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Semiparametric Innovation-Based Tests of Orthogonality
and Causality Between Two Infinite-Order Cointegrated
Ceries with Application to Canada/US Monetary
Interactions

Chafik Bouhaddioui”, Jean-Marie Dufour

Abstract

We propose a semiparametric approach for testing orthogonality and causality between two infinite-
order cointegrated vector autoregressive IVAR(1) series. The procedures considered can be viewed as
extensions of classical methods proposed by Haugh (1976, JASA) and Hong (1996, Biometrika) for
testing independence between stationary univariate time series. The tests are based on the residuals of
long autoregressions, hence allowing for computational simplicity, weak assumptions on the form of
the underlying process, and a direct interpretation of the results in terms of innovations (or reduced-
form shocks). The test statistics are standardized versions of the sum of weighted squares of residual
cross-correlation matrices. The weights depend on a kernel function and a truncation parameter. The
asymptotic distributions of the test statistics under the null hypothesis are derived, and consistency is
established against fixed alternatives of serial cross-correlation of unknown form. Apart from
standardization factors, the multivariate portmanteau statistic which takes into account a fixed number
of lags, can be viewed as a special case of our procedure based on the truncated uniform kernel. A
simulation study is presented which indicates that the proposed tests have good size and power
properties in finite samples. The proposed procedures are applied to study interactions between
Canadian and American monetary quarterly variables associated with monetary policy (money,
interest rates, prices, aggregate output). The empirical results clearly allow to reject the absence of
correlation between the shocks in both countries, and indicate a unidirectional Granger causality
running from the U.S. variables to the Canadian ones.

Key words Infinite-order cointegrated vector autoregressive process; independence; causality;
residual cross-correlation; consistency; asymptotic power.
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1. Introduction

Studying the dynamic relationship between two multivariate series is a funddrokjaetive of time series
analysis in statistics and econometrics. For example, in econometrics, thiglpamnie to understand the
associated economic mechanisms. In this context, a basic problem consistsimitedependence (or the
absence of serial cross-correlation) between two vector proce$besseminal paper on this problem is
due to Haugh (1976), who proposed a general procedure for téstiagendence between two covariance-
stationary ARMA time series. His method is based on considering crosslations between residuals
obtained after fitting univariate ARMA models on each series. Since the atioog of an ARMA model
follow a white noise by assumption, this considerably simplifies the underlyirigbdisonal theory, and
the corresponding tests are relatively simple to apply. Further, the pomémg statistics have a direct
interpretation in terms of process innovations (or reduced-form shatksature of interest in econometrics
since innovations can often be interpreted as “shocks” to economic sysBansequently, the possibility
of focusing on “shock cross-correlations” should be useful in eowetric research. Furthermore, Wiener-
Granger causality properties can also be represented in terms of thationaross-correlations considered
by Haugh (1976), so that causality properties can also be assesshddiyng whether relevant subsets of
innovation cross-correlations are close to zero (or not); see Pieccelamgh (1977, 1979). The required
distributional theory is however more complex under usual noncausalitythgses (due to the form of the
required standard errors), and no solution was proposed at that time.

The work of Haugh (1976) has been extended by several authegstHeng (1998), El Himdi and
Roy (1997), Pham, Roy and&dras (2003), Hallin and Saidi (2005), Bouhaddioui and Roy (202806),
Hallin and Saidi (2007), Saidi (2007), and Bouhaddioui and Duf@008). Most of these studies focus
on independence between two multivariate finite-order vector autosbggg®AR) or vector autoregres-
sive moving-average (VARMA) models. El Himdi and Roy (1997) extehtte procedure developed by
Haugh (1976) in order to test non-correlation and non-causality battvaetime series in the context of

multivariate stationary and invertible VARMA models. This result was used &llirHand Saidi (2005) to



develop a test that takes into account a possible pattern in the signhs &fomslations at different lags. In

a nonparametric setup, Hallin, JGkeva, Picek and Zahaf (1999) proposed a test for independence letwee
two autoregressive time series which is based on autoregressivecaek while Hong (1998) proposed a
test based on the empirical distribution functions.

In many cases, however, the stationarity condition is unrealistic and corstthiavy constraint. Fur-
ther, in nonstationary cases, it is more important to work directly with the otigarées without transfor-
mations (by taking differences on each component) which causes distnaut@mplications and can lead
to misleading results. Engle and Granger (1987) introduced the confcepintegration which is used in
many recent studies across several fields. In the case of a finiteaurttgegressive cointegrated vector,
Ahn and Reinsel (1990) developed an efficient method estimation in Gayssieesses. Yap and Reinsel
(1995) proposed a full-rank and reduced rank Gaussian estimaticedues for cointegrated VARMA
processes. For a good discussion of the related models Uskeepohl (2001). By exploiting the estimation
methods proposed by Yap and Reinsel (1995), Pham et al. (2008)adieed the main result of EI Himdi
and Roy (1997) to the case of two cointegrated (or partially nonstatioWARMA series. They proposed
test statistics based on residual cross-correlation matRf;lg%(j), |7] < M, whereM does not depend on
the sample siz&/, between the two residual seri{a‘sﬁl)} and{éf)} resulting from fitting thetrue VARMA
models to each of the original seri{axgl)} and{ ng)}. Under the hypothesis of non-correlation between
the two series, they show that an arbitrary vector of residual crasslations asymptotically follows a
multivariate normal distribution.

In practice, a finite-order VAR model is a rough approximation to the true giet@rating process of
a given multivariate time series. It is not common for the true model to be a funatia small number
of unknown parameters. From this perspective, a more flexible altezregproach assumes that the data
are generated by an infinite-order autoregressive process. Subdsriead one to consider a truncated
(potentially long) autoregression as an approximation of the underlyiraggpso Very often in statistics, the
properties of estimators and test statistics under the assumption of a true reedef,raodel assumptions

are clearly not fulfilled. For example, in VARMA estimation, it is well known thaisspecification of the



AR or MA orders can lead to inconsistent estimators. Further, the estimatdiR¥A models is highly
nonlinear and raises difficult identification issues (in the sense of modalnigity). Correspondingly, non-
causality hypotheses become nonlinear and lead to non-standard distd@bptioblems; see Boudijellaba,
Dufour and Roy (1992, 1994).

The autoregressive model fitting approach has been successfuligcapp several authors: Akaike
(1969), Berk (1974) and Parzen (1974) for spectral density estimd®arzen (1974), litkepohl (1985),
Lewis and Reinsel (1985) and Bhansali (1996) for prediction, Sakkkd1992) for inference in cointegrated
systems; see alsditkepohl (1991) and Reinsel (1997). In previous work [Bouhadichad Roy (20086)],
we have generalized the work of El Himdi and Roy (1997) to the case o$tatimnary multivariate infinite-
order autoregressive series VARYJ. This result allows one to develop tests against serial cross-correlatio
at a particular lag or at a fixed number of lagsuch agj| < M, whereM does not depend on the sample
sizeN.

In the univariate stationary case, Hong (18@Gtroduced an important extension of Haugh'’s procedure
by proposing a class of spectral test statistics. His approach is semipacaane valid for two infinite-
order autoregressive series AR). It is based on fitting an autoregressive model of ondéo a series
of N observations from each infinite-order autoregressive procesawiitg Berk (1974), the ordep of
the fitted autoregression is a function of the sample size. This approachlseaased by Hong (1999),
Duchesne and Roy (2003), Duchesne (2005), and recently by (80a8) for the case of two univariate
long memory processes. In Bouhaddioui and Roy (2D0is approach is extended to VAR) models,
hence protecting against misspecifications of the true underlying VARMAefaodin contrast to Haugh's
test, which is based on the residual cross-correlations gt $agh thatj| < M, the portmanteau te 5
is consistent for a large class of serial cross-correlations alteraatfvan arbitrary form between the two
series.

The main objective of this paper is to propose a semiparametric approachs tothegjonality (non-
correlation) and causality between two infinite-order cointegrated autssyge [IVAR oo0)] models. These

models were introduced by Saikkonen (1992) and involve much weahditmms than those considered by



Yap and Reinsel (1995), Pham et al. (2003), Hallin and Saidi (20@bpaidi (2007); for further, discussion
of this setup, see Saikkonen andtkepohl (1996), Saikkonen and Luukkonen (1997) aiitképohl and
Saikkonen (1997). The problem of testing the absence of correlatiovebe two IVAR co) was first
considered in Bouhaddioui and Dufour (2008), where the asymptotidhdison of an arbitrary vector
of residual cross-correlations and partial cross-correlationsruhdenypothesis of non-correlation of the
two series is derived under the assumption process innovations are@ winge noise. However, the test
statistics considered in the latter paper only consider one lag at a time or anfirelger of lagsj (for
examplelj| < M).

In this article, we propose a multivariate version of the weighted portmantatistis Oy, which is
based on the sample cross-correlation matrRélg) (7), l7] < N — 1, between residual serie{ﬁ,ﬁ”} and
{d?)}. The residuals are obtained by approximating the two multivariate (¢ARseries by finite-order
autoregressions whose order increases with the sample size at apragipmate. The test statistics continue
to have an asymptotit/ (0, 1) distribution under the hypothesis of independence of the two series eand ar
also consistent for any alternative of serial cross-correlation dfanp form. Further, by restricting the test
statistics to positive lags or negative lags, we propose modified sta@ﬁcand Q) for testing Granger
noncausality (as opposed to the absence of any correlation) betwesvotlhiector processes considered.
This is both a technically more difficult problem and one of potentially muchtgregconometric interest,
since the hypothesis of no correlation typically does not hold in economic data

The proposed tests can be applied in different contexts and may help oneldostand the dynamic
properties of economic and financial time series. In this paper, we illusteitaue by studying the link [in
the sense of orthogonality and causality] between a set of Canadiangoacamic and monetary variables
[real income, prices, interest rates, and money] and a set of corméisiy U.S. variables. For the sake of
comparability, we consider quarterly data previously studied by El HimdiRmd(1997) and Pham et al.
(2003). The results appear to be less dependent on the choice @ltiaimgarameters in portmanteau statis-
tics. The independence assumption is clearly rejected, the strongestiligkdoatemporaneous. Further,

our results indicate unidirectional Granger causality running from thevdu&bles to the Canadian ones.



The organization of the paper is as follows. Section 2 describes the stafistiv@work as well as
some preliminary results. The new test statistics are introduced in Sectionshdiehat their asymptotic
distributions under the null hypothesis a¥g0, 1). In section 4, we establish the consistency of the tests.
In Section 5, we present the results of a small Monte Carlo experimentistuithe level and power of the
tests in finite samples, including the effect of the kernel. Finally, the new testpplied in Section 6 to
a set of American and Canadian macroeconomic indicators to study mone&actions. We conclude in

Section 7. The proofs of all results are relegated to the Appendix.

2. Framework and preliminary results

Following the notations of Saikkonen (1992) and Saikkonen aiatkdpohl (1996), we consider &
dimensional procesX = {X, , t € Z} partitioned into two subprocesses; = {X;;, , t € Z},

1 = 1,2, with d; andd, components respectively(+ d, = d). The data generating process has the form:

X1t = Ci1 X9 +en, (2.1)

AXo = e, (2.2)

whereC is a givend; x ds matrix, A is the usual difference operator, and= (&),,€5,)’ is a stationary
process with zero mean and continuous spectral density matrix which is/paigtinite at zero frequency.
X o is an integrated vector process of order one (with no cointegrating redatn while X 1; and X o;
are cointegrated.

By taking first differences in (2.1), the above system can be written inottme f

_Hdl Cl ’
AX = Xi1+b=JO'X; 1 +b (2.3)
0O O
wherel; represents the x d identity matrix,J’ = [~Ig : 0], @ = [Iz, : —C4], by = [b}, : by,] is
nonsingular transformation ef defined by
biy = e + Crea, by = €9 (2.4)

The notationA = [A; : As] means that the matrid is partitioned into a matrixd; consisting of the first



dy columns and a matriXds with dy columns.

We suppose also that the procésg¢and hence;) has an infinite-order autoregressive representation

Y Gibj=a;, Go=Iy, (2.5)
=0

wherea, is independent and identically distributed white noise processiiith) = 0 andE(a;a}) = X,
is a definite positive matrix. SettinG(z) = I, — > 12, G2, the stationarity hypothesis of the procéss
implies that the zeros of the equatidet{G(z)} = 0 all lie outside the unit circléz| = 1, wheredet{ A}
denotes the determinant of the square ma#tixA further assumption is that the coefficient matri€gs

satisfy the summability condition

> MG < o (2.6)
=1

for somen > 1 and||.| is the Euclidean matrix norm defined ByA||?> = tr(A’A). This is a standard
condition for weakly stationary processes, which ensures that theggde well defined. Depending on
n, it imposes weak restrictions on the autocorrelation structure of the grogeslso, it implies that the
process; and, consequentlyX'; can be approximate by a finite-order autoregression. The prdef the
fitted autoregression is a function of the sample sizs;py = p(N). In order to reduce approximation
errors, we allow the maximal ordety to increase to infinity, at some rate, simultaneously with realization
length NV, see Burnham and Anderson (2002). In the sequel, we assume theirfigllassumption on the

finite autoregressive order.

Assumption 2.1 N=*3py — 0andvVN Y72, |G| — 0asN — oo.

The conditionpy = o(N'/3) for the rate of increase of ensures that enough sample infor-
mation is asymptotically available for estimators to have standard limiting distributiohs. cdndition
\/MZ;";IJNH |G| — 0imposes a lower bound on the growth rategf which ensures that the approx-
imation error of the true underlying model by a finite-order autoregreggtsmsmall when the sample size
increases. A more detailed discussion of these conditions is availablgkegohl (1991) and Burnham and
Anderson (2002).

Using the equations (2.3) - (2.5) and rearranging terms, we obtain theegréssiveerror correction



model(ECM) representation

AXt:WQ’Xt_1+pZNHlAXt,l+et, t=p+1,p+2, ... (2.7)
1=1
wheree; = a; — Z;’EPNH Gb_;, ¥ = — fgo G, J, and thed x d; matrix ¥ is of full column rank
(at least forpy large enough). Details for this derivation can be found in Saikkonen aticepohl (1994).
Note that the coefficient matricdd;(I = 1, ..., py) are functions o® andG,(l = 1,2, ...), and they
depend ompy . Furthermore, the sequené& (I =1, ..., py) is absolutely summable ag; — co.
The autoregressive ECM in (2.7) can also be rewritten in a pure vedimreguessive (VAR) form
pN+1
Xi= ) dXiite (2.8)
=1
where®, =1, +¥O' + II,,$,=II,— II;_1,1 =2, ..., py and®,, . = —II,,. Although thelI,
depend oy, the same is not true for the; except for®,,, 1.

Saikkonen and litkepohl (1996) derived the asymptotic properties of the multivariate $gjastre (LS)
estimators of the VAR coefficients under a standard assumption®@ley) = (@1, ..., §p, ) be the
matrix of the firstp,y autoregressive parameter matrices in the representation (2.7) and Uyeﬁif@v) =
(él, cee giipN) the corresponding LS estimator. The following proposition gives a diestlr on the
asymptotic properties of the estimafﬁ(pN). It can be proved using the same straightforward techniques

that in part (i) of Theorem 3.2 in Saikkonen (1992); see also Theorensaikkonen and litkepohl (1996).

Proposition 2.2 ASYMPTOTIC PROPERTIES OF THE AUTOREGRESSIVE PARAMETER ESRATORS.
Let{X,} a process given b§2.8) and assume thédt|a; ;a; ar 1a;| < va < 00,1 <i,j,k,l < d. Then,

under AssumptioB.1,
1/2

[8(px) — 2(0x)]| = On( ). 2.9)
Note that this proposition is formulated for the figst coefficient matrices, whereas the underlying

process fitted to the data is a VAR( + 1), wherepy goes to infinity with the sample sizZ€. The details

of the estimates of thé; are given in Saikkonen anditkepohl (1994). This result can be considered as a

generalization of Theorem 1 in Lewis and Reinsel (1985) in the infiniterasthtionary vector autoregres-

sive case. Also, in the stationary case, Paparoditis (1996) establisbeesthit under the same assumption

when the estimators of the parameters are based on a bootstrap procedure



We consider now two processg6®™ = {X\™ t € 7}, h = 1,2, with m; andm, components
respectively, which satisfy th&)/ AR(co) model (2.8). We are interested in wheth¥t!) and X(?) are
uncorrelated (or independent in the Gaussian case) at differentdsgs based on the sign of the lags, this
guestion can be generalized to study the causality in different directitwsée the two processes. Further,
we suppose that foh = 1,2, X® follows an infinite-order cointegrated vector autoregressive model
IVAR (c0) given by (2.3) and are uncorrelated. The non-correlation betiégh and X () is equivalent
to the non-correlation between the corresponding innovation proceSsemda(?, see Proposition 2.1 in

Pham et al. (2003). Thus, this hypothesis is equivalent to

Ho: po2(j)=0, jez,

where

pa?() = =" Blaa?;

—-1/2
—J ]22 /

represents the cross-correlation matrix at jJdgetween the two innovation process@s; and X', denote
respectively the covariance matrices of the innovation processeanda(?). We can also consider the two

following hypotheses to study the causality between the two processesy Fob or 1, let
Hy: p”()=0,  j>no,

and

Hy: pe2()=0, j<-—no,

be, respectively, the hypotheses for testing non-correlation (ocaasality) in positive and negative lags.
Forng = 1, the hypothesi¢{; means thaiX ® does not caus& V) (X® £ X (1)) and underH;, an
instantaneous causality exists betwgéft) and X (2. Forng = 0, the hypothesié{; is equivalent tax (!
does not caus& @ (X1 4 X(?)) and underH, an instantaneous causality exists betwd&) and

X®@ Inthe sequel# stands for convergence in law afel for convergence in probability.



3. Test statisticsand asymptotic null distributions

Based on a realizatioK%h), cee Xg\’}) of length NV, each process is fitted by a finite-order autoregressive

model VAR(pgf})). The ordelp%l) depends on the sample sixe The resulting residuals are given by

(n)
XM _son g XM i =pW o N,

dgh) _ t =1 Lpy =t (3.1)
0 if £ < pl 41,

where thefbl L are the OLS estimators o NGE We can also use the conditional maximum likelihood
PN N

estimator of the error correction form of the model as discussed by AtirRamsel (1990) and Reinsel

(1993) or some other estimator which has the same rate of convergeneereditiual cross-covariance

matrix CE;Q) (7) is defined by

-1 ( " fo<j<N-1
j 1
Zt g+1 t —J (32)

NIYN La A,ﬁjﬂ?) if -N+1<j<0,

c\? () =

while the corresponding residual cross-correlation matrix is

RUY(j) = D{c!!

a

0)~230? (j)D{cl) (0% (3:3)

au au

whereD{b;} a diagonal matrix whose elements are. .. , b,,. In the sequel, we suppose that foe= 1, 2,

X (") satisfies (2.3). We wish to test the null hypothesis that they are uncod€tatindependent in the
Gaussian casejge. p 12)( /) = 0, 7 € Z. In the nonstationary case, we also need to work with the sample
covariance and the sample correlation of the innovation process instéae sgmple covariance X, },

becausé&[X ; X;_;] depends not only on the Iggbut also orr.

3.1. Orthogonality tests

In the univariate case, Hong (199&roposed a portmanteau-type statistic which is based on the sum of the

weighted squared cross- correlaﬂo{;%2 at all possible lags between the residual series defined by

NN RGP () — Sa(k)

o = 2D (k)12

(3.4)




wherek(-) is an arbitrary kernel function, ant{ is a smoothing parameter, whikey (k) and Dy (k) are
normalization coefficients which depend on the kere):

N—-2

‘j‘ k2 ]/M DN Z ‘j‘ |.7|]\_[|' )kj4( /]\/[) (35)
N j=2—N

N-1
J=1—
They correspond to the asymptotic mean and variance of the weighted sumultlvariate time series,
the squared cross- correlatm:ﬁl 2'in (3.4) is replaced by a quadratic form in the vecté:jr2

vee [RSQ) (3)} . ForHy, the test statistic is based on the following sum of weighted quadratic forntis at a

possible lags:
N—-1
T@ %) =Y kKG/MQeLYy)
j=1-N
where
Qali) = Nr(2 () [RE?” 0 oRW©) ] £, (3.6)

andk(-) is a suitable kernel function. The parametéris a truncation point when the kernel has compact
support, or a smoothing parameter when the kernel support is unbshutMesuppose that/ is function

of N such thatM — oo andM /N — 0 whenN — oo. The most commonly used kernels typically give
more weight to lower lags and less weight to higher ones. An exception isuheated uniform kernel
kr(z) =1[|z| < 1], wherel(A) represents the indicator function of the getwhich gives the same weight
to all lags. The asymptotic distribution 6f; () is given in Bouhaddioui and Dufour (2008). In the sequel,

we suppose that the kernel functibrsatisfies the following assumption.

Assumption 3.1 The kernek : R — [—1,1] is a symmetric function, continuous at zero, with at most a

finite number of discontinuity points, such th0) = 1 and [ "> k%(z)dz < .

The propertyk(0) = 1 implies that the weights assigned to the lower lags are close to unity. The square
integrability of the kernek implies thatk(z) — 0 as|z| — oo. Thus, eventually, less weight is given to

RrRU? (7) asj increases. It is worth noting that all the kernels used in spectral anabtis$y Assumption

a

3.1; see Priestley (1981, Section 6.2.3). For the hypottgighe test statistic is a standardized version of
7(a, 3);
T(fl,, 2) - mlmgSN(k)

= 3.7
QN 2m1m2DN(kj) ) ( )

where the smoothing parametef = M (N) — oo andM /N — 0 whenN — oo.

10



This test statistic can be viewed as a normalized version aftheorm of a kernel-based estimator of
the cross-coherency function between the two innovation series. NotgShék), D (k)} are essentially
the asymptotic mean and varianceZdfa, 3) underH,. If k is the truncated uniform kernel, apart from the
standardization factorSy (k) and Dy (k), Qn corresponds to the multivariate version of Haugh's statistic
used in Pham et al. (2003) for finite-order cointegrated case and ihddioui and Dufour (2008) for the
infinite-order case, namely ¥

Py = Z Qa(J)- (3.8)
j=—M
In that case)M is a fixed integer that does not depend on the sample/éiz€he properties of?; in the
stationary VAREo) context and cointegrated IVARo) are studied respectively in Bouhaddioui and Roy
(20060) and Bouhaddioui and Dufour (2008). As it will be seen below, mampdis £ yield tests that are
more powerful tharPy,.
In the case of testing independence, under some conditions on the smqmihamgeted/ and if the

kernelk verifies the AssumptioB.1, one sees easily that
M~'Sy(k) — S(k), M—'Dy(k) — D(k),

where

An alternative statistic is obtained by replaci§g (k) and Dy (k) by their asymptotic approximations
MS(k) anM D(k) respectively and is defined by
T(a, %) — MmimaS(k)

N = . 3.9
QN 2Mm1m2D(k:) ( )

Both QO and Q7 have the same asymptotic null distribution and power properties.

The statistiaQ 5 can also be expressed in term of the autocovaria@é’é@ (0) and the cross-covariances
ng) (7) of the same residual series. Invoking Lemma 4.1 of El Himdi and Roy (199&quadratic form
T (a, X) can be written as follows in terms of the residual covariances:

N-1

T@ ) =N Y K/ () [092)(0)‘1@0&3”(0)‘1] ()
j=1—-N
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with CSQ) (j) = vec { ng) (])}
We start by defining the pseudo-statistic

N—-1
T(a,2)=N S K(/M)cE)G) (55 e 571 (2 (),
j=1-N

Wherec(12)( /) is defined a&Sz) (7) with the residual serieéa,ﬁ ), af))t_ replaced by the unobservable

N

innovation serie{agl), a§2)) . andX;, = Fflhh) (0), h = 1,2, is the covariance matrix af") . Also, we
t—=

define7 (a, X) by

N—-1
T(@, ) =N Y KG/ME? () (25" e 72 6).
j=1-N

Thus, with3), = C(hh)(o), h = 1,2, we can write the statistiQ y as

T (a, %) — mimaSn (k)

Oy = 2mimo Dy (k)
_ T(@X) —mmeSn(k) | T(a,%) -T( %) 7T 3 -T(a x%) (3.10)
2mimo Dy (k) 2mimo Dy (k) 2mimo Dy (k) ' .

Since the quantity (a, X') depends only on the stationary processhe result of Lemma 3.1 in Bouhad-

dioui and Roy (2008) is still valid. Thus, we conclude that

7 (a, X) — mymaSn (k)
2mimo Dy (k)

5 N0, 1).

The asymptotic distribution of iy follows from the next two propositions.

Proposition 3.2 APPROXIMATION OF THE PSEUDGSTATISTIC. LetX™®) andX(? be two multivariate

processes that satisfy the IVAR) model(2.8) with E|azt ]’;)a,ght a, | <y <oo, 1< 14,5,k < my,

and suppose that Assumpti8rl hold. LetM = M(N) — oo, M/N — 0 whenN — oo and Ietpg\,),

h = 1, 2, satisfy the following conditions:

12



§ o N1/2
N> lr¢§h)l2=0<M1/4>‘

J=p)+1

If the processea”) anda(? are independent, we have
T(a,%) —T(a,X) = o,(M'?).

Note that the two conditions (i) and (ii) imply that the ornjué\?) satisfies AssumptioB.1.

Proposition 3.3 ASYMPTOTIC EQUIVALENCE OF THE TEST STATISTIC Under the assumptions of

Proposition3.2, we have

T(d> 2) B T(d> 2) p
2,
2m1m2DN(k:)
Our main result is stated in the following theorem. The proof is based on thksre§the two proposi-

tions above.

Theorem 3.4 NULL ASYMPTOTIC DISTRIBUTION.  Under the assumptions of Propositi@®, the

statisticQ defined by(3.7) has an asymptotic normal distributioine. Oy L N(0,1).

3.2. Causality tests

For the hypothesefliar andH,, , we consider the test statistiZs (a, X)) and7 ~(a, ), which are obtained
by con&derm@ ( ') associated with either positive or negative lags:
N-1 —1

@, 2) =Y KG/MELY ) and T (a,2) = Y K (/M)QLV ()

j=1 j=1-N
For the hypothesi(; and#, , we have:

ot - TH@®) - mama Sy (k) (3.11)

2m1m2D]J\r,(k‘)

Q;, _ T~ (fl,, 2) — mﬂTLQS;[(k) 7 (3.12)
lengX/(k)

13



where, by symmetry,

N-—1 .
Sw(k) = Sy(k) = > (1= K (/M), (3.13)
=1
= J J j+1
Dy (k) = Dy(k) = > (1= 3)(1 = =)k (G/M). (3.14)
Jj=1

From theorenB.4, we can derive the two following results on testing noncausality between th@rov

cesses.

Proposition 3.5 ASYMPTOTIC DISTRIBUTION OF THE POSITIVE CAUSALITY TEST STAISTICS. Under
the assumptions of Theoredd, if the processea!!) and a(® satisfy’H, the test statisticQ}, has an

asymptotic standard normal distributione. Q3 Lo (0,1).

Proposition 3.6  ASYMPTOTIC DISTRIBUTION OF THE NEGATIVE CAUSALITY TEST STATSTICS. Un-
der the assumptions of Theor@, if the processea(!) anda(? satisfyH, , the test statisti@,, defined

respectively by3.12)has an asymptotic standard normal distributioe, Q) Lon (0,1).

The proof of these two propositioB$H and3.6 can be deduced easily from the proof of theoRed We
thus see that the statistics for testing noncausality follow exactly the 8aftiel ) asymptotic distribution
under the null hypothesis as the statistics for testing the absence of torréletween the two series. The

only adjustments required involve the centering and scale parametersubedding the test statistics.

4. Consistency of the generalized tests

We now investigate the asymptotic power of the t@s¢ under fixed alternatives. We consider a fixed
alternative{; of serial cross-correlation between the two innovation procaesSeésinda(? that satisfies

the following properties.

Assumption 4.1 The two innovation processes$! anda(? are jointly fourth-order stationary and their

cross-correlation structure is such thﬁtfz12 ) # 0 for at least one value of and
+o0 —+o00 “+o00

Z ITS? D12 <00y 3 3 Y Ikuwu(0,4,5.0)] < oo,

j=—o00 1=—00 j=—00 l=—00

wherer,,u (0,4, 7, 1) is the fourth-order cumulant of the joint dlstrlbutlonmft, UHZ, aszﬂ., afft)H.
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The following theorem gives conditions for the consistenc@af under a fixed alternative hypothesis.

Theorem 4.2 GLosaL POwer  Let X and X(® be two multivariate processes that satisfy the
IVAR(c0) model(2.8) and suppose that their innovation procesaés anda(? follow Assumptior.1. If
the kernelk(.) satisfies3.1 and ifp%’), h = 1,2, satisfy

2 N - _
W=o(y) X e E=o0r),

i=p+1

then

P[Qy > C(N,M)] — 1 (4.1)
for any sequence of consta§'(N, M) = o(N/M'/?)}.

This theorem entails that the test baseddn is consistent against every alternative for which the sub-
processes are depende@ti; — oo with probability approaching 1 under a fixed alternative of dependency.
Thus, the slowel grows, the faste® y will approach infinity and the test will be more powerful. To inves-
tigate the relative efficiency @, one can use the Bahadur’'s asymptotic slope criterion defined in Bahadur
(1960); see also Hong (1986199&) and Bouhaddioui and Roy (2086 Similarly to Bouhaddioui and
Roy (200&), we can show that the relative efficiency of kernkelswith respect tok; whenM = NV is
given by

AREp(ky, k1) = {gg:g}Q

We can then proceed as in Bouhaddioui (2002) and Hong @ 99®&) to derive the kernel which max-

imizes the asymptotic slope over some appropriate classes of kernel fimndionexample, consider the

following class of kernels:
k() = {k(.) satisfies Assumptiod.1, £? = 72/2, K(X\) >0 for X € (—o0, +0)}

wherek® = lim._o(1 — k(2))/2? and K(\) = 5= [*0 k(2)e~***dz. This class contains the Daniel,
Parzen and quadratic-spectral kernels among others. Using Théosé@hosh and Huang (1991) along
with similar to the one in Bouhaddioui (2002), we can see that the Danielekpgee Table 2] maximizes
the asymptotic slope af ; overx(7). As mentioned in Bouhaddioui and Roy (2@)6a test with a greater

asymptotic slope may be expected to have a greater power for a fixed tethan one with a smaller
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asymptotic slope. However, Geweke (1981) noticed that there is no clalgtiaal relationship between the
slope of a test and its power function. Hence, for a specific alternat&eannot conclude that a test with a
greater asymptotic slope should be automatically preferred to one with a snsgiteptic slope without

further analysis of the finite-sample properties of the two test statistics.

5. Simulation study

In the previous section, we studied the asymptotic distribution of the test statisties the null hypothesis.
Here we investigate the finite-sample properties of the proposed test staitispiasticular their exact level
and power. To do this, we performed a small Monte Carlo study. In addititmettest statistics discussed
in the preceding sections, the nonstationary multivariate version of HasgttisticPy, previously studied

by Pham et al. (2003) was also included:

MON
Py= Y ——Qalj), (5.1)
L= N =l
J_
whereQSQ) (7) is given by (3.6). The statistif}; is a slightly modified version af,; defined by (3.8).

5.1. Description of the experiment

In the simulation experiment, we considered bivariate se{rﬁ%l)} and{XEQ)} generated from the global
4-dimensionaVAR(2), VARMA(1,1) andVAR;(1) models described in Table 1. In the first two models,
the two subprocesseX () andX (2 are independent bivariatéAR(2) or VARMA(1,1) and served for the
level study and the corresponding submodels are partially nonstationdrynertible. The third one, in
which there is instantaneous correlation between the two innovation seeaesjsed for the power study.
The correlation depends on a paramétand the values = 1.0, 1.5 and2 were chosen. For each model,
two series length§ V' = 100, 200 were considered. With the statisti€sy and Q7 defined by (3.7) and
(3.9), we used the four kernels described in Table 2. For each kénedbllowing three truncation values
M were employedM = [in(N)], [3N%2] and[3N°3] ([a] denotes the integer part af. These rates are
discussed in Hong (1996p. 849). They lead respectively id = 5,8, 12 for the series lengtiv = 100,
and toM = 5,9, 15 for N = 200. The same truncation values were usedmgy.

In the level study,5000 independent realizations were generated from both modaR(2) and

VARMA(1,1) for each series lengthi. Computations were made in the following way.
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1. First, pseudo-random variables from tNg0, 1) distribution were obtained with the pseudo-random
normal generator of the S-plus package and were transformed intceindemt/\/ (0, ,) pseudo-random
vectors using the Cholesky decomposition. Second,Xhevalues were obtained by directly solving the
model difference equation.
2. For theVAR(2) model, the least squares estimates of the coefficients of the true modelshtained
using the procedure described in Reinsel (1993). The autoreggessier was obtained by minimizing the
AIC criterion forp < P, whereP is set toN!/3. With the VARMA(1,1), each subseries was approximated
by a possible high orde?AR model. The value of th®AR order was obtained by minimizing Hannan-
Quinn criterion using conditional least square estimation. The residda‘s$éj§h)}, h = 1,2, were cross-
correlated by computing thRgm) (j)’s as defined by (3.3).
3. For each realization, the test statistigs and Q% were compared for each of the four kernels and the
three values of\/. The same values af/ were used for the statistie;,;. The values of the statistic8y
andQj}, were compared with th&/(0, 1) critical values and those df;; to thexi@Mﬂ) critical values.
4. Finally, for each model, each series length and nominal level, the emgiagalencies of rejection of
the null hypothesis of non-correlation were obtained fromi€0 realizations. The results in percentage
are reported in Table 3. The standard error of the empirical lewel &% for the nominal levell %, 0.31%
for 5% and0.42% for 10%.

Computations for the power analysis were made in a similar way usinyARB (1) model with dif-

ferent values ob.

52. Leved
5.2.1. Gaussian innovations

Results from the level study are presented in Table 3. For WafR(2) andVARMA(1, 1) models, we
make the following observations. The asymptoti¢0, 1) distribution provides a good approximation of
the exact distributions 0@ ; and Q7 at the three nominal levels, for the five considered kernels and for
the three truncation values chosen. Almost all empirical levels are within skmadard errors of the corre-
sponding nominal levels and the majority are within two standard errors. tatistie Q7; is slightly better
approximated tha@  since most of its empirical levels are within two standard errors of the nomiredl! le
These results are similar to the stationary case. Atttheand10% nominal levels, both statistics have a
small tendency to under or over-reject. There is no significant difeerdretween the kernels. The best

approximation is obtained with the Bartlett and Bartlett-Priestley kernels andghgd®d one corresponds
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to the Parzen kernel. With the Bartlett kernel, the empirical size is always witliistandard errors of the
nominal size. For the truncated uniform kernel, the siz&gf and Q3 are very close to the size @ty,,

which is normal sinc& y and Q7 are linear transformations @f); and Py, is a finite-sample version of
Py;. For the models considered, the values of the truncation paramketes no significant effect on the
size of the tests. Finally, when the series lenf§jtlyoes from100 to 200, the approximation improves very

slightly.

5.2.2. Non-Gaussian innovations

Here, we propose another simulation experiment with innovations having azanigite contaminated nor-

mal distribution. Let us consider the following model
me(O> F) + (1 - p)Nm(Oa A)

to denote then-dimensional contaminated normal distribution in which Mg (0, I") distribution is con-

taminated with probability — p, by the,,,(0, A) distribution. We can verify that the fourth-order cumu-
lants of this distribution depends on I', A and is different from zero. Thus, we consider in this part of
the simulation two innovations seri@agl)} and{a?)} generated independently according to the following

two distributions:
PNy (0,1,) + (1 = p1)Ni, (0, 28) | paNiny (0,Tny) + (1 — pa) Ny, (0, 252

with
25 ) 25 7.5

and 2,7 = . (5.2)
5 4 75 4

o) =

Simulations were made for different pair of values fpr, p2) and for the two models of Table 1 Wheél)
andef) are now the covariance matrices of the two contaminated normal distributi@sigi(5.2). The
results in the Table 4 are obtained by usipg, p2) = (0.7,0.9), since the results for the other values of
(p1, p2) gave similar results. Finally, we see from the Table 4 that the non-normalitg @fitlovations does
not significantly affect the behavior of the test statigdig with the associate kernel function and truncation

parameter for the two sizé§ = 100 and N = 200.
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5.3. Power

The results are given in Table 5. With tiféAR;(1), the cross-correlation at lag O between the two inno-
vation series increases withand as expected, the power of the three tests considered also incrithses
0. Since the relative behaviors of the various tests are similar for the thheeswafo (1, 1.5, 2), only the
results ford = 2 are presented. Furthermore, we only present the resu@fosinceQy and Q}, have a
similar behavior with respect to the kernels and the truncation values.

The following observations are made from Table 5. First, power deesess)/ increases. Indeed, the
model considered here is characterized by the lag 0 serial correlatiguch a situation, we expect that
the tests assigning more weight to small lags will be more powerful than thsigmiarg weights to a large
number of lags. For the three significance levels and the three truncatimsythe Daniel kernel provided
the powerful test, while the Parzen, Bartlett and Bartlett-Priestley kerrget® Isimilar powers for the test
Q. However, the power of}; with the truncated uniform kernel is much smaller and is comparable to the
power of Py,. At least for the chosen model, the new te8tg or Q3 with kernels other than the truncated
uniform preferred to the nonstationary multivariate version of Hauglssig,. Finally, the power of all

tests increases when the sample size varies from 100 to 200.

6. Canada/US monetary interactions

We will now study a set of seven quarterly series of Canadian and Amegimanomic indicators used in
a study of Canadian monetary policy in order to investigate the relationshiywedre the two economies.
The data sources with the corresponding CANSIM series numbersa® igi Table 1 of Racette and
Raynauld (1992). The Canadian economic indicators are gross donresticcfion (GDP) in constant 1982
dollars, the implicit price index of gross domestic production (GDPI), the nahgimort-term interest rate
(TX.CA), and a monetary aggregate (M1). The other three variablesgept American real gross national
product (GNP) in constant 1982 dollars, the implicit price index of the Araergross national production
(GNPI), and the nominal short-term American interest rate (TX.US). Indtidy, the observation period
extends from the first quarter of 1970 through to the last quarter d3.1Bi8e natural logarithm of M1 was
taken in order to stabilize its variance. These data were first analyzedHimtgli and Roy (1997), who
considered first differences of the series to achieve stationarity, whémFt al. (2003) analyzed the same
data (undifferenced) and applied the teBig and Py, directly to the series. Since we also work directly

with the original series, we will reproduce the results of Pham et al. (2@08ompare them to our test
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statisticsQy and Q3.
In the sequel, the two vector series of Canadian and American data, ddwc{t&”} and{X,EQ)}, are
defined by

#GDPt
1000 1—10GNPt,
) 10GDPI, @
Xt = 5 Xt = 1OGNPI,5,
TX.CA;
TX.US,.
100In(M1;)

The multiplicative factors appearing in the definition of these series are e @athose used in El Himdi
and Roy (1997). With these factors, the sample variances of the variattlés each of the two vector
series have the same order of magnitude. Autoregressivg)ArRidels were fitted to each series using the
STEPAR procedure of the SCA statistical package. The autoregeassierp was selected by minimizing
the AIC criterion. For both series, using the diagnostic checks of Tia®Barq1981), this procedure led to
p = 3. The roots of the determinant of the autoregressive polynomial werewteohfor each model. The
smallest roots were respectively 1.002, 1.0504, 1.0532 for Canada2®i4, 1.0474 for the United States.

The statistics
N

Qa())" = m@a(i) (6.1)

where Q4 (j) is defined by (3.6), are displayed in Figure 1. At lewel= 0.05, the asymptotic critical
value for testing the null hypothests, of non-correlation betweea") anda(? against the alternative
Hyj - p((lm) () # 0is 21.02 and only one cross-correlation vec;@&m) (y) for j = 0 significantly differs
from zero. Figure 1 suggests there is a rather strong instantanesakton between the two series and
the null hypothesis of non-correlation between them is rejected with th&tgt) based on the cross-
correlation matrix at lag 0. The p-values of the portmanteaufgsffor H, are also reported in Table 6
for M =1, ..., 12. At the0.05 significance levelH, is rejected only for values a¥/ such that\/ < 4.
These results are similar to those in El Himdi and Roy (1997) and Pham 20aBY

With the new tests statistics, the values of the global test stati@ticand Q, with the corresponding
p-values are reported in Table 9 for the truncated uniform, Daniell amtdeBePriestley kernels. As in
the simulation study, the truncation values g V)], [3N°2] and [3N%3] which correspond to 4, 7 and
11 respectively. At the 5% significance level, the tests base@ gnand Q3 reject the hypothesis of
non-correlation between the two series wittd N and B P kernels for the three values @ff. With the

truncated uniform kernel (TR), the conclusion is the same @fhbut O does not reject when! = 7
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andM = 11. Thus, contrary to the conclusions of El Himdi and Roy (1997) and Rétaath (2003) which
reject the correlation between the two series after lag 4, our resultsragh@reconomic point of view which
stipulate that the two economies are known to be more correlated even fay aulen This conclusion is
also coherent with the simulation study which shows @at and Q7, with any of the four kernels DAN,
PAR, BAR and PB are considerably more powerful ti#gp.

Finally, to determine the direction of causality between the two series, we cotnihigteests statistics
Q}, to testH which is X® does not caus& (V). The empirical significance levels @}, are reported
in Table 7. We conclude that we rejelet, for all values ofM =1, ..., 12 with the three kernel® AN,
PZ,and@S. For the truncated kernel, we reject the non-causalityMox 9. From table 8, all empirical
significance level®,; are greater than 5%, which means th@gt is not rejected for all values df/ and for
all used kernels. We conclude th&t® causesX (V) unidirectionally,i.e. there is a unidirectional Granger

causality running from the U.S. variables to the Canadian ones.

7. Conclusion

In this paper, we have proposed a semiparametric approach to test toemelation (or independence in
the Gaussian case) and non-causality between infinite-order cointbgeaites IVARoc). The approach is
semiparametric in the sense that if the two series are VARMA, we do not nesgpawately estimate the
true model for each of the series. Instead, we fit a vector autoregresséaeioseries and the tests statistics
are based on residual cross-correlations at all possible lags. Tigktsvassigned to the lags are defined by
a kernel function and a smoothing parameter. Under the hypothesis pkindence or non-causality of the
two series, the asymptotic normality of the tests statistics are established. Thedmipée properties of the
test were investigated by a Monte Carlo experiment which shows that tHéslegasonably well controlled
for both series lengths00 and200. Furthermore, with the model considered, the four kernels DAN, PAR,
BAR, BP lead to similar powers and are more powerful than the truncatearomiernel which corresponds
to the multivariate version of the portmanteau test proposed by Bouhaddidudufour (2008). Further,
we applied these tests to a set of Canadian and American macroeconomicragtdmygariables used in El
Himdi and Roy (1997). We have shown that the choice of truncation paeaimas no effect in portmanteau
statistics. Thus, the independence hypothesis between the two seriestisdrépe all possible truncation
parameters. Also, an unidirectional Granger causality running from t8eudriables to the Canadian ones

is clearly shown.
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A. Appendix: proofs

The following notations are adopted. The Euclidian scalar produet,aindx; is defined by(x;, xs) =
x/ x, and the Euclidean norm of; by ||x;|| = \/(x¢, ;). The scalarA denotes a generic positive bounded
constant that may differ from place to place.

PROOF OFPROPOSITION3.2 First, let

U

—_ _— —_ d
SIE By By =W I .. II,)D, Y 11D,

[

where D, is a suitable nonsingular transformation matrix containing the unknown m@trixThe ECM
representation (2.7) can be written as

p
AX =WoXo 1+ Z Eej+Epr11€1,t-p-1+ €t (A1)
=1
The matricesE and¥® are defined in equatiofA.2) in Saikkonen (1992). Also, let = [£ : ¥(] and
W, = [T}, X5, (|whereY; = [e} 1, ..., €14 p 1]
Consider the following linear transformatidp = X ~'/2a;. SinceCSZ) (j) = 21_1/20212) (j)Z‘Q_l/Z, and
using the propertyec(ABC) = (C" ® A)vec(B), we have that

N—-1
/
T(@X%) = N K25 /M)t () (251 @ 27Hel ()
j=1-N
= 12 I (12 12
= N > BG/M)PG) el G) = T
j=1-N
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Thus, to prove the result, it is sufficient to show tﬁ’#llz) — Ti)(m) = 0,(M'/?). The result follows by
decomposing the latter difference in two parts,
N-1
T -1 =N Y RG/M)(lel? () — eb PGP + 20et P (5), e P () — ef V) = T + T,
j=1-N

and showing that each partd§(M1/2). Consider the positive lags> 0, since for negative lags, the proof

is similar by symmetry.

(1) 2 ( )

Defined, = b{") — b, ands), = b} . From (3.2), we have
— 12 0 ()7 2)
1 . . 12
T =N Y RG/M) e () - ey PGP = N Z K2(j/M) u— > 66— b, 6,21,
7=0 7=0 t j+1

and using Cauchy-Schwarz inequality, we obtain

N-—1 N
. 1
Ty =N Y KRGy Y @i+ 862 8l )P < AN(Tiy + Ton + o),
§=0 t=j+1

. _ . 1) . - 2

with Tiy = 2050 R2G/M)I S b i l1% Ton = S350 K2 G/M) % S04 96022 and
Tsn = Y0 k2(/M)| & i1 8 lI*. It suffices to show that the terny, j = 1,2,3, are
op(M'/2/N). Now, we can write

St _ (i)gl)_ 1—1/2 (1))Jr< -1/2 (1) b§1))
=@ —eV) + <”}
= 772" - AW Lg,(m1))

Where A" andWﬁh), h = 1,2 are defined as in (A.1) for each procesbis the LS estimator oft and
&, (p1) represents the bias of the VAR( approximation of{Xil)}.
The second equality is from Saikkonen andkepohl (1996, page 832). Also, using the result of Proposition
2.2, we deduce that
(D (1)2 p1
AT —A = —).
u I*=0n(5)
By equation 3.15 in Bouhaddioui and Roy (2@)6 we have E <||£t(p§\’}))||2> =

@) (Zl_ ™4 |, h)||) = 1,2. Also, based on the result 3.17 in Bouhaddioui and Roy (2P06
and equation (2.9), we obtain that

N—-1 p2M 1 N
Tiv = Y KG/M)l+ Z b it;_ |2 = Oy SERAGY: > KM}
j=0

t j+1 j=0
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Sincep3 = (MI/Q) we havel y = o, (25— 2 ). By symmetry, we can prove th@by = o, (25— ) For the
third termT5y, using the Cauchy-Schwarz inequality, we obtain

N—-1
Ty = Y K(j/M)|N"! Z 0751
Jj= t=j+1
~ (1) S (2) 1y e al 1 2 !
< 1AD — A7V 2A® — A7) ST RGN S Wi )W (o) |12
j=0 t=j+1
+ ]|AW - HQZk%/M (i ZW (P1)&—;(p2)'II”
—j+1
+ A® A\|2Zk2 (/M) N Z &)W (p2) I
t=7+1
N—-1
+ N RG/M)INT Z &(p1)€,_;(p2)'|I*.
j=0 t=j+1

Using the equations 3.19-3.22 in Bouhaddioui and Roy (2pQa6e assumptionpg\};) = o( N2 /MY,
NY>® o 1B (|2 = o(N/2/M?/*) and the result (2.9), we conclude tHat, = o,(M/2/N). There-
fore, we obtaln

TV = N EG/MeP6) — P ()2 = o, (M12). (A-2)

Finally, using Cauchy-Schwarz inequality once more, we have

N-1
TPl < NOST RG/M)|ey (), el () — ep D \<NZTlN,
j=1-N
with
N-1
Tiv = S RGMI? Gy Z 56 |,
§j=0 t j+1
N-1 1 N
. 12), . 1)~
Ty = Y RGMI? G5 D ool 1,
j=0 t*j-&-l
N-1
(12 ~
Ton = Y K(/M)ey™( ||r| Z Suin_ ||
§=0 t=j+1

Thus, it is sufficient to show that the terfi§y, j = 4,5,6, areo,(M'/2/N). By conditioning on
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(bgz))ﬁ,\’:_oo and using Jensen'’s inequality, we have

E <T4N | (bf))j_oo>

IA
-

[\v]
<
~
=
S~—

N
x B Y 160627 Z 18012 1D} | 621
=1 —j+l
MA 1R al
N7 iap O KU/} Z||b<2>u )2 (5 Zw )2
1-N t=1

1/2
Mpz/

N5/2

IN

= Op{ } = 0, (M'?/N).

The first equality is obtained by using the conditionspen®?), and the assumption of independence of
the two innovation series. Thefiyy = 0,(M'/2/N). By symmetry, we have alsBsy = o,(M'/2/N).
Finally, from Markov inequality, we havEN 1k2(j/M)Hc§)12)(j)||2 = O,(M/N), and using Cauchy-
Schwarz inequality and the result fd§, we obtain thaflsy = o,(M/N). Thus,T](Vz) = 0,(M'/?) and
the proof of Propositio.2 is completed. O

PROOF OF PROPOSITIOR.5 Let

N—-1
+ . ./ .
T, = N RG/Me () e, ()
j=1
N-1
= N Y RG/MECEP () ey i)
j=1
Using definition (3.2), we have
(12) T ~(12) )21 @) (12),
r[Cy () Cp ()] = N b PB4 2 Z Z Tjis' |
t=j+1 t=7+2s=j+1

Whereﬂ-(u) (bgl),b(1)><b(2) b(2)> If

J? 7=

1
Hy =N 1Zk2 (j/M) Z 168" 1211652, 12,

t=j+1

Wi = 2N~ 1Zk23/M Z Z w42,

t=7+2 s=j+1
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Thus, we can writd;)(m)+ as
7;)(12) — Hy+ W3
The proof of Propositiol3.5 can be completed by proving the following two lemmas.
LemmaA.l o~ Y(N){Hy — mimaSy(k)} 2 0 wherea?(N) = 2mima D (k).

PROOF OFLEMMA A.1 First, we note thalE(H ) = mimaSy (k) since

N—-1 N
E(Hy) = NTE{Y_K2G/M) Y [6V)6! ]}
j=1

t=j+1

Under the assumption of independence and gR(qog’” 12) = mk;, for h = 1,2, we have

N-1 N
mim .
E(Hy) = }VQJ_Z”%W/M mlmzz LV (/M) = rmamaS5 ()

Also, using Minkowski inequality, we obtain

N—-1 N
E(Hy —EHy)? = EINTVYK2G/M) Y (16721602112 — mims))?
j=1 t=j+1

AM2

IN

{M~ 1Zk2 (j/M)}?

Given assumptioB.1 and sincell — oo asN — oo, we havel ! ZN_l K2(j/M)— [° K (2)dz < o0

and thusE(Hy — EHy)? = O(M?/N). SinceM ~'D};(k) — D* (k) = [;° k*(z)dz asN — oo and
M/N — 0, we haver?(N) = 2mimoM D*(k){140(1)} = O(M) anda YN){Hy —mimaSH(k)} 2
0. O

LemmaA.2 o~ L(N)W5 & N(0,1).

PROOF OFLEMMA A2 Let Wy, = 2zt‘1 SZLR(j/M) ﬁf) Using the property
Z I 2 Sl 1= = SN o “1,itcan be shown that
N
W;\} = N_IZWNt—{—wN.
=3
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By the hypothesis of non-causality between the two processes, notexthat o,(1). We also have that
o(N)~! = O(M~'/?) and we obtain that ~*(N)wy 2 0. Therefore, the asymptotic behavior 16 is
determined by the one ¥’y = N~! Zi\is Whne. Also, using the same techniques used in Lemma A.3
of Bouhaddioui and Roy (20@, under the assumption of independence and the hypothgsithe exact
variance ofi¥ is given by:

Var(Wy) = 0?(N) where ¢*(N) = 2mima D} (k).

To continue the proof of LemmaA.2, we note that{(Wx,§:);t € Z}, whereg, is the o-algebra
generated b){(bgl), b§2))T, s < t}, is amartingale difference sin@&(Wy|§:—1) = 0. Asin Hong(1996,
199¢), the asymptotic normality dfi’y; follows from the martingale central limit theorem derived in Brown
(1971). To apply this later theorem, it is sufficient to verify the following tvemditions stated in the next
two lemmas.

LemmaA.3 07 3(N)xz S s E[WR J{[Wiy| > ea(N)}] =0, Ve > 0.

PROOF OFLEMMA A.3. To prove this lemma, it is sufficient to verify the Lyapunov condition
“YN)NAYNLE (W) —0. To do that, let ugst = Zsfl k%(j/M)(b t2)J,b£2)]> Then, we can
write Wy = 222;12@2), b§2))G(1). Given the assumption of independence of the two innovation pro-

cesses, we have

t—1
16E[> 61162 Gi))*

s=2

t—1
1sE[b S [E 62 'E(GY)! 1/2}2<A{Z .
s=2

E(Wiy)

IA

IN

The second inequality follows by applying the inequalityd " | V;)* < 3{>"1",[E(Y;})]'/2}!/2 where
the sequence of random variablgs } verifiesE(Y;) = 0 andE(Y; f (Y}, Yy, Y;)) = 0 for i # j, k, [ and for
any functionf. Also, using the same inequality, and for s, we have

s—1 s—1
E(GID) < 303 K GBI BN, IY2Y < AV ST K G/M)) = 0(2),
j=1 j=

Thus, we obtain thak(W,) < A2M? = O(t*M?). Sinces *(N) = O(M~2) and N ,E(W4,) <
AN 2M? < AN3M?, then

and the proof of LemmaA.3 is completed. O
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LemmaA.d o 2(N)w SN, Wi, 5 1, whereW2, = E (W, [5:-1).

PROOF OFLEMMA A.4 To prove this lemma, it is sufficient to show that*(N)var(N 2N, W3,) —
0. By definition of 1¥'%,, we can write

t—1
W2, = 4r (B> a2 b0 3 ba? | £ )}

s=2 51=2

let \yy = Y24 G2 2)b(l) Sincetr(AB) < tr(A)tr(B) and that the processébgh)}, h = 1,2, satisfy
the assumption of independence, we have

W3, < 4tr{Eni Ay | B (BB [ F ]} < 412y,

whereW?2,, = mi|An¢||?. The second inequality follows since by conditioningBn ;, the terms\ v
becomes constant. Thus, to prove the lemma, it is sufficient to showihdvar(N—2 3N, 1W2,,)—0
which was done in Lemma A.5 in Bouhaddioui and Roy (2406

PROOF OFPROPOSITION3.3 SinceDy (k) = MD(k){1 + o(1)}, itis sufficient to show that
T(a,%) - T(a,X) = O,(M/NY?).

Using the fact thatC(hh)( 0) — X% = 0,(N~Y/2), (see liitkepohl and Saikkonen (1997, p.133)), for
h =1, 2, it follows that

-1 -1
c0) oclMo) - x;'e X =0,(N V).

Thus,
. N-l T
T(a,)-T(a%) = N > K(i/Mecy? () 0,(N")e? ()
j=1-N
N-1
= O,(NY2) 3 B2(/MeSP () P )
j=1-N
To complete the proof, it remains to prove that
= 12), T (12
BIN) = >~ K (/M)ei” () 5 (j) = 0(M/N)
j=1-N
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First, let us decompog8(NV) in two parts

N—-1 T T N—-1 T
B(N) = Z KGNS () WP G) - e820G) PG+ Y RRG/M)EP () V)
—-N j=1-N

:61 Ba.

By an argument similar to the one used in the second part of the proof pb$ition3.2 in the Appendix,
we have that

N-1
T T
= Y RUMIRTG) e 0) — e () ea (i)} = op(M'2/N),
j=1-N
and by Markov inequality, it follows that
N-1
12) (12) , .
Z K(/M)eS? () el (5) = 0p(M/N).
j=1-N

Combining the results faB; (V) andB»(V), we obtain that
T(a, %) - T(a, X)) = 0p(N2)0,(M/N) = 0,(M/N'/?),

and the proof of PropositioB.3 is completed. Ol

PROOF OF THEOREMA.2 First, we note that the statisti@,y is a normalized version df (a, 2) which
can be viewed as th&;-norm of a kernel-based estimator of the cross-coherency functiarebs the two
innovations processes. Thus, the stati§lj¢ can be expressed as

N |53 = mims Sy (k)

Q
N 2m1m2DN(k)

)

wheresELm)

by

is the estimator of the cross-coherency function between the two innovgtioossses given

1s82013 = S A8206) (220 =) AEP04).

j=—o0

For details, see Section 4 in Bouhaddioui and Roy (2D0By definition of Q, we can write

A2 MY2||sU 13 — (M) mama S (k)
N N {2m1m2D(k)}1/2
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152113 N-1Sy(k
_ 2 _ N( ) 7 (mlmZ)

1/2
{2mimaM—1Dn(k)}Y?  {2M~1Dy(k)} '

¢From (3.13), the last term of the previous equation goes to zero Whéh — 0 asN — oo. Using the
linear transformatiorb, = X~'/2a,, as in Propositior8.2, we haveHsSQ)H = Hs;}?)y\. Also, since the
processed'!) andb® are stationary and by Lemma A.7 in Bouhaddioui and Roy (a0ge have that

~(12 12
152012 — Isg 212 2 0

(2))

whereHIeém) || is defined aﬂs(m) ||, the residual serie(sf)il), b, )N, being replaced by the innovation series

(b§1>,b§2>) ' ;. Thus, to prove the consistency result (4.1), it is sufficient to verlfy|tla§ 12— H (12) H

0, which follows from the following lemma.
LemmaA.5 Under the assumptions of Theordi, we have
12 12
18213 — 1155213 2 0

PROOF OFLEMMA A.5. By definition ofs( 2 andél(,m), and by similar calculations to those for the proof
in Proposition3.2, we obtain

N—-1
18213 = 180213 = ST RGP G - 1l G)IP)
j=1-N
N—-1 2 )
1 1 .
= X BUMIEPG) - e )P
j=1-N
= 2 2 12
1 1 . .
+ 2 Z K2 /M) ey (5), €2 () — ey P (5)-
j=1-N

Itis sufficient to prove that the first term goes to zero in probability, beedhe second term can be bounded
by a product of the first term and a finite quantity, using the Cauchy-&ahiwequality. With the notations
of Proposition3.2, we can write
N-1 3
. 12) , .
/M)y () — ey ()P <43 Tiw,
Jj=1- N —

whereT;y, | = 1,2, 3, are defined in Propositic®2. We first prove thafl;y — 0 in probability. By the
Cauchy-Schwarz inequality, we obtain

N
Tiy < M{ Z K (/M)H Z b} IIQ}{%ZH%II?}-
t=1
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By definition of7,, it follows that

N

N
1 . 5
S 2ol < Z 1A = W22 + € (p2) ).

t=j

SinceHFfln)(l)H is uniformly bounded by a positive constadt and the parametergd;} are a linear
function of the original parametef<=, }, then the bias approximation can be bounded by

o0

E[& )2 < AC Y [182])% = o(N ).

l=p2+1

See also the result (A.12) in Saikkonen (1992). Under the assumptidihg @nocess, on p, and on the
parameter$<15l(2)), we have

Mp% >
Tin = Op(52) + 0, 3 [8717) = 0,(1).
l=p2+1

By symmetry, we can verify thal,y = 0,(1). ForT3y, we can write

N-1 1 N )
Ty = Y RG/MIy Y bl
j=0 t=j+1

IN

1 N—-1 1 N A 1 N
M{== ST RGN H S S I8P HE Yo I}
§=0 t=1 t=1

By symmetry, we can prove that S, |6 = Op(%) +0,(1) 32, 41 ||<15 |12, and using the same
assumptions as those oy, we obtain thaflzy = o,(1). Finally, we conclude that

12 12
18212 = 1155212 = op(1).

This completes the proof of Lemn#a5 and then Theorem.2. O
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Table 1. Time series models used in the simulation study

MODELS EQUATIONS
1 1 (1 1 1) 1
VAR() xV ] _[e” o x| [ e o XD, | [ a?
x{? o o || x o o || xP al®
(1) (1) (1) 1 (1) (1)
X & 0 X v 0 a
VARMA(1, 1 i | & - +{ } -1 || &
SR o e R g e R B e
(1) (1) (1) (1)
X P 0 X a
VAR;(1 iy =11 =1 |y | &
s(1) { ng) } 0 @52) { <@ 52) }
Noise covariance matrices
(1) (12)
Yo = =) 0 Zas = Za >as
0 = ’ =¢) =P
Parameters values
(1) 0.4 0.0 (2) _ 1.0 0.0 (1) _ | 0.6 —-0.5 2y | =05 -0.8
! _[ —-1.0 1.0 & = —-0.8 0.5 Py = 0.3 0.4 by = —0.4 0.2
—-0.2 0.3 0.8 0.3 1.0 0.5 1.0 0.75
(1) — (2 — (1) — ) _
v { 06 1.1 } v { 01 06 } a { 05 1.0 } a 0.75 1.0
[0 o0
o 0 0.058

Table 2. Kernels used with the test statisi@gs and Q7

T . — 17 ‘Zl S 17
Truncated Uniform (TR): k(z) = { 0. otherwise
. A e P T
Bartlett (BAR): k(z) = 0, otherwise
Daniell (DAN): k(z) = S22, e R.
1—622+6|z3, if|z| <0.5,
Parzen (PAR): k(z) =< 2(1—|z))2, if0.5<]z] <1,
0, otherwise
sin(7z)

Bartlett-Priestley (BP):  k(z) = ﬁ{

Tz
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Table 3. Empirical level (in percentage) of the tgst, Q3 and Py, based on 5000 realizations for
different kernels, different truncation values, for WeR(2) andVARMA(1,1)models

oOn QN Py
N M a% DAN PAR BAR BP TR || DAN PAR BAR BP TR
1 0.7 0.6 0.8 0.7 06| 1.2 0.9 0.7 0.7 1.3|| 0.7
5 5 5.8 3.9 5.7 52 44| 5.9 4.3 5.8 6.1 3.7 4.2
10 9.6 8.0 9.5 10.6 8.3]| 10.3 8.8 9.4 10.7 9.0| 8.8
1 1.3 0.6 0.9 12 07 14 1.2 1.0 15 0.6]] 0.8
100 8 5 5.6 4.1 5.9 56 4.0/ 54 4.0 5.2 48 4.0]| 43
10 10.7 9.2 10.8 10.7 7.4] 10.6 9.6 11.0 104 82| 84
1 0.8 0.7 0.8 1.2 0.6]] 13 0.8 1.4 15 0.7 0.8
12 5 54 4.8 53 54 42| 56 4.5 4.9 57 42| 45
10 10.4 8.7 11.2 108 7.4 108 104 112 105 81| 84
VAR(2) 1 0.8 12 0.8 12 08| 0.7 0.8 12 1.3 0.7 09
5 5 5.7 5.2 5.8 55 4.1]| 55 4.2 5.9 57 44| 4.2
10 9.1 9.2 104 106 8.3] 84 10.2 10.6 10.2 8.7| 8.9

200 9 5 6.1 4.3 5.5 57 44| 63 4.6 5.5 59 45| 41

15 5 6.0 4.5 6.2 54 41| 58 4.7 5.8 56 43| 45

100 8 5 5.6 4.4 5.9 56 39| 54 4.1 55 55 43| 56

12 5 5.4 51 6.0 56 4.2|| 56 5.4 5.8 56 4.1 45

VARMA(1,1) 1 0.8 13 0.7 09 0.7 1.2 0.8 12 12 0.7 1.3

200 9 5 6.1 5.2 4.2 6.1 43|| 57 51 55 6.3 43| 5.6

15 5 || 62 46 52 60 43| 53 51 53 60 46/ 55
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Table 4. Empirical level (in percentage) of the t&st, Q3 and P;; based on 5000 realizations for
different kernels, different truncation values, for WaR(2) andVARMA(1,1) models with non-Gaussian
innovations

On [ Py
N M a% DAN PAR BAR BP TR || DAN PAR BAR BP TR
1 1.3 0.7 12 1.3 0.6 08 1.3 0.9 0.8 14| 13
5 5 5.4 4.6 5.8 53 4.1]| 55 4.4 5.9 58 4.0/ 4.2
10 9.8 8.4 105 10.7 8.2 10.5 9.0 9.1 9.3 8.5|| 89
1 0.7 1.2 0.8 1.3 0.7 1.2 0.8 0.8 1.3 0.7 0.8
100 8 5 6.0 54 4.6 58 3.8|| 57 4.2 5.6 44 40| 4.2
10 11.0 9.4 10.6 95 82| 10.8 9.4 10.8 10.6 8.4| 8.8
1 1.2 0.9 0.7 1.3 0.7]] 14 1.2 0.8 1.3 0.6/ 0.8
12 5 5.8 5.6 5.2 56 4.0/ 4.6 4.8 5.3 54 38| 4.2
10 11.3 109 11.0 10.6 8.4| 10.6 9.8 10.8 95 83| 88
VAR(2) 1 1.2 0.9 0.8 1.3 0.7 08 1.3 11 0.8 0.8 1.2

200 9 5 5.8 5.6 5.2 47 4.2/ 6.0 4.8 5.8 58 4.2/ 46

15 5 5.6 5.8 6.0 56 4.2/| 56 4.4 6.0 6.2 41| 4.6

100 8| 5 | 60 42 56 58 38 62 40 61 63 42| 60

12 5 5.8 5.3 5.8 6.0 44| 6.0 5.2 5.4 58 4.0/| 5.8

VARMA(1,1) 1 11 1.2 0.9 1.3 0.7 1.2 1.3 11 0.8 0.8 1.2

200 9 || 5 || 59 59 46 54 41| 57 61 52 58 44|58

15 5 5.4 5.8 6.2 56 4.0/ 55 5.6 5.8 54 42| 58
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Table 5. Power of the tes@y, Q3 and Py, based on their asymptotic critical values for different kernels
and different truncation values for thEéAR (1) data generation process with= 2

Ay Py
N (| M || a% || DAN PAR BAR BP TR
1 57.3 535 546 526 353246
5 5 63.2 60.1 56.4 58.6 36.826.8
10 || 72.6 70.8 625 64.3 38.2275
1 49.6 46.1 514 48.0 27.522.6
100 8 5 584 53.2 558 516 31.223.8
10 | 63.7 60.8 62.6 617 34.625.8
1 43.6 385 418 426 233189
12| 5 50.2 447 40.3 43.0 26.4 21.2
10 | 56.8 50.6 48.8 46.5 28.8 23.7
1 784 745 748 76.2 54.8 50.6
5 5 856 826 816 858 56.454.1
10 || 934 895 875 90.2 60.456.8
1 69.5 652 63.0 668 424407
i

200 9 5 756 76.6 724 782 46.244.6
10 || 80.8 785 77.6 828 50.4 46.4
1 56.8 524 548 56.1 36.832.8
15 5 60.1 574 53.2 601 40.235.0
10 || 64.8 544 542 626 44.8404

Table 6. Values of the global statistity, defined by (5.1) and its empirical significance level for

M=1,..,12
M| Py Jau [M] Py | ou
1| 52.34|0.038| 7 | 205.62| 0.092
2 | 80.24 | 0.042|| 8 | 221.77| 0.187
3 | 108.34| 0.038(| 9 | 250.60| 0.145
4 | 135.70| 0.037 (| 10 | 271.59| 0.189
5 | 159.38| 0.052 || 11 | 284.56| 0.348
6 | 181.15| 0.082 (| 12 | 306.46| 0.386
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Table 7. Empirical significance level of the global statist®s defined by (3.11) fodl =1, ..., 12
usingT R, DAN, PZ and@.S kernels

TR |DAN| PZ | QS |[M | TR | DAN | PZ QS

0.0301| 0.0342] 0.0401| 0.0403[[ 7 | 0.0421| 0.0267| 0.0422| 0.02955
0.0406| 0.0447| 0.0420| 0.0465| 8 | 0.0332| 0.0288| 0.0337| 0.02972
0.0191| 0.0452| 0.0218| 0.0448| 9 | 0.0538| 0.0273| 0.0317| 0.03028
0.0401| 0.0429| 0.0202| 0.0310| 10| 0.0555| 0.0278| 0.0341| 0.03098
0.0438| 0.0305| 0.0219| 0.0279| 11| 0.0602| 0.0279| 0.0287| 0.03176
0.0486| 0.0247| 0.0210| 0.0288| 12 | 0.0899| 0.0276| 0.0312| 0.03263

o~ wnprZ

Table 8. Empirical significance level of the global statistizs defined by (3.12) fon/ =1, ..., 12
usingT R, DAN, PZ and@.S kernels

TR | DAN | PZ QS [[M | TR | DAN | Pz QS

0.6711| 0.4601| 0.5950| 0.4935|| 7 | 0.5971| 0.6941| 0.5848| 0.7778
0.2035| 0.4939| 0.3875| 0.4895|| 8 | 0.5984| 0.7367| 0.6500| 0.7884
0.4605| 0.5722| 0.4826| 0.6736|| 9 | 0.6392| 0.7782| 0.6731| 0.8945
0.5028| 0.5851| 0.6866| 0.6733|| 10 | 0.6456| 0.7990| 0.7546| 0.7976
0.3925| 0.6955| 0.5916| 0.7821|| 11 | 0.7598| 0.8135| 0.6970| 0.6450
0.4680| 0.6985| 0.6950| 0.7896|| 12 | 0.6996| 0.7998| 0.6790| 0.7234

o hNwWwNRZ

Table 9. Values of the statisti€@y and Q% and their p-values for three kernels and three values of
M =4,7and11

M=4 M=7 M =11

Kernels|| TR DAN  BP TR  DAN BP TR  DAN BP
On 2072 1.771 2.022 0.915 2.011 1.815 0.534 1.684 1.347
o 0.019 0.038 0.021 0.179 0.022 0.034| 0.297 0.046 0.08

AN 3.656 2.118 2.4742.072 2405 3.732/1.929 1.899 3.660
o 0.0001 0.017 0.0070.019 0.007 0.00010.026 0.028 0.0001
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Figure 1. Values of the statist@, (j)* defined by (6.1) at different lags The horizontal dotted line
represents the marginal critical value at the significance lewvel0.05
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