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Measuring High-Frequency Causality Between Returns,
Realized Volatility and Implied Volatility

Jean-Marie Dufour”, Réné Garcia?, Abderrahim Taamouti®

Abstract

In this paper, we provide evidence on two alternative mechanisms of interaction between returns and
volatilities: the leverage effect and the volatility feedback effect. We stress the importance of
distinguishing between realized volatility and implied volatility, and find that implied volatilities are
essential for assessing the volatility feedback effect. The leverage hypothesis asserts that return shocks
lead to changes in conditional volatility, while the volatility feedback effect theory assumes that return
shocks can be caused by changes in conditional volatility through a time-varying risk premium. On
observing that a central difference between these alternative explanations lies in the direction of
causality, we consider vector autoregressive models of returns and realized volatility and we measure
these effects along with the time lags involved through short-run and long-run causality measures
proposed in Dufour and Taamouti (2010), as opposed to simple correlations. We analyze 5-minute
observations on S&P 500 Index futures contracts, the associated realized volatilities (before and after
filtering jumps through the bispectrum) and implied volatilities. Using only returns and realized
volatility, we find a strong dynamic leverage effect over the first three days. The volatility feedback
effect appears to be negligible at all horizons. By contrast, when implied volatility is considered, a
volatility feedback becomes apparent, whereas the leverage effect is almost the same. These results
can be explained by the fact that volatility feedback effect works through implied volatility which
contains important information on future volatility, through its nonlinear relation with option prices
which are themselves forward-looking. In addition, we study the dynamic impact of news on returns

" This paper was previously circulating under the title “Measuring causality between volatility and returns with high-
frequency data”. The authors thank Ryan Compton, Robert Engle, Luc Bauwens, Benoit Perron, two anonymous referees, and
the Co-Editor George Tauchen for several useful comments. Earlier versions of this paper were presented at the NBER-NSF
Time Series Conference inMontr”eal (2006), the Conference on Volatility and High Frequency Data at Chicago (2007), the
47th Annual Meeting of the Société canadienne de science économique in Québec city (2007), the 41th Annual Meeting of
the Canadian Economics Association at Halifax (2007), the 13th International Conference on Computing in Economics and
Finance at Montréal (2007), the Tenth Annual Financial Econometrics Conference at Waterloo (2008), CORE seminar,
Humboldt-Copenhagen Conference (2009), North American Summer Meeting of the Econometric Society (2009) and the
2009 European meeting of the Econometric Society (ESEM). This work was supported by theWilliam Dow Chair in Political
Economy (McGill University), the Canada Research Chair Program (Chair in Econometrics, Université deMontréal), the
Bank of Canada (Research Fellowship), a Guggenheim Fellowship, a Konrad-Adenauer Fellowship (Alexander-von-
Humboldt Foundation, Germany), the Institut de finance mathématique de Montréal (IFM2), the Canadian Network of
Centres of Excellence [program on Mathematics of Information Technology and Complex Systems (MITACS)], the Natural
Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, and
the Fonds de recherche sur la société et la culture (Québec). Financial support from the Spanish Ministry of Education
through grants SEJ 2007-63098 is acknowledged.

T William Dow Professor of Economics, McGill University, CIRANO and CIREQ. Department of Economics, McGill
University, Leacock Building, Room 519, 855 Sherbrooke Street West, Montréal, Québec H3A 2T7, Canada. TEL: (1) 514
398 8879; FAX: (1) 514 398 4938; e-mail: jean-marie.dufour@mecagill.ca. Webpage: http://www.jeanmariedufour.com

* Edhec Business School, CIRANO and CIREQ. Edhec Business School, 393, Promenade des Anglais, BP 3116, 06202 Nice
Cedex 3, France. TEL: +33(0)493187802; FAX: +33(0)493187841; e-mail: rene.garcia@edhec.edu.

§ Economics Department, Universidad Carlos 111 de Madrid, Departamento de Economia, Calle Madrid, 126 28903 Getafe
(Madrid) Espafia. TEL: +34-91 6249863; FAX: +34-91 6249329; e-mail: ataamout@eco.uc3m.es.



mailto:jean-marie.dufour@mcgill.ca
http://www.jeanmariedufour.com/
mailto:rene.garcia@edhec.edu
mailto:ataamout@eco.uc3m.es

and volatility. First, to detect possible dynamic asymmetry, we separate good from bad return news
and find a much stronger impact of bad return news (as opposed to good return news) on volatility.
Second, we introduce a concept of news based on the difference between implied and realized
volatilities (the variance risk premium) and we find that a positive variance risk premium (an
anticipated increase in variance) has more impact on returns than a negative variance risk premium.

Mots-clés : Volatility asymmetry, leverage effect, volatility feedback effect, risk
premium, variance risk premium, multi-horizon causality, causality measure, high-
frequency data, realized volatility, bipower variation, implied volatility.

JEL codes: G1, G12, G14, C1, C12, C15, C32, C51, C53.



1. Introduction

One of the many stylized facts about equity returns is an asymmetric relationstwgen returns and
volatility. Volatility tends to rise following negative returns and falls following iee returns. Two main
explanations for volatility asymmetry have been proposed in the literature.firBh@ne is theeverage
effect While the term was originally coined with respect to financial leverage aha[Bee Black (1976)
and Christie (1982)], it refers today to a negative correlation betwegrethreturns and current volatility.
The second explanation is thelatility feedback effectvhich is related to a time-varying risk premium: if
volatility is priced, an anticipated increase in volatility raises the required rattain, implying an imme-
diate stock price decline in order to allow for higher future returns; sedyin(1984), French, Schwert
and Stambaugh (1987), Campbell and Hentschel (1992), and Bekakytu (2000).

In this paper, we provide new evidence on these two interaction mechareswesdn returns and volatil-
ities by considering causality measures on high-frequency data. Werass the importance of distinguish-
ing betweerrealized volatilityandimplied volatilitywhen studying leverage and volatility feedback effects,
and we find thaimplied volatilitiesare essential for detecting and assessinythatility feedback effect

On noting that the two explanations involve different causal mechanisreBjskaert and Wu (2000)
and Bollerslev et al. (2006)], which may differ both through their directiad the time lags involved, we
study the issue using short and long-run causality measures recentiyuiceibin Dufour and Taamouti
(2010). The causality measures allow us to study and test the asymmetric votditditpmena at several
horizons. When considering horizons longer than one period, it is impgddaccount for indirect causality.
Auxiliary variables can transmit causality between two variables of intetdgir&zons strictly higher than
one, even if there is no causality between the two variables at the horizgrsea Dufour and Renault
(1998) and Dufour, Pelletier and Renault (2006). Using high-frequelata increases the chance to detect
causal links since aggregation may make the relationship between retdrmslatility simultaneous. By
relying on realized volatility measures, we avoid the need to specify a volatilityemod

To be more explicit on theausalityissue involved, the leverage effect explains why a negative return
shock leads to higher subsequent volatility, while the volatility feedbacktedfglains how an anticipated
increase in volatility may result in a negative return. Thus, volatility asymmetry nesuyit from various
causal links: from returns to volatility, from volatility to returns, instantanezaussality. Causality here is
defined as in Granger (1969): a varialfecauses a variabld’ if the variance of the forecast error &f
obtained by using the past Bfis smaller than the variance of the forecast erraKafbtained without using
the past oft".

Concerning terminology, it is worthwhile pointing out that some authors mdgipte use terms like
“predictibility” or “linear predictibility”, instead of “causality”. There is hower a long philosophical

The concept of leverage effect was introduced to explain this negativelation by the fact that a decrease in the price of a
firm increases financial leverage and the probability of bankruptckingahe asset riskier, hence an increase in volatility. Today
the concept of dynamic leverage effect applies directly to stock mandiees, without any rooting in changes of financial leverage;
see Bouchaud, Matacz and Potters (2001), Jacquier, Polson asid Rt#1), Brandt and Kang (2004), Ludvigson and Ng (2005),
Bollerslev, Litvinova and Tauchen (2006), and Bollerslev, Sizova angtfien (2009).
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tradition which reduces the concept of “causality” to the notion of “predidgh This tradition goes back

at least to Hume (1748) and includes numerous authors such as Ch#6&), (Feigl (1953), Salmon (1984)
and Eells (1991). Whether there can be an empirically meaningful noticausiadity that goes beyond a
notion based on predictibility remains highly debatable. Here we take the viévcthesality” can only be
defined with respect to a particular modeld, a vector autoregressive model] which involves specifying a
set of variables some of which are classified as “endogenous” andartbe as “predetermined”. In order
to study “causation” issues with empirical data, it is necessary to specify adimfigrmation set — a point
quite explicit in Dufour and Renault (1998). There is no “absolute” (niéee) causation. This means that
causality properties may change as the information set is modified (which @scbindinging data frequency
and aggregation).

Further, the clearest criterion for classifying a variable as “predetedhiat a given date is the fact that
it can be viewed as determined in the past (on the basis of the principle thatitteecannot cause the past).
Causality is then a predictibility property of the “endogenous” variablegpgdietermined” variables. The
notions of “causality” introduced by Wiener (1956) and Granger (1289well as their variants provide
operational definitions of causality based on these ideas. Occasionpligparty of “Granger causality
(or non-causality)” may be interpreted as “spurious”, but this simply mézatsa different model or in-
formation set is considered. Such a situation illustrates the fact that ‘ltgisan only be defined with
respect to a given model and information set. Irrespective of the lattercan always argue that “hidden”
variables are driving the system, so variables which appear to Graagse other ones are simply reflect-
ing “expectations” driven by hidden variables. This can easily be the ioafinance and macroeconomics,
where expectations typically constitute unobservable variables. Thdigates may try to sort this out by
introducing such unobserved variables (if reasonable measuresxiegpran be obtained): this amounts to
enlarging the information set, and our may in turn be used with the new informataie however that the
“hidden variable criticism” may endlessly be reapplied, since empirically usafiolenation sets are always
finite. In any case, demonstrating a Granger-causal structure psovsgéul information because it shows
that either a “mechanism” or an “expectation phenomenon” is sufficiently itapbto allow forecasting.
Further, in financial markets, expectations often determine actions (suicivesstment decisions) and so
may have “effects” that go far beyond the mind-set of financial actors.

In this paper, we stress that statistical tests of the null hypothesis of aumality (in the sense of
Wiener-Granger) constitute a poor way of analyzing causal structifes example, we can distinguish
between causal directions (frof to Y, from Y to X, instantaneous causality) and causality at different
horizons. Different causality relations may coexist, but their relative itapoe may greatly differ. This
suggests of finding means to quantify their degrees. Causality tests faildmplish this task, because they
only provide evidence on the presence or the absence of causalitgtatistical significance depends on
the available data and test power. A large effect may not be statistically samifiat a given level), and a

2For further discussion of causality concepts, the reader may congmieand Zellner (1988), Bunge (1979), Eells (1991),
Pearl (2000), Salmon (1984), Spirtes, Glymour and Scheines Y1988a and Tooley (1993).



statistically significant effect may not be “large” from an economic viewpnimore generally from the
viewpoint of the subject at hand) or relevant for decision makRing.

In order to quantify and compare the strength of dynamic leverage antilityofeedback effects, we
propose to use vector autoregressive (VAR) models of returns aimlganeasures of volatility at high
frequency together with short and long-run causality measures in baf@iTaamouti (2010). For further
discussion of the usefulness of causality measures and what they distobeyond Granger causality tests,
we refer the reader to Dufour and Taamouti (2010).

Using 5-minute observations on S&P 500 Index futures contracts, wedinsider causality measures
based on a bivariate VAR involving returns and realized volatility. In this ggttire find a weak dynamic
leverage effect for the first four hours in hourly data and a strongphc leverage effect for the first
three days in daily data. The volatility feedback effect appears to be idgligrespective of the horizon
considered.

Recently, using high-frequency data and simgueelations Bollerslev et al. (2006) found an important
negative correlation between volatility and (current and lagged) relasting for several days, while corre-
lations between returns and lagged volatility are all close to zero. We differ their study by using short
and long-run causality measures to quantify causality at different hwiZbhe difference between simple
correlations and impulse-response functions at horizons greaterrteda due to indirect causal effects, as
shown in Dufour and Renault (1998).

In studying the relationship between volatility and returmglied volatility— derived from option prices
— can be an interesting alternative measure of volatility or constitutes a aaedilibry variable, because
option prices may capture anticipative additional relevant information asaseibnlinear relations. Thus,
implied volatility can be viewed as a forward-looking measure of volatility with arizion corresponding
to the maturity of the option. We find that adding implied volatility to the information seldéa statistical
evidence for a sizable volatility feedback effect for a few days, wdsetke leverage effect remains almost
the same. A key element of the volatility feedback mechanism is an increagpeaafted future volatility.
Implied volatility certainly provides an option market forecast of future volatikthich is better than a
forecast based on past realized volatiity.

This finding can be contrasted with the one of Masset and Wallmeier (2041®),also used high-
frequency data to analyze the lead-lag relationship of option implied volatilityrelek return in Germany,
using Granger causality tests (at horizon one) and impulse-respomd®ns. They find that the relationship
is return-driven in the sense that index returns Granger cause volatiityges. Instead, through a more

3For further discussion of this issue, see McCloskey and Ziliak (1996).

“Bollerslev, Kretschmer, Pigorsch and Tauchen (2009) further rdpoee realized volatility into two components, the
continuous-path measure of volatility and the discontinuous jump compofieeir results suggest that the leverage effect works
primarily through the continuous volatility component.

5The informational content of implied volatility does not come as a surpiige several studies have documented that implied
volatility can be used to predict whether a market is likely to move higher oed@md help to predict future volatility; see Day
and Lewis (1992), Canina and Figlewski (1993), Lamoureux anttaass (1993), Fleming (1998), Poteshman (2000), Blair, Poon
and Taylor (2001), and Busch, Christensen and Nielsen (2010}inBdbe information contained in futures and options markets
unveils an effect that cannot be found with one market alone.
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complete analysis based on the concept of causality at different herim@nfind thaimplied volatilities
are important for assessing thelatility feedback effect Our result is however broadly consistent with
Bollerslev and Zhou (2005), who provide a model-based rationalizatiofifding such evidence on the
volatility feedback effect through implied volatility. Based on a stochastic volatilibgdel, they show that
the relation between returns and implied volatility remains positive for all redderconfigurations of
parameters.

Another contribution of this paper consists in showing that the proposeshlity measures help to
quantify the dynamic impact of bad and good return news on volatiktyommon approach to visualize the
relationship between news and volatility is provided by the news-impact cuigimally studied by Pagan
and Schwert (1990) and Engle and Ng (1993). To study the effectrofnt return shocks on future expected
volatility, Engle and Ng (1993) introduced the News Impact Function (lfieneld|F). The basic idea of this
function is to consider the effect of the return shock at tira volatility at timet + 1, while conditioning
on information available at timeand earlier. Engle and Ng (1993) explain that this curve, where all the
lagged conditional variances are evaluated at the level of the assetuattonditional variance, relates past
positive and negative returns to current volatility.

We propose a new curve, ti@ausal News Impact Function (CNIRpr capturing the impact of news
on volatility based on causality measures. In contrast withNifreof Engle and Ng (1993), theNIF curve
can be constructed for parametric and stochastic volatility models, and it alloevi® consider all the past
information about volatility and returns. We also build confidence intervalggus bootstrap technique
around the CNIF curve. Further, we can visualize the impact of newslatility at different horizons [see
also Chen and Ghysels (2010)] rather than only one horizon as in Emdji@(1993).

We confirm by simulation that the CNIF based on causality measures detdidisegifferential effect
of good and bad news in various parametric volatility models. Then, we applgatncept to the S&P 500
Index futures returns and volatility: we find a much stronger impact frochriEaws at several horizons.
Statistically, the impact of bad news is significant for the first four day®reds the impact of good news
is negligible at all horizons.

Our results on the informational value of implied volatility also suggest that tiferelifce between im-
plied and realized volatility (called theariance risk premiufnconstitutes an interesting measure of “news”
coming to the market. So we compute causality measures from positive artiv@egaiance risk premia
to returns. We find a stronger impact when the difference is positivengrigated increase in volatility or
bad news) than when it is negative.

Clearly, none of the earlier studies on the relationship between returngtatiity has exploited the
new methodology proposed in this paper. But our results nicely complenusd i Bollerslev, Tauchen
and Zhou (2009) and Bollerslev, Sizova and Tauchen (2009). Usgigfrequency intraday returns on the

8In this study, bad and good news are determined by negative and pdsitiwations in returns and volatility. The impact of
macroeconomic news announcements on financial markets (e.gilitydlhas also been studied by several authors; see Schwert
(1981), Pearce and Roley (1985), Hardouvelis (1987), HaugeémorF and Torous (1991), Jain (1988), McQueen and Roley (1993),
Balduzzi, Elton and Green (2001), Andersen, Bollerslev, Diebold agh\{2003), and Huang (2007).
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S&P500 index and the VIX volatility index, Bollerslev, Tauchen and ZhoW@G&how that the variance
risk premium is able to explain a nontrivial fraction of the time-series variatipogt-1990 aggregate stock
market returns, with high (low) premia predicting high (low) future retuats quarterly frequency. They
also observe it is consistent with the predictions of a long-run volatility riskliegium model. Bollerslev,
Sizova and Tauchen (2009) rely on an equilibrium continuous-time modaltioiie this fact as well as the
asymmetry in the relationship between volatility and past and future returesdtgsand volatility feedback
effects).

Other empirical studies on the link between returns and volatility are baseaveniequency data or
model-based measures of volatility; see Christie (1982), French et 8r)1Schwert (1989), Turner, Startz
and Nelson (1989), Nelson (1991), Glosten, Jagannathan and RdekIi8) and Campbell and Hentschel
(1992), Bekaert and Wu (2000), Whaley (2000), Ghysels, Salaea@nd Valkanov (2004), Giot (2005),
Ludvigson and Ng (2005), Dennis, Mayhew and Stivers (2006) Gumland Savickas (2006) among others.
On the relationship and the relative importance of the leverage and volatilitpdek effects, the results
of this literature are often ambiguous, if not contradictory. In particutadies focusing on the leverage
hypothesis conclude that the latter cannot completely account for chamgelatility; see Christie (1982)
and Schwert (1989). However, for the volatility feedback effect, eicgdifindings conflict. French et al.
(1987), Campbell and Hentschel (1992) and Ghysels et al. (20@Ha frositive relation between volatility
and expected returns, while Turner et al. (1989), Glosten et al. J1888 Nelson (1991) find a negative
relation. From individual-firm data, Bekaert and Wu (2000) conclude the volatility feedback effect
dominates the leverage effect empirically. The coefficient linking volatility tarres is often not statisti-
cally significant. Ludvigson and Ng (2005) find a strong positive conteamnemus relation between the
conditional mean and conditional volatility and a strong negative lag-volatilipgan effect. Guo and
Savickas (2006) conclude that the stock market risk-return relatiorsiiyin as stipulated by the CAPM,;
however, idiosyncratic volatility is negatively related to future stock masdetrns. Giot (2005) and Dennis
et al. (2006) use lower frequency data (such as, daily data) to studgldteonship between returns and
implied volatility. Giot (2005) uses the S&P 100 index and an implied volatility index{\b show that
there is a&contemporaneoussymmetric relationship between S&P 100 index returns and VIX: negative S&P
100 index returns yield bigger changes in VIX than do positive retures Y8haley (2000)]. Dennis et al.
(2006), using daily stock returns and innovations in option-derived impiddatilities, show that the rela-
tion between stock returns and innovations in systematic volatility (idiosyncral@atility) is substantially
negative (near zero).

The plan of the paper is as follows. In Section 2, we define volatility measutdgh-frequency data
and we review the concept of causality at different horizons and itsuresdn Section 3, we propose and
discuss VAR models that allow us to measure leverage and volatility feedfacksevith high-frequency
data. In Section 4, we introduce information implied volatiliy”) — in addition to realized volatility and
returns — to measure the dynamic leverage and volatility feedback effeetsiors5 describes the high-
frequency data, the estimation procedure and the empirical findingsdnegarausality effects between
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volatility and returns. In Section 6, we propose a method to assess the dymgaat of good and bad return
news on volatility. Simulation results on the efficiency of this method are alsemes. Our empirical
results on news effects in S&P 500 futures market appear in Section 7ohgide in Section 8. Tables
and figures are gathered in appendix.

2. Volatility and causality measures

To assess causality between volatility and returns at high frequencye@g:to build measures for both
volatility and causality. For volatility, we use various measures of realizediMylntroduced by Andersen,
Bollerslev and Diebold (2010); see also Andersen and Bollerslev §18@8ersen, Bollerslev, Diebold and
Labys (2001), Barndorff-Nielsen and Shephard (2pand Barndorff-Nielsen and Shephard (200Zor
causality, we rely on the short and long run causality measures proppd2afour and Taamouti (2010).

Let us first set some notations. We denotepbyhe logarithmic price of the risky asset or portfolio (at
time ¢t) and byr.y1 = pi+1 — pr the continuously compounded return from tim® ¢t + 1 . We assume
that the price process may exhibit both stochastic volatility and jumps. It calthy to the class of
continuous-time jump diffusion processes,

dpy = ,utdt + o:dWy + kedgr, 0 <t < T, (21)

wherey, is a continuous and locally bounded variation processs the stochastic volatility process;;
denotes a standard Brownian motidg; is a counting process such thag = 1 represents a jump at time
t (anddg; = 0 no jump) with jump intensity\;. The parametek, refers to the size of the corresponding
jumps. Thus, the quadratic variation of returns from timie¢ + 1 is given by

t+1
[r, 7]t =/ oids + Z s
t

where the first component, called integrated volatility, comes from the consmumuponent of (2.1), and
the second term is the contribution from discrete jumps. In the absence of jtingpsecond term on the
right-hand-side disappears, and the quadratic variation is simply equal itt¢igrated volatility.

2.1. \Volatility in high-frequency data: realized volatility, bipower variation, jumps

In this section, we define the high-frequency measures that we shatb usspture volatility. In what
follows, we normalize the daily time-interval to unity and we divide it itgeriods. Each period has
lengthA = 1/h. Let the discretely sampled-period returns be denoted by, 1) = p; — p;—a and the
daily return byr; 1 = Z?:1 T(t4+5.4, 4)- The daily realized volatility is defined as the summation of the
corresponding: high-frequency intradaily squared returns:

>

RVig1 = rfiija,a)
j=1
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The realized volatility satisfies
t )
ilino RV = /t osds + g K%, (2.2)

which means thakV;; is a consistent estimator of the sum of the integrated varigfﬁﬁ%azds and the
jump contribution; see Andersen and Bollerslev (1998), Andersen, Blale Diebold and Labys (2001),
Andersen et al. (2010), Barndorff-Nielsen and Shephard @0®202), and Comte and Renault (1998).
Similarly, a measure of standardized bipower variation is given by

h

T
BV =5 > I rriam ll rasg-1a,a) | -
=2

Under reasonable assumptions on the dynamics of (2.1), the bipowerorasatisfies

t+1
lim BV, = / olds; (2.3)

see Barndorff-Nielsen and Shephard (2004) and Barndorff-&lielGraversen, Jacod, Podolskij and Shep-
hard (2005). Equation (2.3) means thaV,,; provides a consistent estimator of the integrated variance
unaffected by jumps. Finally, as noted by Barndorff-Nielsen and Sireipt2004), combining the results

in equation (2.2) and (2.3), the contribution to the quadratic variation due ¢ordiauities (jumps) in the
underlying price process may be consistently estimated by

(RViyr — BVip1) = ) k2. (2.4)

0<s<t

lim
A—0
We can also define the relative measure

(RViy1 — BViya)

RJy 1 = RVt

(2.5)
or the corresponding logarithmic ratio
Jir1 = In(RViy1) — In(BViyq).

Huang and Tauchen (2005) argue that these are more robust neeabthie contribution of jumps to to-
tal price variation Since in practice/;; can be negative in a given sample, we impose a non-negativity
truncation of the actual empirical jump measurements:

Ji+1 = max[In(RViy1) — In(BVit), 0]

see Andersen et al. (2010) and Barndorff-Nielsen and Shepha@d ).

"For a general discussion of integrated and realized volatilities in the abséjumps, see Meddahi (2002).



2.2. Short-run and long-run causality measures

We study causality at different horizons between retgrpsand volatilities(c7). For that purpose, it will

be convenient to define firsioncausalityin terms of orthogonality between subspaces of a Hilbert space
of random variables with finite second moments. To give a formal definitiomootausality at different
horizons, we need to consider the following notations. We denotédyt], o%(w, t], andz(w, t] the infor-
mation contained in the history of variables of intereahdo? and another auxiliary variablerespectively

up to timet. The “starting point'w is typically equal to a finite initial date (such as= —1, 0 or 1) or to

—o0. In our empirical application the auxiliary variabtes given by the implied volatility (hereaftdr/).

The information sets obtained by “addinglw, t] to r(w, t], z(w,t] to 0?(w, ], r(w,t] to 0?(w,t], and

z(w, ] tor(w,t] ando?(w, t] are defined as follows:

L.(t) = Io+ 7w, t| + 2(w, 1], L2,(t) = Iy + o*(w, t] + z(w, t],

Io2(t) = Iy +7(w, t] + 0%(w, t], L2, (t) = Io+r(w, t] + 0?(w, t] + z(w, 1],

where I, represents a fundamental information set available in all cases (suateamphistic variables,

a constant, etc.). Finally, for any given information gst[some Hilbert subspace] and positive integer
h, we denote byP [ry,, | B;] (respectivelyP [o7 , | B:] ) the best linear forecast of, (respectively
o7, ,) based on the information sé; andu[riys | Bi] = repn — Plregs | B (respectivelyulo, , |

By =0}, — P[0}, | B:]) the corresponding prediction erfiThus, we have the following definition
of noncausality at different horizons [see Dufour and Renault§188d Dufour and Taamouti (2010)].

Definition 2.1 Leth be a positive integer.
(i) » does not cause? at horizonh givenI, -, (t), denoted- - o2 | L2, (t), iff

Var [uof,y, | I2.(t)] = Var [ulo}yy, | Le2.(1)]] ;
(ii) r does not cause? up to horizom givenI, 2, (t), denoted- (73 o2 | I2,(t), iff
rﬁ;aQ | I2,(t)fork=1,2,..., h;
(iii) » does not cause? at any horizon giver, -, (t), denoted- e 02 | L2, (t), iff
e 02| Iz, (t) forallk=1,2, ...

Definition 2.1 corresponds to causality fromto o2 and means that causes? at horizon if the past
of » improves the forecast m%h given the information sef -, (t). We can similarly define noncausality
at horizonh from o2 to . The presence of the auxiliary variablenay transmit causality betweenand

o2 at horizonh strictly higher than one, even if there is no causality between the two variaidesizon] .

8B, can be equal td,,(t), I-(t) , or I,.(t).



However, in the absence of auxiliary variable, noncausality at hofizoplies noncausality at any horizon
h strictly higher than one; see Dufour and Renault (1998). In othersyord

r - o2 \ az(w, t] = r —» o2 | I2(t),
1 (00)

2

o —fr|r(w,t] = o

(_H r | IT(t)7

wherel,2(t) = Iy + 0%(w,t] andI.(t) = Iy + r(w,t]. A measure of causality fromto o2 at horizonh,
denoted” (r - o?), is given by following function [see Dufour and Taamouti (2010)]:

C(r - 0?) =1In

Var [U[U?_,_h | IJQZ(t)H ]
Var [U[Ula_h ‘ Iro2z(t)]] ‘

Similarly, a measure of causality fron¥ to r at horizonh, denoted” (o - 1), is given by:

Clo? ) = n [ el L0

Var [u[resn |ro2s ()]
For example('(r — o?) measures the causal effect freno o2 at horizonh given the past 062 andz.
In terms of predictability, it measures the information given by the pastludit can improve the forecast of
o7 - SinceVar [u[of,;, | I,2,(t)]] > Var [u[o?,, | I,,2.(t)]] , the functionC(r — 0?) is nonnegative.
Furthermore, it is zero when there is no causality at horizorlowever, as soon as there is causality at
horizon1, causality measures at different horizons may considerably differ.

In Dufour and Taamouti (2010), a measure of instantaneous causdlitgdie- ando? at horizonh is
also proposed. Itis given by the function

. Var [u[rlurh ’7“022 (t)H Var [u[af h ‘ ITO'QZ(t)]]
Clr o 0®)=1n det (X [rern 02,y | Imjz(t)})

where det (X [rin, 07,y | Io2.(t)]) represents the determinant of the variance-covariance matrix
2 [rean, 074y | Io2,(t)] of the forecast error of the joint procegs 52)" at horizonh given the informa-

tion setl, 2, (t). Note thatr? may be replaced by (o?). Since the logarithmic transformation is nonlinear,
this may modify the value of the causality measure.

In what follows, we apply the above measures to study causality at diffaagizons from returns to
volatility (hereafter leverage effect), from volatility to returns (hereaftdatility feedback effect), and the
instantaneous causality and dependence between returns and volatiigctian 3, we study these effects
by considering a limited information set which only contains the past of reamdgealized volatility. In
Section 4, we include lagged implied volatility in the information set.



3. Measuring leverage and volatility feedback effects in a VAR model

In this section, we study the relationship between the returand its volatility o7. The objective is to
measure and compare the strengtrdghamicleverage and volatility feedback effects in high-frequency
equity data. These effects are quantified within the context of a VAR madiaba using short and long run
causality measures proposed by Dufour and Taamouti (2010). Sineelttdity asymmetry may be the
result of causality from returns to volatility [leverage effect], from volatitilyreturns [volatility feedback
effect], instantaneous causality, all of these causal effects, or sSimene. We wish to measure and compare
these effects in order to determine the most important ones.

We suppose that the joint process of returns and logarithmic volammy,l,ln(atzﬂ))/ follows an
autoregressive linear model

p . . r . T
(oot )=o)l @ [ty )+ (i) e

with E[u;] = 0 andVar[u] = X, whereu; = (u}, u?)/. In the empirical applicatiow?, ; will be
replaced by the realized volatiliti®V; 1 or the bipower variatior3V; . The disturbance;  , is the one-
step-ahead error when., is forecast from its own past and the pastiofo?, ;), and similarlyuy, , is
the one-step-ahead error whieifo? 1) is forecast from its own past and the past-of;. We suppose that
these disturbances are each serially uncorrelated, but may be carwititeach other contemporaneously
and at various leads and lags. Singe, is uncorrelated with, .- (¢), the equation for;,, represents the
linear projection of-,; on I,,2(t). Likewise, the equation folm(afﬂ) represents the linear projection of
In(c7, 1) on 1,2 (t).

Equation (3.1) models the first two conditional moments of the asset retumseesent conditional
volatility as an exponential function process to guarantee that it is posifibe first equation in (3.1)
describes the dynamics of the return as

p p
Tee1 =yt ) Prgresiog + ) iy ln(ofy ) +ujs.
j=1 j=1

This equation allows to capture the temporary component of Fama and Ki&88) permanent and tem-
porary components model, in which stock prices are governed by amanddk and a stationary autore-
gressive process, respectively. Mop; = 0, this model of the temporary component is the same as that
of Lamoureux and Lastrapes (1993); see also Brandt and Kang)28td Whitelaw (1994). The second
equation in (3.1) describes the volatility dynamics as

p p
I(071) = pty + Y Poryresr—j + Y PogjIn(07y1_ ;) + uf,y, (3.2)
=1 j=1

which is a stochastic volatility model. Fés,; = 0, equation (3.2) can be viewed as the stochastic volatility
model estimated by Wiggins (1987), Andersen and Sgrensen (19@b6jnamy others. However, in this
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paper, we consider tha;t%+1 is not a latent variable and it can be approximated by realized or bipower
variations from high-frequency data. We also note that the conditional erasation includes the volatility-
in-mean model used by French et al. (1987) and Glosten et al. (1993plore the contemporaneous
relationship between the conditional mean and volatility [see Brandt and &&ig)]. To illustrate the
connection to the volatility-in-mean model, we premultiply the system in (3.1) by thexmatr

1 _ Cov(rit1, In(o? ;1))
p_ Var[ln(o7,1)[1,.,2(t)]
_ Cov(res1, In(o7y,)) 1

Varlret1]1,.,2(t)]

Then, the first equation ef, ; is a linear function of the elementswfv, ¢}, 0%(w, t+1], and the disturbance

r Cov(re+1, ln(a%_H))
Y1 Varlin(oZ 1T, 2 (0]
In(c7,,) as well as with(w, t] ando?(w, t+1]. Hence the linear projection of ;1 onr(w, ¢] ando?(w, t+

u?, ;. Since this disturbance is uncorrelated with ,, it is uncorrelated with

1] is provided by the first equation of the new system:

p p
Pl = Ve Y bt + Y b1y (07 ) + iy (3.3)
j=1 j=0
The new parameterns,, ¢;,;, and¢,,;, for j = 0, 1,...,p, are functions of parameters in the vector
w and matrix®;, for j = 1,... ,p. Equation (3.3) is a generalized version of the usual volatility-in-mean

model, in which the conditional mean depends contemporaneously on thiéi@aald/olatility. Similarly,
the existence of the linear projectionlaf{c?, ;) onr(w,t + 1] ando?(w, t],

p p
In(o7,,) = vo + Z Po1jTt41—5 + Z $22; ID(U§+1—J‘) + gy (3.4)
j=0 j=1
follows from the second equation of the new system. The new parameters,; ;, andgq,;, for j =
1,...,p, are functions of parameters in the vectoand matrice®;, j = 1,... ,p. The volatility model
given by equation (3.4) captures the persistence of volatility through thicients¢,,;. In addition, it
incorporates the effects of the mean on volatility, both at the contemporarswlintertemporal levels
through the coefficientg,, ;, for j =0, 1,... ,p.
Based on system (3.1), the forecast errofigf 1, ln(a§+h))/ is given by:

h—1
e [(Tt-i-ha In(o7,4)) } = ;wiut—kh—i (3.5)

where the coefficients, are the impulse response coefficients of #iel(co) representation of (3.1). The
covariance matrix of the forecast error (3.5) is given by

Var [e[(th, 1n(o?+h))/]] = Zwi ZU@Z);. (3.6)
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We also consider the following restricted model:

ﬁ —
Tt4+1 oy P11; 0 ] ( Tt+1—j > ( Uy > ( Uy >
+ = + . (3.7
( ln(Ufﬂ) ) < He > ; [ 0 D2j ln(afﬂfj) ugyy uf,y

with E [@,] = 0andVar [@,] = Z,, wherew, = (a, @7)’. Zero values in the autoregressive matrix coeffi-
cients mean that there is noncausality at horizdrom returns to volatility and from volatility to returns.
As mentioned in subsection 2.2, in a bivariate system, noncausality at hanmoimplies noncausality
at any horizom, strictly higher than one. This means that the absence of leverage dffieatizon one
(respectively the absence of volatility feedback effect at horizof) whéch corresponds td;; = 0, for
j =1,...,p, (respectivelybo; = 0, for j = 1,...,p, ) is equivalent to the absence of leverage effect
(respectively volatility feedback effect) at any horizlor> 1.

To compare the forecast error variance of model (3.1) with that of mM@d&), we assume that= p
Based on the restricted model (3.7), the covariance matrix of the forecasof (., ln(at2+h))' is given

by:
h

Var |&[(r+n, IH(U?HL))/]] = @
0

1=

_ﬁl_bi (3.8)
where the coefficients;, fori = 0,...,h— 1, represent the impulse response coefficients ofithé(co)
representation of model (3.7). From the covariance matrices (3.6) a8)]\(& define the following mea-
sures of leverage and volatility feedback effects at any horizavhereh > 1,

— 2y — Z?;ol es(¥; Z_’uﬂ};)ez _ /
v e ) [Z?ol &3 (¥ Eu¢;)€2]’ =00 (3-9)

C(1n(0?) — 1) = In | 2= 0 1(¥; “w%)“],e —(1,0). 3.10
(o) 5 7) [z?(}eam R AR (310

The parametric measure of instantaneous causality at hokizamereh > 1, is given by the following

function

C(r “ In(0?)) = In

(i eals Zuvi)en) (Hicg 1y wbel)] |
det(Yo1) ¥ Zut))

4. Implied volatility as an auxiliary variable

An important feature of causality is the information set considered to fsréoavariables of interest. Until
now, we have included only the past of returns and realized volatility. Sheegolatility feedback effect
rests on anticipating future movements in volatility it is natural to include optiorébasplied volatility,
an all-important measure of market expectations of future volatility. Formalyadd” the past of implied
volatility to the information sef, .2 (¢) considered in the previous section. The new information set is given
now by 7,2, (t), wherez is an auxiliary variable represented by implied volatility.

To take implicit volatility into account, we consider call options written on S&P 50@xnflitures
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contracts. The data come from the OptionMetrics data set on option pratasg thack to January 1996.
Given observations on the option pric¢éand the remaining variableS, K, =, andr, an estimate of
the implied volatility IV can be obtained by solving the nonlinear equativn= C (S, K, 7, r, IV1/2)
for IV/2, whereC(-) refers to the Black-Scholes formula. Each day, we extract the implied volatility
corresponding to the option that is closest to the money. This selection gritersures that the option will
be liquid and therefore aggregates the opinion of many investors aliate feolatility. This appears more
important than keeping a fixed maturity. This choice is often made in the empiriaaltlite on option
pricing [see for example Pan (2002)]. Summary statistics for the daily implikdilty (711/2), squared
implied volatility (/V") and logarithm of squared implied volatilityn( 7V")) are reported in Table 3.

Therefore, we consider a trivariate autoregressive model includinligidwolatility, in addition to the
realized volatility (bipower variation) and returfis:

T4l oy p | P11y P2 Pisj Tt41—j (]
RV, | = pgy | + Z Do1j Pazj DPosj RV ;| + uh (4.1)
IV, [y i=1 | P31 DP32j D3 Vi utly

whereRV;* = In(RV;) andIV;* = In(IV}). The first equation of the above system

P P p
Tep1 = ppt Z P11t 41—5+ Z D19 RV + Z D13 IV jtug (4.2)
7=1 7=1 7j=1

describes the dynamics of the return, while the second equation

p p p
RV =ppy + Y Pojrevijt Y o RVi_j+ ) Pogil Vi +ufl) (4.3)
j=1 j=1 j=1

describes the volatility dynamics. It is well known that implied volatility can be uegatedict whether a
market is likely to move higher or lower and help to predict future volatility [seg Bnd Lewis (1992),
Canina and Figlewski (1993), Lamoureux and Lastrapes (1993)siatn (2000), Blair et al. (2001), and
Busch et al. (2010)]. The forward-looking nature of the implied volatility suga makes it an ideal ad-
ditional variable to capture a potential volatility feedback mechanism. Apam frsing/ V' without any
constraint in (4.2) and (4.3), we will also look at more restricted combinatiantated by financial consid-
erations. Indeed, the difference betwddnand RV provides an estimate of the risk premium attributable
to the variance risk factor.

5. Causality measures for S&P 500 futures

In this section, we first describe the data used to measure causality in thariddlels of the previous
sections. Then we explain how to estimate confidence intervals of causalisurasdor leverage and
volatility feedback effects. Finally, we discuss our findings.

®Further, we consider an autoregressive model where we add jurdpsuaresults do not change.
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5.1. Data description

Our data consists of high-frequency tick-by-tick transaction prices &R S0 Index futures contracts
traded on the Chicago Mercantile Exchange, over the period Janu@8ytaPecember 2005 for a total
of 4494 trading days. We eliminated a few days where trading was thin anuahest was open for a
shortened session. Due to the unusually high volatility at the opening, wemlisdhe first five minutes
of each trading day [see Bollerslev et al. (2006)]. For reasonsitsd with microstructure effects we
follow Bollerslev et al. (2006) and the literature in general and aggregaiens over five-minute intervals.
We calculate the continuously compounded returns over each five-minuteairttg taking the difference
between the logarithm of the two tick prices immediately preceding each five-mirarteto obtain a total
of 77 observations per day [seeilMer, Dacorogna, Da, Olsen, Pictet and Von Weisker (1997) and
Bollerslev et al. (2006) for more details]. We also construct hourly ailg deturns by summing1 and77
successive five-minute returns, respectively.

Summary statistics for the five-minute, hourly, and daily returns and theiatsdwolatilities are re-
ported in tables 1-2. From these, we see that the unconditional distributidhe returns exhibit high
kurtosis and negative skewness. The sample kurtosis is much greattréi@aussian value of three for all
series. The negative skewness remains moderate, especially for tharivee and daily returns. Similarly,
the unconditional distributions of realized and bipower volatility measureighty skewed and leptokur-
tic. However, on applying a logarithmic transformation, both measures apppeoximately normal [see
Andersen, Bollerslev, Diebold and Ebens (2001)]. The descriptatesscs for the relative jump measure,
Ji11, clearly indicate a positively skewed and leptokurtic distribution.

It is also of interest to assess whether the realized and bipower volatilityunesadiffer significantly.
To test this, recall that

lim
A—0

where [/ *!

price variation. In the absence of jumps, the second term on the rightdidadisappears, and the quadratic

o3ds is the integrated volatility and~_,, 2 represents the contribution of jumps to total

variation is simply equal to the integrated volatility: or asymptotically-G 0) the realized variance is equal
to the bipower variance. Many statistics have been proposed to test fprebence of jumps in financial
data; see for example Barndorff-Nielsen and Shephard (082adersen, Bollerslev and Diebold (2003),
Huang and Tauchen (2005). In this paper, we test for the presénomos in our data by considering the

following test statistics:
RViy1 — BV

z = , 51
QP,1,t VG - 5)A0Pn (5.1)
ZQPt _ 111(R‘/t+1) - 1H(B‘/t+1) (5 2)

’ s QP ’ )
@+ ag
In(RVis1) — In(BVis1) 53

ZQP,Im,t = 2 )
V() + 7 —5)Amax(l, )
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whereQ P, is the realized Quad-Power Quarticity [Barndorff-Nielsen and Shep2@02)], with

h

QPii1 = hpy™> I rga, o) I e g-1.a,2) 1| TerG-20.0,2) 1| T4 -3).4, ) |

j=4

andy, = \/g Under the assumption of no jumps and for each timehe statistics:gp,;, ¢+, 2gp,:, and
2qQp,1m,+ follow a Normal distribution\V'(0,1) asA — 0. The results of testing for jumps in our data
are plotted in Figure 1. These graphs represent the quantile to quantilglpoésfter QQ plot) of the
relative measure of jumps given by equation (2.5) and the QQ Plots of thest#ttistics;zgp,; ¢+, 20p, ¢,
andzgp,im,¢- When there are no jumps, we expect that the cross line and the dotted lirgure E will
coincide. However, as this figure shows, the two lines are clearly distimitaiting the presence of jumps
in our data. Therefore, we will present our results for both realizéatility and bipower variation.

5.2. Causality measures

We examine several empirical issues regarding the relationship betwieitityand returns. Before high-
frequency data became available and the concept of realized volatility tmbksuch issues could only
be addressed through volatility models. Recently, Bollerslev et al. (200&ktbat these relationships
using high-frequency data and realized volatility measures. As they eimphtse fundamental difference
between the leverage and the volatility feedback explanations lies in the dire€ttausality. The leverage
effect explains why a low return causes higher subsequent volatilitye whe volatility feedback effect
captures how an increase in volatility may cause a negative return. Howhesye studied only correlations
between returns and volatility at various leads and lags, not causality nslaiis.

Here, we apply short-run and long-run causality measures to quantitréregth of the relationships
between return and volatility at various horizons. We use OLS to estimate tRervddels described
above and the Akaike information criterion to specify their ord€r3o obtain consistent estimates of the
causality measures, we simply replace the unknown parameters by their estifvatealculate causality
measures for various horizons= 1, ... ,20. A higher value for a causality measure indicates a stronger
causality. We also compute the corresponding nontia@ bootstrap percentile confidence intervals using
two different methods: the first one is based on the procedure desénilufour and Taamouti (2010, p.
52) and the second one corresponds tofitked-design wild bootstragescribed in Gongalves and Kilian
(2004, Section 3.2). Further, the new confidence intervals were bigttacounting for a possible bias in
the autoregressive coefficiertts.As mentioned by Inoue and Kilian (2002), for bounded measures, as in
our case, the bootstrap approach is more reliable than the delta-methodea3pa is because the delta-
method interval is not range respecting and may produce confidenceaistérat are invalid. In contrast,
the bootstrap percentile interval preserves by construction these aiats{see Inoue and Kilian (2002,

10yUsing Akaike’s criterion we find that the appropriate value of the ordéh@funconstrained autoregressive model is equal to
10. Since using the same criterion the value of the order of the constraindel issmaller thari0, we takep = p = 10 [see
Section 3].

1More details on bias-correction in causality measures see the end ofrS2ati®ufour and Taamouti (2010).
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pages 315-318) and Efron and Tibshirani (1993)]. Further, theepéle interval allows avoiding using the
variance-covariance matrix of the estimators that can depend on the hestassikity assumption. More
details on the consistency and statistical justification of the above two pnasedre available in Dufour
and Taamouti (2010) and Goncalves and Kilian (2004).

The concept of Granger causality requires an information set and Igzadan the framework of a
model between the variables of interest. Both the strength of this causahlihiksastatistical significance
are important. A major complication in detecting causality is aggregation. Lowdrary data may mask
the true causal relationship between variables. High-frequency daeotfan an opportunity to analyze
causal effects. In particular, we can distinguish with an exceptionally ta@gblution between immediate
and lagged effects. Further, even if our interest focuses on relhipanat the daily frequency, using higher-
frequency data to construct daily returns and volatilities can provide lestienates than using daily returns
(as done in previous studies). Besides, since measured realized volatilinewiewed as an approximation
to the “true” unobservable volatility, we consider both raw realized volatilitst Hre bipower variation
(which provides a way to filter out possible jumps in the data); see Barfdd@isen and Shephard (2004).

With five-minute intervals we could estimate the VAR model at this frequency. Memvd we wish
to allow for enough time for the effects to develop, we need a large numbag®in the VAR model and
sacrifice efficiency in the estimation. This problem arises in many studieslailiyp forecasting. Re-
searchers have use several schemes to group five-minute intervalgjéalpr the HAR-RV or the MIDAS
schemes? We decided to look both at hourly and daily frequencies.

In this section and next ones, our empirical results will be presented maiolygh graphs. Each figure
reports the causality measure as a function of the horizon. To pregeage and reduce the number of
graphs, we exclude almost all the graphs with confidence intervals afatw® on the main figures where
different effects are compared across horizons. However, in therpege discuss the results of statistical
significance of the effects

The main results that correspond to the present section are summarizedrapdred in figures 2 -
5. Results based on bivariate models indicate the following (see Figure Zadmel 4). When returns
are aggregated to the hourly frequency, we find that the leveraget effetatistically significant for the
first four hours, while the volatility feedback effect is negligible at allihons. Using daily observations,
derived from high-frequency data, we find a strong leveragetdffethe first three days, while the volatility
feedback effect appears to be negligible at all horizons. The resagedion realized volatilityRV') and
bipower variation BV') are essentially the same. Overall, these results show that the leveragéseafiere
important than the volatility feedback effect (Figure 2).

If the feedback effect from volatility to returns is almost-non-existent, we fhat the instantaneous
causality between these variables exists and remains economically and sHgtistipartant for several

12The HAR-RV scheme, in which the realized volatility is parameterized as arlfnaation of the lagged realized volatilities
over different horizons has been proposed biyllst et al. (1997) and Corsi (2009). The MIDAS scheme, based erdia of
distributed lags, has been analyzed and estimated by Ghysels, Satai@laralkanov (2002).

BDetailed results, including confidence bands on the causality measueepresented in a separate companion document
[Dufour, Garcia and Taamouti (2010) available from one the autlansiepage (www.jeanmariedufour.com)].
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days. This means that volatility has a contemporaneous effect on reaurdssimilarly returns have a
contemporaneous effect on volatility. These results are confirmed withrémiibed and bipower variations.
Furthermore, dependence between volatility and returns is also econoraigdlstatistically important for
several days.

Let us now consider a trivariate autoregressive model including implikdilty in addition to realized
volatility (bipower variation) and returns, as suggested in Section 4 (8g#8). First, we find that implied
volatility (IV') helps to predict future realized volatility faeveral days ahea@Figure 3). Many other
papers like Day and Lewis (1992), Canina and Figlewski (1993), Laewnuand Lastrapes (1993) among
others, also find that implied volatility can be used to predict future volatility. él@w, the difference is that
in the present paper we look /atstep ahead forecast, fbr> 1, whereas the previous papers only focus on
one step-ahaed forecast. Note that Bollerslev et al. (2006) do nsiderimplied volatility in their analysis.

Second, there is an important increase in the volatility feedback effect inq@ied volatility is taken
into account (Figure 4). In particular, it is statistically significant duringftret four days. The volatility
feedback effect relies first on the volatility clustering phenomena whichnsnéiat return shocks, positive
or negative, increases both current and future volatility. The secasid bxplanation of this hypothesis is
that there is a positive intertemporal relationship between conditional volatilityeapected returns. Thus,
given the anticipative role of implied volatility and the link between the volatility festtteffect and future
volatility, implied volatility reinforces and increases the impact of volatility on resdfn Figure 4 also
compares volatility feedback effects with and without implied volatility as an auyikariable. We see
that the difference betwediV and RV has a stronger impact on returns than realized volatility alone in the
presence of implied volatility. Further, different transformations of volatilibgérithmic of volatility and
standard deviation) are considered: the volatility feedback effect isgash when the standard deviation is
used to measure volatility.

Finally, we look at the leverage effects with and without implied volatility as ariliaux variable
(Figure 5). We see that there is almost no change in the leverage effentwe take into account implied
volatility. On comparing the leverage and volatility feedback effects with andowitimplied volatility,
we see that the difference, in terms of causality measure, between lexamrdgolatility feedback effects
decreases when implied volatility is included in the information set. In other wtaellgg into account
implied volatility allows to identify a volatility feedback effect without affecting thedeage effect. This
may reflect the fact that investors use several markets to carry oufitfaicial strategies, and information
is disseminated across several markets. Since the identification of a oalatahship depends crucially
on the specification of the information set, including implied volatility appearsnéaséo demonstrate a
volatility feedback effect.

4since option prices reflect market participants’ expectations of futere@ments of the underlying asset, the volatility implied
from option prices should be an efficient forecast of future volatilityiclvipotentially explains a better identification of the volatility
feedback effect.
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6. Dynamic impact of positive and negative news on volatility

In the previous sections, we did not account for the fact that retuns meay differently affect volatility
depending on whether they are good or bad. We will now propose a methsmittout the differential
effects of good and bad news, along with a simulation study showing thappuoach can indeed detect
asymmetric responses of volatility to return shocks.

6.1. Theory

Several volatility models capture this asymmetry and are explored in Engle gf@i993). To study the
effect of current return shocks on future expected volatility, Engle ldg (1993) introduced the News
Impact Function (hereafteNIF). The basic idea of this function is to consider the effect of the return
shock at timet on volatility at timet + 1 in isolation while conditioning on information available at time
t and earlier. Recently, Chen and Ghysels (2010) have extended tbeptaf news impact curves to the
high-frequency data setting. Instead of taking a single horizon fixeahpetric framework they adopt a
flexible multi-horizon semi-parametric modeling [see also Linton and Mammen JR005

In what follows we extend our previous VAR model to capturediipamicimpact of bad news (nega-
tive innovations in returns) and good news (positive innovations in refum volatility. We quantify and
compare the strength of these effects in order to determine the most imporggntlananalyze the impact
of news on volatility, we consider the following model:

p p

P
ln(af_H) = Mo + Z o5 ID(O'%_H_]-) + Z Pj e+ Z ‘Pj‘_ er;rlfj + ufyy (6.1)
=1 j=1 j=1

where
— . . + o o
€T j = min {ery1—5, 0}, ery,,_; = max {erig1—j, 0}, erpi—j = rep1—j — E—j(reg1—j),

E[uf] = 0 andVar [uf] = X,-. Equation (6.1) represents the linear projection of volatility on its own past
and the past of centered negative and positive returns. This rigressdel allows one to capture the effect
of centered negative or positive returns on volatility through the coeiﬁs't,ej‘ or 90;-' respectively for
j=1,...,p. Italso allows one to examine the different effects that large and smallinegad/or positive
information shocks have on volatility. This will provide a check on the resuitaioed in the literature
on GARCH modeling, which has put forward overwhelming evidence onffeetef negative shocks on
volatility.

Again, in our empirical applicationsy;, ; will be replaced by realized volatility2V;,; or bipower
variation BV, 1. Furthermore, the conditional mean return is approximated by the followinggediample
average:

1 m
Ei(rie1) = o Zrtﬂ—j-
=1
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where we take an average around= 15, 30, 90, 120, and240 days® Now, let us consider the following
restricted models:

D P
In(o74) =0, + Z @7 In(o}, 1 ;) + Z o 67’;-1—3‘ +ef,1, (6.2)
i=1 i=1
B P P
In(07,1) = 0, + Z @7 In(of, 1 ;) + Z $; erq_; vl (6.3)
i=1 i=1

Equation (6.2) represents the linear projection of volatliityyfﬂ) on its own past and the past of centred
positive returns. Similarly, equation (6.3) represents the linear projecticolatility ln(a,?+1) on its own
past and the past of centered negative returns. To compare thadoegmr variances of model (6.1) with
those of models (6.2) and (6.3), we assume thatp = p.

Thus, a measure of the impact of bad news on volatility at horizowhereh > 1, is given by the
following equation:

C(er™ - In(o?)) =In

Var [e‘t’+h [ln(Uerh) | (UZ(M t], er(w, t])ﬂ]
Var [ug,, [In(o2,,) | J(t)]]

whereey, , [In(o7,,) | (0% (w, t], er™(w, t])] (uf,, [In(c7,,) | J(t)]) is theh-step ahead forecast error
of log volatility based on the information set(w, t]Uer™ (w, t] (J(t)) . Similarly, a measure of the impact
of good news on volatility at horizoh is given by:

Var [v7,, [In(03,4) | (o%(, 1], er™ (w, ﬂm]
Var [ug,, [In(o?,,) | J(t)]]

Clert - In(o?)) = In

wherevy,, [In(o7,,) | (o*(w, t], er™(w, t])] is theh-step ahead forecast error of log volatility based on
the information set?(w, t] U r~(w, ],

er (w,t] = {er_,, s>0},

ert(w, t] = {erf,, s>0},

and.J(t) is the information set obtained by “adding®(w, t] to er~(w, ] ander™ (w, t]. We also define a
function which allows us to compare the impact of bad and good news on volatikiig function can be
defined as follows:

Var [e7,,, [In(o2,.,) | (0w, t], er(w, #])]]
Var [vf,,, [In(0%,,) | (0%(w, t], er—(w, 1])]]

C(er™ Jert - In(0?)) = In

WhenC(er~ /ert > In(0?)) > 0, this means that bad news have more impact on volatility than good
news. Otherwise, good news have more impact on volatility than bad newspated to Chen and Ghysels
(2010), our approach is also multi-horizon and based on high-freguésita but is more parametric in

5In our empirical application, we also considered the case of uncentenaghs. The results can be found in Dufour et al.
(2010).
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nature. Before applying these new measures to our S&P 500 futurestpveekeonduct a simulation study
to verify that the asymmetric reaction of volatility is well captured in various moafelse GARCH family
that produce or not such an asymmetry.

6.2. Simulation study on news asymmetry detection

We will now present an exploratory simulation study on the ability of causalitysorea to detect asymme-
try in the impact of bad and good news on volatility [Pagan and SchwerDj1@buréroux and Monfort
(1992), Engle and Ng (1993)]. To do this, we consider that retummg@averned by a process of the form:

Tt4+1 = \/a€t+1 (6-4)

wherezs, 1 ~ N(0, 1) ando, represents the conditional volatility of return ;. Since we are only interested
in studying the asymmetry in leverage effect, equation (6.4) does not alteanolatility feedback effect.
Second, we assume thatfollows one of the following heteroskedastic models:

1. GARCH1, 1) model:

ot =w+ Boi_1 +a5?,1; (6.5)
2. EGARCH]1, 1) model:
Et—1 | Et—1 | ]
log(os) =w+ Plog(oi_1) +vV——— 4+ a | ——— — /2/7| . 6.6
g(ot) Blog(ot—1) ’Ym [m V2/ (6.6)

GARCH model is, by construction, symmetric. Thus, we expect that theesw¥ causality measures for
bad and good news will be the same. Similarly, because EGARCH model is asyonwe expect that
these curves will be different. The parameter values consideredoaneEngle and Ng (1993F

To see whether the asymmetric structures get translated into the causalitpgatterthen simulate
returns and volatilities according to the above models and we evaluate ttadityaneasures for bad and
good news as described in Section 6.1. To abstract from statisticaltaintgrthe models are simulated
with a large sample siz€" = 40000).

The results obtained in this way are reported in Figure 6. We see fromtthesgymmetry and asym-
metry are well represented by causality measure patterns. For the symmRE€HEmodel, bad and good
news have the same impact on volatility. In contrast, for the asymmetric EGARQ¢Irtmad and good
news exhibit different impact curves. We also considered many othramgdric volatility models like
AGARCH(1,1), VGARCH(1,1), NL-GARCH, GJR-GARCH and nonlinear asymmetric GARCHI )
[NGARCH(1,1)], and the results correspond to what we were expetting

It is also interesting to observe for the asymmetric models that bad news hgneater impact on
volatility than good news. The magnitude of the volatility response is largest@&RCH model, followed

% These parameters are the results of an estimation of different pai@uwétility models using the daily returns series of the
Japanese TOPIX index from January 1, 1980 to December 31, Fa88&letails, see Engle and Ng (1993). We also considered
other values based on Engle and Ng (1993). The results are similar topghesented here [see Dufour et al. (2010)].

17See Dufour et al. (2010).
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by the AGARCH and GJR-GARCH models. The effect is negligible in EGARGH ¥GARCH models.
The impact of good news on volatility is more noticeable in AGARCH and NGARCHeat® Overall,
causality measures appear to capture quite well the effects of returndaditity, both qualitatively and
guantitatively.

7. News effects in S&P 500 futures market

We now apply the good news and bad news measures of causality to S&Bt6sfreturns. To carry out

our analysis, we consider two alternative measures of news: (1) @oaiity negative deviations of returns
from average past returns, and (2) positive and negative varigicpremia. An important feature of our

approach comes from the fact that a specific volatility model need notibea¢sd, which can be contrasted
with previous related studies [see, for example Bekaert and Wu (2B6@) and Ng (1993), Glosten et al.
(1993), Campbell and Hentschel (1992), and Nelson (1991)].

7.1. Return news

Our empirical results on return news effect are summarized and comjpaFégure 7. Detailed results
(with confidence intervals) are presented in tables -®/e find a much stronger impact of bad news on
volatility for several days. Statistically, the impact of bad news is signifiaaritie first four days, whereas
the impact of good news is negligible at all horizons. So our central finditigat bad news have more
impact on volatility than good news at all horizons.

7.2. Variance risk premium

Let us now look at the reaction of future returns to the sign of the differdretween implied volatility and
realized volatility (bipower variation). This difference is a measure of th@meae risk premium since the
option-implied volatility includes the risk premium that investors associate withctegduture volatility
[see Bollerslev and Zhou (2005) and Drechsler and Yaron (201¥8. will therefore assess whether a
positive variance risk premium has an impact of similar magnitude on expestigohs than a negative
variance risk premium. In the case of a positive variance risk premium, pgcean increase in the expected
returns (return risk premium), and in the opposite, we expect a dedreaspected returns.

Since implied volatility is a predictor of future volatility, we write:

(RVis) = f (I(IVR), In(IVier), ...) + eens VA > 1,

even = In(RVian) — [ (In(IV;), W(IViy), ...), (7.1)

wheref (In(1V;), In(IV;_1), ...) is a function of the past observations on implied volatittyThe term

18We also computed the causality measures of the impact of bad news tilityalsing other estimators of the conditional mean
(m=90, 120, 240) and uncentered returns. The results are similar tmésediscussed here [see Dufour et al. (2010)].

¥¢(n(IV;), In(IVi_1),...) represents the optimal forecast, in the sense of minimization of the meemesgerror, of
In(RV,4+1) based on the past observations of implied volatility.
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on the right-hand side of equation (7.1) can be viewed as an approximétiotatlity shocks or volatility
news. To measure empirically tidgnamicimpact of volatility news on returns, we consider the following

model: » ) ,
Ten = e+ ) Gren Y 95 VP g+ ) el VPRt uin (7.2)
j=1 j=1 j=1
whereV P, . =min{VP, ; 0}, VP, ; =max{VP j 0}and

VPt+1fj = ln(IV;H*lfj) - hl(RVthrl*j) ;o J=1...,p

Equation (7.2) represents a linear projection of returns on its own pdsharpast of negative and positive
variance risk premia. This regression model allows one to capture tret effeolatility news on returns
through the coefficiemzs; or gp;r, forj =1,...,p.Italso allows one to examine different effects that large
and small negative and/or positive volatility shocks have on return riskipra. When implied volatility is
bigger than realized volatility (bipower variation), we expect an increagatume volatility followed by an
increase in the expected returns. In the opposite situation, we expeataske in future volatility followed
by a decrease in the expected returns.

The empirical results on the impact of volatility news on returns are given ir&ig?° The latter com-
pares the impacts of negative and positive variance risk premium onsetlVmsee that a positive variance
risk premium has more impact on expected returns than a negative variskgeemium, which means
that positive shocks on volatility have more impact on returns than negataks. The impact is twice as
big on the first day and shrinks to zero after about five days. By lockiribge sign of coefficient&j and
¢;, forj=1,...,p, wefind that<pj are positive, whereas; are negative, as expected. Consequently,
the increase in expected returns tends to be higher than the decreasmdoement in the variance risk
premium of the same magnitude but of opposite signs.

8. Conclusion

In this paper, we analyze and quantify the relationship between volatilityetnchs with high-frequency
equity returns. Within the framewaork of a vector autoregressive lineaehoddeturns and realized volatility
or bipower variation, we quantify the dynamic leverage and volatility feekibfiects by applying short-run
and long-run causality measures proposed by Dufour and Taamo@i®)(2These causality measures go
beyond simple correlation measures used recently by Bollerslev et a6)(200

Using 5-minute observations on S&P 500 Index futures contracts, we neeamsieak dynamic leverage
effect for the first four hours in hourly data and a strong dynamic &yeeffect for the first three days in
daily data. The volatility feedback effect is found to be negligible at all lom$z Interestingly, when we
remeasure the dynamic leverage and volatility feedback effects using impledity (/1), we find that a
volatility feedback effect appears, while the leverage effect remainssalim® same. This can be explained

20Detailed results (with confidence intervals) are presented in Dufour @C4I0).
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by the power of implied volatility to predict future volatility and by the fact that tititg feedback effect is
related to the latter. We also use causality measures to quantify and test sligtisteceynamic impact of
good and bad news on volatility. First, we assess by simulation the ability chlitguneasures to detect
the differential effect of good and bad news in various parametric volatilibglels. Then, empirically,
we measure a much stronger impact for bad news at several horizdassti&Glly, the impact of bad
news is significant for the first four days, whereas the impact of g@wesns negligible at all horizons.
We introduce a new concept of news based on volatility. This one is defipdidebdifference between
implied volatility and realized volatility (bipower variation). When implied volatility is big¢fgan realized
volatility (bipower variation) it means that the market is expecting an incredstuire volatility with respect
to current volatility. Our empirical results show that such an expectedaseri volatility has a stronger
impact on return risk premium than an expected decrease of a similar magnitude
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Appendix

In this appendix, we report in tables some basic summary statistics which casefg for interpreting
the empirical results presented in this paper [tables 1 and 2] some bagiiptiesstatistics, which can be
useful for interpreting the empirical results, as well as tables and gthphsummarize our main findings.
Additional details and complementary results are available in a separate domgaoument [Dufour et al.
(2010)].

A. Descriptive statistics

Table 1. Summary statistics for S&P 500 futures returns,1988-2005

Variables Mean St.Dev. Median Skewness | Kurtosis
Five-minute | 0.0000069 | 0.000978 | 0.00000000 | —0.0818 73.9998
Hourly 0.0000131 | 0.003100 | 0.00000000 | —0.4559 16.6031
Daily 0.0001466 | 0.008900 | 0.00011126 | —0.1628 12.3714

Table 2. Summary statistics for hourly and daily volatilities, 1988-2005

Note: This table summarizes the five-minute, hourly, and daily returns distrifmfimr the S&P 500 index contracts.

Variables | Mean St.Dev. Median Skewness | Kurtosis
Hourly

RV, 0.00001080 | 0.0000294 | 0.00000544 | 42.9510 3211.190
BV, 0.00000932 | 0.0000229 | 0.00000455 | 32.1242 2023.507
In(RV;) —12.2894 1.1475 —12.3006 0.0792 3.3157
In(BV;) —12.1007 1.0973 —-12.1217 0.1558 3.2625

by P 0.2258 0.2912 0.1221 2.0066 8.8949
Daily

RV, 0.0000813 0.000120 0.0000498 8.1881 120.7530
BV, 0.0000762 0.000109 0.0000469 6.8789 78.9491
In(RV;) —9.8582 0.8762 -9.9076 0.4250 3.3382
In(BV;) —9.9275 0.8839 —9.9663 0.4151 3.2841
Jii1 0.0870 0.1005 0.0575 1.6630 7.3867

Note: This table summarizes the hourly and daily volatilities distributions for the S&Pilsdex contracts.




Table 3. Summary statistics for daily implied volatilities, 1996-2005

Variables | Mean St.Dev. | Median | Skewness | Kurtosis
1v;'\/? 1.1808 | 0.8225 | 1.0205 | 3.4518 30.5778
1V, 2.0705 5.1356 1.0415 17.8220 484.6803
In(IV}) —0.0326 | 1.1980 0.0406 0.0676 3.0002

Note: This table summarizes the daily implied volatilities distributions for the S&P 508xmdntracts.

B. Summary of causality measures

Table 4. Hourly and daily volatility feedback effects

Hourly volatility feedback effects usirig(RV")

C’(ln(RV)TM“) h=1 h=2 h=3 h=4
Point estimate 0.00016 0.00014 0.00012 0.00012

95% Bootstrap interval

[0.0000, 0.0007]

[0.0000, 0.0006]

[0.0000, 0.0005]

[0.0000, 0.0005]

Hourly volatility feedback effects using(BV)

C(ln(BV)TM") h=1 h=2 h=3 h=4
Point estimate 0.00022 0.00020 0.00019 0.00015

95% Bootstrap interval

[0.0000, 0.0008]

[0.0000, 0.0007]

[0.0000, 0.0007]

[0.0000, 0.0005]

Daily volatility feedback effects using(RV)

C(In(RV) - T)

h=1

h=2

h=3

h=4

Point estimate

0.0019

0.0019

0.0019

0.0011

95% Bootstrap interval

[0.0007, 0.0068]

[0.0005, 0.0065]

[0.0004, 0.0061]

[0.0002, 0.0042]

Daily volatility feedback effects usin(BV)

C(In(BV) - T)

h=1

h=2

h=3

h=4

Point estimate

0.0017

0.0017

0.0016

0.0011

95% Bootstrap interval

[0.0007, 0.0061]

[0.0005, 0.0056]

[0.0004, 0.0055]

[0.0002, 0.0042]

Note: This table summarizes the estimation results of causality measures froty tealized volatility[ln(RV')] to hourly returns

(r), hourly bipower variationlp(BV')] to hourly returns, daily realized volatility to daily returns, and daily bipoweriation to
daily returns, respectively. The second row in each small table gieepdint estimate of the causality measures at horizons
h =1, ..., 4. The third row gives th®5% corresponding percentile bootstrap interval.
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Figure 1. Quantile to quantile plots (QQ plot) of the relative measure of JURPS, zgp,i.+, 2op,¢, aNdzQp, im, -

January 1988 to December 2005.
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Table 5. Measuring the impact of good news on volatility usin@d?V") [centered positive returhs

Ei(recn) = 25 2,2 ria
Cler™ 7ln(RV)) h=1 h=2 h=3 h=4

Point estimate 0.0007 0.0007 0.0007 0.0004
95% Percentile bootstrap interval [0.0003,0.0043] | [0.0002,0.0039] | [0.0001,0.0034] | [0.0000,0.0030]

Er(rig1) = 55 oy Te41—j
C(er*‘;ﬂn(RV)) h=1 h=2 h=3 h=4
Point estimate 0.0010 0.0007 0.0007 0.0005
95% Percentile bootstrap interval [0.0004, 0.0051] | [0.0003,0.0039] | [0.0003,0.0036] | [0.0000,0.0032]

Note: This table summarizes the estimation results of causaligsures from centered positive returas™() to realized volatility[In(RV')] using two estimators of
the conditional mean, fan = 15, 30. In each of the two small tables, the second row gives thet psitmate of the causality measures at horizors 1, ..., 4. The
third row gives the95% corresponding percentile bootstrap interval.

w

™ Table 6. Measuring the impact of good news on volatility udin@V") [centered positive returns]

Ee(rern) = 55 32 rep1j
C(er+7ln(BV)) h=1 h=2 h=3 h =4
Point estimate 0.0008 0.0008 0.0006 0.0006
95% Percentile bootstrap interval [0.0003,0.0045] | [0.0002,0.0041] | [0.0002,0.0035] | [0.0000,0.0034]

Ee(req1) = % 2511 Tt+1—j
C(erJr?ln(BV)) h=1 h=2 h=3 h=4
Point estimate 0.0012 0.0007 0.0007 0.0007
95% Percentile bootstrap interval [0.0005, 0.0053] | [0.0003,0.0041] | [0.0002,0.0039] | [0.0001,0.0038]

Note: This table summarizes the estimation results of causalktgsures from centered positive returas™() to bipower variationn(BV)] using two estimators of
the conditional mean, farn = 15, 30. In each of the two small tables, the second row gives thet gstimate of the causality measures at horizZons 1, ..., 4. The
third row gives the95% corresponding percentile bootstrap interval.
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Figure 2. Leverage and volatility feedback effects in hourly and daily asiteg a bivariate autoregressive mo¢ielRV'). January 1988 to December

2005.
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Figure 3. Causality measures between implied volatility') [or variance risk premiundV" — RV'] and realized volatility RV'), using trivariate VAR
models for(r, RV, IV') and(r, RV, IV — RV'). January 1996 to December 2005.
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Figure 4. \olatility feedback effects, with implied volatility as auxiliary variablévgriate modelgr, RV, IV)) and(r, RV, IV — RV')] and without
implied volatility [bivariate mode(r, RV')]; different transformations of volatility considered. Impact of ve¢t®i’, IV — RV') on returns. January
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Figure 5. Leverage and volatility feedback effects, with implied volatility aslamy variable [trivariate modelér, RV, IV') and(r, RV, IV — RV')]
and without implied volatility [bivariate modél-, RV')]. January 1996 to December 2005.
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Causality Measure

Causality Measure

Figure 6. Causality measures of the impact of bad and good news on symametiasymmetric GARCH volatility models.
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Figure 7. Causality measures of the impact of bad and good news on volatdity@ impact of positive and negative variance risk premium on returns.
January 1988 to December 2005.
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