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Abstract 
 

We propose estimators for the parameters of a linear median regression without any assumption on the 

shape of the error distribution – including no condition on the existence of moments – allowing for 

heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and very general serial 

dependence (linear or nonlinear) including GARCH-type and stochastic volatility of unknown order. The 

estimators follow from a reverse inference approach, based on the class of distribution-free sign tests 

proposed in Coudin and Dufour (2009, Econometrics J.) under a mediangale assumption. As a result, the 

estimators inherit strong robustness properties from their generating tests. Since the proposed estimators are 

based on maximizing a test statistic (or a p-value function) over different null hypotheses, they can be 

interpreted as Hodges-Lehmann-type (HL) estimators. It is easy to adapt the sign-based estimators to 

account for linear serial dependence. Both finite-sample and large-sample properties are established under 

weak regularity conditions. The proposed estimators are median unbiased (under symmetry and estimator 

unicity) and satisfy natural equivariance properties. Consistency and asymptotic normality are established 

without any condition on error moment existence, allowing for heterogeneity (or heteroskedasticity) of 

unknown form, noncontinuous distributions, and very general serial dependence (linear or nonlinear). 

These conditions are considerably weaker than those used to show corresponding results for LAD 

estimators. In a Monte Carlo study on bias and mean square error, we find that sign-based estimators 

perform better than LAD-type estimators, especially in heteroskedastic settings. The proposed procedures 

are applied to a trend model of the Standard and Poor’s composite price index, where disturbances are 

affected by both heavy tails (non-normality) and heteroskedasticity. 
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deviations, quantile regression; simultaneous inference, Monte Carlo tests, projection methods, 
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1. Introduction

A basic problem in statistics and econometrics consists in studying the relationship between a de-

pendent variable and a vector of explanatory variables under weak distributional assumptions. For

that purpose, the Laplace-Boscovich median regression is an attractiveapproach because it can

yield estimators and tests which are considerably more robust to non-normalityand outliers than

least-squares methods; see Dodge (1997). The least absolute deviation(LAD) estimator is the refer-

ence estimation method in this context. Quantile regressions [Koenker and Bassett (1978), Koenker

(2005)] can be viewed as extensions of median regression. An importantreason why such methods

yield more robust inference comes from the fact that hypotheses aboutmoments are not generally

testable in nonparametric setups, while hypotheses about quantiles remain testable under similar

conditions [see Bahadur and Savage (1956), Dufour (2003), Dufour, Jouneau and Torrès (2008)].

The distributional theory of LAD estimators and their extensions usually postulates moment

conditions on model errors, such as the existence of moments up to a given order, as well as other

regularity conditions, such as continuity, independence or identical distributions; see for instance

Knight (1998), El Bantli and Hallin (1999), and Koenker (2005). Further, this theory and the associ-

ated tests and confidence sets are typically based on asymptotic approximations. The same remark

applies to work on LAD-type estimation in models involving heteroskedasticity andautocorrela-

tion [Zhao (2001), Weiss (1990)], endogeneity [Amemiya (1982), Powell (1983), Hong and Tamer

(2003)], censored models [Powell (1984, 1986)], and nonlinear functional forms [Weiss (1991)].

By contrast, provably valid tests can be derived in such models, under remarkably weaker con-

ditions, which do not require the existence of moments and allow for arbitraryheterogeneity (or

heteroskedasticity); see Coudin and Dufour (2009). This feature of testing theory can be used in the

context of median regression to derive more robust estimation methods.

Specifically, we study the problem of estimating the parameters of a linear medianregression

without any assumption on the shape of the error distribution – including no condition on the ex-

istence of moments at any order – allowing for heterogeneity (or heteroskedasticity) of unknown

form (including GARCH-type dependence and stochastic volatility of unknown order), noncontinu-

ous distributions, and very general serial dependence. We adopt areverse inference approachbased

on the distribution-free tests proposed in Coudin and Dufour (2009). The test statistics are quadratic

forms of the constrained signs (aligned with respect to the null hypothesis)with a weighting ma-

trix that may also depend on the constrained signs. The null distributions of these statistics remain

the same under a wide set of distributional assumptions on model errors (asdescribed above). We

propose to estimate the parameters of the median regression by minimizing these sign-based test

statistics over different null hypotheses. Since the tests used to generatethem are remarkably ro-

bust, the estimators inherit strong robustness properties.
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The proposed estimators can be viewed as GMM estimators based on a nondifferentiable objec-

tive function originally derived as a distribution-free test statistic. This feature also means that the

distribution of the criterion function is completely known under a wide array ofnonparametrically

specified data generating processes, as opposed to setups where onlythe mean of the estimating

function is set (the moment equations). Since the estimators are based on maximizing a test statistic

over different null hypotheses, they can also be interpreted as Hodges-Lehmann-type (HL) estima-

tors [Hodges and Lehmann (1963)]. When the test statistic is pivotal (i.e., the null distribution is the

same irrespective of the value set by the null hypothesis), the estimator alsomaximizes thep-value

associated with different tested parameter values. In other words, if the null hypothesis has the form

H0(β0) : β = β0, the estimator corresponds to the value ofβ0 which is “least rejected” by the test

(i.e., has the highestp-value).1

Both finite-sample and large-sample properties of sign-based estimators areestablished under

weak regularity conditions. We show they are median unbiased (under symmetry and estimator

unicity) and possess equivariance properties with respect to linear transformations of model vari-

ables. Consistency and asymptotic normality are established without any momentexistence as-

sumption on the errors, allowing noncontinuous distributions, heterogeneityand general serial de-

pendence of unknown form. These conditions are considerably weaker than those usually used to

obtain corresponding results for LAD estimators; see Bassett and Koenker (1978), Bloomfield and

Steiger (1983), Powell (1984), Phillips (1991), Pollard (1991), Weiss(1991), Fitzenberger (1997),

Knight (1998), El Bantli and Hallin (1999) and the references therein.In particular, asymptotic

normality and consistency hold for heavy-tailed disturbances which may nothave finite variances.

This interesting property is induced by the sign transformation. Signs of residuals always possess

finite moments, so no further restriction on the disturbance moments is required.Except for Knight

(1989) and Phillips (1991), who considered the case of autoregressive models, the distribution of

LAD estimators in regressions where the error variances may not exist has received little atten-

tion. In general, LAD estimators and the sign-based estimators proposed here follow from different

optimization rules, and they can be quite different.

The class of sign-based estimators we propose includes as special cases thesign estimators

derived by Boldin, Simonova and Tyurin (1997) from locally most powerful sign tests in linear re-

gressions withi.i.d. errors and fixed regressors. Note also that the procedures proposed by Hong and

Tamer (2003) and Honore and Hu (2004) also rely on thei.i.d. assumption. In this paper, we stress

that a major advantage of signs over ranks consists in dealing transparently with heteroskedastic (or

heterogeneous) disturbances. Many heteroskedastic and possibly dependent schemes are covered

1Hodges and Lehmann (1963) proposed this general principle to obtain an estimate of a location parameter from rank
tests. For some extensions to regressions with i.i.d. errors, see Jureckova (1971), Jaeckel (1972), and Koul (1971).
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and, in presence of linear dependence, a HAC-type correction for heteroskedasticity and autocorre-

lation can be included in the criterion function.

The construction of sign-based estimators as Hodges-Lehmann estimators makes these a natural

complement of the finite-sample tests used to generate them. The latter rely on the exact distribution

of the corresponding sign-based test statistics, do not involve nuisanceparameters, and allow one to

control test levels in finite samples under heteroskedasticity and nonlinear dependence of unknown

form. In Coudin and Dufour (2009), Monte Carlo test methods [Dwass (1957), Barnard (1963) and

Dufour (2006)] are combined with test inversion and projection techniques[Dufour (1990, 1997),

Dufour and Kiviet (1998), Abdelkhalek and Dufour (1998), Dufour and Jasiak (2001), Dufour and

Taamouti (2005)] to build confidence sets and test general hypotheses.2 There is no need to estimate

the error density at zero in contrast with tests that rely on kernel estimates of the LAD asymptotic

covariance matrix.3 Furthermore, when the test criteria are modified to cover linear dependence,

the resulting inference is asymptotically valid. The conjunction of sign-basedtests, projection-

based confidence regions, and sign-based estimators thus provides a complete system of inference,

which is valid for any given sample size under very weak distributional assumptions and remains

asymptotically valid under even weaker conditions (including allowance for linear dependence in

regression disturbances).

We study the performance of the proposed estimators in a Monte Carlo study that allows for

various non-Gaussian and heteroskedastic setups. We find that sign-based estimators are competi-

tive (in terms of bias and RMSE) when errors arei.i.d., while they are substantially more reliable

than usual methods (LS, LAD) when arbitrary heterogeneity or serial dependence is present in the

error term.

Finally, we present an empirical application to financial data. We study a trend model for the

Standard and Poor’s Composite Price Index, over the period 1928-1987 as well as the 1929 crash

period (which is characterized by huge price volatilities). The data are affected by serial dependence,

heavy tails (non-normality) and heteroskedasticity.

The paper is organized as follows. Section 2 presents the model and the class of tests we exploit.

In section 3, we define the proposed family of sign-based estimators. The finite-sample properties of

the sign-based estimators are studied in section 4, while their asymptotic properties are considered

2For an alternative finite-sample inference exploiting a quantile version of the same sign pivotality result, which holds
if the observations areX-conditionally independent, see Chernozhukov, Hansen and Jansson(2009).

3In the i.i.d. error case, Honore and Hu (2004) observed in simulations that kernel-based estimates of the asymptotic
standard error of the median-based estimator tend to be too small, so the associated tests tend to overreject the null
hypothesis. Other estimates of the LAD asymptotic covariance matrix can beobtained by bootstrap procedures [design
matrix bootstrap in Buchinsky (1995, 1998), block bootstrap in Fitzenberger (1997), Bayesian bootstrap in Hahn (1997)]
and resampling methods [Parzen, Wei and Ying (1994)]. But the justification of these also rely on usual asymptotic
regularity conditions.
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in section 5. In section 6, we present the results of our simulation study of bias and RMSE. The

empirical application is reported in section 7. We conclude in section 8. Appendix A contains the

proofs.

2. Framework

We will now summarize the general framework we study and define the test statistics on which the

estimation methods we propose are based.

2.1. Model

We consider a stochastic process{(yt, x
′
t) : Ω → R

p+1 : t = 1, 2, . . . } defined on a probability

space(Ω,F , P), such thatyt andxt satisfy a linear model of the form

yt = x′
tβ + ut, t = 1, . . . , n, (2.1)

whereyt is a dependent variable,xt = (xt1, . . . , xtp)
′ is ap-vector of explanatory variables, andut

is an error process. Thext’s may be random or fixed. In the sequel,y = (y1, . . . , yn)′ ∈ R
n will

denote the dependent variable vector,X = (x1, . . . , xn)′ ∈ R
n×p then × p matrix of explanatory

variables, andu = (u1, . . . , un)′ ∈ R
n the disturbance vector. Moreover,Ft( · |x1, . . . , xn) repre-

sents the distribution function ofut conditional onX. This framework is also used in Coudin and

Dufour (2009).

The traditional form of a median regression assumes that the disturbancesu1, . . . , un arei.i.d.

with median zero

Med(ut|x1, . . . , xn) = 0, t = 1, . . . , n. (2.2)

Here, we relax the assumption that theut are i.i.d., and we consider moment conditions based on

residual signs where the sign operators : R → {−1, 0, 1} is defined ass(a) = 1[0, +∞)(a) −
1(−∞, 0](a), with 1A(a) = 1 if a ∈ A and1A(a) = 0 if a /∈ A. For convenience, ifu ∈ R

n, we

will note s(u) =
(

s(u1), . . . , s(un)
)

, then-vector of the signs of the components.

Assumption (2.2) is not sufficient to obtain a finite-sample distributional theoryfor sign statistics

(because further restrictions on the dependence between the errors are needed). Let us consider

adapted sequencesS(v, F) = {vt, Ft : t = 1, 2, . . . } wherevt is any measurable function of

Wt = (yt, x
′
t)
′, Ft is aσ-field in Ω, Fs ⊆ Ft for s < t, σ(W1, . . . , Wt) ⊂ Ft andσ(W1, . . . , Wt)

is theσ-algebra spanned byW1, . . . , Wt. Then theweak conditional mediangaleprovides such a

setup.

Assumption 2.1 WEAK CONDITIONAL MEDIANGALE . LetFt = σ(u1, . . . , ut, X), for t ≥ 1.

4



u in the adapted sequenceS(u,F) is a weak mediangale conditional onX with respect to{Ft :

t = 1, 2, . . . } iff P[u1 < 0|X] = P[u1 > 0|X] and

P[ut < 0|u1, . . . , ut−1, X] = P[ut > 0|u1, . . . , ut−1, X], for t > 1. (2.3)

Besides nonnormality (including no condition on the existence of moments), this assumption al-

lows for heterogeneity (or heteroskedasticity) of unknown form, noncontinuous distributions, and

general forms of (nonlinear) serial dependence, including GARCH-type and stochastic volatility of

unknown order. It does not, however, cover “linear serial dependence” such as an ARMA process

onut.

Clearly, Assumption 2.1 clearly entails (2.2). WhenE|xt| < +∞, for all t, it also implies that

s(ut) is uncorrelated withxt, an assumption we state for future reference.

Assumption 2.2 SIGN MOMENT CONDITION. E|xt| < +∞ and E[s(ut)xt] = 0, for t =

1, . . . , n.

This assumption allows for both linear and nonlinear serial dependence, but makes difficult the

derivation of finite-sample distributions. We use it in the asymptotic results presented below.

2.2. Quadratic sign-based tests

In order to derive robust estimators, we consider tests for hypothesesof the formH0(β0) : β = β0

vs. H1(β0) : β 6= β0 in model (2.1)-(2.2). These are based on general quadratic forms based on the

vectors(y − Xβ0) of the constrained signs (i.e., the signs aligned with respect toXβ0):

DS [β0, Ω̄n(β0)] = s(y − Xβ0)
′XΩn

[

s(y − Xβ0), X
]

X ′s(y − Xβ0) (2.4)

whereΩ̄n(β0) = Ωn

[

s(y − Xβ0), X
]

is ap × p positive definite weight matrix which may de-

pend on the constrained signs. If the disturbances follow a weak mediangale (Assumption 2.1),

sign-based statistics of this form constitute pivotal functions: the distributionof DS [β0, Ω̄n(β0)]

conditional onX is completely determined underH0(β0) and can be simulated; see Coudin and

Dufour (2009). Even though the distribution ofDS [β0, Ω̄n(β0)] depends onX andΩn

[

·
]

under

H0(β0), critical values can be approximated to any degree of precision by simulation.Alternatively,

exact Monte Carlo tests can be built using a randomized tie correction procedure [Dufour (2006)].

So we can get an exact test ofH0(β0). The fact thatΩn

[

·
]

depends on the data only through

s(y − Xβ0) plays a central role in generating this feature.

Further, if linear serial dependence is allowed and the assumption thats(y − Xβ0) areX are

independent is relaxed [as described in Coudin and Dufour (2009)],this dependence can be taken

5



into account by an appropriate choice ofΩn

[

·
]

. The test statisticDS [β0, Ω̄n(β0)] then remains

asymptotically pivotal underH0(β0), and the finite-sample procedure just described yields a test

such that the probability of rejectingH0(β0) converges to the nominal level of test under any dis-

tribution compatible withH0(β0). In all cases, due to the sign transformation, the tests so obtained

are remarkably robust to heavy-tailed distributions (and other features).

It will be useful to spell out how an exact Monte Carlo test based on a discrete test statistic

like DS [β0, Ω̄n(β0)] can be obtained. Under Assumption 2.1, we can generate a vector ofN

independent replicates
(

D
(1)
S (β0), . . . , D

(N)
S (β0)

)′
from the distribution ofDS [β0, Ω̄n(β0)] under

the null hypothesis as well as(V (0), . . . , V (N))′ a (N + 1)-vector ofi.i.d. uniform variables on the

interval[0, 1]. SettingD
(0)
S (β0) ≡ DS [β0, Ω̄n(β0)] the observed statistic. Then, a Monte Carlo test

for H0(β0) consists in rejecting the null hypothesis whenever the empiricalp-value is smaller than

α, i.e. p̃N (β0) ≤ α wherep̃N (β0) ≡ p̂N [D
(0)
S (β0), β0],

p̂N (x, β0) =
NĜN (x, β0) + 1

N + 1
(2.5)

andĜN (x, β0) = 1− 1
N

∑N
i=1 s+(x−D

(i)
S (β0))+

1
N

∑N
i=1 δ(D

(i)
S (β0)−x)s+(V (i)−V (0)), with

s+(x) = 1[0,∞)(x), δ(x) = 1{0}(x). Whenα(N + 1) is an integer, the size of this test is equal

to α for any sample sizen [see Dufour (2006)]. This procedure also provides a test such thatthe

probability of rejection converges toα.

Note also that the confidence region

C1−α(β) = {β0 : p̃N (β0) ≥ α} (2.6)

which contains all the valuesβ0 such that the empiricalp-value p̃N (β0) is higher thanα has by

construction level1 − α for any sample size. It is then possible to derive general (and possibly

nonlinear) tests and confidence sets by projection techniques. For example, conservative individual

confidence intervals are obtained in such a way. Finally, ifDS is an asymptotically pivotal function

all previous results hold asymptotically. For a detailed presentation, see Coudin and Dufour (2009).

3. Robust and Hodges-Lehmann sign-based estimators

We will now exploit the tests described in the previous section to derive robust estimators ofβ. We

first define the estimates and then discuss their interpretation as Hodges-Lehmann estimators.
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3.1. Sign-based estimators

In view of the above distributional properties, we consider estimatorsβ̂n = β̂n(y, X, DS) obtained

by minimizing the sign statisticDS [β0, Ω̄n(β0)] :

DS [β̂n, Ω̄n(β̂n)] = min
β0∈Θ

DS [β0, Ω̄n(β0)] (3.1)

whereΘ is a subset ofRp (for example, an appropriate compact set). This family of estimators

includes as special cases estimators already studied in the literature in the context of i.i.d. errors.

Namely, the sign-based estimators proposed by Boldin et al. (1997) can beobtained by taking

Ωn = Ip or Ωn = (X ′X)−1 :

SB(β0) ≡ DS [β0, Ip] = s(y − Xβ0)
′XX ′s(y − Xβ0) ≡ SB(β0) , (3.2)

SF (β0) ≡ DS

[

β0, (X ′X)−1
]

= s(y − Xβ0)
′X(X ′X)−1X ′ s(y − Xβ0) . (3.3)

Such estimators can be interpreted as GMM estimators based on the moment condition E[X ′s(y −
Xβ0)] = 0. This condition has the special feature that the estimating functionX ′s(y − Xβ) is

not differentiable with respect toβ, while its distribution is completely determined in a general

nonparametric setup.

Since the functionDS [β0, Ω̄n(β0)] is non-negative and can only take a finite number of values

(signs are limited to the three distinct values−1, 0, 1), problem (3.1) always possesses at least one

solution. Further, ifΩn

[

s(y − Xβ0), X
]

is continuous with respect tos(·), DS [β0, Ω̄n(β0)] is

continuous almost everywhere (with respect to the Lebesgue measure),the existence of a bounded

solution can be guaranteed by restrictingβ0 to a compact subsetΘ ⊆ R
p [for example, see As-

sumption 5.3 below]. Clearly, the solution may not be unique, and there is a set

M(y, X) ≡ arg min
β

0
∈Θ

DS [β0, Ω̄n(β0)] (3.4)

of possible solutions. To get a unique solution, one may add a choice criterion, such as minimizing

an appropriate norm or distance among the minimizers of the objective function.4 Minimizing

DS [β0, Ω̄n(β0)] is a nonlinear problem and no general closed-form analytical solution is available.

Further, the function is discrete and not (everywhere) differentiable.So we need to use nonlinear

optimization algorithm that can handle such functions, such as the simplex algorithm or simulated

annealing; see Goffe, Ferrier and Rogers (1994) and Press, Teukolsky, Vetterling and Flannery

(2002).5

4In general, a unique solution may always be selected by virtue of the axiomof choice.
5For further discussion of estimation based on a non-smooth criterion, see Honoŕe and Powell (1994), Boldin et al.
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In order to allow for dependence not covered by the mediangale assumption (2.2), such as an

ARMA structure inut, we can consider sign-based statistics where the weighting matrix is the

inverse of an HAC-type covariance matrix estimator:

DS

[

β0, J̄n(β0)
−1
]

= s(y − Xβ0)
′X
(

Ĵn[s(y − Xβ0), X]
)−1

X ′s(y − Xβ0) (3.5)

whereJ̄n(β0) = Ĵn[s(y−Xβ0), X] accounts for the dependence among the signs and the explana-

tory variables. Here, as in continuously updated GMM,β0 appears both in the estimating function

(through the constrained signs) and the weighting matrix.

Minimizing DS

[

β0, J̄n(β0)
−1
]

in (3.3) requires one to invert a new matrix̄Jn(β0) for each

value ofβ0, whereas this is not needed forDS(β0, Ip) or DS

[

β0, (X ′X)−1
]

. In practice, as for

continuously updated GMM, this numerical problem may be cumbersome. To simplify calculations,

it is also possible to use a two-step method: first, we solve (3.3) to obtainβ̂n = β̂n

(

y, X, SF
)

; we

then computêJn

[

s(y − Xβ̂n), X
]

and minimize

DS

[

β0, J̄n(β̂n)−1
]

= s(y − Xβ0)
′X
[

Ĵn(s(y − Xβ̂n), X)
]−1

X ′s(y − Xβ0) (3.6)

with respect toβ0. The estimator obtained in this way will be called hereafter theSHAC

sign-based estimator. Note however that no finite-sample distributional theory is available for

DS

[

β0, J̄n(β̂n)−1
]

, even under the mediangale assumption.

For heteroskedastic independent disturbances, we consider weightedversions of sign-based esti-

mators which can be more efficient than the basic ones defined in (3.2) or (3.3). Weighted sign-based

estimators are sign-based analogues to weighted LAD estimator [Zhao (2001)]. The weighted LAD

estimator is given by

βWLAD
n = argmin

β∈Rp

∑

i

di|yi − x′
iβ|. (3.7)

Correspondingly, we considerscale weighted sign-based estimatorsand density weighted sign-

based estimators. A scale weighted sign-based estimator
[

β̂n(Hn)
]

is obtained by minimizing

DS

[

β0, Hn

]

= s(y−Xβ0)
′XHnX ′s(y−Xβ0) = s(y−Xβ0)

′X̃(X̃ ′X̃)−1X̃ ′s(y−Xβ0) (3.8)

whereHn = Dn(X̃ ′X̃)−1Dn, X̃ = XDn, andDn = diag(d1, . . . , dn) with di > 0, i = 1, . . . , n.

The density weighted sign-based estimator
[

β̂n(H∗
n)
]

is based on optimal estimating functions [in

the sense of Godambe (2001)] and minimizes

DS

[

β0, H∗
n

]

= s(y − Xβ0)
′XH∗

nX ′s(y − Xβ0)

(1997, Section 3.1), Chen, Linton and Van Keilegom (2003), and Honore and Hu (2004).
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= s(y − Xβ0)
′X∗(X∗′X∗)−1X∗′s(y − Xβ0) (3.9)

whereH∗
n = D∗

n(X∗′X∗)−1D∗
n, X∗ = XD∗

n, D∗
n = diag

[

f1(0|X), . . . , fn(0|X)
]

X, andfi(0|X)

is the density ofut evaluated at zero (conditional onX), i = 1, . . . , n. An inherent difficulty for

such estimators consists in approximating the density valuesf1(0|X), . . . , fn(0|X). Note however

that level can still be controlled, even if a conventional density (such as Gaussian density) is used .

Further, we show that under an additional weak mediangale assumption, thesign-based esti-

mators presented here are equal (in probability) to Hodges-Lehmann estimators associated to the

finite-sample sign-based testing theory developed in Coudin and Dufour (2009).

3.2. Hodges-Lehmann sign-based estimators

The estimators proposed above are closely related with the method proposedby Hodges and

Lehmann (1963) to build point estimates from distribution-free tests on a scalar parameter; see

also Johnson, Kotz and Read (1983). Supposeµ ∈ R andT (µ0, W ) is a statistic for testingµ = µ0

againstµ > µ0 based on the observationsW . Suppose further thatT (µ, W ) is nondecreasing in

the scalarµ. Given a known central value ofT (µ0, W ), saym(µ0) [for exampleEW T (µ0, W )],

the test rejectsµ = µ0 whenever the observedT is larger than, say,m(µ0). If this is the case, one

is inclined to prefer higher values ofµ. The reverse holds when testing the opposite. Ifm(µ0) does

not depend onµ0 [m(µ0) = m0], an intuitive estimator ofµ (if it exists) is given byµ∗ such that

T (µ∗, W ) equalsm0 (or is very close tom0). µ∗ may be seen as the value ofµ which is most

supported by the observations.

Here we consider an extension to multidimensional parameters throughp-value functions. Let

β0 ∈ Θ. Consider now testingH0(β0) : β = β0 versusH1(β0) : β 6= β0 using the test statistic

DS [β0, Ω̄n(β0)]. A test based onDS rejectsH0(β0) whenDS [β0, Ω̄n(β0)] is larger than a certain

critical value which depends on the test level. The estimator ofβ is chosen as the value ofβ least

rejected when the levelα of the test increases. This corresponds to the highestp-value. If the

associatedp-value forH0(β0) is p(β0) = G
(

DS [β0, Ω̄n(β0)]|β0

)

, whereG(x|β0) is the survival

function ofDS [β0, Ω̄n(β0)], i.e. G(x|β0) =P[DS [β0, Ω̄n(β0)] > x |β = β0], the set

M1 = arg max
β

0
∈Θ

p(β0) (3.10)

constitutes a set of Hodges-Lehmann-type estimators. There may not be a unique maximizer. In

that case, any maximizer is consistent with the data.

When the distribution ofDS [β0, Ω̄n(β0)] and the correspondingp-value function do not de-

pend on the tested valueβ0, maximizing thep-value is equivalent to minimizing the statistic

DS [β0, Ω̄n(β0)]. This point is stated in the following proposition. Let us denoteF̄ (x|β0) the
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distribution ofDS [β0, Ω̄n(β0)] whenβ = β0 and assume this distribution is invariant toβ (As-

sumption 3.1).

Assumption 3.1 INVARIANCE OF THE DISTRIBUTION FUNCTION.

F̄ (x|β) = F̄ (x) ∀x ∈ R
+, ∀β ∈ R

p.

Let us define

M2 = arg min
β

0
∈Θ

DS(β0, Ωn). (3.11)

Then, the following proposition holds.

Proposition 3.1 If Assumption 3.1 holds, thenM1 = M2 with probability one.

If the disturbances satisfy the mediangale Assumption 2.1, any sign-based statistic constitutes a

pivotal function underH0(β0); see Coudin and Dufour (2009). Hence, Assumption 3.1 is satisfied

andβ̂n(Ωn) can be viewed as a Hodges-Lehmann estimator based onDS(Ωn, β).

In models with sets of observationally equivalent values ofβ, any inference approach relying on

the consistency of a point estimator (which assumes point identification), gives misleading results

whereas a whole estimator set remains informative. The approach of Chernozhukov, Hong and

Tamer (2007) can be applied here. Let us remind that the Monte Carlo sign-based inference method

[Coudin and Dufour (2009)] does not rely on identification conditions and leads to valid results in

any case.

Sign-based estimators have usually been interpreted in the literature as GMM estimators ex-

ploiting the orthogonality condition between the signs and the explanatory variables or instruments

[see Honore and Hu (2004)]. However, the GMM interpretation hides thelink with testing theory,

which is revealed by the Hodges-Lehmann estimator interpretation. Hodges-Lehmann estimators

correspond to parameter values which are least rejected by the tests (given the data). Hence, they

are derived without referring to asymptotic conditions through the analogyprinciple. However, they

turn out to be equivalent (in probability) to usual GMM estimators based on signs. The finite-sample

properties of sign-based estimators are studied in the next section.

4. Finite-sample properties of sign-based estimators

In this section, finite-sample properties of sign-based estimators are studied. Sign-based estimators

share invariance properties with the LAD estimator and are median-unbiasedif the disturbance

distribution is symmetric and some additional assumptions on the form of the solutionare satisfied.
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The topology of the argmin set of the optimization problem 3.1 does not possess a simple structure.

In some cases it is reduced to a single point like the empirical median of2p + 1 observations. In

other cases, it is a set. More generally, the argmin set is a union of convexsets but it is nota priori

either convex nor connected. To see that it is a union of convex sets justremark that the reciprocal

image ofn fixed signs is convex.

Sign-based estimators share some attractive equivariance properties withLAD and quantile es-

timators [see Koenker and Bassett (1978)]. It is straightforward to seethat the following proposition

holds.

Proposition 4.1 INVARIANCE. Let M(y, X) be the set of the solutions of the minimization

problem(3.1). If β̂(y, X) ∈ M(y, X), then the following properties hold:

λβ̂(y, X) ∈ M(λy, X) , ∀λ ∈ R , (4.1)

β̂(y, X) + γ ∈ M(y + Xγ, X) , ∀γ ∈ R
p , (4.2)

A−1β̂(y, X) ∈ M(y, XA) , for any nonsingulark × k matrixA. (4.3)

Further, if β̂(y, X) is a uniquely determined solution of(3.1), then

β̂(λy, X) = λβ̂(y, X) , ∀λ ∈ R , (4.4)

β̂(y + Xγ, X) = β̂(y, X) + γ , ∀γ ∈ R
p , (4.5)

β̂(y, XA) = A−1β̂(y, X) , for any nonsingulark × k matrixA. (4.6)

To prove this property, it is sufficient to write down the different optimizationproblems. (4.1)

and (4.4) state a form of scale invariance: ify is rescaled by a certain factor,β̂, rescaled by the same

one is solution of the transformed problem. (4.2) and (4.5) represent location invariance, while

(4.3) and (4.6) show the behavior of the estimator changes states a reparameterization of the design

matrix. In all cases, parameter estimates change in the same way as theoreticalparameters.

If the disturbance distribution is assumed to be symmetric and the optimization problems to

have a unique solution then sign-estimators are median unbiased.

Proposition 4.2 MEDIAN UNBIASEDNESS. If u ∼ −u and the sign-based estimatorβ̂(y, X) is

a uniquely determined solution of the minimization problem(3.1), thenβ̂ is median unbiased,i.e.

Med(β̂ − β̄) = 0

whereβ̄ represents the “true value” ofβ.
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5. Asymptotic properties

We demonstrate consistency of the proposed sign-based estimators when the parameter is identified

under weaker assumptions than the LAD estimator, which validates the use of sign-based estimators

even in settings when the LAD estimator fails to converge. Finally, sign-basedestimators are asymp-

totically normal. For reviews of the asymptotic distributional theory of LAD estimators, the reader

may consult Bassett and Koenker (1978), Knight (1989), Phillips (1991), Pollard (1991), Weiss

(1991), Fitzenberger (1997), Knight (1998), El Bantli and Hallin (1999), and Koenker (2005).

5.1. Identification and consistency

We show that the sign-based estimators (3.1) and (3.6) are consistent under the following set of

assumptions. In the sequel, we denote byβ̄ the “true value” ofβ, and byβ0 any hypothesized

value.

Assumption 5.1 M IXING . {Wt = (yt, x
′
t)}t=1,2,... is α-mixing of size−r/(r − 1) with r > 1.

Assumption 5.2 BOUNDEDNESS. xt = (x1t, . . . , xpt)
′ and E|xht|r+1 < ∆ < ∞, h =

1, . . . , p, t = 1, . . . , n, ∀n ∈ N.

Assumption 5.3 COMPACTNESS. β̄ ∈ Int(Θ), whereΘ is a compact subset ofR
p.

Assumption 5.4 REGULARITY OF THE DENSITY.

1. There are positive constantsfL andp1 such that, for alln ∈ N,

P[ft(0 |X) > fL] > p1, t = 1, . . . , n, a.s.

2. ft(· |X) is continuous, for alln ∈ N for all t, a.s.

Assumption 5.5 POINT IDENTIFICATION CONDITION. ∀δ > 0,∃τ > 0 such that

lim inf
n→∞

1

n

∑

t

P[|x′
tδ| > τ | ft(0 |x1, . . . , xn) > fL] > 0.

Assumption 5.6 UNIFORMLY POSITIVE DEFINITE WEIGHT MATRIX. Ω̄n(β) is symmetric posi-

tive definite for allβ in Θ.

Assumption 5.7 LOCALLY POSITIVE DEFINITE WEIGHT MATRIX. Ω̄n(β) is symmetric positive

definite for allβ in a neighborhood of̄β.
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Then, we can state the consistency theorem. The assumptions are interpreted just after.

Theorem 5.1 CONSISTENCY. Under model(2.1) with the assumptions 2.2 and 5.1-5.6, any

sign-based estimator of the type,

β̂n ∈ argmin
β

0
∈Θ

s(y − Xβ0)
′XΩn

[

s(y − Xβ0), X
]

X ′s(y − Xβ0) (5.1)

or

β̂
2S

n ∈ argmin
β

0
∈Θ

s(y − Xβ0)
′XΩ̂n

[

s(y − Xβ̂), X
]

X ′s(y − Xβ0), (5.2)

whereβ̂ stands for any (first step) consistent estimator ofβ̄, is consistent.̂β
2S

n defined in equation

(5.2) is also consistent if Assumption 5.6 is replaced by Assumption 5.7.

It will useful to discuss Assumptions 5.1 - 5.7 and compare them to the ones required for LAD

and quantile estimator consistency; see Fitzenberger (1997) and Weiss (1991). The mixing assump-

tion 5.1 is needed to apply a generic weak law of large numbers; see Andrews (1987) and White

(2001). It was used by Fitzenberger (1997) to show LAD and quantile estimator consistency with

stationary linearly dependent processes. It covers, among other processes, stationary ARMA distur-

bances with continuously distributed innovations. Point identification is provided by assumptions

5.4 and 5.5. Assumption 5.5 is similar to Condition ID in Weiss (1991). Assumption 5.4is usual in

LAD estimator asymptotics.6 It is analogous to Fitzenberger’s (1997) conditions (ii.b) - (ii.c) and

Weiss’s (1991) CD condition. It implies that there is enough variation around zero to identify the

median. It restricts the setup for some “bounded” heteroskedasticity in the disturbance process but

not in the usual (variance-based) way. It is related todiffusivity 1
2f(0) , an alternative measure of dis-

persion adapted to median-unbiased estimators. Diffusivity measures the vertical spread of a density

rather than its horizontal spread, and appears in Cramér-Rao-type lower bound for median-unbiased

estimators; see Sung, Stangenhaus and David (1990) and So (1994). Assumption 5.6 entails that the

weight matrixΩn is everywhere invertible, while Assumption 5.7 only requires local invertibility.

An important difference with the LAD asymptotic theory comes from Assumption 5.2. For

sign consistency, only the second-order moments ofxt have to be finite, which differs from Fitzen-

berger (1997) who assumed the existence of at least third-order moments. We do not assume the

existence of second-order moments on the disturbancesut. The disturbances indeed appear in the

objective function only through their sign transforms which possess finite moments up to any order.

Consequently, no additional restriction should be imposed on the disturbance process (in addition

to regularity conditions on the density). Those points will entail a more general CLT than the one

6Assumption 5.4 can be slightly relaxed covering error terms with mass point if the objective function involves ran-
domized signs instead of usual signs.
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stated for the LAD/quantile estimators in Fitzenberger (1997) and Weiss (1991). The only works

we are aware of that study LAD estimators properties in case of infinite variance errors are those

of Knight (1989) and Phillips (1991) who derive LAD asymptotic properties for an autoregressive

model with infinite variance errors, which are in the domain of attraction of a stable law.

5.2. Asymptotic normality

Sign-based estimators are asymptotically normal. This also holds under weaker assumptions than

the ones needed for LAD estimator asymptotic normality as presented in Weiss (1991) and Fitzen-

berger (1997). Sign-based estimators are well adapted to deal with heavy-tailed disturbances that

may not possess finite variances. The assumptions we consider are the following ones.

Assumption 5.8 UNIFORMLY BOUNDED DENSITIES. ∃fU < +∞ such that,∀n ∈ N,∀λ ∈ R,

sup
{t∈(1,..., n)}

|ft(λ |x1, . . . , xn)| < fU , a.s.

Under the conditions 2.2, 5.1, 5.2 and 5.8, we can defineL(β), the derivative of the limiting

objective function atβ:

L(β) = lim
n→∞

1

n

∑

t

E
[

xtx
′
tft

(

x′
t(β − β̄) |x1, . . . , xn

)]

= lim
n→∞

Ln(β). (5.3)

where

Ln(β) =
1

n

∑

t

E
[

xtx
′
tft

(

x′
t(β − β̄) |x1, . . . , xn

)]

. (5.4)

The other assumptions are fairly standard conditions to prove asymptotic normality.

Assumption 5.9 M IXING WITH r > 2. The process{Wt = (yt, x
′
t) : t = 1, 2, . . .} is α-mixing

of size−r/(r − 2) with r > 2.

Assumption 5.10 DEFINITE POSITIVENESS OFLn. Ln(β̄) is positive definite uniformly inn.

Assumption 5.11 DEFINITE POSITIVENESS OFJn. Jn = E
[

1
n

∑n
t,s s(ut)xtx

′
ss(us)

]

is positive

definite uniformly inn and converges to a definite positive symmetric matrixJ asn → ∞.

Then, we have the following result.

Theorem 5.2 ASYMPTOTIC NORMALITY. Under the assumptions(2.2), 5.1 to 5.6, and 5.9 to

5.11, we have:

S−1/2
n

√
n
[

β̂n − β̄
] d→ N(0, Ip) (5.5)
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whereβ̂n(Ωn) is any estimator which minimizesDS [β0, Ω̄n(β0)] in (2.4),

Sn = [Ln(β̄)ΩnLn(β̄)]−1Ln(β̄)ΩnJnΩnLn(β̄)[Ln(β̄)ΩnLn(β̄)]−1

and

Ln(β̄) =
1

n

∑

t

E
[

xtx
′
tft

(

0 |x1, . . . , xn

)]

. (5.6)

WhenΩ̄n(β0) = Ĵn(β0)
−1 andĴn(β0) = 1

n

∑n
t,s s(yt − x′

tβ0)xtx
′
ss(ys − x′

sβ0), we get:

[Ln(β̄)Ĵ−1
n Ln(β̄)]−1/2√n

[

β̂n(Ĵ−1
n ) − β̄

] d→ N
[

0, Ip

]

. (5.7)

This corresponds to the use of optimal instruments and quasi-efficient estimation. β̂n(Ĵ−1
n ) has the

same asymptotic covariance matrix as the LAD estimator. Thus, performance differences between

the two estimators correspond to finite-sample features. This result contradicts the generally ac-

cepted idea that sign procedures involve a heavy loss of information. There is no loss induced by

the use of signs instead of absolute values.

Note again that we do not require that the disturbance process variancebe finite. We only assume

that the second-order moments ofX are finite and the mixing property of{Wt, t = 1, . . .} holds.

This differs from usual assumptions for LAD asymptotic normality.7 This difference comes from

the fact that absolute values of the disturbance process are replaced inthe objective function by their

signs. Since signs possess finite moments at any order, one sees easily that a CLT can be applied

without any further restriction. Consequently, asymptotic normality, such asconsistency, holds

for heavy-tailed disturbances that may not possess finite variance. Thisis an important theoretical

advantage of sign-based rather than absolute value-based estimators and, a fortiori, rather than

least-squares estimators. Estimators, for which asymptotic normality holds on bounded asymptotic

variance assumption (for example OLS) are not accurate in heavy-tail settings because the variance

is not a measure of dispersion adapted to those settings. Estimators, for which the asymptotic

behavior relies on other measures of dispersion, like the diffusivity, helpone out of trouble.

The form of the asymptotic covariance matrix simplifies under stronger assumptions. When the

signs are mutually independent conditional onX [mediangale Assumption 2.1], botĥβn((X ′X)−1)

and ˆβ(J−1
n ) are asymptotically normal with variance

Sn = [Ln(β̄)]−1
E

[

(1/n)
n
∑

t=1

xtx
′
t

]

[Ln(β̄)]−1.

7See Fitzenberger (1997) for the derivation of the LAD asymptotics in a similar setup and Bassett-Koenker(1978) or
Weiss (1991) for a derivation of the LAD asymptotics under sign independence.
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If u is ani.i.d. process and is independent ofX, thenft(0) = f(0), and

Sn =
1

4f(0)2
E(xtx

′
t)
−1. (5.8)

In the general case,ft(0) is a nuisance parameter even if condition 5.8 implies that it can be

bounded.

All the features known about the LAD estimator asymptotic behavior apply alsofor theSHAC

estimator; see Boldin et al. (1997). For example, asymptotic relative efficiency of theSHAC (and

LAD) estimator with respect to the OLS estimator is2/π if the errors are normally distributed

N(0, σ2), butSHAC (such as LAD) estimator can have arbitrarily large ARE with respect to OLS

when the disturbance generating process is contaminated by outliers.

5.3. Asymptotic or projection-based confidence sets?

In section 3, we introduced sign-based estimators as Hodges-Lehmann estimators associated with

sign-based statistics. By linking them with GMM settings, we then derived asymptotic normal-

ity. We stressed that sign-based estimator asymptotic normality holds under weaker assumptions

than the ones needed for the LAD estimator. Therefore, sign-based estimator asymptotic normal-

ity enables one to construct asymptotic tests and confidence intervals. Thus, we have two ways of

making inference with signs: we can use the Monte Carlo (finite-sample) based method described

in Coudin and Dufour (2009) - see section 2.2 - and the classical asymptoticmethod. Let us list here

the main differences between them. Monte Carlo inference relies on the pivotality of the sign-based

statistic. The derived tests are valid (with controlled level) for any sample sizeif the mediangale

Assumption 2.1 holds. When only the sign moment condition 2.2 holds, the Monte Carlo inference

remains asymptotically valid. Asymptotic test levels are controlled. Besides, in simulations, the

Monte Carlo inference method appears to perform better in small samples thanclassical asymptotic

methods, even if its use is only asymptotically justified [see Coudin and Dufour (2009)]. Never-

theless, that method has an important drawback: its computational complexity. On the contrary,

classical asymptotic methods which yield tests with controlled asymptotic level under the sign mo-

ment condition 2.2 may be less time consuming. The choice between both is mainly a question

of computational capacity. We point out that classical asymptotic inferencegreatly relies on the

way the asymptotic covariance matrix, that depends on unknown parameters(densities at zero), is

treated. If the asymptotic covariance matrix is estimated thanks to a simulation-based method (such

as the bootstrap) then the time argument does not hold anymore. Both methods would be of the

same order of computational complexity.
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6. Simulation study

In this section, we compare the performance of the sign-based estimators withthe OLS and LAD

estimators in terms of asymptotic bias and RMSE.

6.1. Simulation setup

We use estimators derived from the sign-based statisticsDS

(

β, (X ′X)−1
)

andDS(β, Ĵ−1
n ) when a

correction is needed for linear serial dependence (SHAC estimator). Minimizations are solved by

simulated annealing. We consider a set of general DGP’s to illustrate different classical problems

one may encounter in practice. We use the following linear regression model:

yt = x′
tβ + ut (6.1)

wherext = (1, x2,t, x3,t)
′ andβ are3 × 1 vectors. We denote the sample sizen. Monte Carlo

studies are based onS generated random samples. Table 1 presents the cases considered.

In a first group of examples (A1-A4), we consider classical independent cases with bounded

heterogeneity. In a second one (B5-B8), we look at processes involving large heteroskedasticity

so that some of the estimators we consider may not be asymptotically normal nor even consistent.

Finally, the third group (C9-C11) is dedicated to autocorrelated disturbances. We wonder whether

the two-stepSHAC sign-based estimator performs better in small samples than the non-corrected

one.

To sum up, cases A1 and A2 presenti.i.d. normal observations without and with conditional

heteroskedasticity. Case A3 involves a sort of weak nonlinear dependence in the error term. Case

A4 presents a very unbalanced scheme in the design matrix (a case when theLAD estimator is

known to perform badly). Cases B5, B6, B7 and B8 are other cases oflong tailed errors or arbi-

trary heteroskedasticity and nonlinear dependence. Cases C9 to C11 illustrate different levels of

autocorrelation in the error term with and without heteroskedasticity.

6.2. Bias and RMSE

We give biases and RMSE of each parameter of interest in Table 2 and we report a norm of these

three values.n = 50 andS = 1000. These results are unconditional onX.

In classical cases (A1-A3), sign-based estimators have roughly the same behavior as the LAD

estimator, in terms of bias and RMSE. OLS is optimal in case A1. However, thereis no important

efficiency loss or bias increase in using signs instead of LAD. Besides, ifthe LAD is not accurate

in a particular setup (for example with highly unbalanced explanatory scheme, case A4), the sign-

based estimators do not suffer from the same drawback. In case A4, theRMSE of the sign-based
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Table 1. Simulated models.

A1: NormalHOM errors (x2,t, x3,t, ut)
′

i.i.d∼ N (0, I3), t = 1, . . . , n

A2: NormalHET errors (x2,t, x3,t, ũt)
′

i.i.d∼ N (0, I3) ,
ut = min{3, max[0.21, |x2,t|]} × ũt, t = 1, . . . , n

A3: Dep.-HET xj,t = ρxxj,t−1 + νj
t , j = 1, 2,

ρx = .5 : ut = min{3,max[0.21, |x2,t|]} × νu
t ,

(ν2

t , ν
3

t , ν
u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1
andν3

1
chosen to insure stationarity.

A4: Unbalanced design matrix x2,t ∼ B(1, 0.3), x3,t
i.i.d.∼ N (0, .012),

ut
i.i.d.∼ N (0, 1), xt, ut independent,t = 1, . . . , n.

B5: Cauchy errors (x2,t, x3,t)
′ ∼ N (0, I2),

ut
i.i.d.∼ C,xt, ut, independent,t = 1, . . . , n.

B6: Stochastic volatility (x2,t, x3,t)
′

i.i.d.∼ N (0, I2), ut = exp(wt/2)ǫt with

wt = 0.5wt−1 + vt, whereǫt
i.i.d.∼ N (0, 1), vt

i.i.d.∼ χ
2
(3),

xt, ut, independent,t = 1, . . . , n.

B7: Nonstationary (x2,t, x3,t, ǫt)
′

i.i.d.∼ N (0, I3), t = 1, . . . , n,
GARCH(1,1) ut = σtǫt, σ2

t = 0.8u2

t−1
+ 0.8σ2

t−1
.

B8: Exponential error variance (x2,t, x3,t, ǫt)
′

i.i.d.∼ N (0, I3), ut = exp(.2t)ǫt.

C9: AR(1)-HOM (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .5 ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1
insures stationarity.

C10: AR(1)-HET xj,t = ρxxj,t−1 + νj
t , j = 1, 2,

ρu = .5, ut = min{3,max[0.21, |x2,t|]} × ũt,
ρx = .5 ũt = ρuũt−1 + νu

t ,

(ν2

t , ν
3

t , ν
u
t )′

i.i.d∼ N (0, I3), t = 2, . . . , n
ν2

1
, ν3

1
andνu

1
chosen to insure stationarity.

C11: AR(1)-HOM (x2,t, x3,t, ν
u
t )′ ∼ N (0, I3), t = 2, . . . , n,

ρu = .9 ut = ρuut−1 + νu
t ,

(x2,1, x3,1)
′ ∼ N (0, I2), νu

1
insures stationarity.
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Table 2. Simulated bias and RMSE.

n = 50 OLS LAD SF SHAC
S = 1000 Bias RMSE Bias RMSE Bias RMSE Bias RMSE

A1: β
0

.003 .142 .002 .179 .002 .179 .004 .178
β

1
.003 .149 .006 .184 .004 .182 .004 .182

β
2

−.002 .149 −.007 .186 −.006 .185 −.007 .183
||β||* .004 .254 .009 .316 .007 .315 .009 .313

A2: β
0

−.003 .136 .000 .090 −.000 .089 −.000 .089
β

1
−.0135 .230 −.006 .218 −.010 .218 −.010 .218

β
2

.002 .142 −.001 .095 −.001 .092 −.001 .092
||β|| .014 .303 .007 .254 .010 .253 .010 .253

A3: β
0

.022 .167 .018 .108 .025 .107 .023 .107
β

1
−1.00 .228 .005 .215 .003 .214 .002 .215

β
2

.001 .150 .005 .105 .007 .104 .007 .105
||β|| .022 .320 .019 .263 .026 .261 .024 .262

A4: β
0

−.001 .174 .007 .2102 .010 .2181 .008 .2171
β

1
−.016 .313 −.011 .375 −.021 .396 −.021 .394

β
2

−.100 14.6 .077 18.4 .014 7.41 .049 7.40
||β|| .101 14.6 .078 18.5 .027 7.42 .054 7.41

B5: β
0

16.0 505 .001 .251 .004 .248 .003 .248
β

1
−3.31 119 .015 .264 .020 .265 .020 .265

β
2

−2.191 630 .000 .256 .003 .258 .001 .258
||β|| 26.0 817 .015 .445 .021 .445 .020 .445

B6: β
0

−.908 29.6 −1.02 27.4 .071 2.28 .083 2.28
β

1
2.00 37.6 3.21 68.4 .058 2.38 .069 2.39

β
2

1.64 59.3 2.59 91.8 −.101 2.30 −.089 2.29
||β|| 2.73 76.2 4.25 118 .136 4.02 .139 4.02

B7: β
0

−127 3289 −.010 7.85 −.008 3.16 −.028 3.17
β

1
−81.4 237 .130 11.2 −.086 3.80 −.086 3.823

β
2

−31.0 1484 −.314 12.0 −.021 3.606 −.009 3.630
||β|| 154 4312 .340 18.2 .089 6.12 .091 6.15

B8: β
0

< −1010 > 1010 < −109 > 1010 .312 5.67 .307 5.67
β

1
> 1010 > 1010 > 109 > 1010 .782 5.40 .863 5.46

β
2

< −1010 > 1010 < −109 > 1010 .696 5.52 .696 5.55
||β|| > 10

10 > 10
10 > 10

10 > 10
10

1.09 9.58 1.15 9.63

C9: β
0

.005 .279 .001 .308 .003 .309 .004 .311
β

1
−.002 .163 −.005 .201 −.004 .200 −.005 .199

β
2

.001 .165 −.004 .204 .003 .198 .002 .198
||β|| .006 .363 .007 .420 .006 .418 .006 .419

C10: β
0

−.013 .284 −.010 .315 −.015 .314 −.014 .314
β

1
−.009 .182 −.009 .220 −.011 .218 −.011 .219

β
2

.008 .189 .011 .222 .007 .215 .007 .215
||β|| .018 .387 .018 .444 .020 .439 .019 .439

C11: β
0

.070 1.23 −.026 .308 .058 1.26 .053 1.27
β

1
−.000 .268 .005 .214 −.005 .351 −.008 .354

β
2

.001 .273 −.004 .210 .002 .361 −.001 .361
||β|| .070 1.29 .027 .430 .059 1.36 .054 1.37

* ||.|| stands for the Euclidean norm.
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estimator is notably smaller than those of the OLS and the LAD estimates.

For setups with strong heteroskedasticity and nonstationary disturbances(B5-B8), we see that

the sign-based estimators yield better results than both LAD and OLS estimators.Not far from the

(optimal) LAD in case of Cauchy disturbances (B5), the signs estimators arethe only estimators

that stay reliable with nonstationary variance (B6-B8). No assumption on themoments of the error

term is needed for sign-based estimators consistency. All that matters is the behavior of their signs.

When the error term is autocorrelated (C9-C11), results are mixed. Whena moderate linear

dependence is present in the data, sign-based estimators give good results (C9, C10). But when the

linear dependence is stronger (C11), that is no longer true. TheSHAC sign-based estimator does

not give better results than the non-corrected one in these selected examples.

To conclude, sign-based estimators are robust estimators much less sensitive than the LAD

estimator to various unbalanced schemes in the explanatory variables and to heteroskedasticity.

They are particularly adequate when an amount an heteroskedasticity or nonlinear dependence is

suspected in the error term, even if the error term fails to be stationary. Finally, the HAC correction

does not seem to increase the performance of the estimator. Nevertheless, it does for tests. We show

in Coudin and Dufour (2009) that using a HAC-corrected statistic allows for the asymptotic validity

of the Monte Carlo inference method and improves the test performance in small samples.

7. Empirical application: drift estimation with stochastic volatility in
the error term

We estimate a constant and a drift on the Standard and Poor’s Composite Price Index (SP), 1928-

1987. That process is known to involve a large amount of heteroskedasticity and have been used by

Gallant, Hsieh and Tauchen (1997) and Dufour and Valéry (2006, 2009) to fit a stochastic volatility

model. Here, we are interested in robustestimation without modeling the volatility in the distur-

bance process. The data set consists in a series of 16,127 daily observations ofSPt, then converted

in price movements,yt = 100[log(SPt)− log(SPt−1)] and adjusted for systematic calendar effects.

We consider a model involving a constant and a drift,

yt = a + bt + ut, t = 1, . . . , 16127, (7.1)

and we allow that{ut : t = 1, . . . , 16127} exhibits stochastic volatility or nonlinear heteroskedas-

ticity of unknown form. White and Breusch-Pagan tests for heteroskedasticity both reject ho-

moskedasticity at1%.8

We compute both the basicSF sign-based estimator and theSHAC version with the two-step

8See Coudin and Dufour (2009): White: 499 (p-value=.000) ; BP: 2781 (p-value=.000).
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Table 3. Constant and drift estimates.

Whole sample Subsamples
Constant parameter (a) (16120obs) 1929(291obs) 1929(90obs)

Set of basic sign-based .062 (.160, .163)∗ (−.091, .142)
estimators (SF) [−.007, .105] ∗ ∗ [−.226, .521] [−1.453, .491]

Set of 2-step sign-based .062 (.160, .163) (−.091, .142)
estimators (SHAC) [−.007, .106] [−.135, .443] [−1.030, .362]

LAD .062 .163 −.091
[.008, .116] [−.130, .456] [−1.223, 1.040]

OLS −.005 .224 −.522
[−.056, .046] [−.140, .588] [−1.730, .685]

Drift parameter ( b) × 10−5 ×10−2 ×10−1

Set of basic sign-based (−.184,−.178) (−.003, .000) (−.097,−.044)
estimators (SF) [−.676, .486] [−.330, .342] [−.240, .305]

Set of 2-step sign-based (−.184,−.178) (−.003, .000) (−.097,−.044)
estimators (SHAC) [−.699, .510] [−.260, .268] [−.204, .224]

LAD −.184 .000 −.044
[−.681, .313] [−.236, .236] [−.316, .229]

OLS .266 −.183 .010
[−.228, .761] [−.523, .156] [−.250, .270]

* Interval of admissible estimators (minimizers of the signobjective function).
** 95% confidence intervals.

method. They are compared with the LAD and OLS estimates. Then, we redo a similar experiment

on two subperiods: on the year 1929 (291 observations) and the last 90days of 1929, which roughly

corresponds to the four last months of 1929 (90 observations). Due to the financial crisis, one may

expect data to involve an extreme amount of heteroskedasticity in that periodof time. We wonder at

which point that heteroskedasticity can bias the subsample estimates. The WallStreet crash occurred

between October, 24th (Black Thursday) and October, 29th (Black Tuesday). Hence, the second

subsample corresponds to the period just before the krach (September), the krach period (October)

and the early beginning of the Great Depression (November and December). Heteroskedasticity

tests reject homoskedasticity for both subsamples.9

In Table 3, we report estimates and recall the95% confidence intervals fora andb obtained

by the finite-sample sign-based method (SF andSHAC);10 and by moving block bootstrap (LAD

and OLS). The entire set of sign-based estimators is reported,i.e., all the minimizers of the sign

objective function.

91929: White: 24.2,p-values: .000 ; BP: 126,p-values: .000; Sept-Oct-Nov-Dec 1929: White: 11.08,p-values: .004;
BP: 1.76,p-values: .18.

10see Coudin and Dufour (2009)
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First, we note that the OLS estimates are importantly biased and are greatly unreliable in the

presence of heteroskedasticity. Hence, they are just reported for comparison sake. Presenting the

entire sets of sign-based estimators enables us to compare them with the LAD estimator. In this

example, LAD and sign-based estimators yield very similar estimates. The value of the LAD esti-

mator is indeed just at the limit of the sets of sign-based estimators. This does not mean that the

LAD estimator is included in the set of sign-based estimators, but, there is a sign-based estimator

giving the same value as the LAD estimate for a certain individual component (the second compo-

nent may differs). One easy way to check this is to compare the two objectivefunctions evaluated at

the two estimates. For example, in the 90 observation sample, the sign objective function evaluated

at the basic sign-estimators is4.75×10−3, and at the LAD estimate5.10×10−2; the LAD objective

function evaluated at the LAD estimate is210.4 and at one of the sign-based estimates210.5. Both

are close but different.

Finally, two-step sign-based estimators and basic sign-based estimators yieldthe same esti-

mates. Only confidence intervals differ. Both methods are indeed expectedto give different results

especially in the presence of linear dependence.

8. Conclusion

In this paper, we have introduced a class of robust sign-based estimators for the parameters of a

linear median regression. We have shown that they turn out to be equivalent (in probability) to

Hodges-Lehmann estimators when a mediangale assumption holds. In such a case they are the pa-

rameter values the less rejected by finite-sample distribution-free sign-based tests. Hence, they are

derived without referring to asymptotic conditions through the analogy principle. Then we have

presented general properties of sign-based estimators (invariance, median unbiasedness) and the

conditions under which consistency and asymptotic normality hold. In particular, we have shown

that sign-based estimators do require less assumptions on moment existence of the disturbances than

usual LAD asymptotic theory. Simulation studies indicate that the proposed estimators are accurate

in classical setups and more reliable than usual methods (LS, LAD) when arbitrary heterogeneity

or nonlinear dependence is present in the error term even in cases thatmay cause LAD or OLS

consistency failure. Despite the programming complexity of sign-based methods, we recommend

combining sign-based estimators to the Monte Carlo sign-based method of inference presented in

Coudin and Dufour (2009) when an amount of heteroskedasticity is suspected in the data and when

the number of available observations is small. As illustrative application, we estimate a drift pa-

rameter on the Standard and Poor’s Composite Price Index, using the 1928-1987 period and various

shorter subperiods.
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Appendix

A. Proofs

Proof of Proposition 3.1. Let DS be a sign-based statistic of the form presented in equation (3.1).

The termΩn is omitted for simplicity. We show that the setsM1 andM2 are equal with probability

one. First, we show that if̂β ∈ M2 then it belongs toM1. Second, we show that if̂β does not

belong toM2, neither it belongs toM1.

If β̂ ∈ M2 then,

DS(β̂) ≤ DS(β), ∀β ∈ Θ, (A.1)

hence

Pβ [DS(β̂) ≤ DS(β)] = 1, ∀β ∈ Θ (A.2)

and β̂ maximizes thep-value. Conversely, if̂β does not belong toM1, there is a non negligible

Borel set, sayA, such thatDS(β) < DS(β̂) on A for someβ. Then, asF̄ (x), the distribution

function ofDS is an increasing function andA is non negligible, and sincēF is independent ofβ

(Assumption 3.1),

F̄
(

DS(β)
)

< F̄
(

DS(β̂)
)

. (A.3)

Finally, equation A.3 can be written in terms ofp-values

p(β) > p(β̂), (A.4)

which implies that̂β does not belong toM2.

Proof of Proposition 4.2. Consider̂β(y, X, u) the solution of problem (3.1) which is assumed to be

unique, let̄β be the true value of the parameterβ and suppose thatu ∼ −u. Equation (4.4) implies

that

β̂(u, X, u) = −β̂(−u, X, u)

where both problems are assumed to have a single solution. Hence, conditional onX, we have

u ∼ −u ⇒ β̂(u, X, u) ∼ −β̂(−u, X, u) ⇒ Med
(

β̂(u, X, u)
)

= 0. (A.5)

Moreover, equation (4.5) implies that

β̂(y, X, u) = β̂(y − Xβ̄, X, u) + β̄

= β̂(u, X, u) + β̄. (A.6)
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Finally, (A.5) and (A.6) entailMed(β̂(y, X, u) − β̄) = 0.

Proof of Theorem 5.1. We consider the stochastic processW = {Wt = (yt, x′
t) : Ω →

R
p+1}t=1,2,... defined on the probability space(Ω,F , P). We denote

qt(Wt, β) =
[

qt1(Wt, β), . . . , qtp(Wt, β)
]′

=
[

s(yt − x′
tβ)xt1, . . . , s(yt − x′

tβ)xtp

]′
, t = 1, . . . , n.

The proof of consistency follows four classical steps. First,1
n

∑

t qt(Wt, β)−E[qt(Wt, β)] is shown

to converge in probability to zero for allβ ∈ Θ (pointwise convergence). Second, that convergence

is extended to aweak uniform convergence. Third, we adapt to our setup theconsistency theo-

rem of extremum estimators of Newey and McFadden (1994). Fourth, consistency is entailed by

theoptimum uniquenessthat results from the identification conditions.

Pointwise convergence. The mixing property 5.1 onW is exported to{qtk(Wt, β), k =

1, . . . , p}t=1,2,.... Hence,∀β ∈ Θ, ∀k = 1, . . . , p, {qtk(Wt, β)} is an α−mixing process of

sizer/(1 − r). Moreover, condition 5.2 entailsE|qtk(Wt, β)|r+δ < ∞ for someδ > 0, for all

t ∈ N, k = 1, . . . , p. Hence, we can apply Corollary 3.48 of White (2001) to{qtk(Wt, β)}t=1,2,....

It follows ∀β ∈ Θ,

1

n

n
∑

t=1

qtk(Wt, β) − E[qtk(Wt, β)]
p→ 0 k = 1, . . . , p,

Uniform Convergence. We check conditions A1, A6, B1, B2 of Andrews (1987)’s generic weak

law of large numbers (GWLLN). A1 and B1 are our conditions 5.3 and 5.1. Then, Andrews defines

qH
ik(Wi, β, ρ) = sup

β̂∈B(β,ρ)

qik(Wi, β̂),

qLik(Wi, β, ρ) = inf
β̂∈B(β,ρ)

qik(Wi, β̂),

whereB(β, ρ) is the open ball aroundβ of radiusρ. His condition B2 requires thatqH
tk(Wt, β, ρ),

qLtk(Wt, β, ρ) and qtk(Wt) are random variables;qH
tk(., β, ρ), qLtk(., β, ρ) are measurable func-

tions from(Ω,P,F) to (R,B), ∀t, β ∈ Θ, ρ, whereB is the Borelσ-algebra onR and finally,

thatsup
t

Eqtk(Wt)
ξ < ∞ with ξ > r. Those points are derived from the mixing condition 5.1 and

condition 5.2 which insures measurability and provides bounded arguments.

The last condition (A6) to check requires the following: Letµ be aσ-finite measure that domi-

nates each one of the marginal distributions ofWt, t = 1, 2 . . .. Let pt(w) be the density ofWt

w.r.t. µ, qtk(Wt, β)pt(Wt) is continuous inβ at β = β∗ uniformly in t a.e. w.r.t. µ, for each
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β∗ ∈ Θ, qtk(Wt, β) is measurable w.r.t. the Borel measure for eacht and eachβ ∈ Θ, and
∫

supt≥0, β∈Θ |qtk(W, β)|pt(w)dµ(w) < ∞. As ut is continuously distributed uniformly int [As-

sumption 5.4 (2)], we havePt[ut = xtβ] = 0, ∀β, uniformly in t. Then,qtk is continuous inβ

everywhere except on aPt-negligible set. Finally, sinceqtk isL1-bounded and uniformly integrable,

condition A6 holds.

The generic law of large numbers (GWLLN) implies:

(a)
1

n

n
∑

i=0

E[qt(Wt, β)] is continuous onΘ uniformly overn ≥ 1,

(b) sup
β∈Θ

∣

∣

∣

∣

∣

1

n

n
∑

t=0

qt(Wt, β) − Eqt(Wt, β)

∣

∣

∣

∣

∣

→ 0

asn → ∞ in probability underP.

TheConsistency Theoremconsists in an extension of Theorem 2.1 of Newey and McFadden (1994)

on extremum estimators. The steps of the proof are the same but the limit problemslightly differs.

For simplicity, the true value is taken to be 0. First, the generic law of large numbers entails that

lim
n→∞

1

n

∑

t

E[s(ut − x′
tβ)xtk] is continuous onΘ, k = 1, . . . , p. (A.7)

Let us define

Qk
n(β) =

1

n

∣

∣

∣

∣

∣

n
∑

t=1

xkts(ut − x′
tβ)

∣

∣

∣

∣

∣

, k = 1, . . . , p,

QEk
n (β) =

1

n

∣

∣

∣

∣

∣

n
∑

t=1

E[xkts(ut − x′
tβ)]

∣

∣

∣

∣

∣

, k = 1, . . . , p.

We consider{βn}n≥1 a sequence of minimizers of the objective function of the non-weighted sign-

based estimator
1

n2

p
∑

k=1

(

∑

t

xkts(ut − x′
tβ)

)2

=
∑

k

[Qk
n(β)]2.

Then for allǫ > 0, δ > 0 andn ≥ N0, we have:

P

[

∑

k

[Qk
n(βn)]2 <

∑

k

[Qk
n(0)]2 + ǫ/3

]

≥ 1 − δ. (A.8)
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Uniform weak convergence ofQk
n to QEk

n atβn implies:

[QEk
n (βn)]2 < [Qk

n(βn)]2 + ǫ/3p, k = 1, . . . , p, with probability approaching one asn → ∞,

(A.9)

hence,

∑

k

[QEk
n (βn)]2 <

∑

k

[Qk
n(βn)]2 + ǫ/3, with probability approaching one asn → ∞. (A.10)

With the same argument, atβ = 0

∑

k

[Qk
n(0)]2 <

∑

k

[QEk
n (0)]2 + ǫ/3, with probability approaching one asn → ∞. (A.11)

Using (A.10), (A.8) and (A.11) in turn, this entails

∑

k

[QEk
n (βn)]2 <

∑

k

[QEk
n (0)]2 + ǫ, with probability approaching one asn → ∞. (A.12)

This holds for anyǫ, with probability approaching one. LetN be any open subset ofΘ containing

0. AsΘ ∩ N
c is compact andlimn

∑

k[Q
∗k
n (β)]2 is continuous (A.7),

∃β∗ ∈ Θ ∩ N
c such that sup

β∈Θ∩Nc

lim
n

∑

k

[QEk
n (β)]2 = lim

n

∑

k

[QEk
n (β∗)]2.

Provided that0 is the unique minimizer, we have:

lim
n

∑

k

[QEk
n (β∗)]2 > lim

n

∑

k

[QEk
n (0)]2, with probability one.

Hence, setting

ǫ =
1

2

{

lim
n

∑

k

[QEk
n (β∗)]2

}

,

it follows that, with probability close to one,

lim
n

∑

k

[QEk
n (βn)]2 <

1

2

[

lim
n

∑

k

[QEk
n (β∗)]2 + lim

n

∑

k

[QEk
n (0)]2

]

< sup
β∈Θ∩Nc

lim
n

∑

k

[QEk
n (β)]2.

Hence,βn ∈ N. As this holds for any open subsetN of Θ we conclude on the convergence ofβn

to 0.

For identification, the uniqueness of the minimizer of the sign-objective function is insured by the

set of identification conditions 2.2, 5.5, 5.4, 5.6. These conditions and consequently the proof, are
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close to those of Weiss (1991) and Fitzenberger (1997) for the LAD andquantile estimators. We

wish to show that the limit problem does not admit another solution. WhenΩ̄n(β) defines a norm

for eachβ (condition 5.6), this assertion is equivalent to

lim
n→∞

E

[

1

n

∑

t

s(ut − x′
tδ)xi

]

= 0 ⇒ δ = 0, δ ∈ R
p, (A.13)

and

lim
n→∞

∣

∣

∣

∣

∣

E

[

1

n

∑

t

s(ut − x′
tδ)x

′
tδ

]∣

∣

∣

∣

∣

= 0 ⇒ δ = 0, δ ∈ R
p. (A.14)

Let A(δ) = E[ 1
n

∑

t s(ut − x′
tδ)xt|x1, . . . , xn]. Then,

E[A(δ)] = E

[

1

n

∑

t

s(ut − x′
tδ)xt

]

= E

{

E

[

1

n

∑

t

s(ut − x′
tδ)xt|x1, . . . , xn

]}

.

Note that

E[s(ut − x′
tδ)|x1, . . . , xn] = 2

[

1

2
−
∫ x′

tδ

−∞
ft(u|x1, . . . , xn)du

]

= −2

∫ x′
tδ

0
ft(u|x1, . . . , xn)du]

HenceA(δ) can be developed forτ > 0 as

A(δ) =
2

n

∑

x′
tδ

{

I{|x′
tδ|>τ}

[

I{x′
tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]

+I{|x′
tδ|≤τ}

[

I{x′
tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]}

.

Then,

E[A(δ)] = E

{

2

n

∑

x′
tδ

[

I{|x′
tδ|>τ}

(

I{x′
tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)
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+I{|x′
tδ|≤τ}(I{x′

tδ>0}

∫ x′
tδ

0
−ft(u|x1, . . . , xn)du

+ I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du)

]}

.

Remark that each term in this sum is negative. Hence,s(E[A(δ)]) ≤ 0 and|E[A(δ)]| = −E[A(δ)],

and

|E(A)| = E

[

2

n

∑

x′
tδI{|x′

tδ|>τ}

(

I{x′
iδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

−I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]

+E

[

2

n

∑

x′
tδI{|x′

tδ|≤τ}

(

I{x′
tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

−I{x′
tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]

≥ E

[

2

n

∑

I{|x′
tδ|>τ}

(

x′
tδI{x′

tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

−x′
tδI{x′

tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

)]

(A.15)

≥ E

{

2

n

∑

I{|x′
tδ|>τ}

[

x′
tδI{x′

tδ>0}

∫ x′
tδ

0
ft(u|x1, . . . , xn)du

− x′
tδI{x′

tδ≤0}

∫ 0

x′
tδ

ft(u|x1, . . . , xn)du

]

[ft(0|x1, . . . , xn) > fL]p1

}

(A.16)

≥ p1E

{

2

n

∑

I{|x′
tδ|>τ}τfLd|ft(0|x1, . . . , xn) > fL

}

, (A.17)

≥ τp1fLd
2

n

∑

P [|x′
tδ| > τ |ft(0|x1, . . . , xn) > fL)]. (A.18)

To obtain inequation (A.15), just remark that each term is positive. For the inequation (A.16) we

use condition 5.4. For inequation (A.17) we minorate|x′
iδ| by τ and each integrals byfLd1 where

d1 = min(τ , d/2). Condition 5.5 enables us to conclude, by taking the limit,

lim
n→∞

|E[A(δ)]| ≥ 2τp1fLd × lim inf
n→∞

P[|x′
iδ| > τ |fi(0|x1, . . . , xn) > fL] > 0, ∀δ > 0,
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hence, we conclude on the uniqueness of the minimum, which was the last step toinsure consistency

of the sign-based estimators.

Proof of Theorem 5.2. We prove Theorem5.2 on asymptotic normality. We consider the

sign-based estimator̂β(Ωn) whereΩn stands for anyp × p positive definite matrix. We apply

Theorem 7.2 of Newey and McFadden (1994), which allows to deal with noncontinuous and

nondifferentiable objective functions for finiten. Thus, we stand out from usual proofs of

asymptotic normality for the LAD or the quantile estimators, for which the objectivefunction is at

least continuous. In our case, only the limit objective function is continuous(see the consistency

proof). The proof is separated in two parts. First, we show thatL(β) as defined in equation (5.3)

is the derivative oflimn→∞ 1
n

∑

t E
[

s
(

ut − x′
t(β − β̄)

)

xt

]

. Then, we check the conditions for

applying Theorem 7.2 of Newey-McFadden.

The consistency proof (generic law of large numbers) implies that

1

n

n
∑

t=0

E
[

s
(

ut − x′
t(β − β̄)

)

xt

]

(A.19)

is continuous onΘ uniformly overn. Moreover condition 5.2 specifies thatX is L2+δ bounded.

As theft(λ|x1, . . . , xn) are bounded byfU uniformly overn andλ (condition 5.8), dominated

convergence allows us to write that

∂

∂β
E
[

xts
(

ut − x′
t(β − β̄)

)]

= E
[

xtx
′
tft

(

x′
t(β − β̄)|x1, . . . , xn

)]

. (A.20)

And, these conditions imply that

Ln(β) =
1

n

n
∑

t=1

E
[

xtx
′
tft

(

x′
t(β − β̄)|x1, . . . , xn

)]

(A.21)

converges uniformly inβ to L(β). Uniform convergence entails thatlimn
1
n

∑n
t=0 E

[

s
(

ut −x′
t(β−

β̄)
)

xt

]

is differentiable with derivativeL(β).

We now apply Theorem 7.2 of Newey and McFadden (1994) which presents asymptotic normality

of a minimum distance consistent estimator with nonsmooth objective function and weight matrix

Ωn
p→ Ω symmetric positive definite. Thus, under conditions for consistency (2.2, 5.1-5.6), we

have to check that the following conditions hold:

(i) zero is attained at the limit bȳβ;

(ii) the limiting objective function is differentiable at̄β with derivative L(β̄) such that
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L(β̄)ΩL(β̄)′ is nonsingular;

(iii) β̄ is an interior point ofΘ;

(iv)
√

nQn(β̄) → N (0, J) ;

(v) for anyδn → 0, sup||β−β̄||
√

n||Qn(β) − Qn(β̄) − EQ(β)||/(1 +
√

n||β − β̄||) p→ 0 .

Condition (i) is fulfilled by the moment condition 2.2. Condition (ii) is fulfilled by the first part of

our proof and condition 5.10. Then, Condition (iii) is implied by 5.3. Using the mixing specification

5.9 of {ut, Xt}t=1,2,... and conditions 2.2, 5.2, 5.7 and 5.11, we apply a White-Domowitz central

limit theorem [see White (2001), Theorem 5.20]. This fulfills condition (iv) of Theorem 7.2 in

Newey and McFadden (1994):

√
nJ−1/2

n Qn(β̄) → N(0, Ip) (A.22)

whereJn = var
[

1√
n

∑n
1 s(ui)xi

]

. Finally, condition (v) can be viewed as a stochastic equicon-

tinuity condition and is easily derived from the uniform convergence [seeMcFadden remarks on

condition (v)]. Hence,̂β(Ωn) is asymptotically normal

√
nS−1/2

n

[

β̂(Ωn) − β̄
]

→ N (0, Ip).

The asymptotic covariance matrixS is given by the limit of

Sn = [Ln(β̄)Ωn(β̄)Ln(β̄)]−1Ln(β̄)Ωn(β̄)JnΩn(β̄)Ln(β̄)[Ln(β̄)Ωn(β̄)Ln(β̄)]−1.

When choosingΩn = Ĵ−1
n a consistent estimator ofJ−1

n , Sn can be simplified:

√
nS−1/2

n

[

β̂(Ĵ−1
n ) − β̄

]

→ N (0, Ip)

with

Sn = [Ln(β̄)Ĵ−1
n Ln(β̄)]−1.

When the mediangale Assumption (2.1) holds, we find usual results on sign-based estimators.̂β(Ip)

andβ̂((X ′X)−1) are asymptotically normal with asymptotic covariance matrix

lim
n→∞

Sn = lim
n→∞

n2

4

[

∑

t

E
[

xtx
′
tft(0|X)

]

]−1

E(xtx
′
t)

[

∑

i

E
[

xtx
′
tft(0|X)

]

]−1

.
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