect most of results.

We now assume that all agents (the founder, the manager, and the investors) observe the

following public signal at t = −2

v−2 = a+ σε (23)

where ε is normally distributed with a mean of zero and a variance of one. We explain below

why it is important to assume initial uncertainty about a, which is here parameterized by σ > 0,

even if it does not take the form of information asymmetries.

Following the same arguments used in section 2, at any time t ∈ [0, T ] the stock price St is

determined according to

St = E[a+ e+ σNBN
t |v−2, vt, e

?] (24)

In addition,

var[v−2 + e?|a+ e+ σNBN
t ] = σN

2
t+ σ2 ≡ Σ−2(t) (25)

var[vt|a+ e+ σNBN
t ] =

∫ T

t
σUs

2
ds ≡ Σ(t) (26)

Given that e = e? in equilibrium, conditional on a+ e+σNBN
t (the conditional expected payoff

at time t), the variables v−2 and vt are normally distributed with mean a + e + σNBN
t and
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variance Σ−2(t) and Σ(t), respectively. The standard formula for the Bayesian updating of

beliefs with normally distributed variables gives

St =
Σ(t)(v−2 + e?) + Σ−2(t)vt

Σ(t) + Σ−2(t)
(27)

At any time t, the stock price is a weighted average of v−2 + e?, the prior belief of investors on

firm value, and of the signal vt that they receive at time t. Note that St is a linear combination

of normally distributed variables, so that it is also normally distributed. Intuitively, the signal

vt is incrementally informative relative to v−2 at any time t if σ > 0. In addition, the signal vt

is fully revealing about the value of the conditional expected payoff a+ e+ σNBN
t at any time

t if σUt ≡ 0 for any t.

From an ex-ante (t = −2) perspective, we show in the Appendix (in “Optimal timing of

compensation in section 5”) that, as in section 3, the optimal timing of compensation t? in this

setting is the time which minimizes var(vt), where

var(vt) = σN
2
t+

∫ T

t
σUs

2
ds (28)

The tradeoff between learning and the accumulation of noise is the same as in the baseline

model, and so are the comparative statics of t? with respect to a change in σN or to a uniform

change in σUs . The predictions related to the optimal timing of compensation therefore remain

the same as in the baseline model, which suggests that they are not primarily driven by the

presence of information asymmetries per se, but rather by the coexistence of the accumulation

of noise and of learning.

This is because two new effects cancel out. On the one hand, the relative weight of the signal

process vt in the determination of the stock price process increases over time, which increases

the variability of the stock price from an ex-ante perspective, all else equal. This is in turn

due to two factors. First, vt is informative about the noise accumulated from time 0 to time t,

while v−2 is not. Second, progressive learning means that the precision of vt with respect to the
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conditional expected payoff a + e + σNBN
t increases over time. Thus, the stock price tends to

deviate more from its expected value as of t = −2, which notably depends on v−2, so that the

manager is more exposed to risk as time passes and t increases, ceteris paribus. On the other

hand, the expected firm value at t = −2, which is v−2 + e?, is not affected by the actual effort

e of the manager (it is only affected by the expected, equilibrium level of effort e?), whereas vt

is. To provide adequate effort incentives, the sensitivity of the compensation to the stock price

must therefore be increasing in the weight of v−2 in the determination of the stock price in (27).

For example, in the extreme case where the stock price at a point in time is fully determined

by v−2 (this would be the case at t = 0 if σ = 0), it would be impossible to provide any effort

incentives by conditioning managerial compensation on the stock price at this point in time.

Indeed, paying the manager based on the stock price at t = 0 would then necessarily violate

incentive compatibility.16 All in all, the two effects discussed in this paragraph cancel out.

Three special cases are especially interesting. First, as σ → ∞, the signal v−2 is not in-

formative about a, and the stock price is only driven by the signal process {vt : t ∈ [0, T ]}.

Second, even as σ → 0, the stock price at any time t > 0 is not only driven by the prior v−2,

as can be seen in (27). This is because, for any t > 0, the signal process is informative about

the accumulated noise – even though it is useless for learning about a, since a is approximately

known as σ → 0. Third, if σUt ≡ 0 for all t (i.e., there is no additional learning after time 0),

then St is only driven by vt for any t, as can be seen in (27). Intuitively, v0 reveals the value

of a + e, and vt reveals the accumulated noise at time t. In this case, it is optimal to pay the

manager conditional on the t = 0 stock price (indeed, setting t = 0 minimizes (28)).

It is noteworthy that most of our previous results are unchanged under this alternative

information structure. Proposition 1 relies on the normality of the stock price, which still holds.

Proposition 2 relies on the informativeness principle, which still applies. In these two cases, the

proof would follow exactly the same lines. Proposition 3 still holds, since the optimal timing of

compensation minimizes the same function as in section 3. Proposition 4 relies on the normal

16More precisely, supposing that e = e?, then S0 = a + e?. But then it is impossible to satisfy the incentive
constraint (16) by paying the manager based on S0, since S0 does not depend on e, which contradicts e = e?.
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distribution of stock prices and the informativeness principle, so that it still holds. The proof

would follow the same steps, although the notations would change. Proposition 5 relies on the

high cost of manipulation, so that it still holds too – once again, the proof would follow the

exact same lines.

6 Predictions: firms characteristics and the timing of

managerial compensation

The model suggests that the optimal timing of compensation is determined by the relative rates

at which noise accumulate, and at which learning occurs or information asymmetries are re-

solved. More precisely, our results in section 3 suggest the following predictions:

Prediction 1: Firms in which information asymmetries between firm insiders and share-

holders are stronger (respectively weaker) relative to the variability of profits will tend to have

longer (resp. shorter) vesting periods for equity-based managerial compensation.

Prediction 2: Firms in which information asymmetries are mostly resolved early will tend

to have short vesting periods for equity-based managerial compensation. Firms in which in-

formation asymmetries are mostly resolved late will tend to have either a very short or a long

vesting period for equity-based managerial compensation.

The corresponding predictions suggested by section 5 are the following:

Prediction 3: To the extent that there is some initial uncertainty about the firm’s tech-

nology, firms in which learning is more important (respectively less important) relative to the

variability of profits will tend to have longer (resp. shorter) vesting periods for equity-based

managerial compensation.
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Prediction 4: To the extent that there is some initial uncertainty about the firm’s tech-

nology, firms in which most learning occurs early will tend to have short vesting periods for

equity-based managerial compensation. Firms in which most learning occurs late will tend to

have either a very short or a long vesting period for equity-based managerial compensation.

These predictions have a number of implications.

First, firms which manage to produce an almost noise-free performance measure, whether

because their profits are not significantly affected by noise, or because they can filter it out, will

delay compensation more, ceteris paribus. This will mainly depend on the industrial sector of

the firm.

Second, for a given level of noise, firms in which there is not a lot of scope for learning, for

example because their insiders do not have a lot of private information (think about firms with

recurring investments, or firms in traditional industries that investors easily comprehend) will

pay managers relatively early. On the contrary, firms in which there is a lot of scope for learning,

for example because insiders have a strong informational advantage relative to shareholders

(think about firms with new projects, investment banks with opaque strategies,17 and firms in

ascending industries that investors do not fully understand yet) will use compensation schemes

that are more long-term.

Third, all else equal, firms whose stock prices are under more scrutiny should use more

short-term stock-price-based compensation. Thus, we expect more (informationally) efficient

markets to be associated with more short-term managerial compensation.

The existing empirical evidence, although not conclusive, tends to be consistent with these

predictions. Kole (1997) finds that chemicals, machinery and producer firms have higher mean

minimum and average waits to exercise stock-options award. Furthermore, this group of firms

imposes a longer vesting period on restricted stock grants (50 months) than metals, foods, and

17Gopalan, Milbourn, Song, and Thakor (2011) find that executive pay in the financial industry is long-term
relative to other industries in 2006-2008.
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consumer firms (20 months). Kole describes the former group of firms as belonging to highly

innovative industries which require specialized knowledge. It seems that there is more scope for

learning in these industries. More recently, Gopalan, Milbourn, Song, and Thakor (2011) rank

industries according to the pay duration of their CEO. The top 10 (longest duration) includes

finance - trading, defense, utilities, petroleum and natural gas, and pharmaceutical products,

arguably industries where inside knowledge is important. The bottom 10 (shortest duration)

includes food, retail, printing and publishing, restaurants and hotels, automobiles, apparel,

entertainment, agriculture, and precious metals, arguably industries where inside knowledge is

less important but which are strongly affected by noise (i.e., random shocks).

Gopalan, Milbourn, Song, and Thakor (2011) also find that pay duration is longer in firms

with more R&D expenditures (which may be viewed as a proxy for the scope of learning about

the firm’s technology), more debt (the pecking order theory of the capital structure predicts that

equity financing is more costly when information asymmetries are stronger), and firms whose

stock price is less mispriced, and has a lower volatility. It is unclear whether we can relate

these latest two findings to our model. First, in their paper, mispricing is measured by stock

liquidity and the dispersion of analysts’ earnings forecasts. While these two measures are good

proxies for mispricing and uncertainty, it is unclear whether they reflect more the presence of

noise or the existence of information asymmetries. Second, in our model stock price volatility

is driven both by the learning process and by noise. Hence, neither of these two findings can be

interpreted in light of our model.

Finally, the growth rate of the firm provides a good measure of information asymmetries.

For example, Smith and Watts (1992) hypothesize that information asymmetries are greater

in high-growth firms, whereas managerial effort is more easily observable in low-growth firms.

In line with our model’s predictions, Bizjak, Brickley, and Coles (1993), Cadman, Rusticus,

and Sunder (2010), and Gopalan, Milbourn, Song, and Thakor (2011) present evidence that

executive compensation in high-growth firms is relatively more long-term.
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7 Conclusion

This paper proposes a new model of CEO pay and offers a new explanation for deferred compen-

sation. In our setting, the optimal timing of compensation results from a tradeoff between the

progressive accumulation of noise in the stock price process over time on the one hand, and pro-

gressive learning by outside investors on the other hand. This tradeoff invalidates the view that

the timing of compensation should generally coincide with the horizon of investment projects

or with the realization of uncertainty. It also suggests a number of predictions that could ex-

plain the variability of vesting periods across firms. While the existing empirical evidence seems

broadly consistent with these predictions, future empirical work could more rigorously test this

aspect of the model, for example by using the measure of pay duration proposed in Gopalan,

Milbourn, Song, and Thakor (2011).

We have also shown that a subset of stock prices is generally not a sufficient statistic for

the whole stock price process, so that a model of deferred CEO pay must explain why CEO

compensation is typically contingent on the stock price at a few points in time only. A possible

response that we have emphasized is that managers can take inefficient actions to temporarily

lift the stock price at a cost to the firm. To discourage this behavior, it may be optimal to use

only a restricted subset of stock prices for managerial compensation purposes.

More generally, the new framework presented, especially the modelization of the progressive

resolution of information asymmetries, could be used and extended to address many issues in

the economics and finance literatures. This notably includes a number of issues related to

the timing of compensation that we did not specifically address in this paper. For example,

while we focused on equity-based compensation, the model could be extended to also study

the optimality of profits-based compensation. Next, in practice managers can typically choose

the exercise date of their options within some time interval, which differs across firms (Kole

(1997)). Likewise, managers typically do not cash in when they receive their options, but when

they sell the associated stocks, at a time which may or may not coincide.18 To further our

18This being said, anecdotal evidence suggests that managers typically exercise their options and sell the
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understanding of deferred compensation and vesting, future research could notably attempt to

merge the model of Axelson and Baliga (2009), which deals with these issues and also relies on

information asymmetries between managers and shareholders, with the one presented in this

paper. It could also be interesting to model the stock price process of another firm, or of a

market index, to determine the characteristics of an optimal contract which allows for relative

performance evaluation. Lastly, the analytical framework of this paper could be extended

to study the positive abnormal returns that tend to follow grants of stock-options to CEOs

(Yermack (1997)).
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9 Appendix

Proof of Proposition 1:

To derive the form of the optimal contract, we follow Dittmann and Maug (2007). The

Holmstrom (1979) condition below describes the optimal contract W (St) when the principal is

risk-neutral and the first-order approach applies:

1

u′(W (St))
= λ+ µ

ϕe(St)

ϕ(St)
(29)

where λ and µ are the Lagrange multipliers on the participation constraint and the incentive

constraint, respectively. With a normal distribution, the likelihood ratio is linear in performance.

With CRRA utility, the marginal utility of x is equal to x−γ. Taking into account the limited

liability constraint that W (St) ≥ 0 for any St, the optimal contract takes the form:

W (St) =


(α0 + α1St)

1
γ if St ≥ S̄t

0 if St < S̄t

where S̄t ≡ −α0

α1
, and α0 and α1 are two constants which are determined to satisfy the partici-

pation constraint and the incentive constraint.

Proof of Proposition 2:
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Using (11), the variance of the stock price conditional on a and e at any time t ∈ [0, T ]

writes as

var(St) = var
(
σNBN

t −
∫ T

t
σUs dB

U
s

)
≡ σ2

t (30)

Furthermore, St is normally distributed, for any t, and we let t? be defined by t? ≡ arg mint var(St).

For any t ∈ [0, T ], we can then write

St = a+ e+ ut + yt (31)

where ut is normally distributed with mean 0 and variance σ2
t? , and yt is normally distributed

with mean 0 and variance σ2
t − σ2

t? , and these two variables are independent, for any given t.

This notably implies that

St? = a+ e+ ut? (32)

From an ex-ante perspective, any contract contingent on St? is equivalent to a contract

contingent on

Ut ≡ a+ e+ ut (33)

for any t. This is because the unconditional probability distribution of a+ e+ut? is identical to

the unconditional probability distribution of a+ e+ ut, for any t. Accordingly, we will compare

the contract contingent on St for a given t to the contract contingent on Ut – which is equivalent

to compare the contract contingent on St to the contract contingent on St? .

Let A ≡ a+ e denote the unconditional mean of St for any t ∈ [0, T ]. Let ψ(Ut, yt;A) denote

the density of the joint distribution of Ut and yt given A, φ(Ut;A) denote the density of Ut

given A, and ϕ(yt) denote the density of yt. Given that a and e are constants, and the random

variables ut and yt are independent, the joint density of Ut and yt is simply equal to the product

of densities:

ψ(Ut, yt;A) = φ(Ut;A)ϕ(yt) (34)
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That is, yt is uninformative about A.

The next part of the proof largely follows the proof of the first part of Proposition 3 in

Holmstrom (1979).

Consider any contract W (Ut, yt). For every Ut, define W (Ut) such that

∫
u(W (Ut, yt))ϕ(yt)dyt =

∫
u(W (Ut))ϕ(yt)dyt (35)

In addition, ∫
u(W (Ut))ϕ(yt)dyt = u(W (Ut))

∫
ϕ(yt)dyt = u(W (Ut)) (36)

Using successively (34), (35), and (36),

∫
u(W (Ut, yt))ψ(Ut, yt;A)dUtdyt =

∫
u(W (Ut, yt))φ(Ut;A)ϕ(yt)dUtdyt

=
∫
u(W (Ut))φ(Ut;A)ϕ(yt)dUtdyt =

∫
u(W (Ut))φ(Ut;A)dUt (37)

For any A, the expected utility of the manager conditional on A under the contract W (Ut, yt)

is the same as under the contract W (Ut). It follows that the manager chooses the same effort

e and enjoys the same expected utility in equilibrium with both contracts. Moreover, using the

strict concavity of u, Jensen inequality, and (35), we get:

∫
W (Ut, yt)ϕ(yt)dyt >

∫
W (Ut)ϕ(yt)dyt (38)

Since this holds for every Ut, integrating yields

∫
W (Ut, yt)ψ(Ut, yt;A)dUtdyt >

∫
W (Ut)ψ(Ut, yt;A)dUtdyt (39)

For a given t, this shows that the expected cost of compensation is strictly lower with the con-

tract contingent on Ut, or equivalently on St? , than with a contract contingent on both Ut and
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yt, which includes a contract contingent on St.

Proof of Proposition 3:

Given Proposition 2, we need only prove in each case that t? = arg mint var(St). The

variance of the stock price at a given time t conditional on a and e is

var(St|e) = σN
2

t+
∫ T

t
σU

2

s ds (40)

First, if σUt ≥ σN for all t, then it immediately follows from (40) that t? = T .

Second, if σUt ≤ σN for all t, then it immediately follows from (40) that t? = 0.

Third, suppose that σUt is increasing in t, and none of the former two cases apply. Since we

assumed that σUt is continuous, we can define r by σUr ≡ σN . Setting t > r results in a lower

variance than with t = r, since σUt > σN for any t > r (as in the first case above). Setting t < r

results in a lower variance than with t = r, since σUt < σN for any t < r (as in the second case

above). The optimum is therefore given by a corner solution: either t? = 0, or t? = T . The

variance is then respectively:

var(S0|e) =
∫ T

0
σU

2

t dt (41)

var(ST |e) = σN
2

T (42)

It follows that t? = 0 if σN
2
T >

∫ T
0 σUt

2
dt, and t? = T if σN

2
T <

∫ T
0 σUt

2
dt.

Fourth, suppose that σUt is decreasing in t, and none of the first two cases apply. Then, since

we assumed that σUt is continuous, there exists s, 0 ≤ s ≤ T such that σUs = σN . This implicitly

defines s. Setting t > s results in a higher variance than with t = s, since σUt < σN for any t > s

(as in the second case above). Setting t < s results in a higher variance than with t = s, since

σUt > σN for any t < s (as in the first case above). The optimum is therefore characterized by

an interior solution:

σUt? = σN (43)
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Proof of Proposition 4:

We denote the set of times t such that 1t = 1 by T . Any contract which satisfies the incentive

constraint is such that T is nonempty. Given any nonempty T , we show below that a contract

such that T 6= [0, T ] is suboptimal.

For a given contract, we denote by I ≡ [t1, t
1]
⋃

[t2, t
2]
⋃
. . .
⋃

[tm, t
m] the set of intervals of

measure nonzero such that 1t = 1 if and only if t ∈ [ti, t
i] for i ∈ {1, 2, . . . ,m}. In addition,

we denote by J ≡ {t̄1, t̄2, . . . , t̄n} the set of times t ∈ [0, T ] such that, for any t ∈ J , we have

1t = 1, limt→tj ,t<tj 1t = 0, and limt→tj ,t>tj 1t = 0. By definition of T , we have T = I ⋃J . Since

T is nonempty, we know that m+ n ≥ 1.

Suppose that a contract is such that there exists at least one nonempty subset of [0, T ],

which we denote by (τ , τ̄), such that 1t = 0 for any t ∈ (τ , τ̄).

Consider the Gaussian process St on any given interval [ti, t
i] ⊂ I. The covariance cov(St, Ss)

exists and is known for any {t, s} ∈ [ti, t
i]2, and the process St is square mean continuous on any

such interval because of (13). We then know from Theorem 4 in Ibarrola and Perez-Palomares

(2003) that linear sufficiency and sufficiency (i.e., ordinary sufficiency) are equivalent, i.e., there

exists a function λ(t) such that θi ≡
∫ ti
ti
λ(t)Stdt is a sufficient statistic for the stochastic process

{St : t ∈ [ti, t
i]}.

Given a contract and the associated I and J , it is equivalent to use the set of sufficient

statistics {θ1, θ2, . . . , θm} and {St̄1 , St̄2 , . . . , St̄n} or to use the set of stock prices in I and

{St̄1 , St̄2 , . . . , St̄n}. In addition, for any t, St is normally distributed. Moreover, since θi is

equal to a sum of normally distributed random variables, θi is normally distributed for any i.

We also know that, given a set of normally distributed variables, linear sufficiency and

sufficiency are equivalent (e.g., Drygas (1983), Mueller (1987)). That is, there are functions η(i)

and µ(j) such that

θ ≡
m∑
i=1

η(i)θi +
n∑
j=1

µ(j)St̄j (44)
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is a sufficient statistic for the set of variables {θ1, θ2, . . . , θm;St̄1 , St̄2 , . . . , St̄n}. That is, it is a

sufficient statistic for {St : t ∈ T }.

Consider one subinterval (τ , τ̄) such that 1t = 0 for any t ∈ (τ , τ̄). We know from Holmstrom

(1979) that, given any τ ∈ (τ , τ̄), θ as defined in (44) is a sufficient statistic for {St : t ∈ [0, T ]}

only if it is possible to write

ψ(θ, Sτ ;A) = φ(θ;A)ϕ(θ, Sτ ) (45)

where A ≡ a + e is the unconditional mean of St for any t ∈ [0, T ]. If this equality held, then

the process {St : t ∈ T } would generate a sufficient statistic for {St : t ∈ T }⋃Sτ . We will show

that this is not the case, which implies a fortiori that {St : t ∈ T } does not generate a sufficient

statistic for {St : t ∈ [0, T ]}.

A linear combination of θ and Sτ writes as

δ1

( m∑
i=1

η(i)
∫
t∈[ti,ti]

λ(t)
(
A+ σNBN

t −
∫ T

t
σUs dB

U
s

)
dt+

n∑
j=1

µ(j)
(
A+ σNBN

t̄j
−
∫ T

t̄j
σUs dB

U
s

))

+δ2

(
A+ σNBN

τ −
∫ T

τ
σUs dB

U
s

)
(46)

for two constants δ1 and δ2. This expression involves sums of normally distributed random

variables, so that it is normally distributed, for any δ1 and δ2. We conclude that any linear com-

bination of θ and Sτ is normally distributed, so that θ and Sτ are jointly normally distributed.

The density of the joint distribution of θ and Sτ can be written as

ψ(θ, Sτ ;A) =
exp

{
−

(θ−A)2

σ2
θ

+
(Sτ−A)2

σ2τ
−2ρ θ−A

σθ

Sτ−A
στ

2(1−ρ2)

}
2πσθστ

√
1− ρ2

(47)

where σ2
τ is the variance of Sτ , σ

2
θ is the variance of θ, and ρ is the correlation coefficient between

θ and Sτ .

Condition (45) holds if and only if we can rewrite the expression inside the exponential
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function in (47) as

h1(θ, Sτ ) + h2(θ;A) (48)

for two functions h1 and h2. However, some calculations show that, factoring out the term SτA

within the exponential function in (47), the associated coefficient is

− 1

2(1− ρ2)

[
− 2

σ2
τ

+ 2ρ
1

στσθ

]
(49)

which is different from zero if and only if 1
στ

= ρ
σθ

, which, given the definition of ρ (ρ ≡ cov(θ,Sτ )
σθστ

),

is satisfied if and only if cov(θ,Sτ )
σ2
θ

= 1.

We will show that cov(θ,Sτ )
σ2
θ

= 1 can only hold on sets of measure zero. Using the same

expression for θ and Sτ as in (46), we get

cov(θ, Sτ ) = cov
( m∑
i=1

η(i)
∫
t∈[ti,ti]

λ(t)
(
A+ σNBN

t −
∫ T

t
σUs dB

U
s

)
dt

+
n∑
j=1

µ(j)
(
A+ σNBN

t̄j
−
∫ T

t̄j
σUs dB

U
s

)
, A+ σNBN

τ −
∫ T

τ
σUs dB

U
s

)

=
m∑
i=1

η(i)
∫
t∈[ti,ti]

(
λ(t) min{t, τ}σN 2

)
dt+

n∑
j=1

µ(j)σN
2

min{t̄j, τ}

+
m∑
i=1

η(i)
∫
t∈[ti,ti]

(
λ(t)

∫ T

max{t,τ}
σUs

2
ds
)
dt+

n∑
j=1

µ(j)
∫ T

max{t̄j ,τ}
σUs

2
ds (50)

To alleviate notations, define

λ̂(t) =


ηiλ(t) if ηiλ(t) > 0

0 if ηiλ(t) = 0

Using these notations, then splitting the sums and integrals into two parts, we can rewrite (50)

as

cov(θ, Sτ ) =
∫ T

0
λ̂(t) min{t, τ}σN 2

dt+
n∑
j=1

µ(j)σN
2

min{t̄j, τ}
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+
∫ T

0
λ̂(t)

∫ T

max{t,τ}
σUs

2
dsdt+

n∑
j=1

µ(j)
∫ T

max{t̄j ,τ}
σUs

2
ds

=
∫ τ

0
λ̂(t)tσN

2
dt+

∑
j:t̄j<τ

µ(j)σN
2
t̄j +

∫ T

τ
λ̂(t)τσN

2
dt+

∑
j:t̄j>τ

µ(j)σN
2
τ

+
∫ τ

0
λ̂(t)

∫ T

τ
σUs

2
dsdt+

∑
j:t̄j<τ

µ(j)
∫ T

τ
σUs

2
ds

+
∫ T

τ
λ̂(t)

∫ T

t
σUs

2
dsdt+

∑
j:t̄j>τ

µ(j)
∫ T

t̄j
σUs

2
ds (51)

The first derivative of cov(θ, Sτ ) with respect to τ writes as

d

dτ
{cov(θ, Sτ )} = λ̂(τ)τσN

2
dt− λ̂(τ)τσN

2
dt+

∫ T

τ
λ̂(t)σN

2
dt+

∑
j:t̄j>τ

µ(j)σN
2

+λ̂(τ)
∫ T

τ
σUs

2
ds+

∫ τ

0
λ̂(t)(−σUτ

2
)dt− λ̂(τ)

∫ T

τ
σUs

2
ds+

∑
j:t̄j<τ

µ(j)(−σUτ
2
) (52)

Eliminating the terms that cancel out, we get

d

dτ
{cov(θ, Sτ )} =

∫ T

τ
λ̂(t)σN

2
dt+

∑
j:t̄j>τ

µ(j)σN
2

−
∫ τ

0
λ̂(t)σUτ

2
dt−

∑
j:t̄j<τ

µ(j)σUτ
2

(53)

The second derivative of cov(θ, Sτ ) with respect to τ writes as

d2

dτ 2
{cov(θ, Sτ )} = −λ̂(τ)σN

2 − λ̂(τ)σUτ
2 −

∫ τ

0
λ̂(t)

dσUτ
2

dτ
dt−

∑
j:t̄j<τ

µ(j)
dσUτ

2

dτ
(54)

Since by construction 1τ = 0, we have λ̂(τ) = 0, and the second-derivative of cov(θ, Sτ ) with

respect to τ has the sign of −dσUτ
2

dτ
. But we assumed that σUt is only constant on sets of mea-

sure zero, so that −dσUτ
2

dτ
is either strictly positive or strictly negative almost everywhere. This

implies that the second-derivative of cov(θ, Sτ ) with respect to τ is strictly convex or strictly

concave almost everywhere in a neighborhood of any τ such that 1τ = 0. This in turn implies
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that, for any such τ , cov(θ, Sτ ) = 1 can only hold on a set of measure zero, i.e., cov(θ,Sτ )
σ2
θ
6= 1

almost everywhere.

Proof of Proposition 5:

First, we show that the manager manipulates the stock price at time t − ∆ if and only if

1t = 1. Denote the set of times t such that 1t = 1 by T . Given that dSt = dvt for any t

and that managerial compensation is increasing in St, it immediately follows from the effect of

manipulation on vt as described in section 4 that a manager will manipulate the stock price

on all intervals [t − ∆, t], for any t ∈ T . Denoting by Λ the measure of the union of all such

intervals, the total cost of manipulation is cΛ.

Second, given a compensation contract W , the participation constraint in (17) imposes that

E[u(W )] ≥ Ū ≡ W̄ 1−γ

1−γ . Jensen’s inequality and the concavity of the utility function then imply

that E[W ] > W̄ . The reservation wage W̄ is therefore a lower bound for the expected cost of

compensation.

Third, we compare the relative cost of the optimal contract with 1t = 1 for only one t ∈ [0, T ]

considered above (call it a contract of type A) and any contract with 1t = 1 for more than one

time t ∈ [0, T ] (call it a contract of type B). On the one hand, the expected cost of compensation

with a contract of type A is equal to E[α0 + α1(St)], while the expected cost of compensation

with a contract of type B is bounded below by W̄ . On the other hand, the cost of a contract of

type A in terms of manipulation is c∆, while the cost of a contract of type B is at least equal

to 2c∆. It follows that, for the parameters α0, α1, and t? of the optimal type A contract, this

contract dominates any contract of type B if

c∆ ≥ E[α0 + α1(St?)]− W̄ (55)
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Optimal timing of compensation in section 5

Define

At ≡
Σ(t)

Σ(t) + Σ−2(t)
(56)

Bt ≡
Σ−2(t)

Σ(t) + Σ−2(t)
(57)

σ2
t ≡

∫ T

t
σUs

2
ds+ σN

2
t (58)

t? ≡ arg min
t
var(vt) (59)

As of t = −2, for any t ∈ [0, T ] we can decompose any vt into the following additive

components:

vt = a+ e+ ut + yt (60)

where ut is normally distributed with mean 0 and variance σ2
t? , and yt is normally distributed

with mean 0 and variance σ2
t − σ2

t? , and these two variables are independent, for any given t.

This notably implies that, for any t, vt has the same unconditional distribution as vt? + yt.

Note that, because of (27), St can be written as

St = Atv−2 +Btvt (61)

and vt? can be written as

vt? = B−1
t? (St? − At?v−2) (62)

Hence, from a t = −2 perspective, it is equivalent to make compensation contingent on St or on

Zt ≡ Atv−2 +Bt

(
B−1
t? (St? − At?v−2) + yt

)
(63)

because Zt and St have the same unconditional probability distribution, by construction of Zt.
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But

Zt = St? + (At −BtB
−1
t? At?)v−2 +Btyt (64)

where (At −BtB
−1
t? At?)v−2 and Bt are known constants at t = −2, and yt is a white noise.

We have shown that it is equivalent to use either St, or a linear transformation of St? to which

is added a white noise, as a measure of performance. Standard arguments (cf. the Proof of

Proposition 2) then show that a compensation contract contingent on St? dominates a contract

contingent on St.
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