2011s-24

Robust Sign-Based and Hodges-Lehmann Estimators in
Linear Median Regressions with Heterogenous Serially
Dependent Errors

Elise Coudin, Jean-Marie Dufour

Série Scientifique
Scientific Series

Montréal
Février 2011

© 2011 Elise Coudin, Jean-Marie Dufour. Tous droits réservés. All rights reserved. Reproduction partielle
permise avec citation du document source, incluant la notice ©.
Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source.

CIRANO

Allier savoir et decision

Centre interuniversitaire de recherche en analyse des organisations



CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de
son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention
d’infrastructure du Ministére du Développement économique et régional et de la Recherche, de méme que des subventions et
mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research
activities are funded through fees paid by member organizations, an infrastructure grant from the Ministere du
Développement économique et régional et de la Recherche, and grants and research mandates obtained by its research
teams.

Les partenaires du CIRANO

Partenaire majeur
Ministére du Développement économique, de I’Innovation et de I’Exportation

Partenaires corporatifs

Banque de développement du Canada
Banque du Canada

Banque Laurentienne du Canada
Banque Nationale du Canada

Banque Royale du Canada

Banque Scotia

Bell Canada

BMO Groupe financier

Caisse de dépot et placement du Québec
Fedération des caisses Desjardins du Québec
Financiére Sun Life, Québec

Gaz Métro

Hydro-Québec

Industrie Canada

Investissements PSP

Ministére des Finances du Québec
Power Corporation du Canada
Raymond Chabot Grant Thornton

Rio Tinto

State Street Global Advisors

Transat A.T.

Ville de Montréal

Partenaires universitaires
Ecole Polytechnique de Montréal
HEC Montréal

McGill University

Université Concordia

Université de Montréal
Université de Sherbrooke
Université du Québec

Université du Québec a Montréal
Université Laval

Le CIRANO collabore avec de nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son
site web.

Les cahiers de la série scientifique (CS) visent a rendre accessibles des résultats de recherche effectuée au CIRANO
afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées
et les opinions émises sont sous ’unique responsabilité des auteurs et ne représentent pas nécessairement les positions
du CIRANO ou de ses partenaires.

This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The
observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent
positions of CIRANO or its partners.

ISSN 1198-8177 Partenaire financier

Développement
économique, Innovation
et Exportation

Québec eara



Robust Sign-Based and Hodges-Lehmann Estimators in
Linear Median Regressions with Heterogenous Serially
Dependent Errors

Elise Coudin’, Jean-Marie Dufour *

Abstract

We propose estimators for the parameters of a linear median regression without any assumption on the
shape of the error distribution — including no condition on the existence of moments — allowing for
heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial
dependence (linear or nonlinear) including GARCH-type and stochastic volatility of unknown order. The
estimators follow from a reverse inference approach, based on the class of distribution-free sign tests
proposed in Coudin and Dufour (2009, Econometrics J.) under a mediangale assumption. As a result, the
estimators inherit strong robustness properties from their generating tests. Since the proposed estimators are
based on maximizing a test statistic (or a p-value function) over different null hypotheses, they can be
interpreted as Hodges-Lehmann-type (HL) estimators. It is easy to adapt the sign-based estimators to
account for linear serial dependence. Both finite-sample and large-sample properties are established under
weak regularity conditions. The proposed estimators are median unbiased (under symmetry and estimator
unicity) and satisfy natural equivariance properties. Consistency and asymptotic normality are established
without any condition on error moment existence, allowing for heterogeneity (or heteroskedasticity) of
unknown form, noncontinuous distributions, and very general serial dependence (linear or nonlinear).
These conditions are considerably weaker than those used to show corresponding results for LAD
estimators. In a Monte Carlo study on bias and mean square error, we find that sign-based estimators
perform better than LAD-type estimators, especially in heteroskedastic settings. The proposed procedures
are applied to a trend model of the Standard and Poor’s composite price index, where disturbances are
affected by both heavy tails (non-normality) and heteroskedasticity.

Key words sign test, median regression, Hodges-Lehmann estimator, p-value; least absolute
deviations, quantile regression; simultaneous inference, Monte Carlo tests, projection methods,
nonnormality, heteroskedasticity; serial dependence; GARCH; stochastic volatility.
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1. Introduction

A basic problem in statistics and econometrics consists in studying the relapidrettveen a de-
pendent variable and a vector of explanatory variables under wetkbdimnal assumptions. For
that purpose, the Laplace-Boscovich median regression is an attrapfweach because it can
yield estimators and tests which are considerably more robust to non-noranaditgutliers than
least-squares methods; see Dodge (1997). The least absolute dgiAtiyrestimator is the refer-
ence estimation method in this context. Quantile regressions [Koenker asetBd978), Koenker
(2005)] can be viewed as extensions of median regression. An impog&sun why such methods
yield more robust inference comes from the fact that hypotheses atmuents are not generally
testable in nonparametric setups, while hypotheses about quantiles rentatetesider similar
conditions [see Bahadur and Savage (1956), Dufour (2003),Ubufouneau and Tars (2008)].

The distributional theory of LAD estimators and their extensions usually fastumoment
conditions on model errors, such as the existence of moments up to a gilernas well as other
regularity conditions, such as continuity, independence or identical distits; see for instance
Knight (1998), El Bantli and Hallin (1999), and Koenker (2005). tRar, this theory and the associ-
ated tests and confidence sets are typically based on asymptotic approxématiersame remark
applies to work on LAD-type estimation in models involving heteroskedasticitysaacorrela-
tion [Zhao (2001), Weiss (1990)], endogeneity [Amemiya (1982), Mdd@83), Hong and Tamer
(2003)], censored models [Powell (1984, 1986)], and nonlineactfonal forms [Weiss (1991)].
By contrast, provably valid tests can be derived in such models, undearkably weaker con-
ditions, which do not require the existence of moments and allow for arbit@igrogeneity (or
heteroskedasticity); see Coudin and Dufour (2009). This featuretfi¢getheory can be used in the
context of median regression to derive more robust estimation methods.

Specifically, we study the problem of estimating the parameters of a linear nredjgassion
without any assumption on the shape of the error distribution — including mdittan on the ex-
istence of moments at any order — allowing for heterogeneity (or hetatasteity) of unknown
form (including GARCH-type dependence and stochastic volatility of unknarder), noncontinu-
ous distributions, and very general serial dependence. We adeygrae inference approadiased
on the distribution-free tests proposed in Coudin and Dufour (2009 183t statistics are quadratic
forms of the constrained signs (aligned with respect to the null hypothe#lsh weighting ma-
trix that may also depend on the constrained signs. The null distributionssé gtatistics remain
the same under a wide set of distributional assumptions on model errateqeribed above). We
propose to estimate the parameters of the median regression by minimizing threbaseg test
statistics over different null hypotheses. Since the tests used to getierateare remarkably ro-
bust, the estimators inherit strong robustness properties.



The proposed estimators can be viewed as GMM estimators based on darentldble objec-
tive function originally derived as a distribution-free test statistic. Thistuieaalso means that the
distribution of the criterion function is completely known under a wide arrayasfparametrically
specified data generating processes, as opposed to setups whettecamigan of the estimating
function is set (the moment equations). Since the estimators are based on rimexaniest statistic
over different null hypotheses, they can also be interpreted as ldddgenann-type (HL) estima-
tors [Hodges and Lehmann (1963)]. When the test statistic is pivaalthe null distribution is the
same irrespective of the value set by the null hypothesis), the estimatanalsmizes the-value
associated with different tested parameter values. In other words, ifitheypothesis has the form
Hy(By) : B = By, the estimator corresponds to the valugdgfwhich is “least rejected” by the test
(i.e., has the highest-value)?!

Both finite-sample and large-sample properties of sign-based estimatastalbpéished under
weak regularity conditions. We show they are median unbiased (under syynamel estimator
unicity) and possess equivariance properties with respect to lineafdrarations of model vari-
ables. Consistency and asymptotic normality are established without any merigtehce as-
sumption on the errors, allowing noncontinuous distributions, heterogearaitgeneral serial de-
pendence of unknown form. These conditions are considerably waeake those usually used to
obtain corresponding results for LAD estimators; see Bassett and Kpét78), Bloomfield and
Steiger (1983), Powell (1984), Phillips (1991), Pollard (1991), WEiS91), Fitzenberger (1997),
Knight (1998), El Bantli and Hallin (1999) and the references therd&inparticular, asymptotic
normality and consistency hold for heavy-tailed disturbances which malyavet finite variances.
This interesting property is induced by the sign transformation. Signs iofuads always possess
finite moments, so no further restriction on the disturbance moments is regakegpt for Knight
(1989) and Phillips (1991), who considered the case of autoregeessidels, the distribution of
LAD estimators in regressions where the error variances may not exastebaived little atten-
tion. In general, LAD estimators and the sign-based estimators proposetbhew from different
optimization rules, and they can be quite different.

The class of sign-based estimators we propose includes as specilthasign estimators
derived by Boldin, Simonova and Tyurin (1997) from locally most powesign tests in linear re-
gressions with.i.d. errors and fixed regressors. Note also that the procedures pobpp$iong and
Tamer (2003) and Honore and Hu (2004) also rely oni.ile assumption. In this paper, we stress
that a major advantage of signs over ranks consists in dealing trandyparitim heteroskedastic (or
heterogeneous) disturbances. Many heteroskedastic and posgbklydéat schemes are covered

'Hodges and Lehmann (1963) proposed this general principle to obtaistimate of a location parameter from rank
tests. For some extensions to regressions with i.i.d. errors, se&dumg@971), Jaeckel (1972), and Koul (1971).



and, in presence of linear dependence, a HAC-type correction ferdsiedasticity and autocorre-
lation can be included in the criterion function.

The construction of sign-based estimators as Hodges-Lehmann estimaltessthese a natural
complement of the finite-sample tests used to generate them. The latter rely gadhéistribution
of the corresponding sign-based test statistics, do not involve nuipanameters, and allow one to
control test levels in finite samples under heteroskedasticity and nonliepandence of unknown
form. In Coudin and Dufour (2009), Monte Carlo test methods [Dwa857}, Barnard (1963) and
Dufour (2006)] are combined with test inversion and projection technifide®ur (1990, 1997),
Dufour and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufamd Jasiak (2001), Dufour and
Taamouti (2005)] to build confidence sets and test general hypoth@$ese is no need to estimate
the error density at zero in contrast with tests that rely on kernel estimiaties bAD asymptotic
covariance matriX. Furthermore, when the test criteria are modified to cover linear depemdenc
the resulting inference is asymptotically valid. The conjunction of sign-béssid, projection-
based confidence regions, and sign-based estimators thus provioleplate system of inference,
which is valid for any given sample size under very weak distributionalmpsons and remains
asymptotically valid under even weaker conditions (including allowance feafinlependence in
regression disturbances).

We study the performance of the proposed estimators in a Monte Carlo statdgllttws for
various non-Gaussian and heteroskedastic setups. We find thatasigd-&stimators are competi-
tive (in terms of bias and RMSE) when errors arel., while they are substantially more reliable
than usual methods (LS, LAD) when arbitrary heterogeneity or ser@mtkence is present in the
error term.

Finally, we present an empirical application to financial data. We study d trexdel for the
Standard and Poor’'s Composite Price Index, over the period 19ZBd®98ell as the 1929 crash
period (which is characterized by huge price volatilities). The data azetaff by serial dependence,
heavy tails (non-normality) and heteroskedasticity.

The paper is organized as follows. Section 2 presents the model andgkeidests we exploit.
In section 3, we define the proposed family of sign-based estimators.niteefample properties of
the sign-based estimators are studied in section 4, while their asymptotictspee considered

2For an alternative finite-sample inference exploiting a quantile versioreafatne sign pivotality result, which holds
if the observations ar& -conditionally independent, see Chernozhukov, Hansen and Ja{28a$).

3In thei.i.d. error case, Honore and Hu (2004) observed in simulations thatlkeased estimates of the asymptotic
standard error of the median-based estimator tend to be too small, sostiwasesd tests tend to overreject the null
hypothesis. Other estimates of the LAD asymptotic covariance matrix cabtaaed by bootstrap procedures [design
matrix bootstrap in Buchinsky (1995, 1998), block bootstrap in Fitzeyar€d997), Bayesian bootstrap in Hahn (1997)]
and resampling methods [Parzen, Wei and Ying (1994)]. But the jwattdit of these also rely on usual asymptotic
regularity conditions.



in section 5. In section 6, we present the results of our simulation study ®fabid RMSE. The
empirical application is reported in section 7. We conclude in section 8. Alppéncontains the
proofs.

2. Framework

We will now summarize the general framework we study and define the téstistkaon which the
estimation methods we propose are based.

2.1. Model

We consider a stochastic procesg;, z}) : 2 — RPt!L . ¢ = 1,2,...} defined on a probability
space((2, F, P), such that, andx, satisfy a linear model of the form

w=x8+u, t=1,...,n, (2.1)

wherey, is a dependent variable; = (z41, ..., xy,)’ is ap-vector of explanatory variables, ang
is an error process. The’s may be random or fixed. In the sequgl= (v1, ..., y»)" € R™ will
denote the dependent variable vecfor= (z1,..., x,)" € R"*P then x p matrix of explanatory
variables, andi = (uy, ..., u,)" € R™ the disturbance vector. Moreové¥,( - |z1, ..., x,) repre-
sents the distribution function ef; conditional onX. This framework is also used in Coudin and
Dufour (2009).

The traditional form of a median regression assumes that the disturbances , u,, arei.i.d.
with median zero

Med(u¢|x1,...,2n) =0, t=1,...,n. (2.2)

Here, we relax the assumption that thearei.i.d., and we consider moment conditions based on
residual signs where the sign operator R — {—1,0,1} is defined ass(a) = 1)y, 1o0)(a) —
1(_oo,0(a), With 14(a) = 1if a € Aandl4(a) = 0if a ¢ A. For convenience, ifi € R", we
will note s(u) = (s(u1),..., s(uyn)), then-vector of the signs of the components.

Assumption (2.2) is not sufficient to obtain a finite-sample distributional thieoisign statistics
(because further restrictions on the dependence between the egareamed). Let us consider
adapted sequencey(v, F) = {v;, F; : t = 1, 2, ...} wherev,; is any measurable function of
Wi = (yg, x}), Fris ac-field in 2, Fy C Fifors < t,o(Wi,..., W;) C Fr ando(W1,..., Wy)

is theo-algebra spanned by, . .., W;. Then theweak conditional mediangalerovides such a
setup.
Assumption 2.1 WEAK CONDITIONAL MEDIANGALE . LetF; = o(uy,..., u, X), fort > 1.



u in the adapted sequencdu, F) is a weak mediangale conditional oxi with respect to{ F; :
t=1,2,... }iff Plus <0|X]=Plu; >0/X]and

Plus < Olug, ..., up—1, X] = Pluy > Oluq, ..., u—1, X], fort > 1. (2.3)

Besides nonnormality (including no condition on the existence of moments), Shisrgption al-
lows for heterogeneity (or heteroskedasticity) of unknown form, notieoous distributions, and
general forms of (nonlinear) serial dependence, including GARQid-and stochastic volatility of
unknown order. It does not, however, cover “linear serial depeo@’ such as an ARMA process
onuy.

Clearly, Assumption 2.1 clearly entails (2.2). Wher;| < +o0, for all ¢, it also implies that
s(uy) is uncorrelated withr,, an assumption we state for future reference.

Assumption 2.2 SIGN MOMENT CONDITION.  E|z;| < 400 and E[s(u¢)x] = 0, fort =

1,...,n.

This assumption allows for both linear and nonlinear serial dependentendkes difficult the
derivation of finite-sample distributions. We use it in the asymptotic resultepred below.

2.2. Quadratic sign-based tests

In order to derive robust estimators, we consider tests for hypotleéses form Hy(5,) : 5 = 5,
vs. H1(By) : B # By in model (2.1)-(2.2). These are based on general quadratic forred baghe
vectors(y — X 3,) of the constrained sign&€., the signs aligned with respect 205,,):

Ds[By, Qn(ﬁo)] =s(y— Xﬁo)/XQn [s(y — X By), X] X's(y — X B) (2.4)

where(2,(8y) = 2, [s(y — XB,), X| is ap x p positive definite weight matrix which may de-
pend on the constrained signs. If the disturbances follow a weak metBafgssumption 2.1),
sign-based statistics of this form constitute pivotal functions: the distribwtidds[3,, £2,(5,)]
conditional onX is completely determined undéf,(3,) and can be simulated; see Coudin and
Dufour (2009). Even though the distribution Bfs[3,, £2,(3,)] depends orX andf2,] - | under
Hy(B,), critical values can be approximated to any degree of precision by simulafi@nnatively,
exact Monte Carlo tests can be built using a randomized tie correctiondunecbufour (2006)].
So we can get an exact test Hf(3,). The fact thath[ . ] depends on the data only through
s(y — X By) plays a central role in generating this feature.

Further, if linear serial dependence is allowed and the assumption(that X 5,) are X are
independent is relaxed [as described in Coudin and Dufour (2008]dependence can be taken



into account by an appropriate choice@f | - |. The test statistids[3,, 2.(3,)] then remains
asymptotically pivotal undeH,(53,), and the finite-sample procedure just described yields a test
such that the probability of rejectinby(5,) converges to the nominal level of test under any dis-
tribution compatible withH(3,). In all cases, due to the sign transformation, the tests so obtained
are remarkably robust to heavy-tailed distributions (and other features)

It will be useful to spell out how an exact Monte Carlo test based on @etes test statistic
like Ds[By, 2.(8,)] can be obtained. Under Assumption 2.1, we can generate a vectgr of
independent repIicate(ngl)(ﬁo), e DgN) (8,))’ from the distribution ofDs[3,, 2.(5,)] under
the null hypothesis as well &%), ..., V()" a (N + 1)-vector ofi.i.d. uniform variables on the
interval[0, 1]. Settinnggo) (By) = Ds[By, £2.(8,)] the observed statistic. Then, a Monte Carlo test
for Hy(5,) consists in rejecting the null hypothesis whenever the empipicalue is smaller than
a, i.e. pn(By) < a wherepy(8,) = ﬁN[D(SO) (B0), Bol;

_ NGn(z, By) +1

p(a, i) =~ 25)

andGy (z, By) = 1= % Ly 51 (x— DS (B0) + & Iy 6(DF (8g) —2)s1. (VO — V), with
s+() = 1, o0y (2), 6(z) = 1y03(x). Whena(N + 1) is an integer, the size of this test is equal
to o for any sample size [see Dufour (2006)]. This procedure also provides a test suchtthat
probability of rejection converges to.

Note also that the confidence region

Cr-a(B) ={Bo : N(Bo) = } (2.6)

which contains all the values, such that the empirical-value pxn(5,) is higher thanx has by
construction levell — « for any sample size. It is then possible to derive general (and possibly
nonlinear) tests and confidence sets by projection techniques. For lexammservative individual
confidence intervals are obtained in such a way. Finallf,dfis an asymptotically pivotal function

all previous results hold asymptotically. For a detailed presentation, serCand Dufour (2009).

3. Robust and Hodges-Lehmann sign-based estimators

We will now exploit the tests described in the previous section to derivestastimators off. We
first define the estimates and then discuss their interpretation as Hodgesue estimators.



3.1. Sign-based estimators

In view of the above distributional properties, we consider estimators 3,,(y, X, Dg) obtained
by minimizing the sign statisti®s[3,, 2.(8)] :

‘DS[/BWJ “Qn([gn)] = min DS[607 Qn(ﬂO)] (31)

Bo€O

where® is a subset oRR? (for example, an appropriate compact set). This family of estimators
includes as special cases estimators already studied in the literature in taet @dmni.d. errors.
Namely, the sign-based estimators proposed by Boldin et al. (1997) cabthimed by taking
Qp=1I,0r02,=(X'X)"1:

SB(By) = Ds[By, Ip] = s(y — XB0)' X X's(y — X3y) = SB(By) , (3.2)

SF(By) = Dg By, (X'X)7'] = s(y — XBo) X(X'X) ' X" s(y — X3,) . (3.3)

Such estimators can be interpreted as GMM estimators based on the mometibiedid’s(y —
Xfy)] = 0. This condition has the special feature that the estimating functibity — X 3) is
not differentiable with respect t@, while its distribution is completely determined in a general
nonparametric setup.

Since the functiorDs[3,, £2,(3,)] is non-negative and can only take a finite number of values
(signs are limited to the three distinct values, 0, 1), problem (3.1) always possesses at least one
solution. Further, if2, [s(y — X3,), X] is continuous with respect t&(-), Ds[Bq, 2,(8)] is
continuous almost everywhere (with respect to the Lebesgue meabgrekistence of a bounded
solution can be guaranteed by restrictifigto a compact subsé? C R? [for example, see As-
sumption 5.3 below]. Clearly, the solution may not be unique, and there is a set

My, X) = argmin Ds[By, 2a(5)] (3.4)
Bo€O

of possible solutions. To get a unique solution, one may add a choice atjtstich as minimizing
an appropriate norm or distance among the minimizers of the objective furictimimizing
Ds[By, £2,(8,)] is a nonlinear problem and no general closed-form analytical solutiomihble.
Further, the function is discrete and not (everywhere) differentiabtewe need to use nonlinear
optimization algorithm that can handle such functions, such as the simpleitlahgar simulated
annealing; see Goffe, Ferrier and Rogers (1994) and Pressol$kukVetterling and Flannery
(2002)°

“In general, a unique solution may always be selected by virtue of the afichoice.
SFor further discussion of estimation based on a non-smooth criteriertieroé and Powell (1994), Boldin et al.



In order to allow for dependence not covered by the mediangale assan(@i®), such as an
ARMA structure inu;, we can consider sign-based statistics where the weighting matrix is the
inverse of an HAC-type covariance matrix estimator:

Ds[Bo. Ju(Bo) Y] = sy — XBo)' X (Juls(y — XBo), X]) "' X's(y — XBy)  (3.5)

whereJ,,(8,) = Jn [s(y—Xfy), X]accounts for the dependence among the signs and the explana-
tory variables. Here, as in continuously updated GMi appears both in the estimating function
(through the constrained signs) and the weighting matrix.

Minimizing Dg[8,, Jn(8y) '] in (3.3) requires one to invert a new mattix (5,) for each
value of 3, whereas this is not needed fbrs (8, I,,) or Dg[By, (X'X)~!]. In practice, as for
continuously updated GMM, this numerical problem may be cumbersome. Téfgiogiculations,
it is also possible to use a two-step method: first, we solve (3.3) to qmaiﬂ ﬂn (y, X, SF); we
then compute/,, [s(y — X3,,), X] and minimize

Ds[Bo, Jn(B) "] = s(y = XBo) X [Ju(s(y = XB,), X)] ' X's(y— Xpy)  (3.6)
with respect toj3,. The estimator obtained in this way will be called hereafter g AC
sign-based estimator. Note however that no finite-sample distributionalytie@vailable for
Ds By, Ju(3,)~'], even under the mediangale assumption.

For heteroskedastic independent disturbances, we consider weighsazhs of sign-based esti-
mators which can be more efficient than the basic ones defined in (3.23nr\(Bighted sign-based
estimators are sign-based analogues to weighted LAD estimator [Zhag}ZD0d weighted LAD
estimator is given by

gWLAD — argminz dily; — x| (3.7)
BeRP
Correspondingly, we considexcale weighted sign-based estimataersd density weighted sign-
based estimatorsA scale weighted sign-based estima[;éyz(Hn)} is obtained by minimizing

Ds[By, Hn| = s(y—XBy) XHp X's(y—XBy) = s(y—XBy) X(X'X) ' X's(y—XBy) (3.8)

whereH,, = D,,(X'X)"'D,,, X = XD, andD,, = diag(dy, ..., d,)withd; > 0,i=1,..., n.
The density weighted sign-based estima{@g(H;;)} is based on optimal estimating functions [in
the sense of Godambe (2001)] and minimizes

Dg [BOa HZ] = s(y— XBO)IXH;X/S(?J — Xy)

(1997, Section 3.1), Chen, Linton and Van Keilegom (2003), and Hoaod Hu (2004).



= s(y— XBo) X (XX*) 7' X"s(y — Xpy) (3.9)

whereH} = D} (X*X*)"'D}, X* = XD}, D} = diag[f1(0|X), ..., f.(0]X)] X, and f;(0|X)

is the density ofu; evaluated at zero (conditional dq), i« = 1,..., n. An inherent difficulty for

such estimators consists in approximating the density valu@sXx ), ..., f,(0/X). Note however

that level can still be controlled, even if a conventional density (sucheas&an density) is used .
Further, we show that under an additional weak mediangale assumpticsigthbased esti-

mators presented here are equal (in probability) to Hodges-Lehmann testiraasociated to the

finite-sample sign-based testing theory developed in Coudin and Duid0®)2

3.2. Hodges-Lehmann sign-based estimators

The estimators proposed above are closely related with the method proppddddges and
Lehmann (1963) to build point estimates from distribution-free tests on argqualameter; see
also Johnson, Kotz and Read (1983). SupposeR and7'(u, W) is a statistic for testing =
againsty > p, based on the observatiofs. Suppose further thaf(x, W) is nondecreasing in
the scalan:. Given a known central value af (g, W), saym(ug) [for exampleEy T'(uq, W),
the test rejects. = 1, whenever the observeéd is larger than, sayn(u,). If this is the case, one
is inclined to prefer higher values pf The reverse holds when testing the oppositeu(f.,) does
not depend on, [m(uy) = mo], an intuitive estimator of: (if it exists) is given byu* such that
T(u*, W) equalsmg (or is very close tang). p* may be seen as the value @fwhich is most
supported by the observations.

Here we consider an extension to multidimensional parameters thgpuglue functions. Let
By € ©. Consider now testindgl,(5,) : 0 = [, versusHi(8,) : B # [, using the test statistic
Ds[By, 2,(8,)]- Atest based og rejectsHy(3,) whenDg[3,, £2,(8,)] is larger than a certain
critical value which depends on the test level. The estimatart isfchosen as the value ofleast
rejected when the level of the test increases. This corresponds to the highestue. If the
associategh-value for Hy(8) is p(8y) = G(Ds|B, 2:(80)]|50), whereG(z|3,) is the survival
function of D[y, 2.(80)], i.e. G(x]8) =P[Ds[By, 2(80)] > 2 |3 = Bo), the set

M, = argmax p(f,) (3.10)
Bo€EO
constitutes a set of Hodges-Lehmann-type estimators. There may notriigua maximizer. In
that case, any maximizer is consistent with the data.
When the distribution oDs[3,, 2,,(3,)] and the correspondingrvalue function do not de-
pend on the tested valug,, maximizing thep-value is equivalent to minimizing the statistic
Ds[By, 2,(8y)]. This point is stated in the following proposition. Let us denéter|3,) the



distribution of Ds[3,, £2.(8,)] when3 = 3, and assume this distribution is invarianto(As-
sumption 3.1).

Assumption 3.1 INVARIANCE OF THE DISTRIBUTION FUNCTION
F(z|8) = F(z) VYxeR", V3 eRP.

Let us define

My = argmin Dg(Bg, (2,). (3.11)
Boe®@

Then, the following proposition holds.

Proposition 3.1 If Assumption 3.1 holds, theWd; = M> with probability one.

If the disturbances satisfy the mediangale Assumption 2.1, any sign-kasisticsconstitutes a
pivotal function undetd (3, ); see Coudin and Dufour (2009). Hence, Assumption 3.1 is satisfied
andj3, (£2,) can be viewed as a Hodges-Lehmann estimator basétk¢f,,, 3).

In models with sets of observationally equivalent values,&ny inference approach relying on
the consistency of a point estimator (which assumes point identificatioms gisleading results
whereas a whole estimator set remains informative. The approach ofdzheikov, Hong and
Tamer (2007) can be applied here. Let us remind that the Monte Carltagpd inference method
[Coudin and Dufour (2009)] does not rely on identification conditions l@ads to valid results in
any case.

Sign-based estimators have usually been interpreted in the literature as Gfithéters ex-
ploiting the orthogonality condition between the signs and the explanatonplesiar instruments
[see Honore and Hu (2004)]. However, the GMM interpretation hidedinkevith testing theory,
which is revealed by the Hodges-Lehmann estimator interpretation. Hadiesann estimators
correspond to parameter values which are least rejected by the tests {fgevdata). Hence, they
are derived without referring to asymptotic conditions through the angoggiple. However, they
turn out to be equivalent (in probability) to usual GMM estimators basetyms sThe finite-sample
properties of sign-based estimators are studied in the next section.

4. Finite-sample properties of sign-based estimators

In this section, finite-sample properties of sign-based estimators are stGitjebased estimators
share invariance properties with the LAD estimator and are median-unbfased disturbance
distribution is symmetric and some additional assumptions on the form of the scinticatisfied.
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The topology of the argmin set of the optimization problem 3.1 does not asasiple structure.
In some cases it is reduced to a single point like the empirical mediap ©f1 observations. In
other cases, it is a set. More generally, the argmin set is a union of ceatekut it is noa priori
either convex nor connected. To see that it is a union of convex setejuatk that the reciprocal
image ofn fixed signs is convex.

Sign-based estimators share some attractive equivariance propertiewidind quantile es-
timators [see Koenker and Bassett (1978)]. It is straightforward tthe¢¢he following proposition
holds.

Proposition 4.1 INVARIANCE. Let M(y, X) be the set of the solutions of the minimization
problem(3.1). If 3(y, X) € M(y, X), then the following properties hold:

My, X) € M(Q\y, X), VAER, (4.1)
Bly, X)+v € M(y+Xy, X), VyeR?, (4.2)
A7'3(y, X) € M(y, XA), forany nonsingulaik x k matrix A. (4.3)

Further, ifB(y, X) is a uniquely determined solution @f.1), then

BOw, X) = Ay, X), VAER, (4.4)
Bly+Xv,X) = Bly, X)+7, VyeR?, (4.5)
By, XA) = A"'B(y, X), forany nonsingulaik x k matrix A. (4.6)

To prove this property, it is sufficient to write down the different optimizagooblems. (4.1)
and (4.4) state a form of scale invariancey i rescaled by a certain factgt, rescaled by the same
one is solution of the transformed problem. (4.2) and (4.5) represeriidndavariance, while
(4.3) and (4.6) show the behavior of the estimator changes states amepeniaation of the design
matrix. In all cases, parameter estimates change in the same way as thepegtioadters.

If the disturbance distribution is assumed to be symmetric and the optimization mpobde
have a unique solution then sign-estimators are median unbiased.

Proposition 4.2 MEDIAN UNBIASEDNESS If u ~ —u and the sign-based estimatfa’(y, X)is
a uniquely determined solution of the minimization prok&n), thenf is median unbiased.e.

Med (8 —5) =0

where represents the “true value” of.
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5. Asymptotic properties

We demonstrate consistency of the proposed sign-based estimators wipanameter is identified
under weaker assumptions than the LAD estimator, which validates the uge-tfesed estimators
even in settings when the LAD estimator fails to converge. Finally, sign-testadators are asymp-
totically normal. For reviews of the asymptotic distributional theory of LAD estimgtihe reader
may consult Bassett and Koenker (1978), Knight (1989), Phillips X},99ollard (1991), Weiss
(1991), Fitzenberger (1997), Knight (1998), El Bantli and Halling@p and Koenker (2005).

5.1. Identification and consistency

We show that the sign-based estimators (3.1) and (3.6) are consistamtthadollowing set of
assumptions. In the sequel, we denotefbthe “true value” of3, and by 3, any hypothesized
value.

Assumption 5.1 MIXING. {W; = (y, x}) hi=1,2,... IS a-mixing of size-r/(r — 1) withr > 1.

Assumption 5.2 BOUNDEDNESS — z; = (%14,..., Zpt) and E|lzp "™ < A < oo, h =
1,...,p,t=1,...,n, Vn e N.

Assumption 5.3 COMPACTNESS (3 € Int(©), where® is a compact subset & .
Assumption 5.4 REGULARITY OF THE DENSITY.
1. There are positive constanfg andp; such that, for alln € N,
Plft(0|X) > fo] >p1, t=1,...,n, as.
2. fi(-|X) is continuous, for alh € N for all ¢, a.s.
Assumption 5.5 POINT IDENTIFICATION CONDITION. V¢ > 0,37 > 0 such that

1
liminf = S P[lz)6 0|21, ... .2 0.
im in n; |248] > 7| fi(O] 21y o w0) > fr] >

Assumption 5.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. {2,,(/3) iS symmetric posi-
tive definite for allg in ©.

Assumption 5.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. §2,(() is symmetric positive
definite for all3 in a neighborhood o8.

12



Then, we can state the consistency theorem. The assumptions are intejyseédter.

Theorem 5.1 CONSISTENCY. Under model(2.1) with the assumptions 2.2 and 5.1-5.6, any
sign-based estimator of the type,

~

B, € aggrergn s(y — XBo) X2, [s(y — XBy), X| X's(y — XBy) (5.1)
or
B e argmin s(y = X o) X 0 sy — X5), X]X'sty = Xo), (5.2)

where(3 stands for any (first step) consistent estimatop pis consistentBiS defined in equation
(5.2) is also consistent if Assumption 5.6 is replaced by Assumption 5.7.

It will useful to discuss Assumptions 5.1-5.7 and compare them to the ogesaé for LAD
and quantile estimator consistency; see Fitzenberger (1997) and W&943.(The mixing assump-
tion 5.1 is needed to apply a generic weak law of large numbers; see An{t&&7) and White
(2001). It was used by Fitzenberger (1997) to show LAD and quargtienator consistency with
stationary linearly dependent processes. It covers, among otlesrgses, stationary ARMA distur-
bances with continuously distributed innovations. Point identification is peovity assumptions
5.4 and 5.5. Assumption 5.5 is similar to Condition ID in Weiss (1991). Assumptiois bigual in
LAD estimator asymptotic$. It is analogous to Fitzenberger’s (1997) conditions (ii.b) - (ii.c) and
Weiss’s (1991) CD condition. It implies that there is enough variation at@amno to identify the
median. It restricts the setup for some “bounded” heteroskedasticity inghelthnce process but
not in the usual (variance-based) way. Itis relatediﬁmsivity#(o) , an alternative measure of dis-
persion adapted to median-unbiased estimators. Diffusivity measuresticahspread of a density
rather than its horizontal spread, and appears in €rdRao-type lower bound for median-unbiased
estimators; see Sung, Stangenhaus and David (1990) and So (199djnption 5.6 entails that the
weight matrix(2, is everywhere invertible, while Assumption 5.7 only requires local invertibility.

An important difference with the LAD asymptotic theory comes from Assumpti@n %or
sign consistency, only the second-order moments tifave to be finite, which differs from Fitzen-
berger (1997) who assumed the existence of at least third-order monvgatdo not assume the
existence of second-order moments on the disturbamceEhe disturbances indeed appear in the
objective function only through their sign transforms which possess finiteents up to any order.
Consequently, no additional restriction should be imposed on the dist@ripaocess (in addition
to regularity conditions on the density). Those points will entail a more ge@éfathan the one

6Assumption 5.4 can be slightly relaxed covering error terms with mass ipdire objective function involves ran-
domized signs instead of usual signs.
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stated for the LAD/quantile estimators in Fitzenberger (1997) and Weis4)19%e only works
we are aware of that study LAD estimators properties in case of infinitengariarrors are those
of Knight (1989) and Phillips (1991) who derive LAD asymptotic properfier an autoregressive
model with infinite variance errors, which are in the domain of attraction oftdestaw.

5.2. Asymptotic normality

Sign-based estimators are asymptotically normal. This also holds underrvesakenptions than
the ones needed for LAD estimator asymptotic normality as presented in W&k @nd Fitzen-

berger (1997). Sign-based estimators are well adapted to deal witi-tedld disturbances that
may not possess finite variances. The assumptions we consider arkaivenfpones.

Assumption 5.8 UNIFORMLY BOUNDED DENSITIES Jdfy < +oo such that Vn € N,V € R,

sup | fi(A|z1,...,20)| < fu, &.s.
{te(1,..,n)}

Under the conditions 2.2, 5.1, 5.2 and 5.8, we can défii@), the derivative of the limiting
objective function ap:

t
where )
Ln(B) = - Z E[ziay fi(21(8 — B) |21, ..., 2n)]. (5.4)

t
The other assumptions are fairly standard conditions to prove asymptotizlityr

Assumption 5.9 MIXING WITH r > 2. The proces§W; = (y:, z;) : t = 1, 2,...} is a-mixing
of size—r/(r — 2) withr > 2.

Assumption 5.10 DEFINITE POSITIVENESS OFL,,. L,(f3) is positive definite uniformly in.

Assumption 5.11 DEFINITE POSITIVENESS OFJ,. J, = E[1 >t s(ur)zirys(us)] is positive
definite uniformly i and converges to a definite positive symmetric makrasn — oo.

Then, we have the following result.

Theorem 5.2 ASYMPTOTIC NORMALITY. Under the assumption2.2), 5.1 to 5.6, and 5.9 to
5.11, we have:

S, Y2 n[B, — B] % N(0, 1) (5.5)

14



whereg, (£2,) is any estimator which minimize3s[3,, 2.(8,)] in (2.4),
Sn = [La(B) 20 Lu(B)) ™' Ln(B) 20 I 20 L (B) (L (B) 2 Ln(B)]

and

La(B) = + S Elmat (0] a1, )], (5.6)

t

When2,(8,) = Ju(80) " and.J,(8y) = %225 s(yr — 24Bo)wes(ys — 2 5p), We get:

[Ln(B)7 LBV B (JiY) = B] % N[0, 1] - (5.7)
This corresponds to the use of optimal instruments and quasi-efficient tistima, (/') has the
same asymptotic covariance matrix as the LAD estimator. Thus, performafeeudifes between
the two estimators correspond to finite-sample features. This result ciotgrdite generally ac-
cepted idea that sign procedures involve a heavy loss of informatiorre Theao loss induced by
the use of signs instead of absolute values.

Note again that we do not require that the disturbance process vabiafioge. We only assume
that the second-order momentsXfare finite and the mixing property ¢i;, ¢ = 1,...} holds.
This differs from usual assumptions for LAD asymptotic normdlityhis difference comes from
the fact that absolute values of the disturbance process are repldabealrjective function by their
signs. Since signs possess finite moments at any order, one sees easilZtiacan be applied
without any further restriction. Consequently, asymptotic normality, suctoasistency, holds
for heavy-tailed disturbances that may not possess finite varianceisTnsimportant theoretical
advantage of sign-based rather than absolute value-based estimatpesfartiori, rather than
least-squares estimators. Estimators, for which asymptotic normality holds addmbasymptotic
variance assumption (for example OLS) are not accurate in heavyitaigsebecause the variance
is not a measure of dispersion adapted to those settings. Estimators, fdr tivbiasymptotic
behavior relies on other measures of dispersion, like the diffusivity, dvedpout of trouble.

The form of the asymptotic covariance matrix simplifies under stronger assunmsp\When the
signs are mutually independent conditional%fimediangale Assumption 2.1], both, (X’ X))
andﬂ(f; 1) are asymptotically normal with variance

Sp = [Ln(B)]ilE [(1/71)23315332 [Ln(/B)]il'
t=1

See Fitzenberger (1997) for the derivation of the LAD asymptotics in #asisetup and Bassett-Koenker(1978) or
Weiss (1991) for a derivation of the LAD asymptotics under sign indepece.
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If « is ani.i.d. process and is independent®f then f;(0) = f(0), and
— E(zy}) 7L (5.8)

In the general casef;(0) is a nuisance parameter even if condition 5.8 implies that it can be
bounded.

All the features known about the LAD estimator asymptotic behavior applyfatgbe SH AC
estimator; see Boldin et al. (1997). For example, asymptotic relative efficefithe SH AC' (and
LAD) estimator with respect to the OLS estimator2igr if the errors are normally distributed
N(0,02), butSH AC (such as LAD) estimator can have arbitrarily large ARE with respect to OLS
when the disturbance generating process is contaminated by outliers.

5.3. Asymptotic or projection-based confidence sets?

In section 3, we introduced sign-based estimators as Hodges-Lehmanatess associated with
sign-based statistics. By linking them with GMM settings, we then derived asyimmormal-
ity. We stressed that sign-based estimator asymptotic normality holds undegnvessumptions
than the ones needed for the LAD estimator. Therefore, sign-based testamgimptotic normal-
ity enables one to construct asymptotic tests and confidence intervals. Wénhave two ways of
making inference with signs: we can use the Monte Carlo (finite-sampledl Imasthod described
in Coudin and Dufour (2009) - see section 2.2 - and the classical asympietiiod. Let us list here
the main differences between them. Monte Carlo inference relies on thalfiyof the sign-based
statistic. The derived tests are valid (with controlled level) for any samplefsize mediangale
Assumption 2.1 holds. When only the sign moment condition 2.2 holds, the MonitziG@rence
remains asymptotically valid. Asymptotic test levels are controlled. Besides, inations, the
Monte Carlo inference method appears to perform better in small sampledaisarcal asymptotic
methods, even if its use is only asymptotically justified [see Coudin and Duf@@9j]. Never-
theless, that method has an important drawback: its computational complexittheQ@ontrary,
classical asymptotic methods which yield tests with controlled asymptotic levet thelsign mo-
ment condition 2.2 may be less time consuming. The choice between both is maindstioqu
of computational capacity. We point out that classical asymptotic infergreagly relies on the
way the asymptotic covariance matrix, that depends on unknown parar(agassties at zero), is
treated. If the asymptotic covariance matrix is estimated thanks to a simulaticsh+hatieod (such
as the bootstrap) then the time argument does not hold anymore. Both metholdsbe of the
same order of computational complexity.
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6. Simulation study

In this section, we compare the performance of the sign-based estimatothevitlS and LAD
estimators in terms of asymptotic bias and RMSE.

6.1. Simulation setup

We use estimators derived from the sign-based statigtigs, (X' X)) andDg(3, J, ') when a
correction is needed for linear serial dependertté AC estimator). Minimizations are solved by
simulated annealing. We consider a set of general DGP’s to illustrateatiffelassical problems
one may encounter in practice. We use the following linear regression model:

Yyt = :céﬂ + ug (6.1)

wherex; = (1,z2,,x3,) and/ are3 x 1 vectors. We denote the sample size Monte Carlo
studies are based ghgenerated random samples. Table 1 presents the cases considered.

In a first group of examples (A1-A4), we consider classical indepenhdases with bounded
heterogeneity. In a second one (B5-B8), we look at processes ingdlrge heteroskedasticity
so that some of the estimators we consider may not be asymptotically normalemocansistent.
Finally, the third group (C9-C11) is dedicated to autocorrelated distuesari'e wonder whether
the two-stepS H AC sign-based estimator performs better in small samples than the non-corrected
one.

To sum up, cases Al and A2 presént. normal observations without and with conditional
heteroskedasticity. Case A3 involves a sort of weak nonlinear depeadie the error term. Case
A4 presents a very unbalanced scheme in the design matrix (a case wheDihestimator is
known to perform badly). Cases B5, B6, B7 and B8 are other caslesgftailed errors or arbi-
trary heteroskedasticity and nonlinear dependence. Cases C9 to Ciratdludifferent levels of
autocorrelation in the error term with and without heteroskedasticity.

6.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Table 2 angjpwd a norm of these
three valuesn = 50 and.S = 1000. These results are unconditional &n

In classical cases (A1-A3), sign-based estimators have roughly e Isahavior as the LAD
estimator, in terms of bias and RMSE. OLS is optimal in case Al. However, ihaeimportant
efficiency loss or bias increase in using signs instead of LAD. Besid#s itAD is not accurate
in a particular setup (for example with highly unbalanced explanatory scheame A4), the sign-
based estimators do not suffer from the same drawback. In case ARMBE& of the sign-based
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Table 1. Simulated models.

Al:  NormalHOM errors (T2,1, 3,1, ug)’ i N(O,I3), t=1,...,n
A2:  Normal HET errors (@a,t, T3¢, 1) il N(0,13),
upy = min{3, max[0.21, |z} X @, t=1,...,n
A3:  Dep.-HET Tji = pyii1+vl, j=1,2,
pPr=.5: uy = min{3, max[0.21, [zo¢|]} x v},

(W2, v3, v o8 N(O,I3), t=2,....,n
v? andv$ chosen to insure stationarity.

A4:  Unbalanced design matrix zs, ~ B(1,0.3), z3, bt N(0,.012),
ug “KEN(0,1), @y, ug independent; = 1,.. . n.

B5:  Cauchy errors (@24, x34) ~ N(0, I2),
up "E Coay,ug, independentt = 1, ..., n.
B6:  Stochastic volatility (xo,4,23,4) S N(0, 1), uy = exp(w:/2)e; with

wy = 0.5’[1))5_1 —+ vy, Whereﬁt Z’z\/d N(O, 1), (7 i.}\-“d. X2(3)!
xy,u, independentt = 1,...,n.

B7:  Nonstationary (x24Tt €) b N(O,I3), t=1,...,n,
GARCH(1,1) up = o€y, 07 = 0.8u?_; +0.807_.

BS: Exponential error variance (2 ¢, x4, €;)’ i N(0,13), ur = exp(.2t)e;.

C9: ARQ)-HOM (o, 234, v8) ~N(0,1I3), t =2,...,n,
Pu =D up = p -1 + v,
(2,1,23,1)" ~N(0, ), v} insures stationarity.

C10: AR()HET Tt = paie—1 + Vi, j=1,2,
Pu =D, up = min{3, max[0.21, |za (||} X Gy,
Py =D Up = Py U—1 + Vv,

i.4.d
W2, v ve) "REN(0,13), t=2,...,n
v?,v3 andvy chosen to insure stationarity.

Cl1: ARQ)HOM (o, k3, V8") ~N(0,I3),t =2,...,n,
Py =9 U = py -1 + VY,
(@2,1,23,1)" ~ N (0, ), v} insures stationarity.
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Table 2. Simulated bias and RMSE.

n =50 OLS LAD SF SHAC
S = 1000 Bias RMSE Bias RMSE | Bias RMSE| Bias RMSE
Al: Bo .003 142 .002 179 .002 179 .004 178
65 .003 .149 .006 184 .004 182 .004 182
By —.002 .149 —.007 .186 —.006 .18 | —.007  .183
18II* | .004 254 .009 316 | .007 .315 | .009 .313
A2: Bo —.003 .136 .000 .090 —.000 .089 —.000 .089
084 —.0135 .230 —.006 218 —.010 218 —.010 218
Bs .002 142 —.001 .095 —.001 .092 —.001 .092
18l | .014 .303 .007 254 | .010 .253 | .010 .253
A3: Bo .022 167 .018 .108 .025 107 .023 107
o8 —1.00 228 .005 215 .003 214 .002 215
By .001 .150 .005 .105 .007 104 .007 105
18| .022 .320 .019 263 | .026 .261 | .024 .262
A4: By —.001 174 .007 .2102 .010 .2181 .008 2171
01 —.016 313 —.011 375 —.021 .396 —.021 .394
Ba —.100 14.6 077 18.4 .014 7.41 .049 7.40
||B|| .101 14.6 .078 18.5 027 7.42 .054 7.41
B5: Bo 16.0 505 .001 .251 .004 .248 .003 .248
81 —-3.31 119 .015 .264 .020 .265 .020 .265
Gy | —2.191 630 .000 .256 .003 .258 .001 .258
[18]] 26.0 817 .015 .445 .021 .445 .020 .445
B6: Bo —.908 29.6 —1.02 27.4 071 2.28 .083 2.28
081 2.00 37.6 3.21 68.4 .058 2.38 .069 2.39
By 1.64 59.3 2.59 91.8 —.101 2.30 —.089 2.29
18l | 2.73 76.2 4.25 118 136 4.02 | .139  4.02
B7: Bo —127 3289 —.010 7.85 —.008 3.16 —.028 3.17
51 —81.4 237 .130 11.2 —.086 3.80 —.086 3.823
B, -31.0 1484 —.314 12.0 —.021 3.606 | —.009 3.630
18| 154 4312 .340 182 | 089 6.12 | .091 6.15
B8: By | <—101% >10° | < -10° > 101 312 5.67 .307 5.67
By | > 101 > 1010 > 10° > 1010 782 5.40 .863 5.46
By | < =10 >100 | < —10° >100 | 696  5.52 696  5.55
I8l | >10® >10' | >10"Y >10° | 1.09 958 | 1.15 9.63
Co9: B .005 279 .001 .308 .003 .309 .004 311
084 —.002 .163 —.005 201 —.004 .200 | —.005 .199
By .001 .165 —.004 204 .003 .198 .002 .198
II8l] | .006 .363 .007 420 | .006 418 | .006  .419
C10: Bo —.013 .284 —.010 315 —.015 314 —.014 314
63 —.009 182 —.009 .220 —.011 218 —.011 .219
Bo .008 .189 011 222 .007 215 .007 215
18| .018 387 018 444 | 020 439 | .019  .439
C11: Bo .070 1.23 —.026 .308 .058 1.26 .053 1.27
o8 —.000 .268 .005 214 —.005 .351 —.008 .354
By .001 273 —.004 .210 .002 .361 —.001 .361
18| .070 1.29 027 430 | 059 136 | .054 1.37

* ||.|| stands for the Euclidean norm.
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estimator is notably smaller than those of the OLS and the LAD estimates.

For setups with strong heteroskedasticity and nonstationary disturb@®&8), we see that
the sign-based estimators yield better results than both LAD and OLS estimdtdifar from the
(optimal) LAD in case of Cauchy disturbances (B5), the signs estimatortharenly estimators
that stay reliable with nonstationary variance (B6-B8). No assumption améimeents of the error
term is needed for sign-based estimators consistency. All that matters ishtheidr of their signs.

When the error term is autocorrelated (C9-C11), results are mixed. \Wimeoderate linear
dependence is present in the data, sign-based estimators give goltsl(@8, C10). But when the
linear dependence is stronger (C11), that is no longer true.SHhAC' sign-based estimator does
not give better results than the non-corrected one in these selectedlesamp

To conclude, sign-based estimators are robust estimators much lessveahsiti the LAD
estimator to various unbalanced schemes in the explanatory variables aatbtoskedasticity.
They are particularly adequate when an amount an heteroskedasticioylorear dependence is
suspected in the error term, even if the error term fails to be stationarylyi-tha HAC correction
does not seem to increase the performance of the estimator. Nevertheless for tests. We show
in Coudin and Dufour (2009) that using a HAC-corrected statistic allowthfoasymptotic validity
of the Monte Carlo inference method and improves the test performance lirsamales.

7. Empirical application: drift estimation with stochastic volatility in
the error term

We estimate a constant and a drift on the Standard and Poor's Composégérielex (SP), 1928-
1987. That process is known to involve a large amount of heterogikeitiaand have been used by
Gallant, Hsieh and Tauchen (1997) and Dufour ané@&ka(2006, 2009) to fit a stochastic volatility
model. Here, we are interested in robastimation without modeling the volatility in the distur-
bance process. The data set consists in a series of 16,127 dailyailmsesofS P;, then converted

in price movements;; = 100[log(SP;) —log(SP;—1)] and adjusted for systematic calendar effects.
We consider a model involving a constant and a drift,

y=a-+bt+u, t=1,...,16127, (7.1)

and we allow thafu, : t =1,...,16127} exhibits stochastic volatility or nonlinear heteroskedas-
ticity of unknown form. White and Breusch-Pagan tests for heterosketiadoth reject ho-
moskedasticity at%.8

We compute both the baskF sign-based estimator and théf AC' version with the two-step

8See Coudin and Dufour (2009): White: 499\alue=.000) ; BP: 2781ptvalue=.000).
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Table 3. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (@) (161200bs) 1929(2910bs) 1929(900bs)
Set of basic sign-based .062 (.160,.163)x  (—.091,.142)
estimators (SF) [—.007,.105] * «  [—.226,.521]  [—1.453,.491]
Set of 2-step sign-based .062 (.160, .163) (—.091,.142)
estimators (SHAC) [—.007,.106] [—.135,.443] [-1.030,.362]
LAD .062 163 —.091
.008,.116] [—.130,.456]  [—1.223,1.040]
OoLS —.005 .224 —.522
[—.056,.046]  [—.140,.588]  [—~1.730,.685]
Drift parameter ( b) x 107° x1072 x1071
Set of basic sign-based | (—.184,—.178)  (—.003,.000) (—.097,—.044)
estimators (SF) [—.676,.486] [—.330,.342] [—.240, .305]
Set of 2-step sign-based (—.184,—.178)  (—.003,.000) (—.097,—.044)
estimators (SHAC) [—.699, .510] [—.260,.268]  [—.204,.224]
LAD —.184 .000 —.044
[-.681,.313]  [-.236,.236]  [-.316,.229)
OoLS .266 —.183 .010
[-.228,.761]  [-.523,.156]  [—.250,.270]

* Interval of admissible estimators (minimizers of the s@gjective function).
** 95% confidence intervals.

method. They are compared with the LAD and OLS estimates. Then, we rémdar gxperiment
on two subperiods: on the year 1929 (291 observations) and the lday9®f 1929, which roughly
corresponds to the four last months of 1929 (90 observations). Due fm#ncial crisis, one may
expect data to involve an extreme amount of heteroskedasticity in that pétiote. We wonder at
which point that heteroskedasticity can bias the subsample estimates. TtgiM/eticrash occurred
between October, 24tBlack Thursdayand October, 29thBlack Tuesday Hence, the second
subsample corresponds to the period just before the krach (Septethbdmach period (October)
and the early beginning of the Great Depression (November and Detentbeteroskedasticity
tests reject homoskedasticity for both subsamples.

In Table 3, we report estimates and recall #5% confidence intervals fo# andb obtained
by the finite-sample sign-based methétF(and S H AC);1° and by moving block bootstrap (LAD
and OLS). The entire set of sign-based estimators is repdréadall the minimizers of the sign
objective function.

91929: White: 24.2p-values: .000 ; BP: 126G-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.8&alues: .004;
BP: 1.76,p-values: .18.
see Coudin and Dufour (2009)
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First, we note that the OLS estimates are importantly biased and are greatighlara the
presence of heteroskedasticity. Hence, they are just reportedrfggastson sake. Presenting the
entire sets of sign-based estimators enables us to compare them with the tidiBtes In this
example, LAD and sign-based estimators yield very similar estimates. The Vahe I0AD esti-
mator is indeed just at the limit of the sets of sign-based estimators. This doswean that the
LAD estimator is included in the set of sign-based estimators, but, there is-basgal estimator
giving the same value as the LAD estimate for a certain individual componenséttond compo-
nent may differs). One easy way to check this is to compare the two objéatigons evaluated at
the two estimates. For example, in the 90 observation sample, the sign objentitieh evaluated
at the basic sign-estimators4g’s x 1073, and at the LAD estimat& 10 x 10~2; the LAD objective
function evaluated at the LAD estimate2is0.4 and at one of the sign-based estima&&s.5. Both
are close but different.

Finally, two-step sign-based estimators and basic sign-based estimatorshgieddme esti-
mates. Only confidence intervals differ. Both methods are indeed exgeaj@cdk different results
especially in the presence of linear dependence.

8. Conclusion

In this paper, we have introduced a class of robust sign-based estnfiatdhe parameters of a
linear median regression. We have shown that they turn out to be equiadgorobability) to
Hodges-Lehmann estimators when a mediangale assumption holds. In aasghthey are the pa-
rameter values the less rejected by finite-sample distribution-free sigd-tests. Hence, they are
derived without referring to asymptotic conditions through the analogycipl|a Then we have
presented general properties of sign-based estimators (invariand@nmmbiasedness) and the
conditions under which consistency and asymptotic normality hold. In pantiessahave shown
that sign-based estimators do require less assumptions on moment existeeatisiurbances than
usual LAD asymptotic theory. Simulation studies indicate that the proposed &stmase accurate
in classical setups and more reliable than usual methods (LS, LAD) whéragy heterogeneity
or nonlinear dependence is present in the error term even in casendahatause LAD or OLS
consistency failure. Despite the programming complexity of sign-based nstivedrecommend
combining sign-based estimators to the Monte Carlo sign-based method ehicdgpresented in
Coudin and Dufour (2009) when an amount of heteroskedasticity i®stespin the data and when
the number of available observations is small. As illustrative application, we estandrift pa-
rameter on the Standard and Poor’'s Composite Price Index, using thel 88Z2&eriod and various
shorter subperiods.
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Appendix

A. Proofs

Proof of Proposition 3.1 Let Dg be a sign-based statistic of the form presented in equation (3.1).
The term(2,, is omitted for simplicity. We show that the set$, and M are equal with probability
one. First, we show that yﬁ € M, then it belongs ta\/;. Second, we show that ﬁ does not
belong toMs, neither it belongs tad/;.

If 3 € M, then,

hence

A

Ps[Ds(B) < Ds(B)] =1, V€O (A.2)

and 3 maximizes thep-value. Conversely, if} does not belong td/;, there is a non negligible
Borel set, say4, such thatDgs(8) < Dg(3) on A for somef. Then, asF(z), the distribution
function of Dg is an increasing function and is non negligible, and sincg is independent off
(Assumption 3.1),

F(Ds(8)) < F(Ds(8)). (A3)

Finally, equation A.3 can be written in termse¥alues

p(B) > p(B), (A.4)

which implies that3 does not belong ta/,. O

Proof of Proposition 4.2 Consider3(y, X, u) the solution of problem (3.1) which is assumed to be
unique, let3 be the true value of the parameteand suppose that ~ —u. Equation (4.4) implies
that

A~ A

ﬂ(u7X7 'LL) = _/8(_U7X7 U)
where both problems are assumed to have a single solution. Hence, caidition, we have
U~ —u= ,B(U,X, u) ~ —B(—U,X, u) = Med(ﬁ(u, X, u)) =0. (A.5)

Moreover, equation (4.5) implies that

~

Bly, X,u) = PBly—XB,X,u)+8
= Bu, X, u) + 3. (A.6)
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Finally, (A.5) and (A.6) entaiMed(3(y, X, u) — 3) = 0. O

Proof of Theorem 5.1 We consider the stochastic procdds = {W; = (y, z}) : 2 —
Rpﬂ}t:l,g,m defined on the probability spa¢€, F, P). We denote

aWi,8) = [aa(Ws, 8), -, ap(Wi, 8)]
- [S(yt - x;/g)wﬂ? ] S(yt - w;ﬁﬂ)xtp]/a t= 17 sy T

The proof of consistency follows four classical steps. Fist,, ¢:(Wy, 8) — E[q: (W, B)] is shown
to converge in probability to zero for all € © (pointwise convergencg Second, that convergence
is extended to aveak uniform convergence Third, we adapt to our setup tleensistency theo-
rem of extremum estimators of Newey and McFadden (1994). Fourth, comsyjsie entailed by
the optimum uniquenessthat results from the identification conditions.

Pointwise convergence The mixing property 5.1 oV is exported to{qy (W, 5), k =
1,...,ph=12... HenceVg € O, Yk = 1,...,p, {q(W: 5)} is ana—mixing process of
sizer/(1 — r). Moreover, condition 5.2 entail|q.(W;, 8)]"° < oo for somes > 0, for all
te N, k=1,...,p. Hence, we can apply Corollary 3.48 of White (2001 t@. (W, 5) }1=1,2,....

It follows V(3 € O,

1 n
ﬁ Zth(WtaB) - E[qtk(Wbﬁ)] & 0 k= ]-a Ry 2
t=1

Uniform Convergence We check conditions Al, A6, B1, B2 of Andrews (1987)’s generiakve
law of large numbers (GWLLN). Al and B1 are our conditions 5.3 and ShenT Andrews defines

qg(Wzvﬂap) = . sup Qlk(Wl)B)7
BEB(B,p)

quik(Wi, B,p) = inf  qu(Ws, B),
BEB(B,p)

whereB(3, p) is the open ball around of radiusp. His condition B2 requires thaﬁ(Wt,B,p),
qrt(We, B, p) and g (W) are random variablesgg(.,ﬁ,p), qr (., B, p) are measurable func-
tions from (2, P, F) to (R, B), Vt, B € ©, p, whereB3 is the Borels-algebra orR and finally,
thatsup Eq,(W;)¢ < oo with € > r. Those points are derived from the mixing condition 5.1 and
condi%ion 5.2 which insures measurability and provides bounded arguments.

The last condition (A6) to check requires the following: Liebe ac-finite measure that domi-
nates each one of the marginal distributiondif ¢ = 1,2.... Let p;(w) be the density oiV;
w.rt. p, gue(We, B)p:(Wy) is continuous ind at 8 = S* uniformly in ¢t a.e. w.r.t. u, for each
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g% € O, ¢u(Wy, () is measurable w.r.t. the Borel measure for eaend eachs € ©, and
S supi>o, geo @ (W, B)|pe(w)du(w) < oo. Asuy is continuously distributed uniformly in[As-
sumption 5.4 (2)], we have.[u; = z;0] = 0, V3, uniformly in ¢t. Then,qy is continuous in3
everywhere except onR-negligible set. Finally, sincg;, is Li-bounded and uniformly integrable,
condition A6 holds.

The generic law of large numbers (GWLLN) implies:

1 . . .
(@ — Z E[q:(W;, ()] is continuous or® uniformly overn > 1,
n 4

(b) ZUI(; ZQt Wi, B) — Eq(Wi, B)| — 0
€

asn — oo in probability underP.

TheConsistency Theorentonsists in an extension of Theorem 2.1 of Newey and McFadden (1994)
on extremum estimators. The steps of the proof are the same but the limit pralidéity differs.
For simplicity, the true value is taken to be 0. First, the generic law of large msnebéails that

Tim % > " Els(ur — a3)4] is continuous or®, k = 1,..., p. (A7)
t
Let us define .
S S
QR (8) = % i Elvges(ue — 2iB)]|, k=1,....p.
t=1

We consideK 3, },,>1 a sequence of minimizers of the objective function of the non-weighted sign-
based estimator )
1 p
7ﬂiwiﬁmwr%m)=§]%ww.
k=1 \ t k
Then for alle > 0, 6 > 0 andn > Ny, we have:

[Z@@l<zw ?+¢/3
k

>1-34. (A.8)
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Uniform weak convergence @}* to QZ* at 3, implies:

[QEF(B,))? < [QF(8,)]? +¢/3p, k =1,...,p, with probability approaching one as— oo,
(A.9)
hence,

D IQEF(B,)12 < Y 1Qk(B,)]? + €/3, with probability approaching one as— co.  (A.10)
P P

With the same argument, At= 0

D I@QE(0)7 < > [QEF(0)]? + /3, with probability approaching one as— co.  (A.11)
P p

Using (A.10), (A.8) and (A.11) in turn, this entails

> RFFB,)1? < Z [QE*(0))? + €, with probability approaching one as— co.  (A.12)
!

This holds for any, with probability approaching one. L& be any open subset éf containing
0. As© N N¢ is compact andim,, >, [Q:*(3)]? is continuous (A.7),

35" € ©N N¢suchthat sup lim QEk ()2 = lim Ek
BEONNE M Z n zk:{

Provided thab is the unique minimizer, we have:

lim > QB > lim > [QFF(0))?, with probability one,
K B

Hence, setting
_ 1 . Ek/nx\12
=3 {h;}lzk:[Qn () }
it follows that, with probability close to one,
lim Y [QF(8,))? < % llimZ[Qf’“(ﬁ*)}Q+limZ[Qf’“(0)]2] < sup hmz QP (5
n k n k n k /Be@r"N(‘ n

Hence,3,, € N. As this holds for any open substof © we conclude on the convergence®f

to 0.

For identification, the uniqueness of the minimizer of the sign-objective function is insuredeoy th
set of identification conditions 2.2, 5.5, 5.4, 5.6. These conditions ana:qoastly the proof, are
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close to those of Weiss (1991) and Fitzenberger (1997) for the LADgaadtile estimators. We
wish to show that the limit problem does not admit another solution. Whgi®) defines a norm
for eachg (condition 5.6), this assertion is equivalent to

nILIEoEllz (us — }8) ]_0:»5_0 5 € R, (A.13)
t

and

Iim |E [i Zt: s(uy — x;(s)x;(s] =0=06=0, 6 €RP. (A.14)
Let A(6) = E[2 Y, s(u — @}0)zy|2y, - .., x,]. Then,

E[A(0)]=E [1 Z s(ug — x%é)xt] { [1 Z s(ug — x}) x|z, . . ,xn] } .
n t n t

Note that

/
;0

1 z}0
E[S(Ut—l’%é”l'l,...,.%'n] =2 [2_/ ft(u|x17"'>$n)du] =-2 ft(U|$1,...,I’n)dU]
o0 0

HenceA(0) can be developed far > 0 as
2 , x4
A@) = D216 Ijarsiory f{x;5>o}/0 —fe(ulzy,. .., zn)du
0
+I{$25S0} //6 ft(u]m, . ,III‘n)dU

x}6
+1{|2;6<r) [I{x;5>o}/0 —fr(ulzy, ... zn)du

0
Hzj<0) //éft(u!wh o ,xn)du] } :

Then,

) 40
E[A((S)] =E {n Z .’E;(S [I{z25|>7} <I{x{56>0} /0 —ft(u|ac1, ey :L‘n)du

0
+1(15<0) /’5 fi(u|zy, ..., :Jcn)du>
Ty
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x}
+I{x;5|g7}(1{x;5>o}/0 —fi(ulzy,. .. ) du

0
+ Iiz5<0) /léft(ukcl, e ,xn)du)] } .

Remark that each term in this sum is negative. Her@g,A(9)]) < 0 and|E[A(d)]| = —E[A(9)],
and

/
6

2
|E(A)| = E [n Z$251{|x£5‘>7} (I{x;5>0} ) ft(ulml, ce ,xn)du

0
—Iip5<0} /’5 fi(u|zy, ..., xn)du>]
Ty

2 8
gzxﬁf{\xmg} <I{x;5>o}/0 fe(ulzy, ... zn)du

0
_I{:JcQzSSO} /,5 fe(ulz, ..., xn)du>]
Ty

+E

9 A
> E [n > iatsisn) <f’«“i5f{w;5>0} | Sululzy ) du
0
~aidlugscop [, flulan...an)idu (A.15)
i
9 z,8
Z E E Z I{‘z;5|>7} 1‘25[{125>0} 0 ft(u|m1, e ,xn)du
0
_ x;él{xé(ggo} /’5 frlulzy, ... xp)du| [fi(O|z1, ... zn) > fLlp1 (A.16)
Ty
2
> pE {n > Hwsisnrfod £, .. 2n) > fL} : (A.17)
2
> pifrd > Pllatd| > 7| £(0lz1, ... 2n) > fr)]. (A.18)

To obtain inequation (A.15), just remark that each term is positive. For #rguation (A.16) we
use condition 5.4. For inequation (A.17) we minorgat8| by = and each integrals by d; where
dy = min(7,d/2). Condition 5.5 enables us to conclude, by taking the limit,

lim |E[A(d)]| > 27p1frd x liminf P[|z;6] > 7|f;(0]x1,...,zn) > fL] >0, V& >0,

n—oo
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hence, we conclude on the uniqueness of the minimum, which was the lastisiggréoconsistency
of the sign-based estimators. Ol

Proof of Theorem 5.2 We prove Theorenb.2 on asymptotic normality. We consider the
sign-based estimatcﬁ‘((?n) where §2,, stands for any x p positive definite matrix. We apply
Theorem 7.2 of Newey and McFadden (1994), which allows to deal witicomtinuous and
nondifferentiable objective functions for finite. Thus, we stand out from usual proofs of
asymptotic normality for the LAD or the quantile estimators, for which the objeftiretion is at
least continuous. In our case, only the limit objective function is contingses the consistency
proof). The proof is separated in two parts. First, we show f{at) as defined in equation (5.3)
is the derivative oflim,, .o £ >, E[s(u; — 2}(8 — B8))z¢]. Then, we check the conditions for
applying Theorem 7.2 of Newey-McFadden.

The consistency proof (generic law of large numbers) implies that
1 « _
~ > Efs(u — #1(8 — 5))at] (A.19)
t=0

is continuous or@ uniformly overn. Moreover condition 5.2 specifies that is L2 bounded.
As the fi(\|z1,...,z,) are bounded by uniformly overn and A (condition 5.8), dominated
convergence allows us to write that

(%E[:L‘ts(ut —z(B — B))] = E[:Etzv,@ft(x;(ﬁ — B)|z1, ... ,:Un)] (A.20)

And, these conditions imply that

n

La(B) = = 3 Elwat o6~ Dl ) (a.21)
t=1

converges uniformly i to L(3). Uniform convergence entails thiain,, = >% | E[s(u; — z}(8—
)z is differentiable with derivative.(53).
We now apply Theorem 7.2 of Newey and McFadden (1994) which ptesesymptotic nhormality
of a minimum distance consistent estimator with nonsmooth objective function eigthtwnatrix
02, & 2 symmetric positive definite. Thus, under conditions for consistency (2125.5), we
have to check that the following conditions hold:

(i) zero is attained at the limit by;

(73) the limiting objective function is differentiable at with derivative L(3) such that
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L(B)2L(B) is nonsingular;
(iii) [ is an interior point 0P;
(iv) VnQu(B) — N(0,7);
(v) foranyd, — 0, sup|s_z vllQu(8) = Qu(B) — EQ(B)II/(1 + /nl|8 — Bll) & 0.

Condition (i) is fulfilled by the moment condition 2.2. Condition (ii) is fulfilled by thesfipart of

our proof and condition 5.10. Then, Condition (iii) is implied by 5.3. Using the ngisipecification

5.9 of {u;, X+ }+=1,2,... and conditions 2.2, 5.2, 5.7 and 5.11, we apply a White-Domowitz central
limit theorem [see White (2001), Theorem 5.20]. This fulfills condition (i¥)Tbeorem 7.2 in
Newey and McFadden (1994):

Vd, 2Qn(B) — N(0, 1) (A.22)

whereJ,, = var [ﬁ > s(ui)xi] Finally, condition (v) can be viewed as a stochastic equicon-
tinuity condition and is easily derived from the uniform convergence MeEadden remarks on
condition (v)]. Hencef3(£2,) is asymptotically normal

\/5551/2 [B(Qn) - /B] - N(O7 Ip)'
The asymptotic covariance matrikis given by the limit of
S = [Ln(B)20(B) L (B)] ™" Ln(5) 20 (5) I 20 (8) L (B) [ L (8) 20(B) L ()] -

When choosing?,, = fn—l a consistent estimator of; !, S,, can be simplified:

VS 2B = B] — N(0, 1)

with

Sy = [Ln<ﬂ)Jnian(B)]il~

When the mediangale Assumption (2.1) holds, we find usual results on aigmlestimatorﬁ(lp)
andB((X 'X)~1) are asymptotically normal with asymptotic covariance matrix

2 -1 -1
nan;o Sp = nh—gloi [Z E[xt:n;ft(OX)}] E(zix}) [Z E[xtx;ft(O|X)]] .

(]
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