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Abstract 
 

We propose a semiparametric approach for testing orthogonality and causality between two infinite-

order cointegrated vector autoregressive IVAR(1) series. The procedures considered can be viewed as 

extensions of classical methods proposed by Haugh (1976, JASA) and Hong (1996, Biometrika) for 

testing independence between stationary univariate time series. The tests are based on the residuals of 

long autoregressions, hence allowing for computational simplicity, weak assumptions on the form of 

the underlying process, and a direct interpretation of the results in terms of innovations (or reduced-

form shocks). The test statistics are standardized versions of the sum of weighted squares of residual 

cross-correlation matrices. The weights depend on a kernel function and a truncation parameter. The 

asymptotic distributions of the test statistics under the null hypothesis are derived, and consistency is 

established against fixed alternatives of serial cross-correlation of unknown form. Apart from 

standardization factors, the multivariate portmanteau statistic which takes into account a fixed number 

of lags, can be viewed as a special case of our procedure based on the truncated uniform kernel. A 

simulation study is presented which indicates that the proposed tests have good size and power 

properties in finite samples. The proposed procedures are applied to study interactions between 

Canadian and American monetary quarterly variables associated with monetary policy (money, 

interest rates, prices, aggregate output). The empirical results clearly allow to reject the absence of 

correlation between the shocks in both countries, and indicate a unidirectional Granger causality 

running from the U.S. variables to the Canadian ones. 

 

Key words Infinite-order cointegrated vector autoregressive process; independence; causality; 

residual cross-correlation; consistency; asymptotic power. 
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1. Introduction

Studying the dynamic relationship between two multivariate series is a fundamental objective of time series

analysis in statistics and econometrics. For example, in econometrics, this can help one to understand the

associated economic mechanisms. In this context, a basic problem consists in testing independence (or the

absence of serial cross-correlation) between two vector processes. The seminal paper on this problem is

due to Haugh (1976), who proposed a general procedure for testingindependence between two covariance-

stationary ARMA time series. His method is based on considering cross-correlations between residuals

obtained after fitting univariate ARMA models on each series. Since the innovations of an ARMA model

follow a white noise by assumption, this considerably simplifies the underlying distributional theory, and

the corresponding tests are relatively simple to apply. Further, the corresponding statistics have a direct

interpretation in terms of process innovations (or reduced-form shocks), a feature of interest in econometrics

since innovations can often be interpreted as “shocks” to economic systems. Consequently, the possibility

of focusing on “shock cross-correlations” should be useful in econometric research. Furthermore, Wiener-

Granger causality properties can also be represented in terms of the innovation cross-correlations considered

by Haugh (1976), so that causality properties can also be assessed bychecking whether relevant subsets of

innovation cross-correlations are close to zero (or not); see Pierce and Haugh (1977, 1979). The required

distributional theory is however more complex under usual noncausality hypotheses (due to the form of the

required standard errors), and no solution was proposed at that time.

The work of Haugh (1976) has been extended by several authors; see Hong (1996a), El Himdi and

Roy (1997), Pham, Roy and Cédras (2003), Hallin and Saidi (2005), Bouhaddioui and Roy (2006a, 2006b),

Hallin and Saidi (2007), Saidi (2007), and Bouhaddioui and Dufour (2008). Most of these studies focus

on independence between two multivariate finite-order vector autoregressive (VAR) or vector autoregres-

sive moving-average (VARMA) models. El Himdi and Roy (1997) extended the procedure developed by

Haugh (1976) in order to test non-correlation and non-causality between two time series in the context of

multivariate stationary and invertible VARMA models. This result was used by Hallin and Saidi (2005) to

1



develop a test that takes into account a possible pattern in the signs of cross-correlations at different lags. In

a nonparametric setup, Hallin, Jurečkovà, Picek and Zahaf (1999) proposed a test for independence between

two autoregressive time series which is based on autoregressive rank score, while Hong (1998) proposed a

test based on the empirical distribution functions.

In many cases, however, the stationarity condition is unrealistic and constitutes a heavy constraint. Fur-

ther, in nonstationary cases, it is more important to work directly with the original series without transfor-

mations (by taking differences on each component) which causes distributional complications and can lead

to misleading results. Engle and Granger (1987) introduced the concept of cointegration which is used in

many recent studies across several fields. In the case of a finite-order autoregressive cointegrated vector,

Ahn and Reinsel (1990) developed an efficient method estimation in Gaussian processes. Yap and Reinsel

(1995) proposed a full-rank and reduced rank Gaussian estimation procedures for cointegrated VARMA

processes. For a good discussion of the related models, see Lütkepohl (2001). By exploiting the estimation

methods proposed by Yap and Reinsel (1995), Pham et al. (2003) generalized the main result of El Himdi

and Roy (1997) to the case of two cointegrated (or partially nonstationary)VARMA series. They proposed

test statistics based on residual cross-correlation matricesR
(12)
â

(j), |j| ≤ M, whereM does not depend on

the sample sizeN , between the two residual series{â(1)
t } and{â(2)

t } resulting from fitting thetrueVARMA

models to each of the original series{X(1)
t } and{ X

(2)
t }. Under the hypothesis of non-correlation between

the two series, they show that an arbitrary vector of residual cross-correlations asymptotically follows a

multivariate normal distribution.

In practice, a finite-order VAR model is a rough approximation to the true datagenerating process of

a given multivariate time series. It is not common for the true model to be a function of a small number

of unknown parameters. From this perspective, a more flexible alternative approach assumes that the data

are generated by an infinite-order autoregressive process. Such models lead one to consider a truncated

(potentially long) autoregression as an approximation of the underlying process. Very often in statistics, the

properties of estimators and test statistics under the assumption of a true model, even if model assumptions

are clearly not fulfilled. For example, in VARMA estimation, it is well known thatmisspecification of the
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AR or MA orders can lead to inconsistent estimators. Further, the estimation ofVARMA models is highly

nonlinear and raises difficult identification issues (in the sense of model non-unicity). Correspondingly, non-

causality hypotheses become nonlinear and lead to non-standard distributional problems; see Boudjellaba,

Dufour and Roy (1992, 1994).

The autoregressive model fitting approach has been successfully applied by several authors: Akaike

(1969), Berk (1974) and Parzen (1974) for spectral density estimation, Parzen (1974), L̈utkepohl (1985),

Lewis and Reinsel (1985) and Bhansali (1996) for prediction, Saikkonen (1992) for inference in cointegrated

systems; see also Lütkepohl (1991) and Reinsel (1997). In previous work [Bouhaddioui and Roy (2006b)],

we have generalized the work of El Himdi and Roy (1997) to the case of twostationary multivariate infinite-

order autoregressive series VAR(∞). This result allows one to develop tests against serial cross-correlation

at a particular lag or at a fixed number of lagsj such as|j| ≤ M , whereM does not depend on the sample

sizeN .

In the univariate stationary case, Hong (1996c) introduced an important extension of Haugh’s procedure

by proposing a class of spectral test statistics. His approach is semiparametric and valid for two infinite-

order autoregressive series AR(∞). It is based on fitting an autoregressive model of orderp to a series

of N observations from each infinite-order autoregressive process. Following Berk (1974), the orderp of

the fitted autoregression is a function of the sample size. This approach wasalso used by Hong (1999),

Duchesne and Roy (2003), Duchesne (2005), and recently by Shao(2008) for the case of two univariate

long memory processes. In Bouhaddioui and Roy (2006a), this approach is extended to VAR(∞) models,

hence protecting against misspecifications of the true underlying VARMA models. In contrast to Haugh’s

test, which is based on the residual cross-correlations at lagj such that|j| ≤ M , the portmanteau testQN

is consistent for a large class of serial cross-correlations alternatives of an arbitrary form between the two

series.

The main objective of this paper is to propose a semiparametric approach to test orthogonality (non-

correlation) and causality between two infinite-order cointegrated autoregressive [IVAR(∞)] models. These

models were introduced by Saikkonen (1992) and involve much weaker conditions than those considered by
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Yap and Reinsel (1995), Pham et al. (2003), Hallin and Saidi (2005) and Saidi (2007); for further, discussion

of this setup, see Saikkonen and Lütkepohl (1996), Saikkonen and Luukkonen (1997) and Lütkepohl and

Saikkonen (1997). The problem of testing the absence of correlation between two IVAR(∞) was first

considered in Bouhaddioui and Dufour (2008), where the asymptotic distribution of an arbitrary vector

of residual cross-correlations and partial cross-correlations under the hypothesis of non-correlation of the

two series is derived under the assumption process innovations are a strong white noise. However, the test

statistics considered in the latter paper only consider one lag at a time or a fixednumber of lagsj (for

example|j| ≤ M).

In this article, we propose a multivariate version of the weighted portmanteau statisticQN , which is

based on the sample cross-correlation matricesR
(12)
â

(j), |j| ≤ N − 1, between residual series{â(1)
t } and

{â(2)
t }. The residuals are obtained by approximating the two multivariate IVAR(∞) series by finite-order

autoregressions whose order increases with the sample size at an appropriate rate. The test statistics continue

to have an asymptoticN (0, 1) distribution under the hypothesis of independence of the two series and are

also consistent for any alternative of serial cross-correlation of arbitrary form. Further, by restricting the test

statistics to positive lags or negative lags, we propose modified statisticsQ+
N andQ−

N for testing Granger

noncausality (as opposed to the absence of any correlation) between thetwo vector processes considered.

This is both a technically more difficult problem and one of potentially much greater econometric interest,

since the hypothesis of no correlation typically does not hold in economic data.

The proposed tests can be applied in different contexts and may help one tounderstand the dynamic

properties of economic and financial time series. In this paper, we illustrate their use by studying the link [in

the sense of orthogonality and causality] between a set of Canadian macroeconomic and monetary variables

[real income, prices, interest rates, and money] and a set of corresponding U.S. variables. For the sake of

comparability, we consider quarterly data previously studied by El Himdi andRoy (1997) and Pham et al.

(2003). The results appear to be less dependent on the choice of truncation parameters in portmanteau statis-

tics. The independence assumption is clearly rejected, the strongest link being contemporaneous. Further,

our results indicate unidirectional Granger causality running from the U.S.variables to the Canadian ones.

4



The organization of the paper is as follows. Section 2 describes the statistical framework as well as

some preliminary results. The new test statistics are introduced in Section 3. Weshow that their asymptotic

distributions under the null hypothesis areN (0, 1). In section 4, we establish the consistency of the tests.

In Section 5, we present the results of a small Monte Carlo experiment studying the level and power of the

tests in finite samples, including the effect of the kernel. Finally, the new tests are applied in Section 6 to

a set of American and Canadian macroeconomic indicators to study monetary interactions. We conclude in

Section 7. The proofs of all results are relegated to the Appendix.

2. Framework and preliminary results

Following the notations of Saikkonen (1992) and Saikkonen and Lütkepohl (1996), we consider ad-

dimensional processX = {Xt , t ∈ Z} partitioned into two subprocessesXi = {Xit , t ∈ Z},

i = 1, 2, with d1 andd2 components respectively (d1 + d2 = d). The data generating process has the form:

X1t = C1X2t + ε1t, (2.1)

∆X2t = ε2t, (2.2)

whereC1 is a givend1 × d2 matrix, ∆ is the usual difference operator, andε = (ε′1t, ε
′
2t)

′ is a stationary

process with zero mean and continuous spectral density matrix which is positive definite at zero frequency.

X2t is an integrated vector process of order one (with no cointegrating relationship), whileX1t andX2t

are cointegrated.

By taking first differences in (2.1), the above system can be written in the form

∆Xt =





−Id1 C1

0 0



Xt−1 + bt = JΘ′Xt−1 + bt (2.3)

whereId represents thed × d identity matrix,J ′ = [−Id1 : 0], Θ′ = [Id1 : −C1], bt = [b′1t : b′2t]
′ is

nonsingular transformation ofεt defined by

b1t = ε1t + C1ε2t , b2t = ε2t . (2.4)

The notationA = [A1 : A2] means that the matrixA is partitioned into a matrixA1 consisting of the first
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d1 columns and a matrixA2 with d2 columns.

We suppose also that the processbt (and henceεt) has an infinite-order autoregressive representation

∞
∑

l=0

Gjbt−j = at, G0 = Id, (2.5)

whereat is independent and identically distributed white noise process withE(at) = 0 andE(ata
′
t) = Σa

is a definite positive matrix. SettingG(z) = Id −
∑∞

l=1 Glz
l, the stationarity hypothesis of the processbt

implies that the zeros of the equationdet{G(z)} = 0 all lie outside the unit circle|z| = 1, wheredet{A}
denotes the determinant of the square matrixA. A further assumption is that the coefficient matricesGl

satisfy the summability condition
∞
∑

l=1

ln‖Gl‖ < ∞ (2.6)

for somen ≥ 1 and‖.‖ is the Euclidean matrix norm defined by‖A‖2 = tr(A′A). This is a standard

condition for weakly stationary processes, which ensures that the process be well defined. Depending on

n, it imposes weak restrictions on the autocorrelation structure of the process bt. Also, it implies that the

processbt and, consequently,Xt can be approximate by a finite-order autoregression. The orderpN of the

fitted autoregression is a function of the sample size;i.e., pN = p(N). In order to reduce approximation

errors, we allow the maximal orderpN to increase to infinity, at some rate, simultaneously with realization

lengthN , see Burnham and Anderson (2002). In the sequel, we assume the following assumption on the

finite autoregressive order.

Assumption 2.1 N−1/3pN → 0 and
√

N
∑∞

l=pN+1 ‖Gl‖ → 0 asN → ∞.

The conditionpN = o(N1/3) for the rate of increase ofpN ensures that enough sample infor-

mation is asymptotically available for estimators to have standard limiting distributions. The condition
√

pN
∑∞

j=pN+1 ‖Gj‖ → 0 imposes a lower bound on the growth rate ofpN , which ensures that the approx-

imation error of the true underlying model by a finite-order autoregressiongets small when the sample size

increases. A more detailed discussion of these conditions is available in Lütkepohl (1991) and Burnham and

Anderson (2002).

Using the equations (2.3) - (2.5) and rearranging terms, we obtain the autoregressiveerror correction
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model(ECM) representation

∆Xt = ΨΘ′Xt−1 +

pN
∑

l=1

Π l∆Xt−l + et, t = p + 1, p + 2, . . . (2.7)

whereet = at −
∑∞

l=pN+1 Glbt−l, Ψ = −∑pN

l=0 GlJ , and thed × d1 matrix Ψ is of full column rank

(at least forpN large enough). Details for this derivation can be found in Saikkonen and Lütkepohl (1994).

Note that the coefficient matricesΠ l(l = 1, . . . , pN ) are functions ofΘ andGl(l = 1, 2, ...), and they

depend onpN . Furthermore, the sequenceΠ l(l = 1, . . . , pN ) is absolutely summable aspN → ∞.

The autoregressive ECM in (2.7) can also be rewritten in a pure vector autoregressive (VAR) form

Xt =

pN+1
∑

l=1

ΦlXt−l + et (2.8)

whereΦ1 = Id + ΨΘ′ + Π1, Φl = Π l − Π l−1, l = 2, . . . , pN andΦpN+1 = −ΠpN . Although theΠ l

depend onpN , the same is not true for theΦl except forΦpN+1.

Saikkonen and L̈utkepohl (1996) derived the asymptotic properties of the multivariate leastsquare (LS)

estimators of the VAR coefficients under a standard assumption. LetΦ(pN ) = (Φ1, . . . , ΦpN ) be the

matrix of the firstpN autoregressive parameter matrices in the representation (2.7) and denoteby Φ̂(pN ) =

(Φ̂1, . . . , Φ̂pN ) the corresponding LS estimator. The following proposition gives a direct result on the

asymptotic properties of the estimatorΦ̂(pN ). It can be proved using the same straightforward techniques

that in part (i) of Theorem 3.2 in Saikkonen (1992); see also Theorem 2in Saikkonen and L̈utkepohl (1996).

Proposition 2.2 ASYMPTOTIC PROPERTIES OF THE AUTOREGRESSIVE PARAMETER ESTIMATORS.

Let {Xt} a process given by(2.8) and assume thatE|ai,taj,tak,tal,t| < γ4 < ∞, 1 ≤ i, j, k, l ≤ d. Then,

under Assumption2.1,

‖Φ̂(pN ) − Φ(pN )‖ = Op(
p
1/2
N

N1/2
). (2.9)

Note that this proposition is formulated for the firstpN coefficient matrices, whereas the underlying

process fitted to the data is a VAR(pN + 1), wherepN goes to infinity with the sample sizeN . The details

of the estimates of theΦl are given in Saikkonen and Lütkepohl (1994). This result can be considered as a

generalization of Theorem 1 in Lewis and Reinsel (1985) in the infinite-order stationary vector autoregres-

sive case. Also, in the stationary case, Paparoditis (1996) established this result under the same assumption

when the estimators of the parameters are based on a bootstrap procedure.
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We consider now two processesX(h) = {X(h)
t , t ∈ Z}, h = 1, 2, with m1 andm2 components

respectively, which satisfy theIV AR(∞) model (2.8). We are interested in whetherX(1) andX(2) are

uncorrelated (or independent in the Gaussian case) at different lags. Also, based on the sign of the lags, this

question can be generalized to study the causality in different directions between the two processes. Further,

we suppose that forh = 1, 2, X(h) follows an infinite-order cointegrated vector autoregressive model

IVAR(∞) given by (2.3) and are uncorrelated. The non-correlation betweenX(1) andX(2) is equivalent

to the non-correlation between the corresponding innovation processesa(1) anda(2), see Proposition 2.1 in

Pham et al. (2003). Thus, this hypothesis is equivalent to

H0 : ρ
(12)
a (j) = 0 , j ∈ Z,

where

ρ
(12)
a (j) = Σ

−1/2
1

E[a
(1)
t a

(2)T

t−j ]Σ
−1/2
2

represents the cross-correlation matrix at lagj between the two innovation processes.Σ1 andΣ2 denote

respectively the covariance matrices of the innovation processesa(1) anda(2). We can also consider the two

following hypotheses to study the causality between the two processes. Forn0 = 0 or 1, let

H+
0 : ρ

(12)
a (j) = 0 , j ≥ n0,

and

H−
0 : ρ

(12)
a (j) = 0 , j ≤ −n0,

be, respectively, the hypotheses for testing non-correlation (or non-causality) in positive and negative lags.

For n0 = 1, the hypothesisH+
0 means thatX(2) does not causeX(1) (X(2) 6→ X(1)) and underH−

0 , an

instantaneous causality exists betweenX(1) andX(2). Forn0 = 0, the hypothesisH−
0 is equivalent toX(1)

does not causeX(2) (X(1) 6→ X(2)) and underH+
0 , an instantaneous causality exists betweenX(1) and

X(2). In the sequel,
L→ stands for convergence in law and

p→ for convergence in probability.
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3. Test statistics and asymptotic null distributions

Based on a realizationX(h)
1 , . . . , X

(h)
N of lengthN , each process is fitted by a finite-order autoregressive

model VAR(p(h)
N ). The orderp(h)

N depends on the sample sizeN . The resulting residuals are given by

â
(h)
t =











X
(h)
t −∑p

(h)
N +1

l=1 Φ̂
l,p

(h)
N

X
(h)
t−l if t = p

(h)
N + 2, . . . , N ,

0 if t ≤ p
(h)
N + 1,

(3.1)

where theΦ̂
l,p

(h)
N

are the OLS estimators ofΦ
l,p

(h)
N

. We can also use the conditional maximum likelihood

estimator of the error correction form of the model as discussed by Ahn and Reinsel (1990) and Reinsel

(1993) or some other estimator which has the same rate of convergence. The residual cross-covariance

matrix C
(12)
â

(j) is defined by

C
(12)
â

(j) =











N−1
∑N

t=j+1 â
(1)
t â

(2)T

t−j if 0 ≤ j ≤ N − 1 ,

N−1
∑N

t=−j+1 â
(1)
t+jâ

(2)T

t if −N + 1 ≤ j ≤ 0 ,
(3.2)

while the corresponding residual cross-correlation matrix is

R
(12)
â

(j) = D{c(11)
â,ii (0)−1/2}C(12)

â
(j)D{c(11)

â,ii (0)−1/2} (3.3)

whereD{bi} a diagonal matrix whose elements areb1, . . . , bm. In the sequel, we suppose that forh = 1, 2,

X
(h) satisfies (2.3). We wish to test the null hypothesis that they are uncorrelated (or independent in the

Gaussian case),i.e. ρ
(12)
X

(j) = 0, j ∈ Z. In the nonstationary case, we also need to work with the sample

covariance and the sample correlation of the innovation process instead ofthe sample covariance of{Xt},

becauseE[XtX
′
t−j ] depends not only on the lagj but also ont.

3.1. Orthogonality tests

In the univariate case, Hong (1996c) proposed a portmanteau-type statistic which is based on the sum of the

weighted squared cross-correlationsr
(12)
â (j) at all possible lags between the residual series defined by

QN =
N
∑N−1

j=1−N k2(j/M)r
(12)
â (j)

2
− SN (k)

{2DN (k)}1/2
(3.4)
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wherek(·) is an arbitrary kernel function, andM is a smoothing parameter, whileSN (k) andDN (k) are

normalization coefficients which depend on the kernelk(·):

SN (k) =
N−1
∑

j=1−N

(1 − |j|
N

)k2(j/M), DN (k) =
N−2
∑

j=2−N

(1 − |j|
N

)(1 − |j| + 1

N
)k4(j/M) . (3.5)

They correspond to the asymptotic mean and variance of the weighted sum. Inmultivariate time series,

the squared cross-correlationr(12)
â (j)2 in (3.4) is replaced by a quadratic form in the vectorr

(12)
â

(j) =

vec
[

R
(12)
â

(j)
]

. ForH0, the test statistic is based on the following sum of weighted quadratic forms at all

possible lags:

T (â, Σ̂) =

N−1
∑

j=1−N

k2(j/M)Q
(12)
â

(j)

where

Qâ(j) = Nr
(12)
â

(j)
′
[

R
(22)
â

(0)
−1

⊗ R
(11)
â

(0)
−1
]

r
(12)
â

(j), (3.6)

andk(·) is a suitable kernel function. The parameterM is a truncation point when the kernel has compact

support, or a smoothing parameter when the kernel support is unbounded. We suppose thatM is function

of N such thatM → ∞ andM/N → 0 whenN → ∞. The most commonly used kernels typically give

more weight to lower lags and less weight to higher ones. An exception is the truncated uniform kernel

kT (z) = I[|z| ≤ 1], whereI(A) represents the indicator function of the setA, which gives the same weight

to all lags. The asymptotic distribution ofQâ(j) is given in Bouhaddioui and Dufour (2008). In the sequel,

we suppose that the kernel functionk satisfies the following assumption.

Assumption 3.1 The kernelk : R → [−1, 1] is a symmetric function, continuous at zero, with at most a

finite number of discontinuity points, such thatk(0) = 1 and
∫ +∞
−∞ k2(z)dz < ∞.

The propertyk(0) = 1 implies that the weights assigned to the lower lags are close to unity. The square

integrability of the kernelk implies thatk(z) → 0 as|z| → ∞. Thus, eventually, less weight is given to

R
(12)
â

(j) asj increases. It is worth noting that all the kernels used in spectral analysissatisfy Assumption

3.1; see Priestley (1981, Section 6.2.3). For the hypothesisH0, the test statistic is a standardized version of

T (â, Σ̂);

QN =
T (â, Σ̂) − m1m2SN (k)
√

2m1m2DN (k)
, (3.7)

where the smoothing parameterM = M(N) → ∞ andM/N → 0 whenN → ∞.
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This test statistic can be viewed as a normalized version of theL2-norm of a kernel-based estimator of

the cross-coherency function between the two innovation series. Note that {SN (k), DN (k)} are essentially

the asymptotic mean and variance ofT (â, Σ̂) underH0. If k is the truncated uniform kernel, apart from the

standardization factorsSN (k) andDN (k), QN corresponds to the multivariate version of Haugh’s statistic

used in Pham et al. (2003) for finite-order cointegrated case and in Bouhaddioui and Dufour (2008) for the

infinite-order case, namely

PM =
M
∑

j=−M

Qâ(j). (3.8)

In that case,M is a fixed integer that does not depend on the sample sizeN . The properties ofPM in the

stationary VAR(∞) context and cointegrated IVAR(∞) are studied respectively in Bouhaddioui and Roy

(2006b) and Bouhaddioui and Dufour (2008). As it will be seen below, many kernelsk yield tests that are

more powerful thanPM .

In the case of testing independence, under some conditions on the smoothingparameterM and if the

kernelk verifies the Assumption3.1, one sees easily that

M−1SN (k) → S(k) , M−1DN (k) → D(k),

where

S(k) =

∫ +∞

−∞
k2(z)dz , D(k) =

∫ +∞

−∞
k4(z)dz.

An alternative statistic is obtained by replacingSN (k) and DN (k) by their asymptotic approximations

MS(k) anMD(k) respectively and is defined by

Q∗
N =

T (â, Σ̂) − Mm1m2S(k)
√

2Mm1m2D(k)
. (3.9)

BothQN andQ∗
N have the same asymptotic null distribution and power properties.

The statisticQN can also be expressed in term of the autocovariancesC
(hh)
â

(0) and the cross-covariances

C
(12)
â

(j) of the same residual series. Invoking Lemma 4.1 of El Himdi and Roy (1997), the quadratic form

T (â, Σ̂) can be written as follows in terms of the residual covariances:

T (â, Σ̂) = N
N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
′
[

C
(22)
â

(0)
−1

⊗ C
(11)
â

(0)
−1
]

c
(12)
â

(j)

11



with c
(12)
â

(j) = vec
[

C
(12)
â

(j)
]

.

We start by defining the pseudo-statistic

T (a, Σ) = N
N−1
∑

j=1−N

k2(j/M)c
(12)
a (j)

′ (
Σ−1

2 ⊗ Σ−1
1

)

c
(12)
a (j),

wherec(12)
a (j) is defined asc(12)

â
(j) with the residual series

(

â
(1)
t , â

(2)
t

)N

t=1
replaced by the unobservable

innovation series
(

a
(1)
t , a

(2)
t

)N

t=1
andΣh = Γ

(hh)
a (0), h = 1, 2, is the covariance matrix ofa(h). Also, we

defineT (â, Σ) by

T (â, Σ) = N
N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
′
(Σ−1

2 ⊗ Σ−1
1 )c

(12)
â

(j).

Thus, withΣ̂h = C
(hh)
â

(0), h = 1, 2, we can write the statisticQN as

QN =
T (â, Σ̂) − m1m2SN (k)
√

2m1m2DN (k)

=
T (a, Σ) − m1m2SN (k)
√

2m1m2DN (k)
+

T (â, Σ) − T (a, Σ)
√

2m1m2DN (k)
+

T (â, Σ̂) − T (â, Σ)
√

2m1m2DN (k)
. (3.10)

Since the quantityT (a, Σ) depends only on the stationary processa, the result of Lemma 3.1 in Bouhad-

dioui and Roy (2006a) is still valid. Thus, we conclude that

T (a, Σ) − m1m2SN (k)
√

2m1m2DN (k)

L→ N (0, 1).

The asymptotic distribution ofQN follows from the next two propositions.

Proposition 3.2 APPROXIMATION OF THE PSEUDO-STATISTIC. LetX(1) andX
(2) be two multivariate

processes that satisfy the IVAR(∞) model(2.8) with E|a(h)
i,t a

(h)
j,t a

(h)
k,t a

(h)
l,t | < γ4 < ∞, 1 ≤ i, j, k, l ≤ mh,

and suppose that Assumption3.1 hold. LetM = M(N) → ∞, M/N → 0 whenN → ∞ and letp(h)
N ,

h = 1, 2, satisfy the following conditions:

(i) p
(h)
N = o

(

N1/2

M1/4

)

,

12



(ii) N
∞
∑

j=p
(h)
N +1

||Φ(h)
j ||2 = o

(

N1/2

M1/4

)

.

If the processesa(1) anda(2) are independent, we have

T (â, Σ) − T (a, Σ) = op(M
1/2).

Note that the two conditions (i) and (ii) imply that the orderp
(h)
N satisfies Assumption2.1.

Proposition 3.3 ASYMPTOTIC EQUIVALENCE OF THE TEST STATISTIC. Under the assumptions of

Proposition3.2, we have
T (â, Σ̂) − T (â, Σ)
√

2m1m2DN (k)

p→ 0.

Our main result is stated in the following theorem. The proof is based on the results of the two proposi-

tions above.

Theorem 3.4 NULL ASYMPTOTIC DISTRIBUTION. Under the assumptions of Proposition3.2, the

statisticQN defined by(3.7)has an asymptotic normal distribution,i.e. QN
L→ N (0, 1).

3.2. Causality tests

For the hypothesesH+
0 andH−

0 , we consider the test statisticsT +(â, Σ̂) andT −(â, Σ̂), which are obtained

by consideringQ(12)
â

(j) associated with either positive or negative lags:

T +(â, Σ̂) =
N−1
∑

j=1

k2(j/M)Q
(12)
â

(j) and T −(â, Σ̂) =
−1
∑

j=1−N

k2(j/M)Q
(12)
â

(j)

For the hypothesisH+
0 andH−

0 , we have:

Q+
N =

T +(â, Σ̂) − m1m2S
+
N (k)

√

2m1m2D
+
N (k)

, (3.11)

Q−
N =

T −(â, Σ̂) − m1m2S
−
N (k)

√

2m1m2D
−
N (k)

, (3.12)

13



where, by symmetry,

S+
N (k) = S−

N (k) =
N−1
∑

j=1

(1 − j

N
)k2(j/M), (3.13)

D+
N (k) = D−

N (k) =
N−2
∑

j=1

(1 − j

N
)(1 − j + 1

N
)k4(j/M). (3.14)

From theorem3.4, we can derive the two following results on testing noncausality between the two pro-

cesses.

Proposition 3.5 ASYMPTOTIC DISTRIBUTION OF THE POSITIVE CAUSALITY TEST STATISTICS. Under

the assumptions of Theorem3.4, if the processesa(1) and a(2) satisfyH+
0 , the test statisticQ+

N has an

asymptotic standard normal distribution,i.e. Q+
N

L→ N (0, 1).

Proposition 3.6 ASYMPTOTIC DISTRIBUTION OF THE NEGATIVE CAUSALITY TEST STATISTICS. Un-

der the assumptions of Theorem3.4, if the processesa(1) anda(2) satisfyH−
0 , the test statisticQ−

N defined

respectively by(3.12)has an asymptotic standard normal distribution,i.e. Q−
N

L→ N (0, 1).

The proof of these two propositions3.5 and3.6 can be deduced easily from the proof of theorem3.4. We

thus see that the statistics for testing noncausality follow exactly the sameN (0, 1) asymptotic distribution

under the null hypothesis as the statistics for testing the absence of correlation between the two series. The

only adjustments required involve the centering and scale parameters used for building the test statistics.

4. Consistency of the generalized tests

We now investigate the asymptotic power of the testQN under fixed alternatives. We consider a fixed

alternativeH1 of serial cross-correlation between the two innovation processesa(1) anda(2) that satisfies

the following properties.

Assumption 4.1 The two innovation processesa(1) anda(2) are jointly fourth-order stationary and their

cross-correlation structure is such thatΓ
(12)
a (j) 6= 0 for at least one value ofj and

+∞
∑

j=−∞

‖Γ (12)
a (j)‖2 < ∞ ,

+∞
∑

i=−∞

+∞
∑

j=−∞

+∞
∑

l=−∞

|κuvuv(0, i, j, l)| < ∞,

whereκuvuv(0, i, j, l) is the fourth-order cumulant of the joint distribution ofa
(1)
u,t , a

(2)
v,t+i, a

(1)
u,t+j , a

(2)
v,t+l.

14



The following theorem gives conditions for the consistency ofQN under a fixed alternative hypothesis.

Theorem 4.2 GLOBAL POWER. Let X(1) and X(2) be two multivariate processes that satisfy the

IVAR(∞) model(2.8)and suppose that their innovation processesa(1) anda(2) follow Assumption4.1. If

the kernelk(.) satisfies3.1 and ifp(h)
N , h = 1, 2, satisfy

p
(h)2

N = o

(

N

M

)

,
∞
∑

j=p
(h)
N +1

‖Φ(h)
j ‖2 = o

(

M−1
)

,

then

P [QN > C(N, M)] → 1 (4.1)

for any sequence of constants{C(N, M) = o(N/M1/2)}.

This theorem entails that the test based onQN is consistent against every alternative for which the sub-

processes are dependent:QN → ∞ with probability approaching 1 under a fixed alternative of dependency.

Thus, the slowerM grows, the fasterQN will approach infinity and the test will be more powerful. To inves-

tigate the relative efficiency ofQN , one can use the Bahadur’s asymptotic slope criterion defined in Bahadur

(1960); see also Hong (1996a, 1996c) and Bouhaddioui and Roy (2006a). Similarly to Bouhaddioui and

Roy (2006a), we can show that the relative efficiency of kernelsk2 with respect tok1 whenM = Nν is

given by

AREB(k2, k1) =

{

D(k1)

D(k2)

}
1

2−ν

.

We can then proceed as in Bouhaddioui (2002) and Hong (1996a, 1996c) to derive the kernel which max-

imizes the asymptotic slope over some appropriate classes of kernel functions. For example, consider the

following class of kernels:

κ(τ) = {k(.) satisfies Assumption4.1, k(2) = τ2/2, K(λ) ≥ 0 for λ ∈ (−∞, +∞)}

wherek(2) = limz→0(1 − k(z))/z2 andK(λ) = 1
2π

∫∞
−∞ k(z)e−izλdz. This class contains the Daniel,

Parzen and quadratic-spectral kernels among others. Using Theorem1 of Ghosh and Huang (1991) along

with similar to the one in Bouhaddioui (2002), we can see that the Daniell kernel [see Table 2] maximizes

the asymptotic slope ofQN overκ(τ). As mentioned in Bouhaddioui and Roy (2006a), a test with a greater

asymptotic slope may be expected to have a greater power for a fixed alternative than one with a smaller
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asymptotic slope. However, Geweke (1981) noticed that there is no clear analytical relationship between the

slope of a test and its power function. Hence, for a specific alternative,we cannot conclude that a test with a

greater asymptotic slope should be automatically preferred to one with a smaller asymptotic slope without

further analysis of the finite-sample properties of the two test statistics.

5. Simulation study

In the previous section, we studied the asymptotic distribution of the test statisticsunder the null hypothesis.

Here we investigate the finite-sample properties of the proposed test statistics, in particular their exact level

and power. To do this, we performed a small Monte Carlo study. In addition tothe test statistics discussed

in the preceding sections, the nonstationary multivariate version of Haugh’s statisticP ∗
M previously studied

by Pham et al. (2003) was also included:

P ∗
M =

M
∑

j=−M

N

N − |j|Qâ(j), (5.1)

whereQ
(12)
â

(j) is given by (3.6). The statisticP ∗
M is a slightly modified version ofPM defined by (3.8).

5.1. Description of the experiment

In the simulation experiment, we considered bivariate series{ X
(1)
t } and{X(2)

t } generated from the global

4-dimensionalVAR(2), VARMA(1,1) andVARδ(1) models described in Table 1. In the first two models,

the two subprocessesX(1) andX
(2) are independent bivariateVAR(2) orVARMA(1,1) and served for the

level study and the corresponding submodels are partially nonstationary and invertible. The third one, in

which there is instantaneous correlation between the two innovation series, was used for the power study.

The correlation depends on a parameterδ and the valuesδ = 1.0, 1.5 and2 were chosen. For each model,

two series lengths(N = 100, 200 were considered. With the statisticsQN andQ∗
N defined by (3.7) and

(3.9), we used the four kernels described in Table 2. For each kernel,the following three truncation values

M were employed:M = [ln(N)], [3N0.2] and[3N0.3] ([a] denotes the integer part ofa). These rates are

discussed in Hong (1996a, p. 849). They lead respectively toM = 5, 8, 12 for the series lengthN = 100,

and toM = 5, 9, 15 for N = 200. The same truncation values were used forP ∗
M .

In the level study,5000 independent realizations were generated from both modelsVAR(2) and

VARMA(1,1) for each series lengthN . Computations were made in the following way.

16



1. First, pseudo-random variables from theN (0, 1) distribution were obtained with the pseudo-random

normal generator of the S-plus package and were transformed into independentN (0, Σa) pseudo-random

vectors using the Cholesky decomposition. Second, theXt values were obtained by directly solving the

model difference equation.

2. For theVAR(2) model, the least squares estimates of the coefficients of the true models were obtained

using the procedure described in Reinsel (1993). The autoregressive order was obtained by minimizing the

AIC criterion forp ≤ P , whereP is set toN1/3. With the VARMA(1,1), each subseries was approximated

by a possible high orderVAR model. The value of theVAR order was obtained by minimizing Hannan-

Quinn criterion using conditional least square estimation. The residual series{â(h)
t }, h = 1, 2, were cross-

correlated by computing theR(12)
â

(j)’s as defined by (3.3).

3. For each realization, the test statisticsQN andQ∗
N were compared for each of the four kernels and the

three values ofM . The same values ofM were used for the statisticP ∗
M . The values of the statisticsQN

andQ∗
N were compared with theN (0, 1) critical values and those ofP ∗

M to theχ2
4(2M+1) critical values.

4. Finally, for each model, each series length and nominal level, the empiricalfrequencies of rejection of

the null hypothesis of non-correlation were obtained from the5.000 realizations. The results in percentage

are reported in Table 3. The standard error of the empirical level is0.14% for the nominal level1%, 0.31%

for 5% and0.42% for 10%.

Computations for the power analysis were made in a similar way using theVARδ(1) model with dif-

ferent values ofδ.

5.2. Level

5.2.1. Gaussian innovations

Results from the level study are presented in Table 3. For bothVAR(2) andVARMA(1, 1) models, we

make the following observations. The asymptoticN (0, 1) distribution provides a good approximation of

the exact distributions ofQN andQ∗
N at the three nominal levels, for the five considered kernels and for

the three truncation values chosen. Almost all empirical levels are within threestandard errors of the corre-

sponding nominal levels and the majority are within two standard errors. The statisticQ∗
N is slightly better

approximated thanQN since most of its empirical levels are within two standard errors of the nominal level.

These results are similar to the stationary case. At the1% and10% nominal levels, both statistics have a

small tendency to under or over-reject. There is no significant difference between the kernels. The best

approximation is obtained with the Bartlett and Bartlett-Priestley kernels and the less good one corresponds
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to the Parzen kernel. With the Bartlett kernel, the empirical size is always withintwo standard errors of the

nominal size. For the truncated uniform kernel, the size ofQN andQ∗
N are very close to the size ofP ∗

M ,

which is normal sinceQN andQ∗
N are linear transformations ofPM andP ∗

M is a finite-sample version of

PM . For the models considered, the values of the truncation parameterM has no significant effect on the

size of the tests. Finally, when the series lengthN goes from100 to 200, the approximation improves very

slightly.

5.2.2. Non-Gaussian innovations

Here, we propose another simulation experiment with innovations having a multivariate contaminated nor-

mal distribution. Let us consider the following model

pNm(0, Γ ) + (1 − p)Nm(0, Λ)

to denote them-dimensional contaminated normal distribution in which theNm(0, Γ ) distribution is con-

taminated with probability1 − p, by theNm(0, Λ) distribution. We can verify that the fourth-order cumu-

lants of this distribution depends onp, Γ , Λ and is different from zero. Thus, we consider in this part of

the simulation two innovations series{a(1)
t } and{a(2)

t } generated independently according to the following

two distributions:

p1Nm1(0, Im1) + (1 − p1)Nm1(0, Ω
(1)
a ) , p2Nm2(0, Im2) + (1 − p2)Nm2(0, Ω

(2)
a )

with

Ω
(1)
a =





25 5

5 4



 and Ω
(2)
a =





25 7.5

7.5 4



 . (5.2)

Simulations were made for different pair of values for(p1, p2) and for the two models of Table 1 whereΣ
(1)
a

andΣ
(2)
a are now the covariance matrices of the two contaminated normal distributions given in (5.2). The

results in the Table 4 are obtained by using(p1, p2) = (0.7, 0.9), since the results for the other values of

(p1, p2) gave similar results. Finally, we see from the Table 4 that the non-normality of the innovations does

not significantly affect the behavior of the test statisticQN with the associate kernel function and truncation

parameter for the two sizesN = 100 andN = 200.
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5.3. Power

The results are given in Table 5. With theVARδ(1), the cross-correlation at lag 0 between the two inno-

vation series increases withδ and as expected, the power of the three tests considered also increaseswith

δ. Since the relative behaviors of the various tests are similar for the three values ofδ (1, 1.5, 2), only the

results forδ = 2 are presented. Furthermore, we only present the result forQ∗
N sinceQN andQ∗

N have a

similar behavior with respect to the kernels and the truncation values.

The following observations are made from Table 5. First, power decreases asM increases. Indeed, the

model considered here is characterized by the lag 0 serial correlation. In such a situation, we expect that

the tests assigning more weight to small lags will be more powerful than those assigning weights to a large

number of lags. For the three significance levels and the three truncation values, the Daniel kernel provided

the powerful test, while the Parzen, Bartlett and Bartlett-Priestley kernels led to similar powers for the test

Q∗
N . However, the power ofQ∗

N with the truncated uniform kernel is much smaller and is comparable to the

power ofP ∗
M . At least for the chosen model, the new testsQN or Q∗

N with kernels other than the truncated

uniform preferred to the nonstationary multivariate version of Haugh’s test P ∗
M . Finally, the power of all

tests increases when the sample size varies from 100 to 200.

6. Canada/US monetary interactions

We will now study a set of seven quarterly series of Canadian and American economic indicators used in

a study of Canadian monetary policy in order to investigate the relationships between the two economies.

The data sources with the corresponding CANSIM series numbers are given in Table 1 of Racette and

Raynauld (1992). The Canadian economic indicators are gross domestic production (GDP) in constant 1982

dollars, the implicit price index of gross domestic production (GDPI), the nominal short-term interest rate

(TX.CA), and a monetary aggregate (M1). The other three variables represent American real gross national

product (GNP) in constant 1982 dollars, the implicit price index of the American gross national production

(GNPI), and the nominal short-term American interest rate (TX.US). In thisstudy, the observation period

extends from the first quarter of 1970 through to the last quarter of 1989. The natural logarithm of M1 was

taken in order to stabilize its variance. These data were first analyzed in ElHimdi and Roy (1997), who

considered first differences of the series to achieve stationarity, while Pham et al. (2003) analyzed the same

data (undifferenced) and applied the testsPM andP ∗
M directly to the series. Since we also work directly

with the original series, we will reproduce the results of Pham et al. (2003) to compare them to our test

19



statisticsQN andQ∗
N .

In the sequel, the two vector series of Canadian and American data, denoted by{X(1)
t } and{X(2)

t }, are

defined by

X
(1)
t =

















1
1000GDPt

10GDPIt

TX.CAt

100ln(M1t)

















, X
(2)
t =











1
10GNPt,

10GNPIt,

TX.USt.











.

The multiplicative factors appearing in the definition of these series are the same as those used in El Himdi

and Roy (1997). With these factors, the sample variances of the variableswithin each of the two vector

series have the same order of magnitude. Autoregressive AR(p) models were fitted to each series using the

STEPAR procedure of the SCA statistical package. The autoregressive orderp was selected by minimizing

the AIC criterion. For both series, using the diagnostic checks of Tiao andBox (1981), this procedure led to

p = 3. The roots of the determinant of the autoregressive polynomial were computed for each model. The

smallest roots were respectively 1.002, 1.0504, 1.0532 for Canada and0.9974, 1.0474 for the United States.

The statistics

Qâ(j)∗ =
N

N − |j|Qâ(j) (6.1)

whereQâ(j) is defined by (3.6), are displayed in Figure 1. At levelα = 0.05, the asymptotic critical

value for testing the null hypothesisH0 of non-correlation betweena(1) anda(2) against the alternative

H1j : ρ
(12)
a (j) 6= 0 is 21.02 and only one cross-correlation vectorρ

(12)
a (j) for j = 0 significantly differs

from zero. Figure 1 suggests there is a rather strong instantaneous correlation between the two series and

the null hypothesis of non-correlation between them is rejected with the testQâ(0) based on the cross-

correlation matrix at lag 0. The p-values of the portmanteau testP ∗
M for H0 are also reported in Table 6

for M = 1, . . . , 12. At the0.05 significance level,H0 is rejected only for values ofM such thatM ≤ 4.

These results are similar to those in El Himdi and Roy (1997) and Pham et al. (2003).

With the new tests statistics, the values of the global test statisticsQN andQ∗
N with the corresponding

p-values are reported in Table 9 for the truncated uniform, Daniell and Bartlett-Priestley kernels. As in

the simulation study, the truncation values are[ln(N)], [3N0.2] and[3N0.3] which correspond to 4, 7 and

11 respectively. At the 5% significance level, the tests based onQN andQ∗
N reject the hypothesis of

non-correlation between the two series withDAN andBP kernels for the three values ofM . With the

truncated uniform kernel (TR), the conclusion is the same withQ∗
N butQN does not reject whenM = 7
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andM = 11. Thus, contrary to the conclusions of El Himdi and Roy (1997) and Phamet al. (2003) which

reject the correlation between the two series after lag 4, our results confirm the economic point of view which

stipulate that the two economies are known to be more correlated even for a long run. This conclusion is

also coherent with the simulation study which shows thatQN andQ∗
N with any of the four kernels DAN,

PAR, BAR and PB are considerably more powerful thanP ∗
M .

Finally, to determine the direction of causality between the two series, we computed the tests statistics

Q+
N to testH+

0 which isX(2) does not causeX(1). The empirical significance levels ofQ+
N are reported

in Table 7. We conclude that we rejectH0 for all values ofM = 1, . . . , 12 with the three kernelsDAN ,

PZ, andQS. For the truncated kernel, we reject the non-causality forM ≤ 9. From table 8, all empirical

significance levelsQ−
N are greater than 5%, which means thatH−

0 is not rejected for all values ofM and for

all used kernels. We conclude thatX(2) causesX(1) unidirectionally,i.e. there is a unidirectional Granger

causality running from the U.S. variables to the Canadian ones.

7. Conclusion

In this paper, we have proposed a semiparametric approach to test the non-correlation (or independence in

the Gaussian case) and non-causality between infinite-order cointegrated series IVAR(∞). The approach is

semiparametric in the sense that if the two series are VARMA, we do not need toseparately estimate the

truemodel for each of the series. Instead, we fit a vector autoregression toeach series and the tests statistics

are based on residual cross-correlations at all possible lags. The weights assigned to the lags are defined by

a kernel function and a smoothing parameter. Under the hypothesis of independence or non-causality of the

two series, the asymptotic normality of the tests statistics are established. The finite-sample properties of the

test were investigated by a Monte Carlo experiment which shows that the level is reasonably well controlled

for both series lengths100 and200. Furthermore, with the model considered, the four kernels DAN, PAR,

BAR, BP lead to similar powers and are more powerful than the truncated uniform kernel which corresponds

to the multivariate version of the portmanteau test proposed by Bouhaddiouiand Dufour (2008). Further,

we applied these tests to a set of Canadian and American macroeconomic and monetary variables used in El

Himdi and Roy (1997). We have shown that the choice of truncation parameter has no effect in portmanteau

statistics. Thus, the independence hypothesis between the two series is rejected for all possible truncation

parameters. Also, an unidirectional Granger causality running from the U.S. variables to the Canadian ones

is clearly shown.
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A. Appendix: proofs

The following notations are adopted. The Euclidian scalar product ofxt andxs is defined by〈xt, xs〉 =

x
T
t xs and the Euclidean norm ofxt by ‖xt‖ =

√

〈xt,xt〉. The scalar∆ denotes a generic positive bounded

constant that may differ from place to place.

PROOF OFPROPOSITION3.2 First, let

Ξ
def
= [Ξ1 : · · · : Ξp : Ξp+1,1] = [Ψ : Π1 : ... : Πp]Dp

def
= ΠDp

whereDp is a suitable nonsingular transformation matrix containing the unknown matrixC1. The ECM

representation (2.7) can be written as

∆Xt = Ψ 0X2,t−1 +

p
∑

l=1

Ξ lεt−j + Ξp+1,1ε1,t−p−1 + et. (A.1)

The matricesΞ andΨ 0 are defined in equation(A.2) in Saikkonen (1992). Also, letΛ = [Ξ : Ψ 0] and

W t = [Υ ′
t, X

′
2,t−1] whereΥ ′

t = [ε′t−1, . . . , ε′t−p, ε
′
1,t−p−1].

Consider the following linear transformation̂bt = Σ−1/2ât. SinceC
(12)

b̂
(j) = Σ

−1/2
1 C

(12)
â

(j)Σ
−1/2
2 , and

using the propertyvec(ABC) = (C ′ ⊗ A)vec(B), we have that

T (â, Σ) = N
N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
′
(Σ−1

2 ⊗ Σ−1
1 )c

(12)
â

(j)

= N
N−1
∑

j=1−N

k2(j/M)c
(12)

b̂
(j)

′
c
(12)

b̂
(j) = T (12)

b̂
.
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Thus, to prove the result, it is sufficient to show thatT (12)
b

− T (12)

b̂
= op(M

1/2). The result follows by
decomposing the latter difference in two parts,

T (12)
b

− T (12)

b̂
= N

N−1
∑

j=1−N

k2(j/M)(‖c(12)

b̂
(j) − c

(12)
b

(j)‖2 + 2〈c(12)
b

(j), c
(12)

b̂
(j) − c

(12)
b

(j)〉) = T
(1)
N + T

(2)
N ,

and showing that each part isop(M
1/2). Consider the positive lagsj ≥ 0, since for negative lags, the proof

is similar by symmetry.

Defineδ̂t = b
(1)
t − b̂

(1)

t andη̂t = b
(2)
t − b̂

(2)

t . From (3.2), we have

T
(1)
N = N

N−1
∑

j=0

k2(j/M)‖c(12)

b̂
(j) − c

(12)
b

(j)‖2 = N
N−1
∑

j=0

k2(j/M)‖ 1

N

N
∑

t=j+1

(b
(1)
t b

(2)′

t−j − b̂
(1)

t b̂
(2)′

t−j)‖2,

and using Cauchy-Schwarz inequality, we obtain

T
(1)
N = N

N−1
∑

j=0

k2(j/M)‖ 1

N

N
∑

t=j+1

(b
(1)
t η̂′

t−j + δ̂tb
(2)′

t−j − δ̂tη̂
′
t−j)‖2 ≤ 4N(T1N + T2N + T3N ),

with T1N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 b

(1)
t η̂′

t−j‖2, T2N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 δ̂tb

(2)′

t−j‖2 and

T3N =
∑N−1

j=0 k2(j/M)‖ 1
N

∑N
t=j+1 δ̂tη̂

′
t−j‖2. It suffices to show that the termsTjN , j = 1, 2, 3, are

op(M
1/2/N). Now, we can write

δ̂t = (b̂
(1)

t − Σ
−1/2
1 e

(1)
t ) + (Σ

−1/2
1 e

(1)
t − b

(1)
t )

= Σ
−1/2
1 {(â(1)

t − e
(1)
t ) + (a

(1)
t }

= Σ
−1/2
1 {(Λ̂(1) − Λ(1))W

(1)
t + ξt(p1)}

WhereΛ(h) andW
(h)
t , h = 1, 2 are defined as in (A.1) for each process.Λ̂ is the LS estimator ofΛ and

ξt(p1) represents the bias of the VAR(p1) approximation of{X(1)
t }.

The second equality is from Saikkonen and Lütkepohl (1996, page 832). Also, using the result of Proposition

2.2, we deduce that

‖Λ̂(1) − Λ(1)‖2 = Op(
p1

N
).

By equation 3.15 in Bouhaddioui and Roy (2006a), we have E

(

‖ξt(p
(h)
N )‖2

)

=

O
(

∑∞

l=p
(h)
N +1

‖Φ(h)
l ‖

)2
, h = 1, 2. Also, based on the result 3.17 in Bouhaddioui and Roy (2006a)

and equation (2.9), we obtain that

T1N =
N−1
∑

j=0

k2(j/M)‖ 1

N

N
∑

t=j+1

b
(1)
t η̂′

t−j‖2 = Op(
p2
2M

N2
){ 1

M

N−1
∑

j=0

k2(j/M)}
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Sincep2
2 = o( N

M1/2 ), we haveT1N = op(
M1/2

N ). By symmetry, we can prove thatT2N = op(
M1/2

N ). For the

third termT3N , using the Cauchy-Schwarz inequality, we obtain

T3N =

N−1
∑

j=0

k2(j/M)‖N−1
N
∑

t=j+1

η̂tδ̂
′

t−j‖2

≤ ‖Λ(1) − Λ̂
(1)‖2‖Λ(2) − Λ̂

(2)‖2
N−1
∑

j=0

k2(j/M)‖N−1
N
∑

t=j+1

W
(1)
t (p1)W

(2)
t−j(p2)

′
‖2

+ ‖Λ(1) − Λ̂
(1)‖2

N−1
∑

j=0

k2(j/M)‖N−1
N
∑

t=j+1

W
(1)
t (p1)ξt−j(p2)

′‖2

+ ‖Λ(2) − Λ̂‖2
N−1
∑

j=0

k2(j/M)‖N−1
N
∑

t=j+1

ξt(p1)W
(2)
t−j(p2)

′
‖2

+
N−1
∑

j=0

k2(j/M)‖N−1
N
∑

t=j+1

ξt(p1)ξt−j(p2)
′‖2.

Using the equations 3.19-3.22 in Bouhaddioui and Roy (2006a), the assumptionsp(h)
N = o(N1/2/M1/4),

N
∑∞

l=p
(h)
N +1

‖Φ(h)
l ‖2 = o(N1/2/M1/4) and the result (2.9), we conclude thatT3N = op(M

1/2/N). There-

fore, we obtain

T
(1)
N = N

N−1
∑

j=0

k2(j/M)‖c(12)

b̂
(j) − c

(12)
b

(j)‖2 = op

(

M1/2
)

. (A.2)

Finally, using Cauchy-Schwarz inequality once more, we have

|T (2)
N | ≤ N

N−1
∑

j=1−N

k2(j/M)|〈c(12)
b

(j), c
(12)

b̂
(j) − c

(12)
b

(j)〉| ≤ N
6
∑

l=4

TlN ,

with

T4N =

N−1
∑

j=0

k2(j/M)‖c(12)
b

(j)‖‖ 1

N

N
∑

t=j+1

δ̂tb
(2)T

t−j ‖,

T5N =
N−1
∑

j=0

k2(j/M)‖c(12)
b

(j)‖‖ 1

N

N
∑

t=j+1

b
(1)
t η̂T

t−j‖,

T6N =
N−1
∑

j=0

k2(j/M)‖c(12)
b

(j)‖‖ 1

N

N
∑

t=j+1

δ̂tη̂
T
t−j‖.

Thus, it is sufficient to show that the termsTjN , j = 4, 5, 6, are op(M
1/2/N). By conditioning on

24



(b
(2)
s )N

s=−∞ and using Jensen’s inequality, we have

E

(

T4N |
(

b(2)
s

)N

s=−∞

)

≤
N−1
∑

j=1−N

k2(j/M)

× [E({( 1

N

N
∑

τ=1

‖b(1)
τ b

(2)T

τ−j ‖)(
1

N

N
∑

t=j+1

‖δ̂tb
(2)T

t−j ‖)}2 | (b(2)
s )N

s=−∞
)]1/2

≤ M∆

N2
{ 1

M

N−1
∑

1−N

k2(j/M)}( 1

N

N
∑

τ=1

‖b(2)
τ ‖2)1/2(

1

N

N
∑

t=1

‖δ̂t‖2)1/2

= Op{
Mp

1/2
2

N5/2
} = op(M

1/2/N).

The first equality is obtained by using the conditions onp2, Φ(2), and the assumption of independence of

the two innovation series. Then,T4N = op(M
1/2/N). By symmetry, we have alsoT5N = op(M

1/2/N).

Finally, from Markov inequality, we have
∑N−1

j=1 k2(j/M)‖c(12)
b

(j)‖2 = Op(M/N), and using Cauchy-

Schwarz inequality and the result forT3N , we obtain thatT6N = op(M/N). Thus,T (2)
N = op(M

1/2) and

the proof of Proposition3.2 is completed.

PROOF OF PROPOSITION3.5 Let

T (12)+

b̂
= N

N−1
∑

j=1

k2(j/M)c
(12)

b̂
(j)

′
c
(12)

b̂
(j)

= N

N−1
∑

j=1

k2(j/M)tr[C(12)
b

(j)
T
C

(12)
b

(j)]

Using definition (3.2), we have

tr[C(12)
b

(j)
T
C

(12)
b

(j)] = N−2[
N
∑

t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖2 + 2
N
∑

t=j+2

t−1
∑

s=j+1

π
(12)
jts ],

whereπ
(12)
jts = 〈b(1)

t , b
(1)
s 〉〈b(2)

t−j , b
(2)
s−j〉. If

HN = N−1
N−1
∑

j=1

k2(j/M)
N
∑

t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖2,

W ∗
N = 2N−1

N−2
∑

j=1

k2(j/M)
N
∑

t=j+2

t−1
∑

s=j+1

π
(12)
jts ,
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Thus, we can writeT (12)+

b
as

T (12)
b

= HN + W ∗
N

The proof of Proposition3.5 can be completed by proving the following two lemmas.

Lemma A.1 σ−1(N){HN − m1m2S
+
N (k)} p→ 0 whereσ2(N) = 2m1m2D

+
N (k).

PROOF OFLEMMA A.1 First, we note thatE(HN ) = m1m2SN (k) since

E(HN ) = N−1
E{

N−1
∑

j=1

k2(j/M)
N
∑

t=j+1

‖b(1)
t ‖2‖b(2)

t−j‖2}.

Under the assumption of independence and sinceE(‖b(h)
t ‖2) = mh

N , for h = 1, 2, we have

E(HN ) =
m1m2

N

N−1
∑

j=1

N
∑

t=j+1

k2(j/M) = m1m2

N−1
∑

j=1

(1 − j

N
)k2(j/M) = m1m2S

+
N (k).

Also, using Minkowski inequality, we obtain

E(HN − EHN )2 = E[N−1
N−1
∑

j=1

k2(j/M)
N
∑

t=j+1

(‖b(1)
t ‖2‖b(2)

t−j‖2 − m1m2)]
2

≤ ∆M2

N
{M−1

N−1
∑

j=1

k2(j/M)}2.

Given assumption3.1 and sinceM → ∞ asN → ∞, we haveM−1
∑N−1

j=0 k2(j/M)→
∫∞
0 k2(z)dz < ∞

and thus,E(HN − EHN )2 = O(M2/N). SinceM−1D+
N (k) → D+(k) =

∫∞
0 k4(z)dz asN → ∞ and

M/N → 0, we haveσ2(N) = 2m1m2MD+(k){1+o(1)} = O(M) andσ−1(N){HN −m1m2S
+
N (k)} p→

0.

Lemma A.2 σ−1(N)W ∗
N

L→ N(0, 1).

PROOF OFLEMMA A.2 Let WNt = 2
∑t−1

s=2

∑s−1
j=1 k2(j/M)π

(12)
jts . Using the property

∑N−2
j=1

∑N
t=j+2

∑t−1
s=j+1 =

∑N
t=3

∑t−1
s=1

∑s−1
j=1, it can be shown that

W ∗
N = N−1

N
∑

t=3

WNt + ωN .
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By the hypothesis of non-causality between the two processes, note thatωN = op(1). We also have that

σ(N)−1 = O(M−1/2) and we obtain thatσ−1(N)ωN
p→ 0. Therefore, the asymptotic behavior ofW ∗

N is

determined by the one ofWN = N−1
∑N

t=3 WNt. Also, using the same techniques used in Lemma A.3

of Bouhaddioui and Roy (2006a), under the assumption of independence and the hypothesisH+
0 , the exact

variance ofWN is given by:

V ar(WN ) = σ2(N) where σ2(N) = 2m1m2D
+
N (k).

To continue the proof of LemmaA.2, we note that{(WNt, Ft) ; t ∈ Z}, whereFt is theσ-algebra

generated by{(b(1)
s , b

(2)
s )T , s ≤ t}, is a martingale difference sinceE (WNt|Ft−1) = 0. As in Hong(1996b,

1996c), the asymptotic normality ofW ∗
N follows from the martingale central limit theorem derived in Brown

(1971). To apply this later theorem, it is sufficient to verify the following two conditions stated in the next

two lemmas.

Lemma A.3 σ−2(N) 1
N2

∑N
t=3 E[W 2

N,tI{|WN,t| > ǫσ(N)}]→0 , ∀ǫ > 0.

PROOF OFLEMMA A.3. To prove this lemma, it is sufficient to verify the Lyapunov condition

σ−4(N)N−4
∑N

t=3 E
(

W 4
Nt

)

→0. To do that, let usG(1)
ts =

∑s−1
j=1 k2(j/M)〈b(2)

t−j , b
(2)
s−j〉. Then, we can

write WNt = 2
∑t−1

s=2〈b
(2)
t , b

(2)
s 〉G(1)

ts . Given the assumption of independence of the two innovation pro-

cesses, we have

E(W 4
Nt) ≤ 16E[

t−1
∑

s=2

‖b(2)
t ‖‖b(2)

s ‖G(1)
ts ]4

≤ 48E‖b(2)
t ‖4{

t−1
∑

s=2

[E‖b(2)
s ‖4

E(G
(1)
ts )4]1/2}2 ≤ ∆{

t−1
∑

s=2

[E(G
(1)
ts )4]1/2}2.

The second inequality follows by applying the inequalityE(
∑n

i=1 Yi)
4 ≤ 3{∑n

i=1[E(Y 4
i )]1/2}1/2 where

the sequence of random variables{Yi} verifiesE(Yi) = 0 andE(Yif(Yj , Yk, Yl)) = 0 for i 6= j, k, l and for

any functionf . Also, using the same inequality, and fort > s, we have

E(G
(1)
ts )4 ≤ 3{

s−1
∑

j=1

k4(j/M)[E‖b(2)
t−j‖4

E‖b(2)
s−j‖4]1/2}2 ≤ ∆M2{ 1

M

s−1
∑

j=1

k4(j/M)}2 = O(M2).

Thus, we obtain thatE(W 4
Nt) ≤ ∆t2M2 = O(t2M2). Sinceσ−4(N) = O(M−2) and

∑N
t=3 E(W 4

Nt) ≤
∆
∑N

t=3 t2M2 ≤ ∆N3M2, then

σ−4(N)N−4
N
∑

t=3

E
(

W 4
Nt

)

= O(N−1)

and the proof of LemmaA.3 is completed.
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Lemma A.4 σ−2(N) 1
N2

∑N
t=3 Ẅ 2

Nt

p→ 1, whereẄ 2
Nt = E

(

W 2
Nt|Ft−1

)

.

PROOF OFLEMMA A.4 To prove this lemma, it is sufficient to show thatσ−4(N)var(N−2
∑N

t=3 Ẅ 2
Nt) →

0. By definition ofẄ 2
Nt, we can write

Ẅ 2
Nt = 4tr{E[

t−1
∑

s=2

G
(2)
ts b(1)T

s b
(1)
t b

(1)T

t

t−1
∑

s1=2

b(1)
s1

G
(2)
ts1

|Ft−1]}

let λNt =
∑t−1

s=2 G
(2)
ts b

(1)T

s . Sincetr(AB) ≤ tr(A)tr(B) and that the processes{b(h)
t }, h = 1, 2, satisfy

the assumption of independence, we have

Ẅ 2
Nt ≤ 4tr{E[λ1Ntλ

T
1Nt|Ft−1]}tr{E[b

(1)
t b

(1)T

t |Ft−1]} ≤ 4Ẅ 2
1Nt,

whereẄ 2
1Nt = m1‖λNt‖2. The second inequality follows since by conditioning onFt−1, the termsλNt

becomes constant. Thus, to prove the lemma, it is sufficient to show thatM−2var(N−2
∑N

t=3 Ẅ 2
1Nt)→0

which was done in Lemma A.5 in Bouhaddioui and Roy (2006a).

PROOF OFPROPOSITION3.3 SinceDN (k) = MD(k){1 + o(1)}, it is sufficient to show that

T (â, Σ̂) − T (â, Σ) = Op(M/N1/2).

Using the fact thatC(hh)
â

(0) − Σh
N = Op(N

−1/2), (see L̈utkepohl and Saikkonen (1997, p.133)), for

h = 1, 2, it follows that

C
(22)
â

(0)
−1

⊗ C
(11)
â

(0)
−1

− Σ−1
2 ⊗ Σ−1

1 = Op(N
−1/2).

Thus,

T (â, Σ̂) − T (â, Σ) = N

N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
T
Op(N

−1/2)c
(12)
â

(j)

= Op(N
1/2)

N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
T
c
(12)
â

(j).

To complete the proof, it remains to prove that

B(N) =

N−1
∑

j=1−N

k2(j/M)c
(12)
â

(j)
T
c
(12)
â

(j) = Op(M/N).
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First, let us decomposeB(N) in two parts

B(N) =
N−1
∑

j=1−N

k2(j/M){c(12)
â

(j)
T
c
(12)
â

(j) − c
(12)
a (j)

T
c
(12)
a (j)} +

N−1
∑

j=1−N

k2(j/M)c
(12)
a (j)

T
c
(12)
a (j)

= B1 + B2.

By an argument similar to the one used in the second part of the proof of Proposition3.2 in the Appendix,

we have that

B1(N) =
N−1
∑

j=1−N

k2(j/M){c(12)
â

(j)
T
c
(12)
â

(j) − c
(12)
a (j)

T
c
(12)
a (j)} = op(M

1/2/N),

and by Markov inequality, it follows that

B2(N) =
N−1
∑

j=1−N

k2(j/M)c
(12)
a (j)

T
c
(12)
a (j) = Op(M/N).

Combining the results forB1(N) andB2(N), we obtain that

T (â, Σ̂) − T (â, Σ)) = Op(N
1/2)Op(M/N) = Op(M/N1/2),

and the proof of Proposition3.3 is completed.

PROOF OF THEOREM4.2 First, we note that the statisticQN is a normalized version ofT (â, Σ̂) which

can be viewed as theL2-norm of a kernel-based estimator of the cross-coherency function between the two

innovations processes. Thus, the statisticQN can be expressed as

QN =
N‖s(12)

â
‖2
2 − m1m2SN (k)

√

2m1m2DN (k)
,

wheres
(12)
â

is the estimator of the cross-coherency function between the two innovationsprocesses given

by

‖s(12)
a ‖2

2 =
∞
∑

j=−∞

γ
(12)
a (j)′ (Σ2 ⊗ Σ1)

−1 γ
(12)
a (j).

For details, see Section 4 in Bouhaddioui and Roy (2006a). By definition ofQN , we can write

(

M1/2

N

)

QN =
M1/2‖s(12)

â
‖2
2 −

(

M1/2

N

)

m1m2SN (k)

{2m1m2D(k)}1/2
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=
‖s(12)

â
‖2
2

{2m1m2M−1DN (k)}1/2
− N−1SN (k)

{2M−1DN (k)}1/2
(m1m2)

1/2 .

¿From (3.13), the last term of the previous equation goes to zero whenM/N → 0 asN → ∞. Using the

linear transformationbt = Σ−1/2at, as in Proposition3.2, we have‖s(12)
a ‖ = ‖s(12)

b
‖. Also, since the

processesb(1) andb(2) are stationary and by Lemma A.7 in Bouhaddioui and Roy (2006a), we have that

‖s̃(12)
b

‖2 − ‖s(12)
b

‖2 p→ 0

where‖s̃(12)
b

‖ is defined as‖s(12)

b̂
‖, the residual series(b̂

(1)

t , b̂
(2)

t )N
t=1 being replaced by the innovation series

(b
(1)
t , b

(2)
t )N

t=1. Thus, to prove the consistency result (4.1), it is sufficient to verify that ‖s(12)

b̂
‖2
2−‖s̃(12)

b
‖2
2

p→
0, which follows from the following lemma.

Lemma A.5 Under the assumptions of Theorem4.2, we have

‖s(12)

b̂
‖2
2 − ‖s̃(12)

b
‖2
2

p→ 0

PROOF OFLEMMA A.5. By definition ofs(12)

b̂
ands̃

(12)
b

, and by similar calculations to those for the proof

in Proposition3.2, we obtain

‖s(12)

b̂
‖2
2 − ‖s̃(12)

b
‖2
2 =

N−1
∑

j=1−N

k2(j/M)(‖c(12)

b̂
(j)‖2 − ‖c(12)

b
(j)‖2)

=
N−1
∑

j=1−N

k2(j/M)‖c(12)

b̂
(j) − c

(12)
b

(j)‖2

+ 2
N−1
∑

j=1−N

k2(j/M)〈c(12)
b

(j), c
(12)

b̂
(j) − c

(12)
b

(j)〉.

It is sufficient to prove that the first term goes to zero in probability, because the second term can be bounded

by a product of the first term and a finite quantity, using the Cauchy-Schwarz inequality. With the notations

of Proposition3.2, we can write

N−1
∑

j=1−N

k2(j/M)‖c(12)

b̂
(j) − c

(12)
b

(j)‖2 ≤ 4
3
∑

l=1

TlN ,

whereTlN , l = 1, 2, 3, are defined in Proposition3.2. We first prove thatT1N → 0 in probability. By the

Cauchy-Schwarz inequality, we obtain

T1N ≤ M{ 1

M

N−1
∑

j=0

k2(j/M)}{ 1

N

N
∑

t=1

‖b(1)
t ‖2}{ 1

N

N
∑

t=1

‖η̂t‖2}.
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By definition ofη̂t, it follows that

1

N

N
∑

t=j

‖η̂t‖2 ≤ 1

N

N
∑

t=1

{‖(Λ(2) − Λ̂)W
(2)
t ‖2 + ‖ξt(p2)‖2}.

Since‖Γ (11)
a (l)‖ is uniformly bounded by a positive constant∆, and the parameters{Φl} are a linear

function of the original parameters{Gl}, then the bias approximation can be bounded by

E‖ξt(p2)‖2 ≤ ∆(
∞
∑

l=p2+1

‖Φ(2)
l ‖)2 = o(N−1).

See also the result (A.12) in Saikkonen (1992). Under the assumptions onthe processb, onp2 and on the

parameters(Φ(2)
l ), we have

T1N = Op(
Mp2

2

N
) + Op(M

∞
∑

l=p2+1

‖Φ(2)
l ‖2) = op(1).

By symmetry, we can verify thatT2N = op(1). ForT3N , we can write

T3N =
N−1
∑

j=0

k2(j/M)‖ 1

N

N
∑

t=j+1

δ̂tη̂
′
t−j‖2

≤ M{ 1

M

N−1
∑

j=0

k2(j/M)}{ 1

N

N
∑

t=1

‖δ̂t‖2}{ 1

N

N
∑

t=1

‖η̂t‖2}.

By symmetry, we can prove that1N
∑N

t=1 ‖δ̂t‖2 = Op(
p2
1

N ) + Op(1)
∑∞

l=p1+1 ‖Φ
(1)
l ‖2, and using the same

assumptions as those forT1N , we obtain thatT3N = op(1). Finally, we conclude that

‖s(12)

b̂
‖2 − ‖s̃(12)

b
‖2 = op(1).

This completes the proof of LemmaA.5 and then Theorem4.2.
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Table 1. Time series models used in the simulation study

MODELS EQUATIONS

VAR(2)

[

X
(1)
t

X
(2)
t

]

=

[

Φ
(1)
1 0

0 Φ
(2)
1

] [

X
(1)
t−1

X
(2)
t−1

]

+

[

Φ
(1)
2 0

0 Φ
(2)
2

] [

X
(1)
t−2

X
(2)
t−2

]

+

[

a
(1)
t

a
(2)
t

]

VARMA(1, 1)

[

X
(1)
t

X
(2)
t

]

=

[

Φ
(1)
1 0

0 Φ
(2)
1

] [

X
(1)
t−1

X
(2)
t−1

]

+

[

Ψ (1) 0

0 Ψ (2)

]

[

a
(1)
t−1

a
(2)
t−1

]

+

[

a
(1)
t

a
(2)
t

]

VARδ(1)

[

X
(1)
t

X
(2)
t

]

=

[

Φ
(1)
1 0

0 Φ
(2)
1

] [

X
(1)
t−1

X
(2)
t−1

]

+

[

a
(1)
t

a
(2)
t

]

Noise covariance matrices

Σa =

[

Σ
(1)
a 0

0 Σ
(2)
a

]

Σ
a,δ =

[

Σ
(1)
a Σ

(12)
a,δ

Σ
(21)
a,δ Σ

(2)
a

]

Parameters values

Φ
(1)
1 =

[

0.4 0.0
−1.0 1.0

]

Φ
(2)
1 =

[

1.0 0.0
−0.8 0.5

]

Φ
(1)
2 =

[

0.6 −0.5
0.3 0.4

]

Φ
(2)
2 =

[

−0.5 −0.8
−0.4 0.2

]

Ψ (1) =

[

−0.2 0.3
−0.6 1.1

]

Ψ (2) =

[

0.8 0.3
0.1 0.6

]

Σ
(1)
a =

[

1.0 0.5
0.5 1.0

]

Σ
(2)
a =

[

1.0 0.75
0.75 1.0

]

Σ
(12)
a,δ =

[

0.1δ 0
0 0.05δ

]

Table 2. Kernels used with the test statisticsQN andQ∗
N

Truncated Uniform (TR): k(z) =

{

1, |z| ≤ 1,
0, otherwise.

Bartlett (BAR): k(z) =

{

1 − |z|, |z| ≤ 1,
0, otherwise.

Daniell (DAN): k(z) = sin(πz)
πz

, z ∈ R.

Parzen (PAR): k(z) =











1 − 6z2 + 6|z|3, if |z| ≤ 0.5,

2 (1 − |z|)3 , if 0.5 ≤ |z| ≤ 1 ,

0, otherwise.

Bartlett-Priestley (BP): k(z) = 3
(πz)2

{ sin(πz)
πz

− cos(πz)}, z ∈ R.
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Table 3. Empirical level (in percentage) of the testQN , Q∗
N andP ∗

M based on 5000 realizations for
different kernels, different truncation values, for theVAR(2) andVARMA(1,1)models

QN Q∗
N P ∗

M
N M α% DAN PAR BAR BP TR DAN PAR BAR BP TR

1 0.7 0.6 0.8 0.7 0.6 1.2 0.9 0.7 0.7 1.3 0.7
5 5 5.8 3.9 5.7 5.2 4.4 5.9 4.3 5.8 6.1 3.7 4.2

10 9.6 8.0 9.5 10.6 8.3 10.3 8.8 9.4 10.7 9.0 8.8
1 1.3 0.6 0.9 1.2 0.7 1.4 1.2 1.0 1.5 0.6 0.8

100 8 5 5.6 4.1 5.9 5.6 4.0 5.4 4.0 5.2 4.8 4.0 4.3
10 10.7 9.2 10.8 10.7 7.4 10.6 9.6 11.0 10.4 8.2 8.4
1 0.8 0.7 0.8 1.2 0.6 1.3 0.8 1.4 1.5 0.7 0.8

12 5 5.4 4.8 5.3 5.4 4.2 5.6 4.5 4.9 5.7 4.2 4.5
10 10.4 8.7 11.2 10.8 7.8 10.8 10.4 11.2 10.5 8.1 8.4

VAR(2) 1 0.8 1.2 0.8 1.2 0.8 0.7 0.8 1.2 1.3 0.7 0.9
5 5 5.7 5.2 5.8 5.5 4.1 5.5 4.2 5.9 5.7 4.4 4.2

10 9.1 9.2 10.4 10.6 8.3 8.4 10.2 10.6 10.2 8.7 8.9
1 1.2 1.1 0.9 0.8 0.7 1.4 0.9 0.8 1.2 0.7 0.7

200 9 5 6.1 4.3 5.5 5.7 4.4 6.3 4.6 5.5 5.9 4.5 4.1
10 10.9 9.5 10.5 11.0 7.6 11.2 9.3 10.6 10.7 8.6 9.2
1 1.4 0.8 1.2 1.4 1.2 0.9 1.2 1.4 0.8 0.6 0.6

15 5 6.0 4.5 6.2 5.4 4.1 5.8 4.7 5.8 5.6 4.3 4.5
10 10.6 10.3 11.2 10.6 7.9 11.0 10.5 10.8 10.4 8.2 8.9

1 1.3 1.1 0.7 0.8 0.7 1.2 0.7 1.4 1.2 0.6 0.8
5 5 5.7 4.7 6.2 4.5 4.3 5.8 4.4 5.8 4.6 3.9 4.3

10 9.6 8.6 9.3 10.4 8.3 9.6 9.0 9.5 10.8 8.2 8.4
1 1.4 0.7 0.8 1.2 0.7 1.3 0.8 1.2 0.9 0.8 1.3

100 8 5 5.6 4.4 5.9 5.6 3.9 5.4 4.1 5.5 5.5 4.3 5.6
10 10.6 8.5 11.3 10.6 7.3 9.4 9.0 11.0 10.7 8.0 9.4
1 0.9 1.2 0.7 0.8 0.6 1.1 0.9 0.9 1.3 0.7 1.4

12 5 5.4 5.1 6.0 5.6 4.2 5.6 5.4 5.8 5.6 4.1 4.5
10 9.4 8.8 10.4 10.2 7.9 9.1 8.2 9.1 10.6 7.5 8.3

VARMA(1,1) 1 0.8 1.3 0.7 0.9 0.7 1.2 0.8 1.2 1.2 0.7 1.3
5 5 5.6 4.7 5.4 5.9 4.0 6.2 4.8 5.7 6.3 4.6 5.9

10 9.0 9.3 10.6 11.0 8.9 10.5 9.2 10.5 9.6 8.2 8.9
1 1.3 0.7 1.2 1.1 0.8 0.9 0.8 1.3 0.8 0.8 0.9

200 9 5 6.1 5.2 4.2 6.1 4.3 5.7 5.1 5.5 6.3 4.3 5.6
10 9.4 10.5 11.0 10.7 8.4 10.7 9.5 10.8 10.3 8.7 8.9
1 1.4 1.1 0.8 0.9 0.7 1.3 0.9 0.9 0.8 0.7 0.8

15 5 6.2 4.6 5.2 6.0 4.3 5.3 5.1 5.3 6.0 4.6 5.5
10 10.3 10.5 10.8 10.6 7.9 10.7 10.2 11.2 10.7 8.4 9.1
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Table 4. Empirical level (in percentage) of the testQN , Q∗
N andP ∗

M based on 5000 realizations for
different kernels, different truncation values, for theVAR(2) andVARMA(1,1) models with non-Gaussian

innovations

QN Q∗
N P ∗

M
N M α% DAN PAR BAR BP TR DAN PAR BAR BP TR

1 1.3 0.7 1.2 1.3 0.6 0.8 1.3 0.9 0.8 1.4 1.3
5 5 5.4 4.6 5.8 5.3 4.1 5.5 4.4 5.9 5.8 4.0 4.2

10 9.8 8.4 10.5 10.7 8.2 10.5 9.0 9.1 9.3 8.5 8.9
1 0.7 1.2 0.8 1.3 0.7 1.2 0.8 0.8 1.3 0.7 0.8

100 8 5 6.0 5.4 4.6 5.8 3.8 5.7 4.2 5.6 4.4 4.0 4.2
10 11.0 9.4 10.6 9.5 8.2 10.8 9.4 10.8 10.6 8.4 8.8
1 1.2 0.9 0.7 1.3 0.7 1.4 1.2 0.8 1.3 0.6 0.8

12 5 5.8 5.6 5.2 5.6 4.0 4.6 4.8 5.3 5.4 3.8 4.2
10 11.3 10.9 11.0 10.6 8.4 10.6 9.8 10.8 9.5 8.3 8.8

VAR(2) 1 1.2 0.9 0.8 1.3 0.7 0.8 1.3 1.1 0.8 0.8 1.2
5 5 6.0 5.8 5.4 5.6 3.9 6.1 5.9 5.5 5.3 4.0 4.4

10 10.6 9.0 10.2 10.4 8.4 9.4 10.8 11.0 10.6 8.4 9.2
1 0.7 0.9 0.7 0.8 0.8 1.3 0.7 0.7 1.1 0.8 0.8

200 9 5 5.8 5.6 5.2 4.7 4.2 6.0 4.8 5.8 5.8 4.2 4.6
10 11.2 9.3 9.6 10.6 8.8 11.4 9.7 10.3 10.9 8.6 9.4
1 1.3 1.1 0.8 0.7 0.7 1.1 1.3 0.9 0.8 0.6 0.7

15 5 5.6 5.8 6.0 5.6 4.2 5.6 4.4 6.0 6.2 4.1 4.6
10 11.2 10.6 10.2 10.8 8.6 11.0 10.8 10.3 10.2 8.6 9.0

1 0.8 1.2 1.3 0.7 0.6 1.1 0.8 1.2 1.2 0.6 0.7
5 5 5.9 6.1 5.6 4.4 4.0 5.7 5.9 4.8 4.8 4.0 4.4

10 10.6 9.2 9.6 11.0 8.5 10.9 10.4 9.2 11.0 8.0 9.0
1 1.4 1.2 1.2 0.8 0.7 1.2 1.4 1.3 0.8 0.7 1.4

100 8 5 6.0 4.2 5.6 5.8 3.8 6.2 4.0 6.1 6.3 4.2 6.0
10 11.6 9.6 10.4 10.8 8.0 11.2 9.4 11.2 10.6 8.0 9.6
1 0.8 1.3 0.8 0.9 0.7 1.2 1.1 0.9 1.1 0.8 1.3

12 5 5.8 5.3 5.8 6.0 4.4 6.0 5.2 5.4 5.8 4.0 5.8
10 10.8 9.2 11.4 10.6 8.1 11.2 9.4 9.3 11.0 8.4 8.8

VARMA(1,1) 1 1.1 1.2 0.9 1.3 0.7 1.2 1.3 1.1 0.8 0.8 1.2
5 5 6.1 5.4 4.8 6.1 4.2 5.9 4.7 5.4 6.0 4.4 5.8

10 10.6 10.3 11.3 11.5 8.4 11.3 10.4 11.0 10.8 8.4 9.2
1 1.3 1.2 0.9 1.2 0.8 1.2 1.3 1.1 0.9 0.7 1.3

200 9 5 5.9 5.9 4.6 5.4 4.1 5.7 6.1 5.2 5.8 4.4 5.8
10 11.4 10.8 10.6 10.6 8.8 11.2 10.8 10.4 9.8 8.6 9.3
1 0.9 1.3 0.8 1.2 0.8 1.3 1.2 1.3 1.1 0.7 1.3

15 5 5.4 5.8 6.2 5.6 4.0 5.5 5.6 5.8 5.4 4.2 5.8
10 11.0 10.8 9.8 10.2 8.2 10.6 10.6 10.2 10.4 8.6 9.3
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Table 5. Power of the testsQN , Q∗
N andP ∗

M based on their asymptotic critical values for different kernels
and different truncation values for theVARδ(1) data generation process withδ = 2

Q∗
N P ∗

M

N M α% DAN PAR BAR BP TR
1 57.3 53.5 54.6 52.6 35.3 24.6

5 5 63.2 60.1 56.4 58.6 36.8 26.8
10 72.6 70.8 62.5 64.3 38.2 27.5
1 49.6 46.1 51.4 48.0 27.5 22.6

100 8 5 58.4 53.2 55.8 51.6 31.2 23.8
10 63.7 60.8 62.6 61.7 34.6 25.8
1 43.6 38.5 41.8 42.6 23.3 18.9

12 5 50.2 44.7 40.3 43.0 26.4 21.2
10 56.8 50.6 48.8 46.5 28.8 23.7
1 78.4 74.5 74.8 76.2 54.8 50.6

5 5 85.6 82.6 81.6 85.8 56.4 54.1
10 93.4 89.5 87.5 90.2 60.4 56.8
1 69.5 65.2 63.0 66.8 42.4 40.7

200 9 5 75.6 76.6 72.4 78.2 46.2 44.6
10 80.8 78.5 77.6 82.8 50.4 46.4
1 56.8 52.4 54.8 56.1 36.8 32.8

15 5 60.1 57.4 53.2 60.1 40.2 35.0
10 64.8 54.4 54.2 62.6 44.8 40.4

Table 6. Values of the global statisticP ∗
M defined by (5.1) and its empirical significance level for
M = 1, . . . , 12

M P ∗
M αM M P ∗

M αM

1 52.34 0.038 7 205.62 0.092
2 80.24 0.042 8 221.77 0.187
3 108.34 0.038 9 250.60 0.145
4 135.70 0.037 10 271.59 0.189
5 159.38 0.052 11 284.56 0.348
6 181.15 0.082 12 306.46 0.386
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Table 7. Empirical significance level of the global statisticsQ+
N defined by (3.11) forM = 1, . . . , 12

usingTR, DAN , PZ andQS kernels

M TR DAN PZ QS M TR DAN PZ QS

1 0.0301 0.0342 0.0401 0.0403 7 0.0421 0.0267 0.0422 0.02955
2 0.0406 0.0447 0.0420 0.0465 8 0.0332 0.0288 0.0337 0.02972
3 0.0191 0.0452 0.0218 0.0448 9 0.0538 0.0273 0.0317 0.03028
4 0.0401 0.0429 0.0202 0.0310 10 0.0555 0.0278 0.0341 0.03098
5 0.0438 0.0305 0.0219 0.0279 11 0.0602 0.0279 0.0287 0.03176
6 0.0486 0.0247 0.0210 0.0288 12 0.0899 0.0276 0.0312 0.03263

Table 8. Empirical significance level of the global statisticsQ−
N defined by (3.12) forM = 1, . . . , 12

usingTR, DAN , PZ andQS kernels
M TR DAN PZ QS M TR DAN PZ QS

1 0.6711 0.4601 0.5950 0.4935 7 0.5971 0.6941 0.5848 0.7778
2 0.2035 0.4939 0.3875 0.4895 8 0.5984 0.7367 0.6500 0.7884
3 0.4605 0.5722 0.4826 0.6736 9 0.6392 0.7782 0.6731 0.8945
4 0.5028 0.5851 0.6866 0.6733 10 0.6456 0.7990 0.7546 0.7976
5 0.3925 0.6955 0.5916 0.7821 11 0.7598 0.8135 0.6970 0.6450
6 0.4680 0.6985 0.6950 0.7896 12 0.6996 0.7998 0.6790 0.7234

Table 9. Values of the statisticsQN andQ∗
N and their p-values for three kernels and three values of

M = 4, 7 and11

M = 4 M = 7 M = 11

Kernels TR DAN BP TR DAN BP TR DAN BP
QN 2.072 1.771 2.022 0.915 2.011 1.815 0.534 1.684 1.347
α 0.019 0.038 0.021 0.179 0.022 0.034 0.297 0.046 0.08

Q∗
N 3.656 2.118 2.474 2.072 2.405 3.732 1.929 1.899 3.660

α 0.0001 0.017 0.007 0.019 0.007 0.0001 0.026 0.028 0.0001
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Figure 1. Values of the statisticQâ(j)∗ defined by (6.1) at different lagsj. The horizontal dotted line
represents the marginal critical value at the significance levelα = 0.05
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