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Identification-robust estimation and testing of the
zero-beta CAPM

Marie-Claude Beaulieu’, Jean-Marie Dufour#, Lynda Khalaf®

Abstract

We propose exact simulation-based procedures for: (i) testing mean-variance efficiency when the zero-
beta rate is unknown, and (ii) building confidence intervals for the zero-beta rate. On observing that
this parameter may be weakly identified, we propose LR-type statistics as well as heteroskedascity and
autocorrelation corrected (HAC) Wald-type procedures, which are robust to weak identification and
allow for non-Gaussian distributions including parametric GARCH structures. In particular, we
propose confidence sets for the zero-beta rate based on “inverting” exact tests for this parameter; these
sets provide a multivariate extension of Fieller’s technique for inference on ratios. The exact
distribution of LR-type statistics for testing efficiency is studied under both the null and the alternative
hypotheses. The relevant nuisance parameter structure is established and finite-sample bound
procedures are proposed, which extend and improve available Gaussianspecific bounds. Furthermore,
we study the invariance to portfolio repacking property for tests and confidence sets proposed. The
statistical properties of available and proposed methods are analyzed via aMonte Carlo study.
Empirical results on NYSE returns show that exact confidence sets are very different from the
asymptotic ones, and allowing for non-Gaussian distributions affects inference results. Simulation and
empirical results suggest that LR-type statistics - with p-values corrected using the Maximized Monte
Carlo test method - are generally preferable to their Wald-HAC counterparts from the viewpoints of
size control and power.

Key words: capital asset pricing model, CAPM; Black, mean-variance efficiency, non-normality,
weak identification, Fieller, multivariate linear regression, uniform linear hypothesis, exact test,
Monte Carlo test, bootstrap, nuisance parameters, GARCH, portfolio repacking.
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1. Introduction

One of the most important extensions of the Capital Asseti®gyiModel (CAPM) consists in allow-
ing for the absence of a risk-free asset. From a theoretiealpoint, this can be due to restrictions
on borrowing [Black (1972)] or an investor’s riskless bavinag rate that exceeds the Treasury bill
rate [Brennan (1971)]. In this case, portfolio mean-var@efficiency is defined using the expected
return in excess of the zero-beta portfolio. The latter iwén@er unobservable which leads to con-
siderable empirical difficulties.

Indeed, there are two basic approaches to estimating ardsitsg this version of the CAPM
(denoted below as BCAPM). The first one uses a “two-pass”agmbr that may be traced back
to Black, Jensen and Scholes (1972) and Fama and MacBetB)(I#fasare first estimated from
time series regressions for each security, and then thebegaorate is estimated by a cross-sectional
regression on thedaetas This raises errors-in-variables problems that affedistieal inference
in both finite and large samplésThe second approach — which appears in the seminal work of
Jensen (1968) — avoids this problem by using as statistealdwork a multivariate linear regression
(MLR).2 In this paper, we focus on the MLR approach and consider twipoblems: (1) testing
portfolio efficiency; (2) building a reliable confidence $€S) for the zero-beta rate.

For clarity, letR;, i = 1, ... , n, be the returns om securities in period, and Ry, the
return on a market benchmark for= 1, ... , T', and consider the equations(: = 1, ... , n)
associated with the time series regression®2gfon a constant andky;, where the individual-
equation disturbances are heteroskedastic and contengously cross-correlated; 18t = K'K
refer to the error scale (or variance/covariance) matfithd intercepts from these equations (the
alphag are denoted;, and the coefficients on the benchmark regressorlj¢hag are denoteds;,
i=1, ..., n,then the BCAPM equilibrium relations imply the followinghdre is a scalay, the
return on the zero-beta portfolio, such that- v(1 — 3,) = 0,7 =1, ... , n. Our aim consists in
assessing these constraints (denoted belokgsas well as estimating.

The above cited literature provides analytical formulaeGaussian likelihood-ratio (LR) sta-
tistics, the maximum likelihood estimator (MLE) of(denoted below a8), and for a conformable
asymptotic variance estimator [denoted belowvas(¥)]. It is however difficult to find reliable
critical points in this context. While Gibbons (1982) usedasymptoticy? critical value for the
LR statistic, subsequent authors found this could lead rios® over-rejections, so various finite-
sample corrections — such as bounds — have been suggegt&hastken (1985, 1986, 1996), Stew-
art (1997), Zhou (1991, 1995), and Velu and Zhou (1999). @lwesrections depend crucially on
normality, which may be inappropriate for financial datee[s@ma (1965), Richardson and Smith
(1993), Dufour, Khalaf and Beaulieu (2003) and Beaulieufdbuand Khalaf (2005, 2007, 2009)].
Furthermore, evidence on the properties of the confiderteevad based oVar(¥) is unavailable.
Despite the simplicity of the above framework, discrepasdietween asymptotic and finite sample
distributions are not surprising. Indeed, three diffi@dtdeserve notice.

(1) Dimensionality asn increases, the dimension of the scale ma¥rigrows rapidly and available

'Seee.qg. Litzenberger and Ramaswamy (1979), Banz (1981), Roll (198Ben, Roll and Ross (1986), Shanken
(1992), Kim (1995), Shanken and Zhou (2007), Lewellen, Nagd Shanken (2009), Kan, Robotti and Shanken (2008),
and Kleibergen (2009).

2For other work based on the MLR approach to CAPM analysis,Gibbons (1982), Jobson and Korkie (1982),
Kandel (1984, 1986), Amsler and Schmidt (1985), ShankeB8312986, 1996), Kandel and Stambaugh (1989), Zhou
(1991), Shanken (1992), Fama and French (1993), Chou (2B86)a and French (2004) and Perold (2004).



degrees-of-freedom decrease conformdbyven in linear or standard setups where the relevant
asymptotic distributions may be free af, this matrix can still affect the distributions in finite
samples. Furthermore, positive definite estimates’ oéquire a largd’ relative ton, so portfolios
rather than securities are often used in practice.

(2) Portfolio repacking[see Kandel and Stambaugh (1989)]: to preserve meaningtihg re-
lations when portfolios are used, transformations of therrevectorR; = (Ry¢, ..., Ryt) into
R; = AR; whereA is ann x n invertible matrix such thatl.,, = ¢, and¢, is ann-dimensional
vector of ones, should ideally not affect inference.

(3) Identification asfs;, — 1, v becomes weakly identified. Weak identification stronglyeetf$
the distributions of estimators and test statistics, lequid asymptotic failure$.This should not be
taken lightly, for although reportebletas[seee.g. Fama and MacBeth (1973)] are often close to
one, in view of properties (1) and (2), one may not assumgutegities away even when estimated
betasare not close to one. Indeed, in the regressio®pffrom (2)] on a constant an®y;, with
intercepts: and slopeg;, a,—v(1-53;) =0,i=1, ... , neaf—y(1-5;)=0,i=1, ..., n
for anyy and A. Portfolio repacking alterbetasalong with scale yet preserves the definition of
~, leading to identification problems @ — 1. So thebetasand scale parameters play a role in
identifying ~y.

Our aim in this paper consists in providing inference meshihit are robust to dimensionality
and identification problems, whose outcomes are invar@pottfolio repacking. We first consider
the problem of estimating. We show by simulation that available procedures provider pov-
erage. So we propose exact CSs based on “inverting” exdstftesspecific values of, i.e. the
set of values not rejected by these tests. This method isergemation of the classical procedure
proposed by Fieller (1954) to estimate parameter ratios.

To introduce the Fieller-type method in its simplest fornthwieference to the problem at hand,
suppose (for illustration sake) that we aim at estimatifigom the univariate regression of the return
of the i-th security(R;;) on a constant an@y, so thaty = —a;/d; whered; = (3, — 1). Let
a; andS,- denote the OLS estimates from this regression, with estichedriances and covariance
Var(a;), Var(8;) and Cov(as, 6;). For each possible valug, of the ratio, consider the-statistic
t; (7o) = (@i +700:)/[Var(a;) +62Var(8;) + 260 Cov(ay, 6;)]'/2 for testing?; (7o) : a; +7o0; = 0.
Then, we obtain a CS with levél— o for v by finding the set o/, values which are not rejected at
level o« usingt; () and a standard normal two-tailed critical vaityg, . This means that we collect
all , values such thalt; (v,)| < z,» or alternatively such tha; + v¢0;)? < zi/z(Var(di) +
62Var(8;) +280Cov(a;, d;)), leading to a second degree inequalityyin The resulting CS has level
1 — « irrespective whethef; is zero or not. In this paper, we generalize this method towuicfor
the multivariate definition ofy as described above, in Gaussian and non-Gaussian seggsl|l
as allowing for conditional heteroskedasticity. Empiliigave focus on multivariate Studertand
normal mixture distributions, as well as Gaussian GARCH.

3See Shanken (1996), Campbell, Lo and MacKinlay (1997), Dufmd Khalaf (2002), Beaulieu, Dufour and Khalaf
(2005, 2007, 2009), Sentana (2009), and the referencesriher

4See,e.g. Dufour (1997, 2003), Staiger and Stock (1997), Wang andtZii@98), Zivot, Startz and Nelson (1998),
Dufour and Jasiak (2001), Kleibergen (2002, 2005, 200%¢i5tWright and Yogo (2002), Moreira (2003), Dufour and
Taamouti (2005, 2007) and Andrews, Moreira and Stock (2006)

SFor the ratio of the means of two normal variables with eqlances, Fieller gave a solution that avoids non-
regularities arising from a close-to-zero denominatoteBsions to univariate regressions or to several ratids egtial
denominators can be found in Zerbe (1978), Dufour (1997)dBn Khalaf and Yelou (2008).



To do so, we consider two statistics [denote®(+,) and 7 (v,) below] for testingH () :

a; +v90; =0,1=1, ..., n. LR(v,) is the likelihood ratio (LR) derived from the Gaussian error
model, while7(v,) is a heteroskedascity and autocorrelation corrected (HA@j}ivariate Wald
statistic [seee.g. MacKinlay and Richardson (1991), Ravikumar, Ray and Sa2@®0Q), and Ray
and Savin (2008)]. Using any one of these tests, we can bonifidence sets by finding the values of
v Which are not rejected at level This requires a distributional theory for the test statstiwWhile

an F-based cut-off point is available fdrR(v,) in thei.i.d. Gaussian case [see Beaulieu, Dufour
and Khalaf (2007) and Gibbons, Ross and Shanken (1989)haveis a simulation study that usual
asymptotic critical points perform poorly especially {@(v,). To deal with such difficulties, we
apply the maximized Monte Carlo (MMC) test procedure [Duf(@006)] to obtain finite-sample
p-values forLR(v,) andJ (v,) in models with non-Gaussian and/or nioird. errors, as follows: a
(simulated)p-value function conditional on relevant nuisance pararmsagenumerically maximized
(with respect to these parameters), and the test is sigmifaddevel« if the largestp-value is not
larger than.

To implement this approach efficiently, it is important taacdcterize the nuisance parameters
in the null distributions of the test statistics. We showt the null distribution ofZ R(~y,) does not
depend omB and X, so the only nuisance parameters are: the degrees-obfreéat the Student-
distribution, the mixing probability and scale-ratio paeters for normal mixtures, or the GARCH
parameters. The parametric bootstrap relates to the MM@adetin the sense that the maxi-
mization step is replaced by a unigperalue estimation, based on a consistent nuisance panamete
estimate. For the GARCH case, such estimates may be ureeliabigh-dimensional models; we
show that the MMC method avoids this problem, with minimalveo costs.

Because att’-based exact cut-off is available for the Gaussian casehaw that the CS which
inverts LR(vy,) can be obtained by solving a quadratic inequation. Forinah-or non-Gaussian
distributions, we implement a numerical search runningviC method for each choice foy,,.
Furthermore, we show that all proposed CSs provide relaaéotmation on whether efficiency is
supported by the data, a property not shared by standardieac# intervals. Indeed, our CSs may
turn out to be empty, which occurs when all possible valueg axie rejected.

We next consider testing efficiency in the BCAPM context. \Welg LR and Wald-HAC cri-
teria based on minimizing (ovey,) the above defined R(v,) andJ (v,) statistics. We show that
the exact distribution ofnin., {LR(v,)} depends on a reduced number of nuisance parameters
which are functions of bottB and X. We also generalize Shanken’s (1986) exact bound test be-
yond the Gaussian model, and propose a tighter bound, whvclves a numerical search for the
tightest cut-off point, based on the MMC method. The MMC lolalseund is also extended to the
min, {J (7o)} case. This approach, in conjunction with the above defined#@8d on7 (v,),
provides an interesting alternative to available GMM eation methods [including the case re-
cently analyzed by Shanken and Zhou (2007)].

We conduct a simulation study to document the propertiesiopmposed procedures relative to
available ones. In particular, we contrast problems agifiiom small samples with those caused by
fundamentally flawed asymptotics. We next examine effigiari¢che market portfolio for monthly
returns on New York Stock Exchange (NYSE) portfolios, béitim the University of Chicago
Center for Research in Security Prices (CRSP) 1926-199% lilde. We find more support for

This procedure is based on the following fundamental ptgperhen the distribution of a test statistic depends
on nuisance parameters, the desired levid achieved by comparing the largesvalue (over all nuisance parameters
consistent with the null hypothesis) with



efficiency under the non-normal or nand. hypothesis. Exact CSs farconsiderably differ from
asymptotic ones, and Wald-HAC based CSs are much wider tiea@ ARCH corrected LR-based
ones.

The paper is organized as follows. Section 2 sets the framkeswval discusses identification of
~. In Section 3, we propose finite-sample tests for specifigagmbfy, and the corresponding exact
CS are derived in Section 4. The exact distribution of the KRiency test statistic is established
in Section 5, and bound procedures are proposed in Sectibhésimulation study is reported in
Section 7. Our empirical analysis is presented in Sectidfe8conclude in Section 9.

2. Framework and identification of

Let Ry, i = 1, ... , n, be the returns on securities in period, and Ry the return on a market
benchmarkt = 1, ... , T'). Our analysis of the BCAPM model is based on the followingdéad
MLR setup [Gibbons (1982), Shanken (1986), MacKinlay (1987

Rit_RMt:ai+(ﬁi_1)RMt+uita izly'--ynatzlv"'7T> (21)

whereu;; are random disturbances. The testable implication of th&B¥@ on (2.1) is the following
one: there is a scalar, the return on the zero-beta portfolio, such that

Hp:a;+7v6;=0, 0,=0,—1, i=1,...,n, forsomeyel, (2.2)

wherel" is some set of “admissible” values fgr Sincewy is unknown, g is nonlinear. The latter
can be viewed as the union of more restrictive linear hymatbhof the form

H(vo) tai +796:i =0,i=1, ..., n, (2.3)

wherevy, is specified. This observation will underlie our exact iefeze approach.
The above model is a special case of the following MLR:

Y =XB+U (2.4)
whereY = [Y1, ..., Y] isT xn, X isT x kofrankk, U = [Uy, ... , U, = [V4, ..., Vp|'.

~ ~ ~ ~ /
For (2.1),Y = [Ry, ..., Ry], X = [ur, Ru], Ri = (Ri1, ... Rir)', Rm = (Rw1, -, Rur)
B =[a,p],a = (a1, ...,a,), 8= (81, ..., B,), and; refers to aj-dimensional vector of

ones (for anyj). We shall also use the following equivalent forms for thedeloand hypotheses
considered:

Y=Y -Ryl!,=XC+U, C=B-A=a,B—1), A=]0, 1], (2.5)
H(vo) : H(70)C =0, H(vy) =(1,7,) wherey,is specified, (2.6)
Hp:H(y)C =0, H(y)=(1,~), forsomeyeI. (2.7)

We further assume that we can condition®g and

W = (u1t7 sy unt)/:K/Wt7 t = 17 sy T7 Wt = (Wlt7 ey Wnt)/a (28)



whereK is unknown and nonsingulaiy’ = [Wy, ... , Wp|"is independent ok, and the distrib-
ution of W is either fully specified or specified up to an unknown disttitmal shape parameter

We first present results which require no further regulaaggumptions. We also consider further
restrictions, which entail that the distribution @f belongs to a specific famil§y, (D, v), where

D represents a distribution type and= (2p any (eventual) nuisance parameter characterizing the
distribution. In particular, we consider the multivariatermal (Dy ), Studentt (D;) and normal
mixture (D,,,) distributions:

Hw (Dy) : Wi "LIN0, 1], (2.9)
Hw (Dt, k) : Wi = Z1i)(Zar JR)Y? | Za G N[0, I,], Za EG (k) (2.10)

How (D, 7, w) 2 Wy = l(m) Zyg + (L= (m)] Zae , Zae ~' N[0, wl,], 0<m <1, (2.11)

where Zy, and Z3; are independent ofy,, andl, () is an indicator random variable independent
of (Z1, Z3:) such thatP[l;(r) = 0] = 1 — P[l¢(7) = 1] = 7. So, in (2.8),v = & under (2.10),
andv = (7, w) under (2.11). HE(W,W]/) = I,,, the covariance ofV, is ¥ = K'K. X is positive
definite with further further restrictions. However, fusthconstraints are needed in order forto

be uniquely determined. If; is Gaussian, we may assume tliatcorresponds to the Cholesky
factorization ofY. Time-dependence may be fit via appropriate specificationthe distribution

of Wy, t =1, ..., T. Since time varying volatility is prevalent in financial datve consider the
parametric GARCH structure:

1
wit = with, hit = (1 — ¢y; — ¢o;) 07 + Prswiy 1 + oihie—1 (2.12)

wherew;; are uncorrelated standard normal variables. This procagsasily be reparametrized as
in (2.8), whereK is a diagonal matrix with diagonal ternis — ¢,; — ¢o;)2 0, i=1,... ., n,
and eachV;; follows a univariate stationary GARCH process with unientept. Conforming with
the above notation, we refer to this distributional hypste@sHy (Dg, ¢), whereg is the2n x 1
VeCtor(qﬁll? ) ¢1n7¢21’ ) ¢2n)'7

Even thoughz; and 3, are well identified;y is defined through a nonlinear transformation that
may fail to be well-defined: the ratip = a;/(1 — ;) is not defined or, equivalently, the equation
a; = v(1— ;) does not have a unique solution, whgn= 1. In such situations, the distributions of
many standard test statistics become non-standard, sorilesgonding tests are unreliable and the
associated confidence sets invalid. In particular, asyticpttandard errors are unreliable measures
of uncertainty and standard asymptotically justifietype tests and confidence intervals have sizes
that may deviate arbitrarily from their nominal levels; gbe literature on weak identification [as
reviewed, for example, in Dufour (2003) and Stock et al. @P0Both the finite and large-sample
distributional theory of most test statistics can be affdct While the discontinuity a, = 1
is straightforward to see, the analysis below reveals thiatis in fact not the whole story. In
particular, we study the properties of estimators and tasisics following data transformations of
the formY, = Y A, where A is any nonsingular fixed matrix of order. On comparing (2.1) to
its transformed counterpart, we see that irregularitiesroibe safely assumed away, even when

"Ideally, a multivariate GARCH structure may be considerfed is sufficiently large relative ta; see Bauwens,
Laurent and Rombouts (2006) for a recent survey. We adop2)@ince our empirical analysis relies on monthly data
with 12 portfolios over 5 year subperiods (iE.= 60 andn = 12).



observedetasare not close to one.
One of the most common inference methods in this contexdg el the log-likelihood

W[L(Y, B, X)] = —%(277) - gm(m) - %tr[E‘l(Y _XBY(Y - XB)].  (213)

The unrestricted MLE o8 and X are:
B=(X'X)"'X'y =, g, £=00/T,

whereU =Y — XB,a = (ay, ..., a,)’ andB = (8, ..., B,). The LR statistic to test(v,)
whereX(v,) is the MLE of X underH (~,) is:

n

LR(v) = ThlA(y)], Aly) = |2(v0)l/1Z] = mw(%) +1, (2.14)
S(i) = £+ (BH()H(v)(XX) " Hy) | H(v0)B) /T, (215)
T—n—1(a+dy) 2" (a+dv)

W = : 2.16
o) L [~ 20%/5h] (220

i R [
Pv = 7 ZRMta IM = Z(RMt —fa)% 0=5—in. (2.17)

t=1 t=1

W(7,) is the Hotelling statistic. Furthermore, the LR criteriontéstHp is

LRy = Tln(Ag)=inf {LR(vo): v, € I'} = LR(3), (2.18)
Ag = |Zs|/|X],  |¥s|=inf{|X(v)] 7o € T}, (2.19)

whereX is the MLE of ¥ under#s and5 is the unrestricted MLE of; see Shanken (1986). The
log-likelihood for (2.5) is

In [Z(?, c, 2)} =1In [L(Y — Rui\,, B— A, 2)| =m[L(Y, B, )] (2.20)

and the LR statistics for testing(v,) and#{p coincide withLR(v,) and LRg. If C'is the MLE
of C'in (2.5), GMM estimation leads to

~

0 = vec(C") (2.21)

where for anyn x k£ matrix A, vec(A) is the(nk) x 1 vector obtained by stacking the columnsAbf
on top of each other. S&/(+,) may be viewed as a Wald statistic based on the standardigteohde
betweera + 870 and zero, which conveys an asymptotic least-squares and M @&iMrpretation
of 4. This may be exploited to allow for serial dependence, f@neple via a properly corrected
weighting matrix. We consider the Wald-HAC statistic [se@dinlay and Richardson (1991),
Ravikumar et al. (2000), and Ray and Savin (2008)] wifete (1, v,) ® I, andf]t’ is thet-th row



of U:

-1

J(v9) =TOR [R ((X;Xyl ®In> Sr ((X;Xyl ®In> R’] RO (2.22)

where
4 (q—7 / 1z A ~ !
Sr =W+ ) <—> [%‘,T + Wj7T:| , Yir= T > <Xt ® Ut) (Xt—j ® Ut—j) .
j=1 q t=7+1

under# (v,), J(v,) follows ax?(n) distribution asymptotically. A GMM estimatay of v can be
obtained by solving the problem

Jg =inf{T(v) 170 €t =T(H)- (2.23)

A Wald-type formula for an asymptotic information-matiiesed standard error associated with
4 is provided by Campbell et al. (1997, Chapter 5, equatior8t)3

; 2
Var(¥) = % <1 + M) [(en = B) 27 en = B (2.24)
oM

Whereas corrections may be derived for the non-Gaussia[aasn Barone-Adesi, Gagliardini
and Urga (2004) who study a related asset pricing probldm]fdct remains that (2.24) or regular
“sandwich-type” corrections would depend non-triviallp @, 8 and particularly on¥, leading
to serious irregularities. For exampMar(4) involves a division by(¢,, — 8) X~ (¢, — 8) and
thus becomes ill-defined at the ubktaboundary; this divisor also illustrates the raleplays is
determining the precision of.

Throughout the paper, we use the following notation. WeE&!; andL R(~,) quasi likelihood
ratio (QLR) criteria and the associated MLEs quasi maximikelihood (QML) estimators. We de-
note the observed value of these statisticﬂﬂféo) and LR (v,), respectivelyP 5 i) represents
the distribution ofY” when the parameters afB, K). For any matrixA, M (A) = I—A(A’A)~ A'.

3. Identification-robust Monte Carlo tests for v

We will now derive the exact null distribution of the QLR sssit L R(~y,) under#(~,), wherey,
is known. This will allow us to build a CS for and yield a way of testing efficiency. The basic
distributional result for that purpose is given by the fallng theorem.

Theorem 3.1 DISTRIBUTION OF THE MEAN-VARIANCE CAPM TEST FOR A KNOWN ZERG
BETA RATE. Under(2.1), (2.8) and (), LR(v,) is distributed like

LR(vp, W) =T In(|[W'M(yo)W |/ |[W' MW]) (3.1)

whereM (yo) = M (X) + X (X'X) ™ H () [H (7o) (X' X) 7 H (70) |~ H (7o) (X' X) 71X



Proofs are given in the Appendix. In thed. Gaussian case (2.9), we have:
(T —1—n)/n][A(vo) =1 ~ F(n, T =1 —n); 3.2)

see Dufour and Khalaf (2002). This result was used by Gibletas (1989) in studying efficiency
with an observable risk-free rate. Indeed, tes@@y,) is equivalent to testing whether the inter-
cepts are jointly zero in a market model with returns in exasy,.

For non-Gaussian distributions compatible with (2.8)liding the GARCH case (2.12)], The-
orem3.1shows that the exact distribution 8fR(~,), although non-standard, may easily be simu-
lated onceX, the distribution ofi¥ and~, [given by (v,)] are set. So the Monte Carlo (MC) test
method can be easily applied; see Dufour (2006). In genttialmethod assesses the rank of the
observed value of a test statisfienotedS )], relative to a finite numbeN of simulated statistics
[denoteds™ | ..., S()]drawn under the null hypothesis. Conforming with (2.8),agsume that
S .., SN can be simulated given: (i) a value of (i) N drawsW ™, ..., W) from the
distribution of W [which under (2.8) can be simulated onces specified], (iii) a vector of parame-
ters (denoted)) which affects the distribution of the test statistic, aiwl the test functionS(n, W)
which depends on, W and X .8 In other words, on drawing/ samples from the distribution &7
(which may depend om) and computingS(n, W) for each simulated sample, we get the vector
Sn(n, v) = [S(n, WD), ..., S(n, W], In the case ofLR(v,), S© = LR (yy), n =
7o, and using (3.1)5 (n, W®) = LR(vy,, W¥). Given the above, MC p-value is defined as:

NGN[SO; Sn(n, v)] +1

N[S(O)‘gN(na V)] = N+1 ) (33)

GN[SY; Sn(n, v)] =;%§ﬂmﬂ[mm>)—S@L (3.4)

wherelfz] = 1, if 2 € A, andIfz] = 0, if = ¢ A. If the distribution of the statistic under
considerationgiven X, is completely determined h¥ and the distribution of¥” given X (which
depends onv andn), then comparingx[S®|Sy(n, v)] to ana cut-off wherea(N + 1) is an
integer yields a test with the statsttea: the probability of rejection under the null hypothesis is
exactlya, for finite T and V.

If v ornis not set by the null hypothesis, then the MMC method doesvatine to control the
level of the test: we maximizey [S¥)| Sy (n, v)] over all the(v, n) values compatible with the null
hypothesis, and reject the latter if the maximaVvalue is less than or equal o Then the probabil-
ity of rejection under the null hypothesis is itself not larghanc, for finite T and V; see Dufour
(2006). In the case ok R(v,) with LRy (vo, v) = [LR (v, WD), ..., TR(vg, W], we
have:

PN (10, ¥) = pr [LRO () |[LRN (10, v)] - (3.5)

As a result of Theorer.1, we have, undeti(~,) in conjunction withHy (D, v) :

P[ﬁN(V(), vg) < oz] = «a, Whenv = vy, (3.6)
P[sup{pn (70, ¥) : v € 2p} < a] < o, whenv may be unknown. (3.7)

8For notational simplicity, the dependence uptris implicit through the definition of.



We will call pn (v, v) apivotal MC (PMC) p-value.

4. Identification-robust confidence sets fory

Under#g, the ratiosa; /(1 — 3;), 1, ... , n, are equal. This definition of leads to the classical
problem of inference on ratios from Fieller (1954). The peob here is clearly more complex, so
to extend Fieller's arguments, we use the above defineddé$t$y,) ).

4.1. Fieller-type confidence sets: thei.d. Gaussian case

Consider the Gaussian model given by (2.1), (2.8) and (2r9}his case, undeto (), W(vo)
follows a Fisher distributiorf” (n, 7 — n — 1) ; see (3.2). Lef, denote the cut-off point for a test
with level « based on thé" (n, T — n — 1) distribution. Then

CFy(a) ={v € I': W(yo) < Fu} (4.1)

has levell — « for v, i.e. the probability thaty be covered by’ F, (o) is not smaller thari — o :
Indeed,P[y € CF,(«)] = 1 — a. On noting thatV(v,) < F, can be rewritten as

nky,

Mp (7o) — mNF(’Yo) <0, (4.2)
Mp(ve) = (a4 6v0) 27 (a+bvo) = (5'2718)72 + (28 £ %)y + @' S a, (4.3)
fig — Yo)? 1 2/, %
NF(%):I‘FM: 5 — fu 70+1+‘f§”, (4.4)
oM oM oM oM

we see, after a few manipulations, tidaf’, () reduces to a simple quadratic inequation:

CF,(a)={yy € I': A3 + By +C <0}, (4.5)
NP Fy 1 v Fo /i
A=§5"15-(=2 ) o, B=2[dYat (0| EM] (4.6)
. F, (12
C=dS"a— () 14+ B (4.7)
T—n-—1 oM

For I' = R, the resulting CS can take several forms depending on the odghe polynomial
A% + By, + C : (a) a closed interval; (b) the union of two unbounded intisivéc) the entire
real line; (d) an empty sét.Case (a) corresponds to a situation wherie well identified, while
(b) and (c) correspond to unbounded CSs and indicate (partt@mmplete) non-identification. The
possibility of getting an empty CS may appear surprisingt, Ba hindsight, this is quite natural:
it means that no value of, does allow () to be acceptable. Sindégp states that there exists
a real scalary such thate; = (1 — 3,)y, i = 1, ... , n, this can be interpreted as a rejection of
Hg. Further, undef{g, the probability that’ F, («) covers the true valug is 1 — o, and an empty
set obviously does not cover Consequently, the probability thatF’, (o) be empty{CF, (a) = (]

°For further discussion, see Dufour and Jasiak (2001), Zval. (1998), Dufour and Taamouti (2005), Kleibergen
(2009), and Mikusheva (2009).



cannot be greater thanunder{g : P[CF,(«) = 0] < a. The eventCF,(«) = 0, is a test with
level o for Hp under normality.

4.2. Fieller-type confidence sets with non-Gaussian nari-d. errors

The quadratic CS described above relies heavily on the fettthe same critical poink,, can

be used to test all values of,. This occurs under thei.d. Gaussian distributional assumption,
but not necessarily otherwiséAlthough the quadratic CS will remain “asymptotically \dlias
long asW(v,) converges to a?(n) distribution, this cannot provide an exact CS. The Fieller-
type procedure can be extended to allow for possibly nons&an disturbances, by inverting an
a-level test based o/ () [or equivalently onLR(~y,)] performed by simulation (as a MC test).
Consider the MG-valuepy (v, v) function associated with this statistic, as defined in (3Si)ce
the critical regionpy (v, ¥) < « has levela for testingy = ~, whenv is known, the set ofy,
values for whichpy (v, v) exceedsy, i.e.

Cyla;v) ={yo eI : pn(yp, v) > a}, (4.8)

is a CS with levell — « for ~. Similarly, whenv is not specified, the testip{px(vq, v0) : vo €
2p} < avyields:

Oy (0 D) = {7o € I sup{pn (0, 0) : vo € 2p} > a}, (4.9)

whose level is alsd — a. Cy(a; v) or C,(a; D) must be drawn by numerical methods. Our
empirical analysis reported below, relies on nested gradches, ovety, andx, for the Student
case (2.10), and over, and ¢r, w) for the normal-mixture case (2.11); for the GARCH case (.12
we conduct a grid search o, where for each candidate value, we run the simulated amgeali
optimization algorithm to calculate the maximaVvalue from (4.9) over thén nuisance parameters
in ¢.

We have no closed-form description of the structur€ofa; v) or C,(«; D). While these can
be bounded intervals (this is showed numerically in Sec8prC, (a; v) or C,(c; D) must be
unbounded with a high probability 4f is not identifiable or weakly identified [see Dufour (1997)].
An empty CS is also possible and provides evidence#hats not compatible with the data. The
eventC,(o; v) = 0 [or C,(a; D) = 0] is a test with levelx for g under (2.8). The identity
LR(%) = inf {LR(v,) : 7o € I'} entails thaty must belong to the CS, provided its leveti§.

The Hotelling-based CS we obtain for the GARCH case is exmuause the cut-off point we
use when invertingV(v,) is adjusted for the parametric form (2.12) via the maximizeghlue
from (4.9). InvertingJ (v,) in (2.22) may however be more appropriate. Again, this mest b
implemented by numerical methods; for example, a grid $eaan be conducted of, where
for each candidate valugf(v,) is referred to thex?(n) distribution; this would circumvent the
identification problem asymptotically [as arguedy. in Stock and Wright (2000)], yet in finite
samples, they?(n) approximation may perform poorly. Indeed, our simulatiesuits reported
below illustrate the severity of this problem. Consequgntle use the MMC method for each
candidatey,: we maximize over the model parameters as well as ¢vér

1%\/e have observed a numerical invarianceBt@nd &', which calls for further theoretical work with such statst
see also Section 7.
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5. Invariance and exact distribution of L Rp

In this section, we study the exact distribution of the stat$ L R(,) andL Rg, under both the null
hypothesis and the corresponding unrestricted MLR altemanodel. We track and control for the
joint role betasand scale parameters play in identifyifg

Lemma 5.1 MULTIVARIATE SCALE INVARIANCE . The LR statisticd. k() and L Rp defined in
(2.18) and (2.14) are invariant to replacingy” by Y, = Y A, where A is an arbitrary nonsingular
n X n matrix.

Such transformations can be viewed as the following affimestfiormations ol :
Y, = YA+ Rud (I, — A). (5.1)

Theorem 5.2 EXACT DISTRIBUTION OF BCAPM LR TESTS Under(2.1) and(2.8), the distri-
butions ofL. R(vy,) and LRg depend o{ B, K) only throughB = (B — A)K !, and

LR(vo) =T In (|W (7o) W(3o)l/[W'W|), LRp=inf{LR(vo) : 79 € '}, (5.2)
whereA = [0, v,), W = M (X)W, M (~,) is defined as ir{3.1) and
W (7o) = M(70)(XB + W) = M(yo){erla +v0(8 — )/ K1+ W }. (5.3)

If, furthermore, the null hypothesi¥y holds, then

W (7o) = (vo = V)M (vo)er (B — tn) K~ + M (o)W (5.4)

and the distribution of. R depends o1t B, K) only throughy and (8 — «,)’ K ~1; in the Gaussian
case(2.9), this distribution involves only one nuisance parameter.

Even thoughB and K may involve up t®n+ n? different nuisance parameters ot + n(n +
1)/2 parameters, i< is triangular], the latter theorem shows that the numbered parameters
in the distributions ofL R(~y,) and LRy does not exceedn; when?p holds, the number of free
parameters is at most+ 1. Further, undef{(v,) [using (5.4)] B is evacuated, entailing Theorem
3.1 Theorenb.2also provides the power function.

6. Exact bound procedures for testingHg

In this section, we propose tests fHf; in the presence of nuisance parameters induced by nonlin-
earity and non-Gaussian error distributions. We study diigbal bounds based on tests#t~,)
where we outline important differences between the Gansai non-Gaussian cases. Second,
we describe more general but computationally more expemssthods based on the technique of
MMC tests to obtain tighter bounds.

6.1. Global bound induced by tests of{(~,)

The results of Section 3 on testing= v, can be used to derive a global bound on the distribution
of the statisticl. Rg. This is done in the following theorem.

11



Theorem 6.1 GLOBAL BOUND ON THE NULL DISTRIBUTION OF THEBCAPM TEST. Under the
assumptiong2.1), (2.8) andHp, we have, for any given € (2p,

P[LRB > a:] < sup P[m(vo, W) > x] , Vo, (6.1)
Yol

whereLR(vy,, W) is defined in(3.1). Further, in the Gaussian cag@.9), we have:

P(I'-1-n)(Ag—1)/n>2] <P[F(n,T—1-n)>az], Vz. (6.2)
To relate this result to available bounds, observe tha) @hd (6.2) easily extend to the follow-
ing multi-beta setups: far=1, ... ,n, t=1, ..., T,
Ry =a;+ > BijRje +wi, Hp :a; = 7(1 - 51'3') ; (6.3)
j=1 j=1
whereﬁfjt, J =1, ...,s, are returns ors benchmarks. In this case, the bounding distribution
of LRy obtains as in Theorerf.1where X = [vp, Ry, ..., R, Rj = (Rj1, ... , Rjr),
j =1,...,s,and H is the k-dimensional row vecto(1, v, ..., 7y). In the Gaussian case,

P[LR(vyy, W) > z]does not depend oy, and the bounding distribution under normality is
F(n, T — s —n). Shanken (1986) suggested the statistic

N— {T[d —(tn = Bu) ' [(T/(T = 2))£] " & — 4(en — Bus)] }

@ = mi = — (6.4)
1+ (Bm — 'VLS)/AK/R (Bm — ves)

Y

wherea is ann-dimensional vector which includes the (unconstrainet®riept estimates? is
ann x s matrix whose rows include the unconstrained OLS estimate$3g, ... , (i), i =
1,...,n, Rpg andAM include respectively the time-series means and samplaiaoca matrix
corresponding to the right-hand-side total portfolio retu Further, the minimum in (6.4) occurs at
the constrained MLE of ~, and

LRp =TIn(1+ Q/(T — s —1)). (6.5)

For normal errors(T — s —n)Q/[n(T — s —1)] can be bounded by th€(n, T —n — s) distribution.
The latter obtains from Gibbons et al.’s (1989) joint testzefo intercepts, where returns are ex-
pressed in excess of a known

Independently, Stewart (1997) showed [using Dufour (1P88t, under normal error§]” —
s—n)[(|Zs]/|¥]) — 1] /n can be bounded by thE(n, T — n — s) distribution. Now, from (2.18)
and (6.5), we see that Shanken and Stewart’s bounds areatqijvand both results obtain from
Theorem6.lin the special case of normal errors.

When disturbances are non-Gaussian, Thedsehentails that the bounding distribution can
easily be simulated, as follows. Given a valuevpigenerateV i.i.d. draws from the distribution
of Wi, ..., Wy; then, for any giveny,, these yield a vectof. Ry (,, v) of N simulated values
of the test statistid. R(v,, W), as defined in (3.1). A M@-value may then be computed from the
rank of the observed statisticRy relative to the simulated values. Denote this @alue by

% (70, ) = pN[LRY LR (7o, v)] (6.6)

12



where LRg)) represents the value of the test statidtiBg based on the observed data; we will
call p¥;(vy, v) thebound MC(BMC) p-value. In contrast with the Gaussian caglg[v,, ] may
depend ony,; nevertheless, for any,,

LRg < LR(7q) = pn (70, ¥) < PR (Y05 ) (6.7)

So a critical region that provably satisfies the level caistrcan be obtained by maximizing
ﬁ%(fyo, v) over the relevant nuisance parameters. To simplify prasientof this result, we in-
troduce the following notation. For any subsdts” I" andE C (2p, let

R (vo, E) = sup {pX (70, v0) : o € B}, PR (A, vo) = sup {p (7o, v0) : 70 € A}, (6.8)
PR (A, E) = sup {p% (7o, v0) : 70 € A, vo € E}, (6.9)

where, by conventiom¥; (4, -) = 0if Ais empty, angy(-, E) = 0if E is empty.

Theorem 6.2 GLOBAL SIMULATION -BASED BOUND ON THE NULL DISTRIBUTION OF THE
BCAPM TEST STATISTIC Under(2.1), (2.8) andHp, we have:

P[ﬁ%(ﬂ v) < oz] < a, P[ﬁ%(ﬂ 2p) < oz] < a, (6.10)
wherev represents the true distributional shapel®f.

The first inequality in (6.10) holds for a statistic that rqs the value of, while the second
one holds even without the need to speaify These bound tests are closely related to the CS-
based test proposed in Section 4: the null hypothesis istegjavhen the CS foy is empty,i.e.
if no value ofy, can be deemed acceptable (at lexl either withv specified orv taken as a
nuisance parameter. This may be seen on comparing (4.9)héthrobabilities in Theoreré.2
On recalling thatL Rg = inf {LR(v,) : 79 € '}, the latter also suggests a relatively easy way of
showing thatC, («; v) or C,(a; D) is not empty, through the specifievalue %, (%, v) obtained
by taking~y, = 4 in (6.6). We shall calp{;(¥, v) the QML-BMC p-value.

Theorem 6.3 RELATION BETWEEN EFFICIENCY TESTS AND ZERGBETA CONFIDENCE SETS
Under(2.1), (2.8) and g, let4 be the QML estimator of in (2.19). Then,

N3, v) > a=sup{pn(vo, v) v €T} > a = Cy(asv) £ 0, Vv € 2p,
PR (3, 2p) > a = sup{pn (10, v0) 1 v € I, vo € 2p} > a = Cy(a; D) £ 0,

whereC, («, v) andC, (a; D) are the sets defined {@.8) and (4.9).

For the Gaussian case, Zhou (1991) and Velu and Zhou (1988pged a potentially tighter
bound applicable to statistics which can be written as sadfoindependent Wishart variables and
does not seem to extend easily to other classes of distiizitiin the next section, we propose an
approach which yields similarly tighter bounds for non-&san distributions as well. Finally, the
HAC statistic.//g may be used to obtain alternative identification-robustnigiotests following the
same rationale. The correspondence between such testsngutyl @Ss entailed by test inversion
also follows from similar arguments. Finite-sample MMCdkgorrections are recommended, given
the simulation results in Section 7.
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6.2. Maximized Monte Carlo bounds

Another approach to testingfg with the statisticL Rz consists in directly assessing its depen-
dence on nuisance parameters and adjusting the test agglgrttirough the MMC method [Dufour
(2006)]. Letd = (B, K) represent the parameter vector upon which the distributfoh Rp
actually depends, an@p the set of admissible values férunderH . The dimension of may be
lower than than the number of parameter®iand K. To conform with our earlier notation for MC
p-values, we define the functiobRg (6, W) = LRg(¢(B, K), W) which assigns to each value
of (B, K) and the noise matri¥/ the following outcome: using and a draw from the distribution
of W (which may depend on), generate a sample from (2.1)-(2.2), and comgdu®g; [as defined
in (2.18)] from this sample.

On applyingLRg(#, W), we can get simulated values from the null distributionZa?g for
any value ofd. If N independent replications’ @), ..., W) of W are generated, we can
then compute the corresponding vectorIdRgp statistics and the-value functionpgy (0, v) =

pn[LRY |TRen (9, v)] ,where TRpy (0, v) = [LRg(6, W), ..., TRg(6, WM)]'". For
any given value of, the MMC p-value associated WitﬁR](BO) is obtained by maximizinggx (6, v)
with respect t@ over the set of admissible valués; underHg :

ﬁg{,\,(QB, v) =sup{pn(0, v): 0 € Qp}. (6.11)

Then, undef{s and the error distribution associated withwe have:P [p¥y (25, v) < o] < a;
see Dufour (2006). In other Wordﬁng(QB, v) < ais a critical region with levekv. Further,
in order to allow for an unknowm, we can maximizeypy (6, v) with respect tov € I'p. Set:
ﬁgN(Q, QD) = sup {ﬁBN(Q, I/) S _QD}, ﬁgN(QB, _QD) = sup {ﬁg{,\,(ﬂ, _QD) 10 € _QB}
Then, undefH{z, P[ﬁ%/[N(QB, QD) < Oé] <a.

Theorem6.3 guarantees that{, (I, v) < a = pil (28, v) < a for any givenv. So it may
be useful to check the global bound for significance befonairig to the MMC one. Furthermore,
it is not always necessary to run the numerical maximizatioderlying MMC to convergence: if
peN (0, v) > « given any relevang (or v), then a non-rejection is confirmed. We suggest to use
the QML estimate) of # as start-up value, because this provigesametric bootstrap-typgor a
local MC (LMC)] p-values:

P& (v) = pen(8, v), P5(2p) = PN (0, 2p). (6.12)

Thenp’, (v) > a entailspih; (25, v) > a, andpy ( 2p) > a entailspiy (25, 2p) > a.

Finally, a parametric MMC test imposing (2.12) may be applie the HAC statistics7 ()
and g, as an attempt to correct their size for the GARCH altereativinterest. We investigate the
size-corrected power associated with these statisticedtich 7.

6.3. Two-stage bound confidence procedures

To deal with the fact that the distribution @& may involve an unknown parameter € (2p,
we suggested above to maximize the releyamlues over2p. We next consider restricting the
maximization over to a set which is empirically relevant, as in Beaulieu et200(). This leads to
two basic steps: (i) an exact CS with level a4 is built for v, and (ii) the MCp-values (presented
above) are maximized over all values:ofn the latter CS and are referred to the lewg| so that
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the global test level isvx = a3 + 2. In our empirical application, we used/2. LetC,(«;) =
Cy(a1; Y) be a CS with levell — oy for v. Then, underH(v,), we haveP [p¥[vq, Co(a1)] <
3] < a1 + ag while, unders :

PRI Cola)] <) <ar+ag,  P[pEy[28, C(a)] S as] <ar+ay.  (6.13)
Note also that foph; [25, C,(a1)] < a2 not to hold the following condition is sufficient:
Pn (0, Cular)) > aa. (6.14)

To build a CSs fow, we invert a test (of level, ) for the specification underlying (2.8) where
v = vq for knownvg; this avoids the need to use regularity assumptions.drhe test we invert is
the three-stage MC GF test introduced in Dufour et al. (2003)

CSK =1 — min {p [ESK(vo)], p[EKU(r0)]} (6.15)

where ESK(vg) = [SK -SK(vo)|, SK = & >, 37 d, EKU(vg) = |KU-KU(v)],

KU = ~3°7 d}, dy are the elements of the matriX(U'U/T)~'U’, SK(vy) and KU(v)

are simulation-based estimates of the exped&Bdand KU given (2.8) andp [ESK(v¢)] and
p [EKU(vy)] arep-values, obtained by MC methods under (2.8). The MC testigcie is also
applied to obtain a size correptvalue for CSK. The CS forv corresponds to the values of

which are not rejected at level, using the lattep-value.

To conclude, we note that for the GARCH case, pre-estimakiagn x 1 vector¢ is infeasible
with 5 or even 10 year sub-samples of monthly data. Neverssekthe single stage MMC is valid
despite this limitation. Interestingly, the simulationidy we report next suggests that power costs
are unimportant even with relatively small samples.

7. Simulation study

We now present a small simulation study to assess the peafaenof the proposed methods.
The design is calibrated to match our empirical analysie &ection 8) which relies on monthly
returns of 12 portfolios of NYSE firms over 1927-1995. We ¢des model (2.1) whereRy,
t=1,...,T, are the returns on the market portfolio from the aforenoseti data over the last
5 and 10 year subperiods, as well as the whole sample. Weadkas t= 12 andT = 60,120
and828. The coefficients of (2.1) including are set to their QML estimates (restricted ungigy
over the conformable sample period). From the QML regressi@ also retain the estimated error
covariance matrix, to generate model shocks; formally, armamute the corresponding empirical
Cholesky factor (denotef) and use it forK in (2.8). Test sizes witllk = I, are also analyzed to
illustrate the effects of portfolio repacking.

We consider normal and Studenrerrors (withx = 8, in accordance with the kurtosis observed
in the empirical application), so the random vectd¥s, ¢t = 1, ..., T, in (2.8) are generated
following (2.9) and (2.10) respectively. The MC tests argliegal imposing and ignoring information
on x, which allows us to document the cost of estimating this ipatar. Whenk is considered
unknown, MMC p-values are calculated over the interdak « < 13 to keep execution time
manageable (a wider range is allowed for the empirical apptin in Section 8). We also consider
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the case of GARCH errors (2.12), with; = ¢; and¢y;, = ¢,, ¢ = 1, ..., n (the coefficients
are the same across equations). This restriction is metiay execution time, but it is relaxed in
Section 8. We use the diagonal element&dt’ to scale the intercept, yet we also consider the case
whereo? = 1,7 =1, ..., n. Samples are simulated with,, ¢,) = (.15,.80). These parameters
are treated, in turn, as known and as unknown quantities.iekv of the low dimension of the
nuisance parameter space in this case, wieny, ) is treated as unknowmp;value maximization

is achieved through a coarse grid search (for the purpodaso$imulation). The-value function
does not appear to be very sensitive to the valugpfo, ), and the results presented below indicate
this is sufficient for controlling test level in the relevazases. A more thorough optimization is
however used in Section 8.

The results of the simulation are summarized in Tables 1 - Bes@& tables report empirical
rejection rates for various tests #f(y,) with nominal size5%. These rejection rates determine
the coverage properties of confidence sets derived frometts.t Since we focus on estimating
v, Hp is imposed for both the size and power studies. We comparéotioeving tests: (1) a
Wald-type test which rejectg = ~, when~,, falls outside the Wald-type confidence inter{zl—
1.96 x AsySE(%), 9+ 1.96x AsySE(%)], using the QML estimatof, an asymptotic standard error
[AsySE(%), based on (2.24)], and a normal limiting distribution; (2¢ tMC and MMC tests based
on the QLR test statisti€.R(~y,) defined in Theoren3.1, with MC p-values fori.i.d. normal or
Studentt errors (with known or unknowr), Gaussian GARCH with known or unknowm, , ¢, ),
as well as a®; = ¢, = 0 (i.e, ignoring the GARCH dependence even when it is present in the
simulated process); (3) tests based on the HAC Wald-typistata7 (v,) in (2.22), using a?(n)
critical value, MC with known¢,, ¢,), and MMC whereg¢,, ¢,) is taken as unknown.

In the size study (Table 1)y, is calibrated to its QML counterpart from the data sg} =
—0.000089 for T" = 60, v, = .004960 for T" = 120, v, = .005957 for 7" = 828]. In the power
study (tables 2 - 3), we focus on thé case; samples are drawn wittset to its QML estimate, and
7, is set to the latter value #tep x5, wheres™™ = [min{57}]'/2, and? are the diagonal
terms of K K’ (with variousstep values). N = 99 is used for MC tests = 999 is used in the
empirical application). In each experiment, the numberioigations is 1000. We use 12 lags for
the HAC correction.

Our results can be summarized as follows. The asympitatic or robust procedures are very
unreliable from the viewpoint of controlling level. Wheseae observe empirical frequencies of
type | errors over70% and sometime90% with T' = 60, we still see empirical rejections near
55% with T = 828. The results also show that the empirical size of the HAGBassts is not
affected byK, though a formal proof of its invariance is not availableisTébservation is however
compatible with the fact that its size improves with largemgples: while the level of the Wald-type
test shows no improvement (arout’%) even withT = 828 and normal errors, the size of the
Wald-HAC statistic drops fromd5% with 7" = 60 to 12% with 7" = 828. The LR and robust MC
and MMC tests achieve level control; in the GARCH case, thelMQest has the correct size even
when GARCH dependence is not accounted for.

In view of the poor size performance of the asymptotic tebis,power study focuses on pro-
cedures whose level appears to be under control. OverellVfdC correction is not too costly
from the power viewpoint, with both Studehtand GARCH errors. In the latter case, the LR-type
test uncorrected for GARCH effects outperforms all the otasts. When GARCH corrections are
performed via MMC, the LR-type test performs generally éretihan the Wald-HAC test.
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Table 1. Tests on zero-beta rate: empirical size

n=12 T = 60, T =120 T = 828
K K K
Test I K 1o K 1o K
i.i.d. Normal
Wald-type 709 196 .633 .096 .578 .050
LR(’yO), MC 057 .057 .048 .048 .041 .041
i.i.d. Studentt
Wald-type 714 218 645 .106 .587 .055
LR(70)1 MC, x known .053 .053 .046 .046 .043 .043

LR(v), MMC, k unknown 043 043 .035 .035 .031 .031
Gaussian GARCH

Wald-type 676 200 .628 .086 .579 .047
LR(vy),MC,¢; =¢=0  .059 .059 .048 .048 .046 .046
T (vo)s X3(12) 954 954 686 .686 .127 .127

J(70), MMC, ¢4, 5 known 049 .049 .045 .045 .049 .040
J(70), MMC, ¢4, ¢ unknown .040 .040 .034 .034 .040 .049
LR(vy), MC, ¢, ¢ known 064 .064 .043 .043 .050 .028
LR(vy), MMC, ¢, ¢, unknown .054 .054 .032 .032 .028 .050

Note — The table reports the empirical rejection rates abuartests forH(~y,) with nominal level5%. The values of
v, tested arery, = —0.000089 for " = 60, v, = .004960 for T" = 120, v, = .005957 for T' = 828. The design

is calibrated to match our empirical analysis (see SectjoriT8e tests compared are the following. (1) A Wald-type
test which rejectsy = v, when~, falls outside the Wald-type confidence interffal— 1.96 x AsySE(%),% + 1.96 x
AsySE(4)], using the QML estimatofy with asymptotic standard errdAsySE(4)] based on (2.24), and a normal
limiting distribution. (2) MC and MMC tests based &R(~,) in (2.14), with MCp-values fori.i.d. normal and Student-

t errors (with known or unknowr), Gaussian GARCH with known or unknowb, , ¢, ), as well asp, = ¢, = 0 (i.e,
ignoring the GARCH dependence even when it is present inithelated process). (3) Tests based on the HAC Wald-
type statistic7 (y,) in (2.22), using a¢*(n) critical value, MC with known(¢, , ¢, ), and MMC where(¢, , ¢,) is taken

as unknown. In théi.d. cases, the errors are generated using (2.8) Hitset to eithetl;» or K, which corresponds to
the Cholesky factor of the least-squares error covariasiimate from the empirical data used for the simulationgtesi
In the GARCH case, samples are generated with conditiomainee as in (2.12) using or I for K.
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Table 2. Tests on zero-beta rate: empirical power
Gaussian and Student designs

n=12 T =60 T =120 T = 828
Test Step Power Step Power Step Power
i.i.d. normal

LR(7),MC, ¢, = =0 50 151 50 226 .20 .129
75 315 .75 529 .30 313
1.0 544 1.0 835 .50 814
20 981 15 999 .75 .98

1.i.d. Studentt
LR(v,),MC,xknown 50 .134 50 .181 .20 .109
LR(vy), MMC, k unknown 126 .158 .080
LR(v,), MC, k known 75 264 .75 428 30 .237
LR(vy), MMC, k unknown .239 .384 182
LR(v,), MC, k known 1.0 494 1.0 709 .50  .660
LR(v,), MMC, « unknown 440 673 605
LR(v,), MC, k known 20 939 15 997 .75 .966
LR(vy), MMC, k unknown 925 997 .960

Note — The table reports the empirical rejection rates abusrtests forl{(,) with nominal level5%. The values of
v, tested arezy, = —0.000089 for " = 60, v, = .004960 for T = 120, v, = .005957 for T' = 828. The sampling
design conforms with the size study, for thecase. Samples are drawn witicalibrated to its QML counterpart from
the 1991-95 subsample; values fgrare set to the latter valuestep x5, whereg™™ = [min{57}]'/2, ands? are
the diagonal terms ok K’. See Table 1 for further details on the design and testsexppli

8. Empirical analysis

In this section, we asseg$p as defined in (2.2) in the context of (2.1) under the distidmal
assumptions (2.10)-(2.11), as well as the Gaussian GARCRI 12). We use real monthly returns
over the period going from January 1926 to December 1995jmda from CRSP. The data studied
involve 12 portfolios of NYSE firms grouped by standard twigidindustrial classification (SIC).
The sectors studied include: (1) petroleum; (2) finance aatlestate; (3) consumer durables; (4)
basic industries; (5) food and tobacco; (6) constructiai;capital goods; (8) transportation; (9)
utilities; (10) textile and trade; (11) services; (12) lews, for details on the SIC codes, see Beaulieu
et al. (2007). For each month, the industry portfolios ideluhe firms for which the return, the
price per common share and the number of shares outstandimgcarded by CRSP. Furthermore,
portfolios are value-weighted in each month. We measurentaket return by value-weighted
NYSE returns, and the real risk-free rate by the one monthstng bill rate net of inflation, both
available from CRSP. All MC tests were applied with = 999 and MMC p-values are obtained
using the simulated annealing algorithm.

Our QML-based BCAPM test results are summarized in Tableoh-Saussiap-values are the
largest MCp-values over the error distribution parameters [respelgtivs and (7, w) for (2.10)-
(2.11)] within the specified 97.5% CSs; the latter are regubith Table 5. In the GARCH case (2.12),
p-values are the largest M@ values over all ¢,;, #,;). Given a5% level test, the benchmark is
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Table 3. Tests on zero-beta rate: empirical power
Gaussian GARCH design

n=12 T =60 T =120 T = 828

Test Step Power Step Power Step Power
LR(%), MC, ¢ =¢9 =0 .50 112 .50 .203 .20 .195
J (79)s MMC, ¢, ¢, known .088 155 .208
J(v9)s MMC, ¢, ¢, unknown .078 133 183
LR(vq), MC, ¢, ¢ known 113 .204 198
LR(vy), MMC, ¢4, ¢5 unknown .106 170 .168
LR(vy), MC, ¢; = ¢ =0 .75 .247 .75 .449 .30 .465
J(70), MMC, ¢, ¢5 known 177 .316 .442
J(70), MMC, ¢4, 5 unknown .158 276 411
LR(vy), MC, ¢, ¢, known .248 452 471
LR(vy), MMC, ¢4, ¢5 unknown 213 411 425
LR(vy),MC, 1 =5 =0 1.0 .447 1.0 753 .50 .945
J(79), MC, ¢, ¢ known .300 .552 .934
J(70), MMC, ¢4, 5 unknown .269 .505 .920
LR(vy), MC, ¢, ¢ known 441 753 .950
LR(vy), MMC, ¢4, ¢5 unknown .395 .709 .937
LR(7y), MC, ¢1 = ¢y = 0 20 913 15 973 .75 1.0
J(70), MMC, ¢, ¢ known 719 .856 1.0
J(70), MMC, ¢4, ¢5 unknown .664 931 1.0
LR(vy), MC, ¢, ¢, known 915 .970 1.0
LR(vy), MMC, ¢4, ¢5 unknown .892 .962 1.0

Note — The values of,, tested arer, = —0.000089 for T' = 60, v, = .004960 for T" = 120, v, = .005957 for
T = 828. Numbers reported are empirical rejection rates for vartests oft{(~y,) with nominal size&5%. The sampling
design conforms with the size study, for thecase; errors are generated with conditional variance @12 usingk .
See Table 1 for a complete description of the designs ansldpslied. Samples are drawn wittalibrated to its QML
counterpart from the 1991-95 subsample; values/fcare set to -the latter valuestep x&™™ (for variousstep values)
whereg ™™ = [min{57}]'/2, ands? are the diagonal terms @ K.

.05 for po,, normal LMC, MMC and GARCHp-values, while the Studentand normal mixture
p-values should be compared.i25 (to ensure that the test has lev&}). Non-rejections by LMC
MC p-values are conclusive (though rejections are not); nejestbased on the conservative bound
reported under the heading BND are conclusive under naymnabn-rejections based on the QML
bound in the non-Gaussian case (reported under the heatlbg &gnal that the CS fofy is not
empty; however, since the MM@-value is based on the tightest bound, this evidence does not
necessarily imply non-rejection @ig.

The empirical results presented in Table 4 show that the pmtio test and the Gaussian-
based bound test yield the same decision at l&#elalthough the formep-values are much lower.
The non-normap-values exceed the Gaussian-bageglue, enough to change the test decision.
For instance, at the% significance level, we find seven rejections of the null higpsts for the
asymptoticy?(11) test, seven for the M@-values under normality and with normal GARCH, and
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Table 4. QML-based tests of BCAPM

Sample LRp Doo Normal GARCH
LMC MMC BND BND

1927 — 30 | 16.10 1371 269 .308 .366 .340
1931 — 35 | 14.09 228 344 381 432 451
1936 — 40 | 15.36 167 | 257 284 .345 .355
1941 — 45 | 18.62 .068 148 163 .203 213
1946 — 50 | 32.69 .001 .005 .006 .007 .006
1951 — 55 | 37.04 .000 | .003 .004 .004 .003
1956 — 60 | 26.10 .006 027 .031 .042 .039
1961 — 65 | 29.21 .002 011 .016 .020 .015
1966 — 70 | 27.45 .004 016 .018 .026 .029
1971 — 75 | 16.81 A13 | 213 224 .292 .294
1976 — 80 | 25.76 .007 | .027 .031 .040 .042
1981 — 85 | 14.98 183 | 316 .335 .387 .404
1986 — 90 | 35.41 .000 | .003 .004 .004 .005
1991 — 95 | 16.41 1271 219 253 310 .320
Studentt Normal mixture
LMC MMC BND | LMC MMC BND

1927 —-30 | .272 316  .360 | .279 313 381
1931 -35 | 359 399 468 | .342 387 452
1936 —40 | .282 308  .372 | .265 .302 357
1941 —45 | 147 169  .210 | .150 .165 211
1946 — 50 | .007 .007 .010 | .007  .007 .008
1951 -55 | .003 .005 .005 | .003 .003 .003
1956 — 60 | .030  .040 .052 | .028 .035 .045
1961 - 65 | .013 .017 .023 | .014 .021 .024
1966 — 70 | .020 .025 .032 | .018 .023 .028
1971 —75 | 217 248  .300 | .206 .238 .292
1976 —80 | .026  .035  .039 | .026 .034 .042
1981 —85 | 323 399 405 | .318 .339 .406
1986 —90 | .004 .005 .005 | .004 .004 .005
1991 —95 | .226  .263  .325 | .226 .261 319

Note — LRz is the statistic in (2.18). Remaining numbers are assatiatealues. p.. is based ony?(n — 1). All
other non-Gaussiap-values are the largest Mgvalues over the shape parameterithin the specified CSs[= « or
v = (m, w); refer to Table 5]. LMC is the bootstrapvalue in (6.14) and MMC is the maximatvalue in (6.13) (refer to
Section 6.2). BND is the bound (6.2) for the Gaussian casar@@ML-BMC bound from Theorens.3 otherwise; the
GARCH BND is the largesQML-BMCover ¢, ;, ¢, [from (2.12)]. Returns for the months of January and for ®eto
1987 are excluded. Given&% level, the cut-off is .05 fop, the normal LMC, MMC and the GARCH-values; for
the Studentt and mixtures, the cut-off is .02p-values which lead to significant tests with this benchmaekiabold.
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Table 5. Confidence sets for intervening parameters

Mixture (7, w), confidence set fav t(k)

1) ) 3) 4) ®) (6)
Sample m=0.1 =02 7=03 7=04 7w=05 K
1927 — 30 > 1.8 1.6-28 16—-25 16—-25 16—-26|3—12
1931 -35|21—-100 19-30 19-27 19-27 21-3.0 3-8
1966 —40 | 1.5—-35 15—-23 14—-21 14—-20 14-21[4-25
1941 —-45| 1.3-35 13-21 13-19 13-18 13-1.9 >95
1946 —50 | 1.4—-35 13-22 13-20 13-19 13-19]|5-37
1951 —55 | 14—-35 14-22 13-20 13—-19 13-20(5—-34
1956 —-60 | 1.3—-28 12-20 12-19 12-18 12-1.38 >5
1961 —-65| 1.0—-22 10-16 10-15 1.0-15 1.0-1.5 >T7
1966 —70 | 1.3-30 13-20 13-19 13-18 12-19 >5
1971 -7 | 1.5—-35 15—-22 14-20 14—-19 14-20(4—-24
1976 —80 | 1.6 —4.0 15—-25 15—-22 15-22 15-23[4-19
1981 -85 | 14—-35 14—-21 13-20 13-19 14-20]|5-33
1986 -90 | 1.1-30 11-20 11-18 1.0-17 11-18 >95
1991 -95| 1.0-19 10-15 10-14 10-13 1.0-1.3 > 19

Note — Numbers in columns (1)-(5) represent a CS for the patensi(w, w) [respectively, the probability of mixing
and the ratio of scales] of the multivariate mixtures-ofimal error distribution. Column (6) presents the CS#othe
degrees-of-freedom parameter of the multivariate Stutlemtor distribution. See Section 6 for details on the comstru
tion of these CSs: the values @f, w) or x (respectively) in this set are not rejected by & K test (6.15) [see Dufour
etal. (2003)] under multivariate mixtures or Studeérgrrors (respectively). Note that the maximum of thealue occurs
in the closed interval fow. Returns for the month of January and October 1987 are exdlfrdm the data set.

five (relying on the MMCp-value) under the Studeiitand normal mixture distributions.

Focusing on Studerttand normal mixture distributions with parameters not rej@édy proper
GF tests, we see that mean-variance efficiency test requitsltange relative to the availabte
based bound. The power advantages of the MMC procedurelastdted by the results of the
1966-70 subperiod where the QMi-value exceed®.5% for the Student and normal mixture
distributions, whereas the MMg&value signals a rejection.

The CSs for distributional parameters are reported in Tablie the mixture case, the confidence
region is summarized as follows for presentation ease: wethe CS forw corresponding to five
different values ofr.

In Table 6, we present: (i) the average real market returnedlsas the average real risk-free
rate over each subperiod, (ii) the QML estimateyqenotedy) and95% CSs for this parameter,
using respectively the asymptotic standard errors (2124)€r the heading Wald-type), and the LR-
type tests with.i.d. Gaussiant(x) and normal mixturg¢r, w) errors, plus Gaussian GARCH errors
(lower panel)! The values of, in the Fieller-type CS are not rejected by the test definedizofem

Note that some values ¢f are high. Nonetheless, comparing the average real markehr®r those subperiods
with our estimate ofy reveal that these high occurrencesyadre consistent with subperiods during which the estimated
zero-beta rate is higher than the market portfolio returhisTs an illustration of finding, ex post, a linear relatibifs
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Table 6. QML-based point and set estimates for the zerogmetéolio rate

Sample Ry Ty A Wald-type
1927 — 30 .0045 .0045 .0047 [—.0037, .0130]
1931 — 35 .0103 .0025 —.0130 [—.0301, .0039]
1926 — 40 .0031 —.0006 —.0069 [—.0192, .0055]
1941 — 45 .0097 —.0042 .0117 [.0037, .0198]
1946 — 50 .0021 —.0051 —.0219 [—.0189, —.0070]
1951 — 55 .0145 .0001 .0024 [—.0015, .0064]
1956 — 60 .0086 .0002 .0156 [.0109, .0202]
1961 — 65 .0080 .0014 .0571 [.0398, .0744]
1966 — 70 .0008 .0004 .0169 [.0096 , .0242]
1971 - 75 —.0061 —.0010 .0150 [.0030, .0270]
1976 — 80 .0056 —.0012 —.0096 [—.0169, —.0024]
1981 — 85 .0081 .0037 .0197 [.0125, .0268]
1986 — 90 .0088 .0020 .0053 [—.0024, .0131]
1991 — 95 .0104 .0011 .0010 [—.0130, .0062]

95% Confidence set, Fieller-type

Sample Normal errors Student t errors Mixture errors GARCH
1927 — 30 | [—.0133, .0227] | [-.0143, .0229] | [—.0141, .0227] [—.0125,.020]
1931 — 35 | [—.0509, .0225] | [-.0520, .0225] | [—.0157, .0227] [—.0517,.0217]
1926 — 40 | [—.0341, .0187] | [—.0350, .0190] | [—.0349, .0817] [—.0300,.0175]
1941 — 45 | [—.0045, .0275] | [—.0048, .0287] | [—.0045, .0283] [—.0025,.0275]
1946 — 50 0 0 0 0
1951 — 55 0 0 0 0
1956 — 60 0 [.0149, .0161] 0 0
1961 — 65 0 0 0 0
1966 — 70 0 0 0 0
1971 — 75 | [—.0069, .0454] | [—.0081, .0488] | [—.0069, .0531] [—.0050, .0450]
1976 — 80 0 0 0 0
1981 — 85 | [.0059, .0371] [.0051, .0376] [.0051, .0387] [.0075,.0350]
1986 — 90 0 0 0 0
1991 — 95 | [—.0285, .0147] | [—.0303, .0154] | [—.0325, .0147] [—.0275,.0125]

Note — Ry is the average real market portfolio return for each sulopefi; is the real average risk-free rate for each
subperiod3 is the QML estimate of;; the remaining columns repdit% CSs for this parameter, using, respectively, the
asymptotic standard errors (2.24H{1.96x AsySE(9)], the inverted test based dnR(~,) from TheorenB.1, and the
MC Gaussiarp-value, the MMCp-value imposing multivariaté(x) errors and mixture-of-normailgr, w) errors, and
the MMC GARCHp-value. See Section 4 for details on the construction ofeli&Ss. Non-Gaussignvalues are the
largest MCp-values over the shape parameters (7, w). The GARCHp-value is the largest M@-value overp, ;, ¢,
[from (2.12)]. Returns for the months of January and Octdi887 are excluded from the data set.
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Table 7. Wald-HAC based inference on the zero-beta paotfalie

1) &) 3 4
sample | 4= arga}yin J (7o) rgin J(v,) BND 95% Confidence set, MMC
0 0
1927 — 30 .0090 71.29  .650 [—.0195, .0235]
1931 — 35 —.0045 71.06  .541 [—.0240,.0250]
1926 — 40 —.0045 54.52  .620 [—.0355, .0550]
1941 — 45 0415 163.26  .143 [—.0455, .0670]
1946 — 50 .0000 133.76  .121 [—.0105, .0075]
1951 — 55 .0075 104.93 250 [.0000, .0120]
1956 — 60 .0195 110.18  .280 [—.0385, .0415]
1961 — 65 .0370 149.61  .142 [—.0295,—.0150] U [.0250, .0670]
1966 — 70 .0090 168.54  .081 [.0045, .0135]
1971 — 75 .0060 61.06 .623 [—.0180, .0067]
1976 — 80 .0060 172.09  .061 [—.0225, .0135]
1981 — 85 .0195 12141  .201 [.0105, .0385]
1986 — 90 .0030 184.38 .030 0
1991 — 95 .0100 53.60 .841 {<.0075} U {>.0310}

Note —7 () is the HAC statistic in (2.22)7 is the minimum distance estimator from (2.23). Column (3)vjies a
bound MCp-value simulated af and maximized ovep,,;, ¢,, [from (2.12)]. Column (4) provides the confidence set for
~ which inverts the inverted test based giiv,) and the MMC GARCHp-value again, this is the largest M@-value
over ¢,;, ¢,; [from (2.12)]. Returns for the months of January and Octdi®87 are excluded from the data set. Given
a 5% level, the cut-off the BNDp-value is .05;p-values which lead to significant tests with this benchmaekia bold.
Note that the CS which invertg (v, ) based on the asymptotic’ (12) cut-off is empty for all sub-periods.

3.1to test? (v,). Rejection decisions are based on the largest;M@lues over alk and (7, w)
respectively; we did not restrict maximization to the CStfuese parameters here. As expected in
view of theHp test results, the exact CSs are empty for several subperidususefulness of the
asymptotic confidence intervals is obviously questionlelee. Other results which deserve notice
are the empty sets for 1956-60 subperiod; these sets congsp the case where the efficiency
bound test is significant (&t%).1?

To illustrate the differences between the asymptotic CSand, we next check whether the
average real risk-free rate is contained in the CSs. For rmalbgeriods, like 1966-70, the evidence
produced by the asymptotic and MC Fieller-type confidenterials is similar. There are nonethe-
less cases where the set estimates do not lead to the sars®mle€ior instance, for 1941-45 and
1971-75, the average risk-free rate is not included in tgenpgotic confidence interval, while it is
covered by our MMC CSs. These are cases where, using the agiomgonfidence interval, the
hypothesisy = r; is rejected, whereas exact CSs indicate it should not betegje Conversely,
in 1986-90, the asymptotic confidence interval includesatferage risk-free rate, whereas our CSs
are empty.

between risk and return with a negative slope. Furthermrerenning our analysis using 10-year subperiods leads to
estimates below the benchmark average return.

12This can be checked by referring to Table 4: although therteganaximalp-values in this table are performed over
the confidence set fot and (7, w), we have checked that the global maxiralalue leads to the same decision here.

23



In Table 7, we report the Wald-HAC counterparts of the aboklhased tests (columns 2
and 3) as well as point and set estimates ¢¢olumns 1 and 4). Column (2) reports the values of
our proposed/-test-type minimum Wald-HAC statistic. In column (3), MMEfers to the maximal
MC p-value [over all §;, ¢, )] for this statistic, assuming the GARCH specification (2, Bxd the
level is5%; alternatively, an asymptotig?(12) critical value @1.03 for a5% level) can be used. In
column (1), we report the GMM-type point estimate (dencdigdhe associated set estimate which
inverts the Wald-HAC MC Gaussian GARCH based test is redarieolumn (4).

We first note that, on using the asymptotic critical value, aldAHAC test would reject the
model in all subperiods at levéls. In contrast, the GARCH-MM@-value is less that% only
in the 1986-90 subperiod. In view of our simulation resultarf Section 7, these results illustrate
the serious implications of asymptotic test size distogioRecall that the LR-based MC and MMC
(Gaussian and non-Gaussian, with and without GARCH) tegstrthe model at th&% level in at
least three other sub-periods: 1946-50, 1950-55, 1960F6&s reflects the test relative power, as
illustrated in Section 7. Turning to the estimategypfve note that the Wald-HAC based MMC CSs
are substantially wider than the LR-based counterparty, @me CS is empty (in the 1986-1990
subperiods, in which case the model would be rejected), laadet is unbounded in the 1990-95
subperiod. Had we relied on the asymptotit(12) cut-off to invert the Wald-HAC test, all CSs
would be empty. Again, these observations line up with amusation results.

The above procedures applied to the full data yields empty @38g the exact GARCH cor-
rected LR and Wald-HAC criteria; the confidence intervahgs(2.24) is[.0007, .0088]. Since our
subperiod analysis suggests thas temporally unstable, one must be careful in interpretingh
results. On using a Bonferroni argument (that accountsiffog-tarying parameters) based on the
minimum (over subperiods) GARCH-correctgdialue which is.003 < .05/12, the model can be
safely rejected at levél%, over the full sample.

9. Conclusion

This paper proposes exact mean-variance efficiency testa wie zero-beta (or risk-free) rate is
not observable, which raises identification difficultiesopbsed methods are robust to this problem
as well as to portfolio repacking, and allow for heavy-tdiketurn distributions. We also derive
exact CSs for the zero-beta rage While available Wald-type intervals are unreliable aratdi¢o
substantially different inference concernimgour CSs are valid in finite samples without assuming
identification, and are empty by construction if efficiensyejected.

We report a simulation study which illustrates the prosrtif our proposed procedures. Our
results allow to disentangle “small-sample” problems fra@symptotic failures”. whereas sample
size, non-normality as well as parameter identificationbfmms may concurrently cause finite-
sample distortions, identification issues are more peragcand methods that assume identification
away cannot be salvaged. We also examine efficiency of thkahportfolio for monthly returns
on NYSE CRSP portfolios. We find that efficiency is less regdavith non-normal assumptions.
Exact CSs fory differ importantly from asymptotic ones, and LR-based C&stighter than their
Wald counterparts. All CSs nevertheless suggestilignot stable over time.

These results provide the motivation to extend our methathdoe general factor models, as
discussed by Campbell et al. (1997, Chapter 6) and ShankkZrayu (2007). These models raise
the same statistical issues as the BCAPM, except that teéimitbnal parameter is non-scalar.
In this case, Fieller-type methods are clearly more chgitenand raise worthy theoretical and
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empirical research questions.

A. Appendix: Proofs

PROOF OF THEOREM 3.1 Under (2.8) and#(y,), we have: 7% = U'U =
KWMWEK , TX(y,) =K W M(y,)WK . Then, undef(v,),

A,) = \4@(70)’ _ ’K,W/M(’YO)WK’ _ ’K,‘ |W/M(’YO)W‘ |K| _ ‘W/M(’YO)W|
o 13| [K'W'M(X)WK| |K'[[WMX)W||K| [WMX)W|’

henceP[LR(vy) > x] = P[T In(|W' M (yo)W|/|W'M (X)W]) > ], V. O
PrROOF OFLEMMA 5.1 The Gaussian log-likelihood function for model (2.5) is
In[L(Y, C, %) = —g[n(%r) +1n(|2))] - %tr[z—l(ff —- XC) (Y - XC)] = W[L(Y, B, 2)].

Setting~ (C) = (Y — XC)'(Y — XC), for any given value o€, n[L(Y, C', ¥)] is maximized
by taking X = X(C) yielding the concentrated log-likelihood

mL(V, €, ¥)e=~"[(2m) + 1] - ¢ (5. (A1)
The Gaussian MLE o€ thus minimizes|§(0)| with respect toC'. Let us denote by (V) the
unrestricted MLE ofC' so obtained, and bg/(Y; ) andCg(Y') the restricted estimators subject
to H () and?#p respectively. Suppose thtis replaced by, = Y A whereA is a nonsingular
n x n matrix. We need to show thdtR.(y,) = LR(y,) and LR, = LRgp, whereLR.(v,)
and L Rg. represent the corresponding test statistics based orethefdrmed data. Following this
transformation|X'(C')| becomes:

5.0 = \%(ff* ~ XC.)(Y. - XC,)| = %A’(ff _XCATY(Y — XC,A) A
= |A'A %(ff —XCO)(Y - XC)| = |AA[|2(0)] (A.2)

whereC' = C,A~'. Then|X(C,)| is minimized byC,(Y.) = C(Y)A and|%, (Cu(Y2))| =
|AA|2(C(Y)). On observing thafl (y)C' = 0 <= H(vy)CA = 0 <= H(7,)C\ = 0
for any -, the restricted estimators ' under #(v,) and #p are transformed in the same
way: Cy(Ys; 7o) = C(Y; 79)A andCyp(Ys) = Cp(Y)A. This entails thatX, (C..(Ys; vo))| =
|AA[|Z(C(Y5 7)) | and| £, (Cun(Ya)) | = |[A’A] |2 (Cr(Y))], so that

T 122 (CeYas 1))l 12(CY570))|
A* = — = = = e :A 5 A3
D) = TR sy o A3
- Z.(C(M)| _ 1E(CM))] _ -
Ap. = =2 = =7 = Ap. A4
? PR S) RDIEE ) . (A4)
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Finally, in view of (2.14) and (2.20), we havBR.(v,) = Tln[/I*(’yO)] = Tln[/I(’yO)] -
LR(yo)andLRp. = T'In(Ap.) = T'ln(A) = LRg.. 0

PROOF OFTHEQREM 5.2 Consider a transformation of the forlh = Y K~ or, equivalently,
Y, =YKt + Rwi, (I — K~1). Using(2.1) and(2.8), we then have:

Y, = (XB+WK)K'+Ru!,(I-K ) =XBK'+Rul(I-KYH+W
= (ipd +RuB)K' + Ruu,(I — K™Y+ W
= Rmt, + [ipd + Rm(B — 1)K+ W
= R, +X(B-A)K'+W=~Rw,+XB+W (A.5)

whereB = (B — A)K~tandA = [0, «,)’. Using Lemmab.1, LR(v,) andLRp can be viewed as
functions ofY,, and depend o(B, K) only throughB = (B — A)K ~!. Under?#g, the nuisance
parameter only involves and (8 — «,,)’ K 1. Now the distribution ofL R(v,) and LR can be

explicitly characterized by using (A.3) - (A.4) and obsexyithat

e _ \E (é( 0))’ ’W(’Yo)/W(’Yo)’
A = 5 Ev) W
-2 (Cs(M)) 1lﬂf{IE( (Y*,Wo))I:%GF}_m T
Agp = 2(0 Y. ) ‘2*( *(Y*))\ = inf {A(v¢) : 7o € '},

wherelW (o) = M (o) (Y — Bme,) = M(y0)(XB+W) = M(yo){[trd + Bum (8 — 1) K" +
W} = Myo){[er(d + 708 = w)) + (Bm — yorr)(B — tn) ] K+ W} = (’Yo){LT(a +
(B = 1) )Kt + WhandW = M(X)W. UnderHp wherea = —y(8 — 1), W (o) =
(Yo—7)M (o) er(B—1tn) K=t +M(v,)W . The theorem then follows on observing thak(v,) =
T In[A(v,)] and LRy = T In(Ag). Further information can be drawn from the singular value
decomposition of3. Letr be the rank of3. SinceB is a2 x n matrix, we haved < r < 2 and we
can write:

B=PDQ, D=[D,0], D=diag()" A, (A.6)

whereD is a2 x n matrix, \; and )\ are the two largest eigenvalues®fB (where); > )\ > 0),

Q = [Q1, Q2] is an orthogonah x n matrix whose columns are eigenvectorsdf3, Q1 is a2 x r
matrix which contains eigenvectors associated with thezeso eigenvalues a8’ B, P = [Py, P;]

is a2 x 2 orthogonal matrix such that, = BQlDl‘l andD; is a diagonal matrix which contains
the non-zero eigenvalues & B, settingP = P, andD; = Dif r = 2, andP = P, if r = 0;
see Harville (1997, Theorem 21.12.1). Using LenBriband Theorenb.2, LR(v,) and L Ry may
then be reexpressed as:

LR(v9) =T In (W (7o) W(y)l/IW'W|), LRg=inf{LR(yy):vo €'}, (A.7)
W=WQ=MX)W, W=WQ, W(y)=W)Q=M(,)(XPD+W), (A8)

PD = [PD, 0] andPD has at most 3 free coefficient® (s orthogonal). Undet{s,

W) = M(o)er [(0 =) (¢9) 2 & | + M (o)W,
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— _ 1/2
p=Q (K™ (B-wm), 2=v/(¢9)".
Defined = [p, | as an orthogonal matrix such thelth = ¢¢' = I,,, so

/

/

@’@:[

Gl 8l

o' P 1 0 _
I F T TR

LSS

Then as in (A.7)LR(~,) and LR may again be expressed undég as:

LR(vo) = T In (W5 (7o) Wi (vo)l/W5Wal), LRy =inf{LR(v):7, €'}, (A.10)

Wp=W&=MX)Wg, Wg=WE, (A.11)
Wi(v0) = W(v0)® = M(v0)eres + M(70) W, (A.12)
whereg; = (7o —7) (¥'9) 2 @D = (v — ) (¢')’*[ 1 0 --- 0 ] which involves at most

one free coefficient. Whe#l” is non-Gaussian, the distributions 6fR(v,) and LRy may be
influenced byB through@ in . Under the Gaussian assumption (2.9), the rowB/oérei.i.d.
N(0, I,,), so thatL R(v,) and L Rp follow distributions which depend of3, K) only throughP D.
UnderHg, since the rows of’p arei.i.d. N(0, I,,), this distribution involves only one nuisance
parameter, in accordance with the result from Zhou (199&ofdm 1), derived through a different
method. O

PROOF OFTHEOREM 6.1 Hp = U, H(7g). SinceLRp = inf {LR(v,) : 7o € I'}, we have
LRg < LR(yy), for any~,, henceP[LRg > z] < P(p i )[LR(vo) > x|, Va, for eachy, and
for any (B, K) compatible with*{ (). Furthermore, undet g, there is a value of, such that the
distribution of LR(~,) is given by Theoren8.1, which entails (6.1). The result for the Gaussian
special case then follows upon using (3.2). O

PROOF OFTHEOREM 6.2  The result follows from (6.7), (3.6), and the inequalitig§(vy, v) <
Py (I v) andpl (v, v) < i (v, £2p) < pR(T O2p). O

PrROOF OFTHEOREM 6.3 Whenv is specified, by (6.6), (2.19) and (3.5), we haﬁé{,:(&, v) =

pILRY | LRN (3, v)] = py[LRO(3)|LRy (5, v)] = pn(4, v), hencesup {px (10, v) : 7o €

I't <a=py@A, v) <a=p%(F, v) < a; on noting thatup {Hn (vg, v) : 7o € I'} < a means
thatC., (v, v) is empty,p% (¥, v) > a = sup {pn(Vp, V) 1 79 € I'} > a = Cy(a, v) # . Forv

unknown,

(3, 2p) = sup {pY(5, vo) : vo € 2p} = sup {pn[LRY TR (3, 10)] : vo € 2p},
= sup {pn[LRO($)|LRN (4, 10)] : vo € 2p} = sup {pn (%, v) 1 vo € 2p},

hencesup {pn (7o, v0) : 79 € I vo € O2p} < a = sup{pn(§, v0) : vo € 2p} < a =
ﬁ%(&, 2p) < « andﬁ]({,(&, 2p) > a = sup{pn(y9, v0) : Yo € I, vo € 2p} > a =
Cy(a; D) #0. d
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