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Abstract 
 

In this paper, we provide evidence on two alternative mechanisms of interaction between returns and 

volatilities: the leverage effect and the volatility feedback effect. We stress the importance of 

distinguishing between realized volatility and implied volatility, and find that implied volatilities are 

essential for assessing the volatility feedback effect. The leverage hypothesis asserts that return shocks 

lead to changes in conditional volatility, while the volatility feedback effect theory assumes that return 

shocks can be caused by changes in conditional volatility through a time-varying risk premium. On 

observing that a central difference between these alternative explanations lies in the direction of 

causality, we consider vector autoregressive models of returns and realized volatility and we measure 

these effects along with the time lags involved through short-run and long-run causality measures 

proposed in Dufour and Taamouti (2010), as opposed to simple correlations. We analyze 5-minute 

observations on S&P 500 Index futures contracts, the associated realized volatilities (before and after 

filtering jumps through the bispectrum) and implied volatilities. Using only returns and realized 

volatility, we find a strong dynamic leverage effect over the first three days. The volatility feedback 

effect appears to be negligible at all horizons. By contrast, when implied volatility is considered, a 

volatility feedback becomes apparent, whereas the leverage effect is almost the same. These results 

can be explained by the fact that volatility feedback effect works through implied volatility which 

contains important information on future volatility, through its nonlinear relation with option prices 

which are themselves forward-looking. In addition, we study the dynamic impact of news on returns 
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and volatility. First, to detect possible dynamic asymmetry, we separate good from bad return news 

and find a much stronger impact of bad return news (as opposed to good return news) on volatility. 

Second, we introduce a concept of news based on the difference between implied and realized 

volatilities (the variance risk premium) and we find that a positive variance risk premium (an 

anticipated increase in variance) has more impact on returns than a negative variance risk premium.  

 

Mots-clés : Volatility asymmetry, leverage effect, volatility feedback effect, risk 

premium, variance risk premium, multi-horizon causality, causality measure, high-

frequency data, realized volatility, bipower variation, implied volatility. 

 

JEL codes: G1, G12, G14, C1, C12, C15, C32, C51, C53. 



1. Introduction

One of the many stylized facts about equity returns is an asymmetric relationshipbetween returns and

volatility. Volatility tends to rise following negative returns and falls following positive returns. Two main

explanations for volatility asymmetry have been proposed in the literature. Thefirst one is theleverage

effect. While the term was originally coined with respect to financial leverage of a firm [see Black (1976)

and Christie (1982)], it refers today to a negative correlation between lagged returns and current volatility.1

The second explanation is thevolatility feedback effect, which is related to a time-varying risk premium: if

volatility is priced, an anticipated increase in volatility raises the required rate ofreturn, implying an imme-

diate stock price decline in order to allow for higher future returns; see Pindyck (1984), French, Schwert

and Stambaugh (1987), Campbell and Hentschel (1992), and Bekaertand Wu (2000).

In this paper, we provide new evidence on these two interaction mechanisms between returns and volatil-

ities by considering causality measures on high-frequency data. We also stress the importance of distinguish-

ing betweenrealized volatilityandimplied volatilitywhen studying leverage and volatility feedback effects,

and we find thatimplied volatilitiesare essential for detecting and assessing thevolatility feedback effect.

On noting that the two explanations involve different causal mechanisms [see Bekaert and Wu (2000)

and Bollerslev et al. (2006)], which may differ both through their directionand the time lags involved, we

study the issue using short and long-run causality measures recently introduced in Dufour and Taamouti

(2010). The causality measures allow us to study and test the asymmetric volatilityphenomena at several

horizons. When considering horizons longer than one period, it is important to account for indirect causality.

Auxiliary variables can transmit causality between two variables of interest at horizons strictly higher than

one, even if there is no causality between the two variables at the horizon one; see Dufour and Renault

(1998) and Dufour, Pelletier and Renault (2006). Using high-frequency data increases the chance to detect

causal links since aggregation may make the relationship between returns and volatility simultaneous. By

relying on realized volatility measures, we avoid the need to specify a volatility model.

To be more explicit on thecausalityissue involved, the leverage effect explains why a negative return

shock leads to higher subsequent volatility, while the volatility feedback effect explains how an anticipated

increase in volatility may result in a negative return. Thus, volatility asymmetry mayresult from various

causal links: from returns to volatility, from volatility to returns, instantaneouscausality. Causality here is

defined as in Granger (1969): a variableY causes a variableX if the variance of the forecast error ofX

obtained by using the past ofY is smaller than the variance of the forecast error ofX obtained without using

the past ofY .

Concerning terminology, it is worthwhile pointing out that some authors may prefer to use terms like

“predictibility” or “linear predictibility”, instead of “causality”. There is however a long philosophical

1The concept of leverage effect was introduced to explain this negativecorrelation by the fact that a decrease in the price of a
firm increases financial leverage and the probability of bankruptcy, making the asset riskier, hence an increase in volatility. Today
the concept of dynamic leverage effect applies directly to stock marketindices, without any rooting in changes of financial leverage;
see Bouchaud, Matacz and Potters (2001), Jacquier, Polson and Rossi (2004), Brandt and Kang (2004), Ludvigson and Ng (2005),
Bollerslev, Litvinova and Tauchen (2006), and Bollerslev, Sizova and Tauchen (2009).
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tradition which reduces the concept of “causality” to the notion of “predictibility”. This tradition goes back

at least to Hume (1748) and includes numerous authors such as Carnap (1966), Feigl (1953), Salmon (1984)

and Eells (1991). Whether there can be an empirically meaningful notion of causality that goes beyond a

notion based on predictibility remains highly debatable. Here we take the view that “causality” can only be

defined with respect to a particular model [e.g., a vector autoregressive model] which involves specifying a

set of variables some of which are classified as “endogenous” and other ones as “predetermined”. In order

to study “causation” issues with empirical data, it is necessary to specify a limited information set – a point

quite explicit in Dufour and Renault (1998). There is no “absolute” (model-free) causation. This means that

causality properties may change as the information set is modified (which includes changing data frequency

and aggregation).

Further, the clearest criterion for classifying a variable as “predetermined” at a given date is the fact that

it can be viewed as determined in the past (on the basis of the principle that thefuture cannot cause the past).

Causality is then a predictibility property of the “endogenous” variables by “predetermined” variables. The

notions of “causality” introduced by Wiener (1956) and Granger (1969) as well as their variants provide

operational definitions of causality based on these ideas. Occasionally, aproperty of “Granger causality

(or non-causality)” may be interpreted as “spurious”, but this simply meansthat a different model or in-

formation set is considered. Such a situation illustrates the fact that “causality” can only be defined with

respect to a given model and information set. Irrespective of the latter, one can always argue that “hidden”

variables are driving the system, so variables which appear to Granger-cause other ones are simply reflect-

ing “expectations” driven by hidden variables. This can easily be the case in finance and macroeconomics,

where expectations typically constitute unobservable variables. The investigator may try to sort this out by

introducing such unobserved variables (if reasonable measures or proxies can be obtained): this amounts to

enlarging the information set, and our may in turn be used with the new information. Note however that the

“hidden variable criticism” may endlessly be reapplied, since empirically usableinformation sets are always

finite. In any case, demonstrating a Granger-causal structure provides useful information because it shows

that either a “mechanism” or an “expectation phenomenon” is sufficiently important to allow forecasting.

Further, in financial markets, expectations often determine actions (such as investment decisions) and so

may have “effects” that go far beyond the mind-set of financial actors.2

In this paper, we stress that statistical tests of the null hypothesis of non-causality (in the sense of

Wiener-Granger) constitute a poor way of analyzing causal structures. For example, we can distinguish

between causal directions (fromX to Y , from Y to X, instantaneous causality) and causality at different

horizons. Different causality relations may coexist, but their relative importance may greatly differ. This

suggests of finding means to quantify their degrees. Causality tests fail to accomplish this task, because they

only provide evidence on the presence or the absence of causality, andstatistical significance depends on

the available data and test power. A large effect may not be statistically significant (at a given level), and a

2For further discussion of causality concepts, the reader may consult Aigner and Zellner (1988), Bunge (1979), Eells (1991),
Pearl (2000), Salmon (1984), Spirtes, Glymour and Scheines (1993), Sosa and Tooley (1993).
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statistically significant effect may not be “large” from an economic viewpoint(or more generally from the

viewpoint of the subject at hand) or relevant for decision making.3

In order to quantify and compare the strength of dynamic leverage and volatility feedback effects, we

propose to use vector autoregressive (VAR) models of returns and various measures of volatility at high

frequency together with short and long-run causality measures in Dufour and Taamouti (2010). For further

discussion of the usefulness of causality measures and what they accomplish beyond Granger causality tests,

we refer the reader to Dufour and Taamouti (2010).

Using 5-minute observations on S&P 500 Index futures contracts, we firstconsider causality measures

based on a bivariate VAR involving returns and realized volatility. In this setting, we find a weak dynamic

leverage effect for the first four hours in hourly data and a strong dynamic leverage effect for the first

three days in daily data. The volatility feedback effect appears to be negligible, irrespective of the horizon

considered.

Recently, using high-frequency data and simplecorrelations, Bollerslev et al. (2006) found an important

negative correlation between volatility and (current and lagged) returnslasting for several days, while corre-

lations between returns and lagged volatility are all close to zero. We differ from their study by using short

and long-run causality measures to quantify causality at different horizons. The difference between simple

correlations and impulse-response functions at horizons greater than one is due to indirect causal effects, as

shown in Dufour and Renault (1998).4

In studying the relationship between volatility and returns,implied volatility– derived from option prices

– can be an interesting alternative measure of volatility or constitutes a usefulauxiliary variable, because

option prices may capture anticipative additional relevant information as wellas nonlinear relations. Thus,

implied volatility can be viewed as a forward-looking measure of volatility with an horizon corresponding

to the maturity of the option. We find that adding implied volatility to the information set leads to statistical

evidence for a sizable volatility feedback effect for a few days, whereas the leverage effect remains almost

the same. A key element of the volatility feedback mechanism is an increase of expected future volatility.

Implied volatility certainly provides an option market forecast of future volatility, which is better than a

forecast based on past realized volatility.5

This finding can be contrasted with the one of Masset and Wallmeier (2010),who also used high-

frequency data to analyze the lead-lag relationship of option implied volatility andindex return in Germany,

using Granger causality tests (at horizon one) and impulse-response functions. They find that the relationship

is return-driven in the sense that index returns Granger cause volatility changes. Instead, through a more

3For further discussion of this issue, see McCloskey and Ziliak (1996).
4Bollerslev, Kretschmer, Pigorsch and Tauchen (2009) further decompose realized volatility into two components, the

continuous-path measure of volatility and the discontinuous jump component. Their results suggest that the leverage effect works
primarily through the continuous volatility component.

5The informational content of implied volatility does not come as a surprise since several studies have documented that implied
volatility can be used to predict whether a market is likely to move higher or lower and help to predict future volatility; see Day
and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Fleming (1998), Poteshman (2000), Blair, Poon
and Taylor (2001), and Busch, Christensen and Nielsen (2010). Pooling the information contained in futures and options markets
unveils an effect that cannot be found with one market alone.
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complete analysis based on the concept of causality at different horizons, we find thatimplied volatilities

are important for assessing thevolatility feedback effect. Our result is however broadly consistent with

Bollerslev and Zhou (2005), who provide a model-based rationalization for finding such evidence on the

volatility feedback effect through implied volatility. Based on a stochastic volatilitymodel, they show that

the relation between returns and implied volatility remains positive for all reasonable configurations of

parameters.

Another contribution of this paper consists in showing that the proposed causality measures help to

quantify the dynamic impact of bad and good return news on volatility.6 A common approach to visualize the

relationship between news and volatility is provided by the news-impact curveoriginally studied by Pagan

and Schwert (1990) and Engle and Ng (1993). To study the effect ofcurrent return shocks on future expected

volatility, Engle and Ng (1993) introduced the News Impact Function (hereafter NIF). The basic idea of this

function is to consider the effect of the return shock at timet on volatility at timet+ 1, while conditioning

on information available at timet and earlier. Engle and Ng (1993) explain that this curve, where all the

lagged conditional variances are evaluated at the level of the asset return unconditional variance, relates past

positive and negative returns to current volatility.

We propose a new curve, theCausal News Impact Function (CNIF), for capturing the impact of news

on volatility based on causality measures. In contrast with theNIF of Engle and Ng (1993), theCNIF curve

can be constructed for parametric and stochastic volatility models, and it allowsone to consider all the past

information about volatility and returns. We also build confidence intervals using a bootstrap technique

around the CNIF curve. Further, we can visualize the impact of news on volatility at different horizons [see

also Chen and Ghysels (2010)] rather than only one horizon as in Engle and Ng (1993).

We confirm by simulation that the CNIF based on causality measures detects well the differential effect

of good and bad news in various parametric volatility models. Then, we apply the concept to the S&P 500

Index futures returns and volatility: we find a much stronger impact from bad news at several horizons.

Statistically, the impact of bad news is significant for the first four days, whereas the impact of good news

is negligible at all horizons.

Our results on the informational value of implied volatility also suggest that the difference between im-

plied and realized volatility (called thevariance risk premium) constitutes an interesting measure of “news”

coming to the market. So we compute causality measures from positive and negative variance risk premia

to returns. We find a stronger impact when the difference is positive (an anticipated increase in volatility or

bad news) than when it is negative.

Clearly, none of the earlier studies on the relationship between returns andvolatility has exploited the

new methodology proposed in this paper. But our results nicely complement those of Bollerslev, Tauchen

and Zhou (2009) and Bollerslev, Sizova and Tauchen (2009). Using high-frequency intraday returns on the

6In this study, bad and good news are determined by negative and positive innovations in returns and volatility. The impact of
macroeconomic news announcements on financial markets (e.g. volatility) has also been studied by several authors; see Schwert
(1981), Pearce and Roley (1985), Hardouvelis (1987), Haugen, Talmor and Torous (1991), Jain (1988), McQueen and Roley (1993),
Balduzzi, Elton and Green (2001), Andersen, Bollerslev, Diebold and Vega (2003), and Huang (2007).
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S&P500 index and the VIX volatility index, Bollerslev, Tauchen and Zhou (2009) show that the variance

risk premium is able to explain a nontrivial fraction of the time-series variation inpost-1990 aggregate stock

market returns, with high (low) premia predicting high (low) future returns,at a quarterly frequency. They

also observe it is consistent with the predictions of a long-run volatility risk equilibrium model. Bollerslev,

Sizova and Tauchen (2009) rely on an equilibrium continuous-time model to capture this fact as well as the

asymmetry in the relationship between volatility and past and future returns (leverage and volatility feedback

effects).

Other empirical studies on the link between returns and volatility are based on lower-frequency data or

model-based measures of volatility; see Christie (1982), French et al. (1987), Schwert (1989), Turner, Startz

and Nelson (1989), Nelson (1991), Glosten, Jagannathan and Runkle(1993) and Campbell and Hentschel

(1992), Bekaert and Wu (2000), Whaley (2000), Ghysels, Santa-Clara and Valkanov (2004), Giot (2005),

Ludvigson and Ng (2005), Dennis, Mayhew and Stivers (2006), andGuo and Savickas (2006) among others.

On the relationship and the relative importance of the leverage and volatility feedback effects, the results

of this literature are often ambiguous, if not contradictory. In particular, studies focusing on the leverage

hypothesis conclude that the latter cannot completely account for changes in volatility; see Christie (1982)

and Schwert (1989). However, for the volatility feedback effect, empirical findings conflict. French et al.

(1987), Campbell and Hentschel (1992) and Ghysels et al. (2004) find a positive relation between volatility

and expected returns, while Turner et al. (1989), Glosten et al. (1993) and Nelson (1991) find a negative

relation. From individual-firm data, Bekaert and Wu (2000) conclude that the volatility feedback effect

dominates the leverage effect empirically. The coefficient linking volatility to returns is often not statisti-

cally significant. Ludvigson and Ng (2005) find a strong positive contemporaneous relation between the

conditional mean and conditional volatility and a strong negative lag-volatility-in-mean effect. Guo and

Savickas (2006) conclude that the stock market risk-return relation is positive, as stipulated by the CAPM;

however, idiosyncratic volatility is negatively related to future stock market returns. Giot (2005) and Dennis

et al. (2006) use lower frequency data (such as, daily data) to study therelationship between returns and

implied volatility. Giot (2005) uses the S&P 100 index and an implied volatility index (VIX) to show that

there is acontemporaneousasymmetric relationship between S&P 100 index returns and VIX: negative S&P

100 index returns yield bigger changes in VIX than do positive returns [see Whaley (2000)]. Dennis et al.

(2006), using daily stock returns and innovations in option-derived impliedvolatilities, show that the rela-

tion between stock returns and innovations in systematic volatility (idiosyncratic volatility) is substantially

negative (near zero).

The plan of the paper is as follows. In Section 2, we define volatility measuresin high-frequency data

and we review the concept of causality at different horizons and its measures. In Section 3, we propose and

discuss VAR models that allow us to measure leverage and volatility feedback effects with high-frequency

data. In Section 4, we introduce information implied volatility(IV ) – in addition to realized volatility and

returns – to measure the dynamic leverage and volatility feedback effects. Section 5 describes the high-

frequency data, the estimation procedure and the empirical findings regarding causality effects between

5



volatility and returns. In Section 6, we propose a method to assess the dynamicimpact of good and bad return

news on volatility. Simulation results on the efficiency of this method are also presented. Our empirical

results on news effects in S&P 500 futures market appear in Section 7. We conclude in Section 8. Tables

and figures are gathered in appendix.

2. Volatility and causality measures

To assess causality between volatility and returns at high frequency, we need to build measures for both

volatility and causality. For volatility, we use various measures of realized volatility introduced by Andersen,

Bollerslev and Diebold (2010); see also Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and

Labys (2001), Barndorff-Nielsen and Shephard (2002a), and Barndorff-Nielsen and Shephard (2002b). For

causality, we rely on the short and long run causality measures proposedby Dufour and Taamouti (2010).

Let us first set some notations. We denote bypt the logarithmic price of the risky asset or portfolio (at

time t) and byrt+1 = pt+1 − pt the continuously compounded return from timet to t + 1 . We assume

that the price process may exhibit both stochastic volatility and jumps. It could belong to the class of

continuous-time jump diffusion processes,

dpt = µtdt+ σtdWt + κtdqt, 0 ≤ t ≤ T, (2.1)

whereµt is a continuous and locally bounded variation process,σt is the stochastic volatility process,Wt

denotes a standard Brownian motion,dqt is a counting process such thatdqt = 1 represents a jump at time

t (anddqt = 0 no jump) with jump intensityλt. The parameterκt refers to the size of the corresponding

jumps. Thus, the quadratic variation of returns from timet to t+ 1 is given by

[r, r]t+1 =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s

where the first component, called integrated volatility, comes from the continuous component of (2.1), and

the second term is the contribution from discrete jumps. In the absence of jumps, the second term on the

right-hand-side disappears, and the quadratic variation is simply equal to the integrated volatility.

2.1. Volatility in high-frequency data: realized volatili ty, bipower variation, jumps

In this section, we define the high-frequency measures that we shall useto capture volatility. In what

follows, we normalize the daily time-interval to unity and we divide it intoh periods. Each period has

length∆ = 1/h. Let the discretely sampled∆-period returns be denoted byr(t, ∆) = pt − pt−∆ and the

daily return byrt+1 =
∑h

j=1 r(t+j.∆, ∆). The daily realized volatility is defined as the summation of the

correspondingh high-frequency intradaily squared returns:

RVt+1 ≡
h

∑

j=1

r2(t+j∆, ∆).
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The realized volatility satisfies

lim
∆→0

RVt+1 =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s , (2.2)

which means thatRVt+1 is a consistent estimator of the sum of the integrated variance
∫ t+1
t σ2

sds and the

jump contribution; see Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and Labys (2001),

Andersen et al. (2010), Barndorff-Nielsen and Shephard (2002a, 2002b), and Comte and Renault (1998).7

Similarly, a measure of standardized bipower variation is given by

BVt+1 ≡ π

2

h
∑

j=2

| r(t+j∆, ∆) || r(t+(j−1)∆, ∆) | .

Under reasonable assumptions on the dynamics of (2.1), the bipower variation satisfies

lim
∆−→0

BVt+1 =

∫ t+1

t
σ2

sds ; (2.3)

see Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen, Graversen, Jacod, Podolskij and Shep-

hard (2005). Equation (2.3) means thatBVt+1 provides a consistent estimator of the integrated variance

unaffected by jumps. Finally, as noted by Barndorff-Nielsen and Shephard (2004), combining the results

in equation (2.2) and (2.3), the contribution to the quadratic variation due to discontinuities (jumps) in the

underlying price process may be consistently estimated by

lim
∆−→0

(RVt+1 −BVt+1) =
∑

0<s≤t

κ2
s. (2.4)

We can also define the relative measure

RJt+1 =
(RVt+1 −BVt+1)

RVt+1
(2.5)

or the corresponding logarithmic ratio

J̄t+1 = ln(RVt+1) − ln(BVt+1).

Huang and Tauchen (2005) argue that these are more robust measures of the contribution of jumps to to-

tal price variation. Since in practiceJt+1 can be negative in a given sample, we impose a non-negativity

truncation of the actual empirical jump measurements:

Jt+1 ≡ max[ln(RVt+1) − ln(BVt+1), 0] ;

see Andersen et al. (2010) and Barndorff-Nielsen and Shephard (2004).

7For a general discussion of integrated and realized volatilities in the absence of jumps, see Meddahi (2002).
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2.2. Short-run and long-run causality measures

We study causality at different horizons between returns(rt) and volatilities(σ2
t ). For that purpose, it will

be convenient to define firstnoncausalityin terms of orthogonality between subspaces of a Hilbert space

of random variables with finite second moments. To give a formal definition ofnoncausality at different

horizons, we need to consider the following notations. We denote byr(ω, t], σ2(ω, t], andz(ω, t] the infor-

mation contained in the history of variables of interestr andσ2 and another auxiliary variablez respectively

up to timet. The “starting point”ω is typically equal to a finite initial date (such asω = −1, 0 or 1) or to

−∞. In our empirical application the auxiliary variablez is given by the implied volatility (hereafterIV ).

The information sets obtained by “adding”z(ω, t] to r(ω, t], z(ω, t] to σ2(ω, t], r(ω, t] to σ2(ω, t], and

z(ω, t] to r(ω, t] andσ2(ω, t] are defined as follows:

Irz(t) = I0 + r(ω, t] + z(ω, t] , Iσ2z(t) = I0 + σ2(ω, t] + z(ω, t] ,

Irσ2(t) = I0 + r(ω, t] + σ2(ω, t] , Irσ2z(t) = I0 + r(ω, t] + σ2(ω, t] + z(ω, t] ,

whereI0 represents a fundamental information set available in all cases (such as deterministic variables,

a constant, etc.). Finally, for any given information setBt [some Hilbert subspace] and positive integer

h, we denote byP [rt+h | Bt]
(

respectivelyP
[

σ2
t+h | Bt

] )

the best linear forecast ofrt+h

(

respectively

σ2
t+h

)

based on the information setBt andu[rt+h | Bt] = rt+h − P [rt+h | Bt]
(

respectivelyu[σ2
t+h |

Bt] = σ2
t+h − P

[

σ2
t+h | Bt

] )

the corresponding prediction error.8 Thus, we have the following definition

of noncausality at different horizons [see Dufour and Renault (1998) and Dufour and Taamouti (2010)].

Definition 2.1 Leth be a positive integer.

(i) r does not causeσ2 at horizonh givenIσ2z(t), denotedr 9
h
σ2 | Iσ2z(t), iff

Var
[

u[σ2
t+h | Iσ2z(t)]

]

= Var
[

u[σ2
t+h | Irσ2z(t)]

]

;

(ii) r does not causeσ2 up to horizonh givenIσ2z(t), denotedr 9
(h)
σ2 | Iσ2z(t), iff

r 9
k
σ2 | Iσ2z(t) for k = 1, 2, . . . , h ;

(iii) r does not causeσ2 at any horizon givenIσ2z(t), denotedr 9
(∞)

σ2 | Iσ2z(t), iff

r 9
k
σ2 | Iσ2z(t) for all k = 1, 2, . . .

Definition 2.1corresponds to causality fromr to σ2 and means thatr causesσ2 at horizonh if the past

of r improves the forecast ofσ2
t+h given the information setIσ2z(t). We can similarly define noncausality

at horizonh from σ2 to r. The presence of the auxiliary variablez may transmit causality betweenr and

σ2 at horizonh strictly higher than one, even if there is no causality between the two variablesat horizon1.

8Bt can be equal toIrσz(t), Irz(t) , or Iσz(t).
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However, in the absence of auxiliary variable, noncausality at horizon1 implies noncausality at any horizon

h strictly higher than one; see Dufour and Renault (1998). In other words,

r 9
1
σ2 | σ2(ω, t] ⇒ r 9

(∞)
σ2 | Iσ2(t) ,

σ2
9
1
r | r(ω, t] ⇒ σ2

9
(∞)

r | Ir(t) ,

whereIσ2(t) = I0 + σ2(ω, t] andIr(t) = I0 + r(ω, t]. A measure of causality fromr to σ2 at horizonh,

denotedC(r −→
h

σ2), is given by following function [see Dufour and Taamouti (2010)]:

C(r −→
h

σ2) = ln

[

Var
[

u[σ2
t+h | Iσ2z(t)]

]

Var
[

u[σ2
t+h | Irσ2z(t)]

]

]

.

Similarly, a measure of causality fromσ2 to r at horizonh, denotedC(σ2 −→
h

r), is given by:

C(σ2 −→
h

r) = ln

[

Var [u[rt+h | Irz(t)]]

Var [u[rt+h |rσ2z (t)]]

]

.

For example,C(r −→
h

σ2) measures the causal effect fromr to σ2 at horizonh given the past ofσ2 andz.

In terms of predictability, it measures the information given by the past ofr that can improve the forecast of

σ2
t+h. SinceVar

[

u[σ2
t+h | Iσ2z(t)]

]

≥ Var
[

u[σ2
t+h | Irσ2z(t)]

]

, the functionC(r −→
h

σ2) is nonnegative.

Furthermore, it is zero when there is no causality at horizonh. However, as soon as there is causality at

horizon1, causality measures at different horizons may considerably differ.

In Dufour and Taamouti (2010), a measure of instantaneous causality betweenr andσ2 at horizonh is

also proposed. It is given by the function

C(r ↔
h
σ2) = ln

[

Var [u[rt+h |rσ2z (t)]] Var
[

u[σ2
t+h | Irσ2z(t)]

]

det
(

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

])

]

where det
(

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

])

represents the determinant of the variance-covariance matrix

Σ
[

rt+h, σ
2
t+h | Irσ2z(t)

]

of the forecast error of the joint process
(

r, σ2
)′

at horizonh given the informa-

tion setIrσ2z(t). Note thatσ2 may be replaced byln(σ2). Since the logarithmic transformation is nonlinear,

this may modify the value of the causality measure.

In what follows, we apply the above measures to study causality at different horizons from returns to

volatility (hereafter leverage effect), from volatility to returns (hereaftervolatility feedback effect), and the

instantaneous causality and dependence between returns and volatility. InSection 3, we study these effects

by considering a limited information set which only contains the past of returnsand realized volatility. In

Section 4, we include lagged implied volatility in the information set.
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3. Measuring leverage and volatility feedback effects in a VAR model

In this section, we study the relationship between the returnrt and its volatilityσ2
t . The objective is to

measure and compare the strength ofdynamicleverage and volatility feedback effects in high-frequency

equity data. These effects are quantified within the context of a VAR model and by using short and long run

causality measures proposed by Dufour and Taamouti (2010). Since thevolatility asymmetry may be the

result of causality from returns to volatility [leverage effect], from volatilityto returns [volatility feedback

effect], instantaneous causality, all of these causal effects, or some of them. We wish to measure and compare

these effects in order to determine the most important ones.

We suppose that the joint process of returns and logarithmic volatility,(rt+1, ln(σ2
t+1))

′
follows an

autoregressive linear model

(

rt+1

ln(σ2
t+1)

)

=

(

µr

µσ

)

+

p
∑

j=1

[

Φ11j Φ12j

Φ21j Φ22j

](

rt+1−j

ln(σ2
t+1−j)

)

+

(

ur
t+1

uσ
t+1

)

, (3.1)

with E [ut] = 0 and Var [ut] = Σu, whereut =
(

ur
t , u

σ
t

)′
. In the empirical applicationσ2

t+1 will be

replaced by the realized volatilityRVt+1 or the bipower variationBVt+1. The disturbanceur
t+1 is the one-

step-ahead error whenrt+1 is forecast from its own past and the past ofln(σ2
t+1), and similarlyuσ

t+1 is

the one-step-ahead error whenln(σ2
t+1) is forecast from its own past and the past ofrt+1. We suppose that

these disturbances are each serially uncorrelated, but may be correlated with each other contemporaneously

and at various leads and lags. Sinceur
t+1 is uncorrelated withIrσ2(t), the equation forrt+1 represents the

linear projection ofrt+1 on Irσ2(t). Likewise, the equation forln(σ2
t+1) represents the linear projection of

ln(σ2
t+1) on Irσ2(t).

Equation (3.1) models the first two conditional moments of the asset returns. We represent conditional

volatility as an exponential function process to guarantee that it is positive.The first equation in (3.1)

describes the dynamics of the return as

rt+1 = µr +

p
∑

j=1

Φ11jrt+1−j +

p
∑

j=1

Φ12j ln(σ2
t+1−j) + ur

t+1.

This equation allows to capture the temporary component of Fama and French(1988) permanent and tem-

porary components model, in which stock prices are governed by a random walk and a stationary autore-

gressive process, respectively. ForΦ12j = 0, this model of the temporary component is the same as that

of Lamoureux and Lastrapes (1993); see also Brandt and Kang (2004), and Whitelaw (1994). The second

equation in (3.1) describes the volatility dynamics as

ln(σ2
t+1) = µσ +

p
∑

j=1

Φ21jrt+1−j +

p
∑

j=1

Φ22j ln(σ2
t+1−j) + uσ

t+1, (3.2)

which is a stochastic volatility model. ForΦ21j = 0, equation (3.2) can be viewed as the stochastic volatility

model estimated by Wiggins (1987), Andersen and Sørensen (1996), and many others. However, in this
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paper, we consider thatσ2
t+1 is not a latent variable and it can be approximated by realized or bipower

variations from high-frequency data. We also note that the conditional mean equation includes the volatility-

in-mean model used by French et al. (1987) and Glosten et al. (1993) to explore the contemporaneous

relationship between the conditional mean and volatility [see Brandt and Kang(2004)]. To illustrate the

connection to the volatility-in-mean model, we premultiply the system in (3.1) by the matrix

P =





1 − Cov(rt+1, ln(σ2
t+1))

Var[ln(σ2
t+1)|I

rσ2 (t)]

−Cov(rt+1, ln(σ2
t+1))

Var[rt+1|Irσ2 (t)] 1



 .

Then, the first equation ofrt+1 is a linear function of the elements ofr(ω, t], σ2(ω, t+1], and the disturbance

ur
t+1 − Cov(rt+1, ln(σ2

t+1))

Var[ln(σ2
t+1)|I

rσ2 (t)]
uσ

t+1. Since this disturbance is uncorrelated withuσ
t+1, it is uncorrelated with

ln(σ2
t+1) as well as withr(ω, t] andσ2(ω, t+1]. Hence the linear projection ofrt+1 onr(ω, t] andσ2(ω, t+

1] is provided by the first equation of the new system:

rt+1 = νr +

p
∑

j=1

φ11jrt+1−j +

p
∑

j=0

φ12j ln(σ2
t+1−j) + ũr

t+1 . (3.3)

The new parametersνr, φ11j , andφ12j , for j = 0, 1, . . . , p, are functions of parameters in the vector

µ and matrixΦj , for j = 1, . . . , p. Equation (3.3) is a generalized version of the usual volatility-in-mean

model, in which the conditional mean depends contemporaneously on the conditional volatility. Similarly,

the existence of the linear projection ofln(σ2
t+1) on r(ω, t+ 1] andσ2(ω, t],

ln(σ2
t+1) = νσ +

p
∑

j=0

φ21jrt+1−j +

p
∑

j=1

φ22j ln(σ2
t+1−j) + ũσ

t+1 (3.4)

follows from the second equation of the new system. The new parametersνσ, φ21j , andφ22j , for j =

1, . . . , p, are functions of parameters in the vectorµ and matricesΦj , j = 1, . . . , p. The volatility model

given by equation (3.4) captures the persistence of volatility through the coefficientsφ22j . In addition, it

incorporates the effects of the mean on volatility, both at the contemporaneous and intertemporal levels

through the coefficientsφ21j , for j = 0, 1, . . . , p.

Based on system (3.1), the forecast error of
(

rt+h, ln(σ2
t+h)

)′

is given by:

e
[

(

rt+h, ln(σ2
t+h)

)
′
]

=
h−1
∑

i=0

ψiut+h−i (3.5)

where the coefficientsψi are the impulse response coefficients of theMA(∞) representation of (3.1). The

covariance matrix of the forecast error (3.5) is given by

Var

[

e[
(

rt+h, ln(σ2
t+h)

)′
]
]

=

h−1
∑

i=0

ψi Σuψ
′

i. (3.6)
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We also consider the following restricted model:

(

rt+1

ln(σ2
t+1)

)

=

(

µ̄r

µ̄σ

)

+

p̄
∑

j=1

[

Φ̄11j 0
0 Φ̄22j

] (

rt+1−j

ln(σ2
t+1−j)

)

+

(

ūr
t+1

ūσ
t+1

)(

ūr
t+1

ūσ
t+1

)

, (3.7)

with E [ūt] = 0 andVar [ūt] = Σ̄u, whereūt =
(

ūr
t , ū

σ
t

)′
. Zero values in the autoregressive matrix coeffi-

cients mean that there is noncausality at horizon1 from returns to volatility and from volatility to returns.

As mentioned in subsection 2.2, in a bivariate system, noncausality at horizonone implies noncausality

at any horizonh strictly higher than one. This means that the absence of leverage effect at horizon one

(respectively the absence of volatility feedback effect at horizon one) which corresponds tōΦ21j = 0, for

j = 1, . . . , p̄, (respectivelyΦ̄12j = 0, for j = 1, . . . , p̄, ) is equivalent to the absence of leverage effect

(respectively volatility feedback effect) at any horizonh ≥ 1.

To compare the forecast error variance of model (3.1) with that of model(3.7), we assume thatp = p̄.

Based on the restricted model (3.7), the covariance matrix of the forecasterror of(rt+h, ln(σ2
t+h))

′
is given

by:

Var

[

ē[(rt+h, ln(σ2
t+h))

′

]
]

=
h−1
∑

i=0

ψ̄i Σ̄ūψ̄
′

i (3.8)

where the coefficients̄ψi, for i = 0, . . . , h− 1, represent the impulse response coefficients of theMA(∞)

representation of model (3.7). From the covariance matrices (3.6) and (3.8), we define the following mea-

sures of leverage and volatility feedback effects at any horizonh, whereh ≥ 1,

C
(

r −→
h

ln(σ2)
)

= ln

[

∑h−1
i=0 e

′

2(ψ̄i Σ̄ūψ̄
′

i)e2
∑h−1

i=0 e
′

2(ψi Σuψ
′

i)e2

]

, e2 = (0, 1)
′

, (3.9)

C
(

ln(σ2) −→
h

r
)

= ln

[

∑h−1
i=0 e

′

1(ψ̄i Σ̄ūψ̄
′

i)e1
∑h−1

i=0 e
′

1(ψi Σuψ
′

i)e1

]

, e1 = (1, 0)
′

. (3.10)

The parametric measure of instantaneous causality at horizonh, whereh ≥ 1, is given by the following

function

C
(

r ↔
h

ln(σ2)
)

= ln

[

(
∑h−1

i=0 e
′

2(ψi Σuψ
′

i)e2) (
∑h−1

i=0 e
′

1(ψi Σuψ
′

i)e1)

det(
∑h−1

i=0 ψi Σuψ
′

i)

]

.

4. Implied volatility as an auxiliary variable

An important feature of causality is the information set considered to forecast the variables of interest. Until

now, we have included only the past of returns and realized volatility. Sincethe volatility feedback effect

rests on anticipating future movements in volatility it is natural to include option-based implied volatility,

an all-important measure of market expectations of future volatility. Formally, we “add” the past of implied

volatility to the information setIrσ2(t) considered in the previous section. The new information set is given

now byIrσ2z(t), wherez is an auxiliary variable represented by implied volatility.

To take implicit volatility into account, we consider call options written on S&P 500 index futures
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contracts. The data come from the OptionMetrics data set on option prices, dating back to January 1996.

Given observations on the option priceC and the remaining variablesS, K, τ , and r, an estimate of

the implied volatilityIV can be obtained by solving the nonlinear equationC = C
(

S, K, τ , r, IV 1/2
)

for IV 1/2, whereC(·) refers to the Black-Scholes formula. Each day, we extract the implied volatility

corresponding to the option that is closest to the money. This selection criterion ensures that the option will

be liquid and therefore aggregates the opinion of many investors about future volatility. This appears more

important than keeping a fixed maturity. This choice is often made in the empirical literature on option

pricing [see for example Pan (2002)]. Summary statistics for the daily implied volatility (IV 1/2), squared

implied volatility (IV ) and logarithm of squared implied volatility (ln(IV )) are reported in Table 3.

Therefore, we consider a trivariate autoregressive model including implied volatility, in addition to the

realized volatility (bipower variation) and returns:9





rt+1

RV ∗
t+1

IV ∗
t+1



=





µr

µRV

µIV



 +

p
∑

j=1





Φ11j Φ12j Φ13j

Φ21j Φ22j Φ23j

Φ31j Φ32j Φ33j









rt+1−j

RV ∗
t+1−j

IV ∗
t+1−j



 +





ur
t+1

uRV
t+1

uIV
t+1



 (4.1)

whereRV ∗
t = ln(RVt) andIV ∗

t = ln(IVt). The first equation of the above system

rt+1 = µr+

p
∑

j=1

Φ11jrt+1−j+

p
∑

j=1

Φ12jRV
∗
t+1−j +

p
∑

j=1

Φ13jIV
∗
t+1−j+u

r
t+1 (4.2)

describes the dynamics of the return, while the second equation

RV ∗
t+1 =µRV +

p
∑

j=1

Φ21jrt+1−j+

p
∑

j=1

Φ22jRV
∗
t+1−j +

p
∑

j=1

Φ23jIV
∗
t+1−j + uRV

t+1 (4.3)

describes the volatility dynamics. It is well known that implied volatility can be usedto predict whether a

market is likely to move higher or lower and help to predict future volatility [see Day and Lewis (1992),

Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Poteshman (2000), Blair et al. (2001), and

Busch et al. (2010)]. The forward-looking nature of the implied volatility measure makes it an ideal ad-

ditional variable to capture a potential volatility feedback mechanism. Apart from usingIV without any

constraint in (4.2) and (4.3), we will also look at more restricted combinationsdictated by financial consid-

erations. Indeed, the difference betweenIV andRV provides an estimate of the risk premium attributable

to the variance risk factor.

5. Causality measures for S&P 500 futures

In this section, we first describe the data used to measure causality in the VARmodels of the previous

sections. Then we explain how to estimate confidence intervals of causality measures for leverage and

volatility feedback effects. Finally, we discuss our findings.

9Further, we consider an autoregressive model where we add jumps and our results do not change.
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5.1. Data description

Our data consists of high-frequency tick-by-tick transaction prices on S&P 500 Index futures contracts

traded on the Chicago Mercantile Exchange, over the period January 1988 to December 2005 for a total

of 4494 trading days. We eliminated a few days where trading was thin and themarket was open for a

shortened session. Due to the unusually high volatility at the opening, we alsoomit the first five minutes

of each trading day [see Bollerslev et al. (2006)]. For reasons associated with microstructure effects we

follow Bollerslev et al. (2006) and the literature in general and aggregatereturns over five-minute intervals.

We calculate the continuously compounded returns over each five-minute interval by taking the difference

between the logarithm of the two tick prices immediately preceding each five-minutemark to obtain a total

of 77 observations per day [see Müller, Dacorogna, Dav́e, Olsen, Pictet and Von Weizsäcker (1997) and

Bollerslev et al. (2006) for more details]. We also construct hourly and daily returns by summing11 and77

successive five-minute returns, respectively.

Summary statistics for the five-minute, hourly, and daily returns and the associated volatilities are re-

ported in tables 1 - 2. From these, we see that the unconditional distributionsof the returns exhibit high

kurtosis and negative skewness. The sample kurtosis is much greater thanthe Gaussian value of three for all

series. The negative skewness remains moderate, especially for the five-minute and daily returns. Similarly,

the unconditional distributions of realized and bipower volatility measures arehighly skewed and leptokur-

tic. However, on applying a logarithmic transformation, both measures appear approximately normal [see

Andersen, Bollerslev, Diebold and Ebens (2001)]. The descriptive statistics for the relative jump measure,

Jt+1, clearly indicate a positively skewed and leptokurtic distribution.

It is also of interest to assess whether the realized and bipower volatility measures differ significantly.

To test this, recall that

lim
∆→0

(RVt+1) =

∫ t+1

t
σ2

sds+
∑

0<s≤t

κ2
s

where
∫ t+1
t σ2

sds is the integrated volatility and
∑

0<s≤t κ
2
s represents the contribution of jumps to total

price variation. In the absence of jumps, the second term on the right-hand-side disappears, and the quadratic

variation is simply equal to the integrated volatility: or asymptotically (∆→ 0) the realized variance is equal

to the bipower variance. Many statistics have been proposed to test for thepresence of jumps in financial

data; see for example Barndorff-Nielsen and Shephard (2002b), Andersen, Bollerslev and Diebold (2003),

Huang and Tauchen (2005). In this paper, we test for the presence of jumps in our data by considering the

following test statistics:

zQP, l, t =
RVt+1 −BVt+1

√

((π
2 )2 + π − 5)∆QPt+1

, (5.1)

zQP, t =
ln(RVt+1) − ln(BVt+1)

√

((π
2 )2 + π − 5)∆QPt+1

BV 2
t+1

, (5.2)

zQP, lm, t =
ln(RVt+1) − ln(BVt+1)

√

((π
2 )2 + π − 5)∆max(1, QPt+1

BV 2
t+1

)
, (5.3)
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whereQPt+1 is the realized Quad-Power Quarticity [Barndorff-Nielsen and Shephard (2002a)], with

QPt+1 = hµ−4
1

h
∑

j=4

| r(t+j.∆, ∆) || r(t+(j−1).∆, ∆) || r(t+(j−2).∆, ∆) || r(t+(j−3).∆, ∆) |

andµ1 =
√

2
π . Under the assumption of no jumps and for each timet, the statisticszQP, l, t, zQP, t, and

zQP, lm, t follow a Normal distributionN (0, 1) as∆ → 0. The results of testing for jumps in our data

are plotted in Figure 1. These graphs represent the quantile to quantile plots(hereafter QQ plot) of the

relative measure of jumps given by equation (2.5) and the QQ Plots of the other statistics;zQP, l, t, zQP, t,

andzQP, lm, t. When there are no jumps, we expect that the cross line and the dotted line in Figure 1 will

coincide. However, as this figure shows, the two lines are clearly distinct, indicating the presence of jumps

in our data. Therefore, we will present our results for both realized volatility and bipower variation.

5.2. Causality measures

We examine several empirical issues regarding the relationship between volatility and returns. Before high-

frequency data became available and the concept of realized volatility took root, such issues could only

be addressed through volatility models. Recently, Bollerslev et al. (2006) looked at these relationships

using high-frequency data and realized volatility measures. As they emphasize, the fundamental difference

between the leverage and the volatility feedback explanations lies in the direction of causality. The leverage

effect explains why a low return causes higher subsequent volatility, while the volatility feedback effect

captures how an increase in volatility may cause a negative return. However, they studied only correlations

between returns and volatility at various leads and lags, not causality relationships.

Here, we apply short-run and long-run causality measures to quantify thestrength of the relationships

between return and volatility at various horizons. We use OLS to estimate the VAR models described

above and the Akaike information criterion to specify their orders.10 To obtain consistent estimates of the

causality measures, we simply replace the unknown parameters by their estimates. We calculate causality

measures for various horizonsh = 1, . . . , 20. A higher value for a causality measure indicates a stronger

causality. We also compute the corresponding nominal95% bootstrap percentile confidence intervals using

two different methods: the first one is based on the procedure described in Dufour and Taamouti (2010, p.

52) and the second one corresponds to thefixed-design wild bootstrapdescribed in Gonçalves and Kilian

(2004, Section 3.2). Further, the new confidence intervals were built after accounting for a possible bias in

the autoregressive coefficients.11 As mentioned by Inoue and Kilian (2002), for bounded measures, as in

our case, the bootstrap approach is more reliable than the delta-method. Onereason is because the delta-

method interval is not range respecting and may produce confidence intervals that are invalid. In contrast,

the bootstrap percentile interval preserves by construction these constraints [see Inoue and Kilian (2002,

10Using Akaike’s criterion we find that the appropriate value of the order ofthe unconstrained autoregressive model is equal to
10. Since using the same criterion the value of the order of the constrained model is smaller than10, we takep = p̄ = 10 [see
Section 3].

11More details on bias-correction in causality measures see the end of Section 8 in Dufour and Taamouti (2010).
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pages 315-318) and Efron and Tibshirani (1993)]. Further, the percentile interval allows avoiding using the

variance-covariance matrix of the estimators that can depend on the homoskedasticity assumption. More

details on the consistency and statistical justification of the above two procedures are available in Dufour

and Taamouti (2010) and Gonçalves and Kilian (2004).

The concept of Granger causality requires an information set and is analyzed in the framework of a

model between the variables of interest. Both the strength of this causal link and its statistical significance

are important. A major complication in detecting causality is aggregation. Low frequency data may mask

the true causal relationship between variables. High-frequency data thus offer an opportunity to analyze

causal effects. In particular, we can distinguish with an exceptionally highresolution between immediate

and lagged effects. Further, even if our interest focuses on relationships at the daily frequency, using higher-

frequency data to construct daily returns and volatilities can provide betterestimates than using daily returns

(as done in previous studies). Besides, since measured realized volatility can be viewed as an approximation

to the “true” unobservable volatility, we consider both raw realized volatility and the bipower variation

(which provides a way to filter out possible jumps in the data); see Barndorff-Nielsen and Shephard (2004).

With five-minute intervals we could estimate the VAR model at this frequency. However, if we wish

to allow for enough time for the effects to develop, we need a large number oflags in the VAR model and

sacrifice efficiency in the estimation. This problem arises in many studies of volatility forecasting. Re-

searchers have use several schemes to group five-minute intervals, in particular the HAR-RV or the MIDAS

schemes.12 We decided to look both at hourly and daily frequencies.

In this section and next ones, our empirical results will be presented mainly through graphs. Each figure

reports the causality measure as a function of the horizon. To preserve space and reduce the number of

graphs, we exclude almost all the graphs with confidence intervals and wefocus on the main figures where

different effects are compared across horizons. However, in the paper we discuss the results of statistical

significance of the effects.13

The main results that correspond to the present section are summarized andcompared in figures 2 -

5. Results based on bivariate models indicate the following (see Figure 2 andTable 4). When returns

are aggregated to the hourly frequency, we find that the leverage effect is statistically significant for the

first four hours, while the volatility feedback effect is negligible at all horizons. Using daily observations,

derived from high-frequency data, we find a strong leverage effect for the first three days, while the volatility

feedback effect appears to be negligible at all horizons. The results based on realized volatility(RV ) and

bipower variation(BV ) are essentially the same. Overall, these results show that the leverage effect is more

important than the volatility feedback effect (Figure 2).

If the feedback effect from volatility to returns is almost-non-existent, we find that the instantaneous

causality between these variables exists and remains economically and statistically important for several

12The HAR-RV scheme, in which the realized volatility is parameterized as a linear function of the lagged realized volatilities
over different horizons has been proposed by Müller et al. (1997) and Corsi (2009). The MIDAS scheme, based on the idea of
distributed lags, has been analyzed and estimated by Ghysels, Santa-Clara and Valkanov (2002).

13Detailed results, including confidence bands on the causality measures, are presented in a separate companion document
[Dufour, Garcia and Taamouti (2010) available from one the authors’homepage (www.jeanmariedufour.com)].
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days. This means that volatility has a contemporaneous effect on returns,and similarly returns have a

contemporaneous effect on volatility. These results are confirmed with bothrealized and bipower variations.

Furthermore, dependence between volatility and returns is also economicallyand statistically important for

several days.

Let us now consider a trivariate autoregressive model including implied volatility in addition to realized

volatility (bipower variation) and returns, as suggested in Section 4 (figures 3 - 5). First, we find that implied

volatility (IV ) helps to predict future realized volatility forseveral days ahead(Figure 3). Many other

papers like Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes (1993) among

others, also find that implied volatility can be used to predict future volatility. However, the difference is that

in the present paper we look ath-step ahead forecast, forh ≥ 1, whereas the previous papers only focus on

one step-ahaed forecast. Note that Bollerslev et al. (2006) do not consider implied volatility in their analysis.

Second, there is an important increase in the volatility feedback effect when implied volatility is taken

into account (Figure 4). In particular, it is statistically significant during thefirst four days. The volatility

feedback effect relies first on the volatility clustering phenomena which means that return shocks, positive

or negative, increases both current and future volatility. The second basic explanation of this hypothesis is

that there is a positive intertemporal relationship between conditional volatility and expected returns. Thus,

given the anticipative role of implied volatility and the link between the volatility feedback effect and future

volatility, implied volatility reinforces and increases the impact of volatility on returns.14 Figure 4 also

compares volatility feedback effects with and without implied volatility as an auxiliary variable. We see

that the difference betweenIV andRV has a stronger impact on returns than realized volatility alone in the

presence of implied volatility. Further, different transformations of volatility (logarithmic of volatility and

standard deviation) are considered: the volatility feedback effect is strongest when the standard deviation is

used to measure volatility.

Finally, we look at the leverage effects with and without implied volatility as an auxiliary variable

(Figure 5). We see that there is almost no change in the leverage effect when we take into account implied

volatility. On comparing the leverage and volatility feedback effects with and without implied volatility,

we see that the difference, in terms of causality measure, between leverage and volatility feedback effects

decreases when implied volatility is included in the information set. In other words, taking into account

implied volatility allows to identify a volatility feedback effect without affecting the leverage effect. This

may reflect the fact that investors use several markets to carry out theirfinancial strategies, and information

is disseminated across several markets. Since the identification of a causalrelationship depends crucially

on the specification of the information set, including implied volatility appears essential to demonstrate a

volatility feedback effect.

14Since option prices reflect market participants’ expectations of future movements of the underlying asset, the volatility implied
from option prices should be an efficient forecast of future volatility, which potentially explains a better identification of the volatility
feedback effect.
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6. Dynamic impact of positive and negative news on volatility

In the previous sections, we did not account for the fact that return news may differently affect volatility

depending on whether they are good or bad. We will now propose a method tosort out the differential

effects of good and bad news, along with a simulation study showing that ourapproach can indeed detect

asymmetric responses of volatility to return shocks.

6.1. Theory

Several volatility models capture this asymmetry and are explored in Engle and Ng (1993). To study the

effect of current return shocks on future expected volatility, Engle and Ng (1993) introduced the News

Impact Function (hereafterNIF ). The basic idea of this function is to consider the effect of the return

shock at timet on volatility at timet + 1 in isolation while conditioning on information available at time

t and earlier. Recently, Chen and Ghysels (2010) have extended the concept of news impact curves to the

high-frequency data setting. Instead of taking a single horizon fixed parametric framework they adopt a

flexible multi-horizon semi-parametric modeling [see also Linton and Mammen (2005)].

In what follows we extend our previous VAR model to capture thedynamicimpact of bad news (nega-

tive innovations in returns) and good news (positive innovations in returns) on volatility. We quantify and

compare the strength of these effects in order to determine the most important ones. To analyze the impact

of news on volatility, we consider the following model:

ln(σ2
t+1) = µσ +

p
∑

j=1

ϕσ
j ln(σ2

t+1−j) +

p
∑

j=1

ϕ−
j er

−
t+1−j +

p
∑

j=1

ϕ+
j er

+
t+1−j + uσ

t+1 (6.1)

where

er−t+1−j = min {ert+1−j , 0} , er+t+1−j = max {ert+1−j , 0} , ert+1−j = rt+1−j − Et−j(rt+1−j),

E [uσ
t ] = 0 andVar [uσ

t ] = Σuσ . Equation (6.1) represents the linear projection of volatility on its own past

and the past of centered negative and positive returns. This regression model allows one to capture the effect

of centered negative or positive returns on volatility through the coefficientsϕ−
j or ϕ+

j respectively, for

j = 1, . . . , p. It also allows one to examine the different effects that large and small negative and/or positive

information shocks have on volatility. This will provide a check on the results obtained in the literature

on GARCH modeling, which has put forward overwhelming evidence on the effect of negative shocks on

volatility.

Again, in our empirical applications,σ2
t+1 will be replaced by realized volatilityRVt+1 or bipower

variationBVt+1. Furthermore, the conditional mean return is approximated by the following rolling-sample

average:

Êt(rt+1) =
1

m

m
∑

j=1

rt+1−j .
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where we take an average aroundm = 15, 30, 90, 120, and240 days.15 Now, let us consider the following

restricted models:

ln(σ2
t+1) = θσ +

p̄
∑

i=1

ϕ̄σ
i ln(σ2

t+1−i) +

p̄
∑

i=1

ϕ̄+
i er+t+1−j + eσt+1, (6.2)

ln(σ2
t+1) = θ̄σ +

ṗ
∑

i=1

ϕ̇σ
i ln(σ2

t+1−i) +

ṗ
∑

i=1

ϕ̇−
i er

−
t+1−j + vσ

t+1. (6.3)

Equation (6.2) represents the linear projection of volatilityln(σ2
t+1) on its own past and the past of centred

positive returns. Similarly, equation (6.3) represents the linear projection of volatility ln(σ2
t+1) on its own

past and the past of centered negative returns. To compare the forecast error variances of model (6.1) with

those of models (6.2) and (6.3), we assume thatp = p̄ = ṗ.

Thus, a measure of the impact of bad news on volatility at horizonh, whereh ≥ 1, is given by the

following equation:

C(er− →
h

ln(σ2)) = ln

[

Var
[

eσt+h

[

ln(σ2
t+h) |

(

σ2(ω, t], er+(ω, t]
)]]

Var
[

uσ
t+h

[

ln(σ2
t+h) | J(t)

]]

]

.

whereeσt+h

[

ln(σ2
t+h) |

(

σ2(ω, t], er+(ω, t]
)] (

uσ
t+h

[

ln(σ2
t+h) | J(t)

])

is theh-step ahead forecast error

of log volatility based on the information setσ2(ω, t]∪er+(ω, t] (J(t)) . Similarly, a measure of the impact

of good news on volatility at horizonh is given by:

C(er+ →
h

ln(σ2)) = ln

[

Var
[

vσ
t+h

[

ln(σ2
t+h) |

(

σ2(ω, t], er−(ω, t]
)]]

Var
[

uσ
t+h

[

ln(σ2
t+h) | J(t)

]]

]

wherevσ
t+h

[

ln(σ2
t+h) |

(

σ2(ω, t], er−(ω, t]
)]

is theh-step ahead forecast error of log volatility based on

the information setσ2(ω, t] ∪ r−(ω, t],

er−(ω, t] =
{

er−t−s, s ≥ 0
}

,

er+(ω, t] =
{

er+t−s, s ≥ 0
}

,

andJ(t) is the information set obtained by “adding”σ2(ω, t] to er−(ω, t] ander+(ω, t]. We also define a

function which allows us to compare the impact of bad and good news on volatility. This function can be

defined as follows:

C(er−/er+ →
h

ln(σ2)) = ln

[

Var
[

eσt+h

[

ln(σ2
t+h) |

(

σ2(ω, t], er+(ω, t]
)]]

Var
[

vσ
t+h

[

ln(σ2
t+h) | (σ2(ω, t], er−(ω, t])

]]

]

.

WhenC(er−/er+ →
h

ln(σ2)) ≥ 0, this means that bad news have more impact on volatility than good

news. Otherwise, good news have more impact on volatility than bad news. Compared to Chen and Ghysels

(2010), our approach is also multi-horizon and based on high-frequency data but is more parametric in

15In our empirical application, we also considered the case of uncenteredreturns. The results can be found in Dufour et al.
(2010).
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nature. Before applying these new measures to our S&P 500 futures market, we conduct a simulation study

to verify that the asymmetric reaction of volatility is well captured in various modelsof the GARCH family

that produce or not such an asymmetry.

6.2. Simulation study on news asymmetry detection

We will now present an exploratory simulation study on the ability of causality measures to detect asymme-

try in the impact of bad and good news on volatility [Pagan and Schwert (1990), Gouríeroux and Monfort

(1992), Engle and Ng (1993)]. To do this, we consider that returns are governed by a process of the form:

rt+1 =
√
σtεt+1 (6.4)

whereεt+1 ∼ N (0, 1) andσt represents the conditional volatility of returnrt+1.Since we are only interested

in studying the asymmetry in leverage effect, equation (6.4) does not allow for a volatility feedback effect.

Second, we assume thatσt follows one of the following heteroskedastic models:

1. GARCH(1, 1) model:

σt = ω + βσt−1 + αε2t−1 ; (6.5)

2. EGARCH(1, 1) model:

log(σt) = ω + β log(σt−1) + γ
εt−1√
σt−1

+ α

[ | εt−1 |√
σt−1

−
√

2/π

]

. (6.6)

GARCH model is, by construction, symmetric. Thus, we expect that the curves of causality measures for

bad and good news will be the same. Similarly, because EGARCH model is asymmetric we expect that

these curves will be different. The parameter values considered are from Engle and Ng (1993).16

To see whether the asymmetric structures get translated into the causality patterns, we then simulate

returns and volatilities according to the above models and we evaluate the causality measures for bad and

good news as described in Section 6.1. To abstract from statistical uncertainty, the models are simulated

with a large sample size(T = 40000).

The results obtained in this way are reported in Figure 6. We see from thesethat symmetry and asym-

metry are well represented by causality measure patterns. For the symmetric GARCH model, bad and good

news have the same impact on volatility. In contrast, for the asymmetric EGARCH model, bad and good

news exhibit different impact curves. We also considered many other parametric volatility models like

AGARCH(1, 1), VGARCH(1, 1), NL-GARCH, GJR-GARCH and nonlinear asymmetric GARCH(1, 1)

[NGARCH(1,1)], and the results correspond to what we were expecting.17

It is also interesting to observe for the asymmetric models that bad news have agreater impact on

volatility than good news. The magnitude of the volatility response is largest forNGARCH model, followed

16These parameters are the results of an estimation of different parametric volatility models using the daily returns series of the
Japanese TOPIX index from January 1, 1980 to December 31, 1988.For details, see Engle and Ng (1993). We also considered
other values based on Engle and Ng (1993). The results are similar to those presented here [see Dufour et al. (2010)].

17See Dufour et al. (2010).
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by the AGARCH and GJR-GARCH models. The effect is negligible in EGARCH and VGARCH models.

The impact of good news on volatility is more noticeable in AGARCH and NGARCH models. Overall,

causality measures appear to capture quite well the effects of returns on volatility, both qualitatively and

quantitatively.

7. News effects in S&P 500 futures market

We now apply the good news and bad news measures of causality to S&P 500 futures returns. To carry out

our analysis, we consider two alternative measures of news: (1) positive and negative deviations of returns

from average past returns, and (2) positive and negative variancerisk premia. An important feature of our

approach comes from the fact that a specific volatility model need not be estimated, which can be contrasted

with previous related studies [see, for example Bekaert and Wu (2000),Engle and Ng (1993), Glosten et al.

(1993), Campbell and Hentschel (1992), and Nelson (1991)].

7.1. Return news

Our empirical results on return news effect are summarized and comparedin Figure 7. Detailed results

(with confidence intervals) are presented in tables 5 - 6.18 We find a much stronger impact of bad news on

volatility for several days. Statistically, the impact of bad news is significant for the first four days, whereas

the impact of good news is negligible at all horizons. So our central findingis that bad news have more

impact on volatility than good news at all horizons.

7.2. Variance risk premium

Let us now look at the reaction of future returns to the sign of the difference between implied volatility and

realized volatility (bipower variation). This difference is a measure of the variance risk premium since the

option-implied volatility includes the risk premium that investors associate with expected future volatility

[see Bollerslev and Zhou (2005) and Drechsler and Yaron (2010)].We will therefore assess whether a

positive variance risk premium has an impact of similar magnitude on expected returns than a negative

variance risk premium. In the case of a positive variance risk premium, we expect an increase in the expected

returns (return risk premium), and in the opposite, we expect a decreasein expected returns.

Since implied volatility is a predictor of future volatility, we write:

ln(RVt+h) = f (ln(IVt), ln(IVt−1), . . . ) + εt+h, ∀h ≥ 1,

εt+h = ln(RVt+h) − f (ln(IVt), ln(IVt−1), . . . ) , (7.1)

wheref (ln(IVt), ln(IVt−1), . . . ) is a function of the past observations on implied volatility.19 The term

18We also computed the causality measures of the impact of bad news on volatility using other estimators of the conditional mean
(m=90, 120, 240) and uncentered returns. The results are similar to theones discussed here [see Dufour et al. (2010)].

19f (ln(IVt), ln(IVt−1), ...) represents the optimal forecast, in the sense of minimization of the mean squared error, of
ln(RVt+h) based on the past observations of implied volatility.
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on the right-hand side of equation (7.1) can be viewed as an approximation of volatility shocks or volatility

news. To measure empirically thedynamicimpact of volatility news on returns, we consider the following

model:

rt+1 = µr +

p
∑

j=1

ϕr
jrt+1−j +

p
∑

j=1

ϕ−
j V P

−
t+1−j +

p
∑

j=1

ϕ+
j V P

+
t+1−j + ur

t+1 (7.2)

whereV P−
t+1−j = min {V Pt+1−j , 0} , V P+

t+1−j = max {V Pt+1−j , 0} and

V Pt+1−j = ln(IVt+1−j) − ln(RVt+1−j) , j = 1, . . . , p.

Equation (7.2) represents a linear projection of returns on its own past and the past of negative and positive

variance risk premia. This regression model allows one to capture the effect of volatility news on returns

through the coefficientsϕ−
j orϕ+

j , for j = 1, . . . , p. It also allows one to examine different effects that large

and small negative and/or positive volatility shocks have on return risk premium. When implied volatility is

bigger than realized volatility (bipower variation), we expect an increase infuture volatility followed by an

increase in the expected returns. In the opposite situation, we expect a decrease in future volatility followed

by a decrease in the expected returns.

The empirical results on the impact of volatility news on returns are given in Figure 7.20 The latter com-

pares the impacts of negative and positive variance risk premium on returns. We see that a positive variance

risk premium has more impact on expected returns than a negative variancerisk premium, which means

that positive shocks on volatility have more impact on returns than negative shocks. The impact is twice as

big on the first day and shrinks to zero after about five days. By lookingat the sign of coefficientsϕ+
j and

ϕ−
j , for j = 1, . . . , p, we find thatϕ+

j are positive, whereasϕ−
j are negative, as expected. Consequently,

the increase in expected returns tends to be higher than the decrease fora movement in the variance risk

premium of the same magnitude but of opposite signs.

8. Conclusion

In this paper, we analyze and quantify the relationship between volatility and returns with high-frequency

equity returns. Within the framework of a vector autoregressive linear model of returns and realized volatility

or bipower variation, we quantify the dynamic leverage and volatility feedback effects by applying short-run

and long-run causality measures proposed by Dufour and Taamouti (2010). These causality measures go

beyond simple correlation measures used recently by Bollerslev et al. (2006).

Using 5-minute observations on S&P 500 Index futures contracts, we measure a weak dynamic leverage

effect for the first four hours in hourly data and a strong dynamic leverage effect for the first three days in

daily data. The volatility feedback effect is found to be negligible at all horizons. Interestingly, when we

remeasure the dynamic leverage and volatility feedback effects using implied volatility (IV ), we find that a

volatility feedback effect appears, while the leverage effect remains almost the same. This can be explained

20Detailed results (with confidence intervals) are presented in Dufour et al.(2010).
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by the power of implied volatility to predict future volatility and by the fact that volatility feedback effect is

related to the latter. We also use causality measures to quantify and test statistically the dynamic impact of

good and bad news on volatility. First, we assess by simulation the ability of causality measures to detect

the differential effect of good and bad news in various parametric volatilitymodels. Then, empirically,

we measure a much stronger impact for bad news at several horizons. Statistically, the impact of bad

news is significant for the first four days, whereas the impact of good news is negligible at all horizons.

We introduce a new concept of news based on volatility. This one is defined by the difference between

implied volatility and realized volatility (bipower variation). When implied volatility is bigger than realized

volatility (bipower variation) it means that the market is expecting an increase infuture volatility with respect

to current volatility. Our empirical results show that such an expected increase in volatility has a stronger

impact on return risk premium than an expected decrease of a similar magnitude.
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Appendix

In this appendix, we report in tables some basic summary statistics which can beuseful for interpreting

the empirical results presented in this paper [tables 1 and 2] some basic descriptive statistics, which can be

useful for interpreting the empirical results, as well as tables and graphsthat summarize our main findings.

Additional details and complementary results are available in a separate companion document [Dufour et al.

(2010)].

A. Descriptive statistics

Table 1. Summary statistics for S&P 500 futures returns,1988-2005

V ariables Mean St.Dev. Median Skewness Kurtosis
F ive-minute 0.0000069 0.000978 0.00000000 −0.0818 73.9998
Hourly 0.0000131 0.003100 0.00000000 −0.4559 16.6031
Daily 0.0001466 0.008900 0.00011126 −0.1628 12.3714

Note: This table summarizes the five-minute, hourly, and daily returns distributions for the S&P 500 index contracts.

Table 2. Summary statistics for hourly and daily volatilities, 1988-2005

V ariables Mean St.Dev. Median Skewness Kurtosis
Hourly
RVt 0.00001080 0.0000294 0.00000544 42.9510 3211.190
BVt 0.00000932 0.0000229 0.00000455 32.1242 2023.507
ln(RVt) −12.2894 1.1475 −12.3006 0.0792 3.3157
ln(BVt) −12.1007 1.0973 −12.1217 0.1558 3.2625
Jt+1 0.2258 0.2912 0.1221 2.0066 8.8949

Daily
RVt 0.0000813 0.000120 0.0000498 8.1881 120.7530
BVt 0.0000762 0.000109 0.0000469 6.8789 78.9491
ln(RVt) −9.8582 0.8762 −9.9076 0.4250 3.3382
ln(BVt) −9.9275 0.8839 −9.9663 0.4151 3.2841
Jt+1 0.0870 0.1005 0.0575 1.6630 7.3867

Note: This table summarizes the hourly and daily volatilities distributions for the S&P 500 index contracts.
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Table 3. Summary statistics for daily implied volatilities, 1996-2005

V ariables Mean St.Dev. Median Skewness Kurtosis

IV
1/2

t 1.1808 0.8225 1.0205 3.4518 30.5778
IVt 2.0705 5.1356 1.0415 17.8220 484.6803
ln(IVt) −0.0326 1.1980 0.0406 0.0676 3.0002

Note: This table summarizes the daily implied volatilities distributions for the S&P 500 index contracts.

B. Summary of causality measures

Table 4. Hourly and daily volatility feedback effects

Hourly volatility feedback effects usingln(RV )

C(ln(RV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.00016 0.00014 0.00012 0.00012
95% Bootstrap interval [0.0000, 0.0007] [0.0000, 0.0006] [0.0000, 0.0005] [0.0000, 0.0005]

Hourly volatility feedback effects usingln(BV )

C(ln(BV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.00022 0.00020 0.00019 0.00015
95% Bootstrap interval [0.0000, 0.0008] [0.0000, 0.0007] [0.0000, 0.0007] [0.0000, 0.0005]

Daily volatility feedback effects usingln(RV )

C(ln(RV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0019 0.0019 0.0019 0.0011
95% Bootstrap interval [0.0007, 0.0068] [0.0005, 0.0065] [0.0004, 0.0061] [0.0002, 0.0042]

Daily volatility feedback effects usingln(BV )

C(ln(BV ) →
h
r) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0017 0.0017 0.0016 0.0011
95% Bootstrap interval [0.0007, 0.0061] [0.0005, 0.0056] [0.0004, 0.0055] [0.0002, 0.0042]

Note: This table summarizes the estimation results of causality measures from hourly realized volatility[ln(RV )] to hourly returns

(r), hourly bipower variation [ln(BV )] to hourly returns, daily realized volatility to daily returns, and daily bipower variation to

daily returns, respectively. The second row in each small table gives the point estimate of the causality measures at horizons

h = 1, ..., 4. The third row gives the95% corresponding percentile bootstrap interval.
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Figure 1. Quantile to quantile plots (QQ plot) of the relative measure of jumps(RJ), zQP, l, t, zQP, t, andzQP, lm, t. January 1988 to December 2005.

−4 −3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 R
J

QQ Plot of relative jump measure

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

10

12

14

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 z
Q

P

QQ Plot of zQP

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

10

12

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 z
Q

P
l

QQ Plot of zQPl

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

Standard Normal Quantiles

Q
ua

nt
ile

s 
of

 z
Q

P
m

QQ Plot of zQPm

31



Table 5. Measuring the impact of good news on volatility usingln(RV ) [centered positive returns]

̂Et(rt+1) = 1

15

∑15

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0007 0.0007 0.0007 0.0004
95% Percentile bootstrap interval [0.0003, 0.0043] [0.0002, 0.0039] [0.0001, 0.0034] [0.0000, 0.0030]

̂Et(rt+1) = 1

30

∑30

j=1
rt+1−j

C(er+ →
h

ln(RV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0010 0.0007 0.0007 0.0005
95% Percentile bootstrap interval [0.0004, 0.0051] [0.0003, 0.0039] [0.0003, 0.0036] [0.0000, 0.0032]

Note: This table summarizes the estimation results of causality measures from centered positive returns (er+) to realized volatility[ln(RV )] using two estimators of
the conditional mean, form = 15, 30. In each of the two small tables, the second row gives the point estimate of the causality measures at horizonsh = 1, ..., 4. The
third row gives the95% corresponding percentile bootstrap interval.

Table 6. Measuring the impact of good news on volatility usingln(BV ) [centered positive returns]

̂Et(rt+1) = 1

15

∑15

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0008 0.0008 0.0006 0.0006
95% Percentile bootstrap interval [0.0003, 0.0045] [0.0002, 0.0041] [0.0002, 0.0035] [0.0000, 0.0034]

̂Et(rt+1) = 1

30

∑30

j=1
rt+1−j

C(er+ →
h

ln(BV )) h = 1 h = 2 h = 3 h = 4

Point estimate 0.0012 0.0007 0.0007 0.0007
95% Percentile bootstrap interval [0.0005, 0.0053] [0.0003, 0.0041] [0.0002, 0.0039] [0.0001, 0.0038]

Note: This table summarizes the estimation results of causality measures from centered positive returns (er+) to bipower variation [ln(BV )] using two estimators of
the conditional mean, form = 15, 30. In each of the two small tables, the second row gives the point estimate of the causality measures at horizonsh = 1, ..., 4. The
third row gives the95% corresponding percentile bootstrap interval.
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Figure 2. Leverage and volatility feedback effects in hourly and daily datausing a bivariate autoregressive model(r,RV ). January 1988 to December
2005.
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Figure 3. Causality measures between implied volatility(IV ) [or variance risk premiumIV −RV ] and realized volatility(RV ), using trivariate VAR
models for(r,RV, IV ) and(r,RV, IV −RV ). January 1996 to December 2005.
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Figure 4. Volatility feedback effects, with implied volatility as auxiliary variable [trivariate models(r,RV, IV ) and(r,RV, IV −RV )] and without
implied volatility [bivariate model(r,RV )]; different transformations of volatility considered. Impact of vector(RV, IV −RV ) on returns. January

1996 to December 2005.
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Figure 5. Leverage and volatility feedback effects, with implied volatility as auxiliary variable [trivariate models(r,RV, IV ) and(r,RV, IV −RV )]
and without implied volatility [bivariate model(r,RV )]. January 1996 to December 2005.
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Figure 6. Causality measures of the impact of bad and good news on symmetricand asymmetric GARCH volatility models.
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Figure 7. Causality measures of the impact of bad and good news on volatility and the impact of positive and negative variance risk premium on returns.
January 1988 to December 2005.
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