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Abstract:  
This paper compares the forecasting performance of different models which have been 
proposed for forecasting in the presence of structural breaks. These models differ in 
their treatment of the break process, the parameters defining the model which applies in 
each regime and the out-of-sample probability of a break occurring. In an extensive 
empirical evaluation involving many important macroeconomic time series, we 
demonstrate the presence of structural breaks and their importance for forecasting in the 
vast majority of cases. However, we find no single forecasting model consistently works 
best in the presence of structural breaks. In many cases, the formal modeling of the 
break process is important in achieving good forecast performance. However, there are 
also many cases where simple, rolling OLS forecasts perform well. 
 

Keywords: Forecasting, change-points, Markov switching, Bayesian inference 

 

JEL Classification: C11, C22, C53 
 



1 Introduction

Structural breaks are commonly found to be present in many macroeconomic and financial

time series (e.g. Stock and Watson (1996) and Ang and Bekaert (2002)) and to be one

of the major reasons of poor forecasting performance (e.g. Clements and Hendry (1998)).

This has led to several papers which work with forecasting methods which are robust to

breaks (e.g. Pesaran and Timmermann (2007), Eklund, Kapetanios, and Price (2009) or

Clark and McCracken (2009)) or formally model the break process (e.g. Pesaran, Pettenuzzo,

and Timmermann (2006), Koop and Potter (2007), Giordani and Kohn (2008), Maheu and

Gordon (2008) and D’Agostino, Gambetti, and Giannone (2009)). It is an open empirical

question as to which types of methods or models will work best when dealing with the sort

of structural change present in many macroeconomic data sets. The purpose of this paper

is to shed light on this question. We compare empirically the forecasting performance of

existing models that explicitly allow for structural breaks both in the sample period and in

the forecast period. Two such models are given in Pesaran, Pettenuzzo, and Timmermann

(2006), hereafter PPT, and Koop and Potter (2007), hereafter KP, and these form the main

focus of our forecasting evaluation.1 Conventional time-varying parameter (TVP) models such

as that used by D’Agostino, Gambetti, and Giannone (2009) also allow explicitly for structural

breaks in-sample and out-of-sample and are also included in our forecasting evaluation. In

addition, we include some benchmark forecasting procedures such as recursive and rolling

OLS.

Our study is in the spirit of Meese and Geweke (1984), Stock and Watson (1996) and Mar-

cellino, Stock, and Watson (2006) in the sense that we investigate the performance of various

forecasting approaches at different forecast horizons in a set of macroeconomic time series

using relatively simple forecasting models (i.e. extensions of autoregressive, AR, models).

We evaluate forecast performance using a variety of metrics. In addition to a conventional

measure based on point forecasts (i.e. root mean squared forecast error, RMSE), we com-

pare the approaches using average predictive likelihoods (APL) which are based on the entire

predictive density.

1The mixture innovation model of Giordani and Kohn (2008) can also be used to forecast in the presence

of structural breaks. The mixture innovation approach can nest several popular models of structural change,

including some variants of the models presented in KP.
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In this paper we focus on PPT and KP as two representative examples of models which

address the issues which arise when forecasting subject to structural breaks. Such forecasting

models can differ in three important aspects. First, they can differ in the priors they use for

the parameters which define the conditional mean (and possibly the conditional variance) of

the dependent variable. PPT uses a hierarchical prior of the sort commonly used in the panel

data literature where conditional mean coefficients are all assumed to be drawn from some

common distribution. KP uses a hierarchical prior motivated by the state space literature

where the conditional mean coefficients in the most recent regime are most relevant when a

break occurs. Second, they can differ in the hierarchical prior used for the regime durations.

For instance, PPT assume a Geometric distribution for regime duration whereas KP assume

a Poisson distribution. Third, they can differ in whether they impose the restriction that a

precise number of breaks occurs in a sample of size T or whether the number of in-sample

breaks is treated as unknown. The former approach is adopted by PPT, involves an (arguably,

see Koop and Potter (2007) and Koop and Potter (2009)) unattractive prior at the end of the

sample and requires the calculation of marginal likelihoods. The latter approach is adopted

by KP and does not involve these drawbacks.

Of course, it is an empirical matter which of these approaches works well in practice and

it is possible that each approach works well in some cases but not others. KP and PPT each

illustrate the performance of their approaches with a single time series (and with modeling

details calibrated to that particular series). The purpose of this paper is to investigate these

and related approaches for a wide variety of macroeconomic series. We select twenty-three

of the most important quarterly US macroeconomic time series and compare PPT and KP

to a variety of forecasting methods. We find that structural breaks are an important feature

of most of the time series we consider. Handling such breaks is shown to be an important

issue for forecasting. However, we find that there is no one single method which can be

recommended universally. That is, for some series PPT forecasts best, for others KP does,

for others simpler methods such as rolling OLS forecasts performs best. We argue that this is

empirically-sensible and stress the importance of tailoring forecasting models to the empirical

application at hand (as opposed to recommending a single approach as being universally best

for all macroeconomic time series).

In Section 2, we compare in a non-technical manner the specifications of the PPT and
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KP models that we use in our empirical evaluation. Technical details are provided in ap-

pendices. In Section 3, we present the estimation results of applying PPT and KP to the

series we analyze, focussing on what breaks we find in the series. In Section 4 we discuss the

implementation of our forecasting evaluation and in Section 5 we present our main results.

Section 6 contains the results of sensitivity analyses and the last section our conclusions.

2 Models with Structural Breaks

In this section, we present and compare the PPT and KP models. After providing a framework

for structural break models (sub-section 2.1), we discuss how the parameters of different

regimes are linked (sub-section 2.2), how the break process is modelled (sub-section 2.3), and

how the number of breaks is determined (sub-section 2.4).

2.1 A Framework for Structural Break Modelling

A linear regression model framework for discussing structural break models is:

yt = Ztβst + σstεt, (1)

where yt is the dependent variable, Zt (with m elements in total) contains lagged dependent

variables or lagged exogenous variables available for forecasting yt, and εt is i.i.d. N (0, 1).

Equation (1) allows for βst and σst to vary over time with st ∈ {1, ..,K} a random variable

indicating which regime applies at time t. The vector βst determines the conditional mean

of yt and, thus, we will refer to them as conditional mean coefficients with σst being the

volatilities.

Different structural break models vary in the way they model the break process. To

simplify the exposition, we will focus here on βst and assume σst = σ. But we stress that

breaks in volatilities can be modelled in exactly the same manner as breaks in the conditional

mean coefficients and in our empirical work we allow for breaks in volatility.2

Suppose we are working with a model with K − 1 breaks which occur at unknown times

2Furthermore, we could allow for breaks in volatility to occur independently of breaks in the conditional

mean. In this case, st is a bivariate discrete random variable with the first element controlling breaks in

conditional mean and the second element controlling breaks in volatility.
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τ1, .., τK−1. Thus, we can write:

yt =











































Ztβ1 + σεt if st = 1 (i.e. t ≤ τ1),

Ztβ2 + σεt if st = 2 (i.e. τ1 < t ≤ τ2),

...

ZtβK−1 + σεt if st = K − 1 (i.e. τK−2 < t ≤ τK−1),

ZtβK + σεt if st = K (i.e. τK−1 < t ≤ T ).

(2)

Different structural break models arise through different formulations for βst and st. From

a Bayesian point of view these can be interpreted as hierarchical priors. In the next two

sections, we discuss modelling of βst and st respectively.

2.2 Linking the Conditional Mean Coefficients in Different Regimes

It is possible to allow for βj for j = 1, ..,K to be completely independent of one another

(i.e. after a break occurs, pre-break information provides absolutely no information about

what likely values for the new conditional mean coefficients are). But, in practice, it is

typically desirable to avoid such independence. Even when simply doing an in-sample analysis,

structural break models can be over-parameterized and placing more structure on the model

can help avoid this problem. That is, if βj is completely independent of all other regimes,

one must estimate it using data only from regime j. With relatively short macroeconomic

data sets, possibly high dimensional βj and possibly multiple structural breaks, it may be

hard to obtain precise estimates of βj . When forecasting subject to structural breaks, an

even more serious problem occurs. Suppose a break occurs during the forecast period, and

the conditional mean coefficient switches from βj to βj+1. Forecasting must be done using

βj+1. If we assume complete independence of conditional mean coefficients across regimes,

then immediately after the break we have no data-based information to estimate βj+1. In a

Bayesian forecasting exercise, this means the prior for βj+1 will be used to produce forecasts.

Given a common desire to use relatively noninformative priors, this could lead to extreme

and unreasonable forecasts when a break occurs. This has motivated various models which

link βj and βj+1 in some manner.

In this paper, we consider two main approaches which relate to those in PPT and KP,

respectively. Appendices provide precise details (including discussion of relevant posterior

and predictive simulation algorithms), but the basic idea in PPT is to adopt a link of the
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form:

βj = β0 + uj

for j = 1, ..,K, where uj is i.i.d. Nm (0, B0) or, equivalently, in Bayesian language, a hierar-

chical prior of the form:

βj ∼ Nm (β0, B0) , (3)

the parameters β0 and B0 are assumed unknown and can be estimated from the data. Thus,

the conditional mean coefficients in each regime are drawn from a common distribution. This

practice is commonly used in panel data models with random effects or in random coefficient

models and results from that literature can easily be adapted to show that β0 and B0 reflect

average values across all regimes. If a break occurs in a forecast period, this means that the

new value of the conditional mean coefficients will be drawn from a distribution which reflects

the values of the coefficients from all past regimes. This is an empirically sensible approach

in environments where breaks occur, but in a recurrent way. It allows, for instance, for the

1950s, 1970s, 1990s and 2000’s to be different regimes, but the regime in the 2000s is just as

likely to be similar to the 1950s as to more recent regimes.

In contrast, KP adopt a hierarchical prior motivated by the state space literature on TVP

models. They specify random walk evolution of coefficients:

βj = βj−1 + uj

where uj is specified as above, or equivalently,

βj |βj−1 ∼ Nm (βj−1, B0) . (4)

The KP prior is similar to the PPT prior, except that, when a structural break occurs, the

conditional mean coefficients are drawn from a distribution centered at βj−1. Thus, it is the

most recent regime which has the most influence on conditional mean coefficients in a new

regime. This is a common modelling assumption in macroeconomic models such as TVP-

VARs and, indeed, the KP model is equivalent to a TVP regression model if st = t and, thus,

K = T .

It is worth noting that with either the PPT prior or the KP prior, it is possible to introduce

exogenous explanatory variables into the hierarchical prior (e.g. in the PPT prior we could

have β0 = Wtb0 for some lagged variables Wt) although we do not explore this avenue in the

present paper.
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2.3 Modeling the Break Process

The break process is modelled through ST = (s1, .., sT )′ where st ∈ {1, 2, ..,K} are the regime

identifying (or state) variables defined previously. It is possible to use a noninformative prior

which does not restrict the timing of the breaks. This is an approach developed in Koop and

Potter (2009). However, unless the number of breaks is small, computation is difficult (or

infeasible) due to the large number of possible configurations of K breakpoints. Furthermore,

when forecasting under structural breaks, it is necessary to forecast the probability that a

break occurs during the forecast period and this cannot be done using a noninformative prior

for ST . This has led to an interest in informative hierarchical priors for the break process.

The most popular of these is developed in Chib (1998) and adopted by PPT. This begins by

assuming a restricted Markov process for ST :

Pr (st = i|st−1 = i) = pi

Pr (st = i + 1|st−1 = i) = 1 − pi.
(5)

Thus, if regime i holds at time t− 1, then at time t the process can either remain in regime i

(with probability pi) or a break occurs and the process moves to regime i+1 (with probability

1 − pi).

Equation (5) can be interpreted as a hierarchical prior. Note that the durations of regimes

are defined as:

di = τi − τi−1

and it can be shown that (5) implies a Geometric prior distribution for di. KP argue that this

may be restrictive in some situations. For instance, the geometric distribution is decreasing

and, thus, this hierarchical prior imposes p (di) > p (di + 1). They suggest the use of the more

flexible Poisson distribution for the durations:

di − 1 ∼ Po(λi) (6)

where Po(λi) denotes the Poisson distribution with mean λi. However, in the present paper,

in order to maintain a fair degree of computational simplicity and comparability across our

forecasting approaches, we implement the KP approach using the Geometric prior implied by

(5).3

3The KP model of this paper is thus to be understood from here on to differ from the model of Koop and

Potter (2007) in this aspect.
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Either of these two hierarchical priors can be used for forecasting purposes. However,

when forecasting with structural breaks, we need to estimate the probability that a break

occurs during the forecasting period. In some cases, it can be desirable to include more

information on the break process or further restrict the model to ensure parsimony. Thus, we

note a few empirically useful extensions of the previous priors. First, it is possible to assume

a hierarchical prior for pi or λi such that they are drawn from some common distribution. An

extreme limiting case of such an approach would involve setting λ1 = ... = λK or p1 = ... = pK .

Second, it is possible to allow for either pi or λi to depend on lags of themselves (e.g. the

prior for λi can depend on λi−1) or durations of past regimes. Some of these possibilities are

investigated in KP, but are not pursued here.

2.4 Choosing the Number of Breaks

Thus far, we have said nothing about choosing K − 1, the number of breaks. But this raises

an important issue. Note that both the Geometric and Poisson duration distributions which

arise using (5) or (6) are unbounded distributions. Thus, it is possible that any regime endures

beyond the end of the sample. For instance, if the sample runs from t = 1, .., T and the model

has three breaks, it is possible that sT = 1 or 2 and, thus, that the third regime has not

begun before T . PPT and KP adopt two different ways of dealing with this issue, which we

describe in turn.

PPT, following Chib (1998), impose additional prior information beyond (5). Intuitively,

we can impose that exactly K regimes occur in sample by adding prior information of the

form:

Pr[sT = K|sT−1 = K] = Pr[sT = K|sT−1 = K − 1] = 1. (7)

Thus, if the process reaches the final regime before the end of the sample it stays there. But

if it has not reached the final regime by period T − 1, it must switch to the final regime.

If K exceeds 2, additional restrictions are required. To express these restrictions in words,

consider the case K = 3. If, in period T − 1, we are not already in the third regime, then it

must be the case that a regime switch occurs in period T and this must be imposed on the

model. Similarly, if, in period T −2, we are still in the first regime, then we must impose that

regime switches occur in both periods T −1 and T , in order to ensure that K = 3. Note that,

as discussed in Koop and Potter (2009), this can lead to a pile-up of prior probability near
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the end of the sample, leading to a prior which is quite informative (and, thus, potentially

influential) precisely at the time forecasting is being done.

KP simply recommend working with models which allow for breakpoints to occur out-of-

sample. Statistically, working with such models poses no difficulties for a Bayesian using a

proper prior. Consider the case where regime j occurs entirely out-of-sample. It appears that

there is no data to directly estimate βj . However, Bayesian inference is still possible. If the

prior for βj were independent of the conditional mean coefficients in the other regimes, then

its posterior would simply equal its prior. Such an approach would allow for valid statistical

inference but could yield poor forecasting results unless strong prior information existed about

βj . However, using hierarchical priors such as (3) or (4) allows for data information from in-

sample regimes to spill over into out-of-sample regimes and, thus, the posterior for βj will

contain data information. More importantly, allowing for regimes to occur out-of-sample

allows the researcher to estimate the number of regimes in-sample. For instance, if the

researcher allows for two breakpoints, but one of these occurs after time T , then (in-sample)

this is equivalent to estimating a model with one breakpoint. This means that the researcher

can simply select a value for the maximum number of breakpoints to allow for as opposed

to doing a search over all possible numbers. By contrast, with the PPT approach, marginal

likelihoods are calculated for K = 1, ..Kmax and the value with the highest marginal likelihood

is selected. This need for calculation of marginal likelihoods increases the computational

burden.

3 Breaks in US Macroeconomic Series

We apply the PPT and KP models to twenty-three quarterly series for the USA (listed in Table

1) which are among the most important macroeconomic variables. The sample period is 1959,

first quarter, till 2010, second quarter. As indicated in the table, we have transformed most

series to growth rates or first differences, and in this we are proceeding as in the literature,

see e.g. Stock and Watson (1996). We use AR(q) models in each regime, hence, Zt in (2)

contains an intercept and the first q lags of yt.

Our previous explanation of the PPT and KP approaches assumed homoskedastic errors.

In our empirical implementation, we relax this assumption and allow the error variances to

change when the AR coefficients do using the same hierarchical priors as in PPT and KP.
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Details about prior densities and posterior evaluation are provided in Appendix A for PPT

models and in Appendix B for KP. Further discussion of the prior is given in Section 6.2.

In Table 2 we report the break dates found in the PPT-AR(1) and AR(4) models (called

PPT1 and PPT4 hereafter), and similarly KP-AR(1) and AR(4) models (KP1 and KP4),

using the complete sample. In Table 3 we report the posterior means of the AR(1) equations

for each regime. The reported break dates are medians of posterior distributions and there is

some uncertainty (though not much) about these point estimates.

We do not find any break in six series (6, 14, 15, 17, 22, 23) both with PPT and KP

(irrespective of the lag order), and in four other series with PPT (series 2, 5, 13, 19), see

Table 2. No series has more than two breaks with KP, while only series 21 has three breaks

with PPT1. To a large extent, the break numbers and dates are robust with respect to the

lag order (1 or 4), keeping in mind that for dates we report posterior medians. This is much

less the case with respect to the type of model (PPT and KP). For example, even if three

series (4, 8, 9) have a break in the last three years of the sample according to both models,

KP detects more breaks of this type than PPT, see series 2, 12, and 16.

Thus there is evidence that macroeconomic series are subject to breaks since about three

quarters of our series have at least one break when modeled by structural break models. The

next obvious question is how large are the parameter changes when breaks occur and what

parameters are affected. Table 3 contains the posterior means of the parameters of the AR(1)

equations of each regime for each series, over the full sample period. Focusing on the series

with more than one regime (for PPT and KP), we observe that the most sensitive parameter

is the variance of the error term. It decreases substantially for some series in the first half

of the eighties, see the break in series 1, 7, 16, 18, and 20 with both models, and in series 5

with KP, corresponding to what has been named the great moderation (the decrease is about

seventy-five percent on average for these series). The error variance increases quite a lot in

2007 or 2008 for series 4, 8, 9 with PPT, and 2, 8, 9 and 16 with KP (see the last break).

These increases correspond to the great recession triggered by a widespread financial crisis.

Other cases are the reduction by half of the variance of series 3 in 1993, and the quadrupling

for series 7 in 2000. The interest rate series (10 and 11) witness also large changes: a tenfold

increase in 1979 corresponds to the beginning of the Volcker period at the Fed, which is

followed by a decrease at the next break in 1985.
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Table 1: Variables used in forecast evaluation

Acronym T Definition
1 GDPC96 5 Real Gross Domestic Product, 3 Decimal
2 GDPDEF 5 Gross Domestic Product: Implicit Price Deflator
3 PCECC96 5 Real Personal Consumption Expenditures
4 PCECTPI 5 Personal Consumption Expenditures Chain-type Price Index
5 GPDIC96 5 Real Gross Private Domestic Investment, 3 Decimal
6 OPHPBS 5 Business Sector: Output Per Hour of All Persons
7 ULCNFB 5 Nonfarm Business Sector: Unit Labor Cost
8 CPIAUCSL 6 Consumer Price Index for All Urban Consumers: All Items
9 PPIFCG 6 Producer Price Index: Finished Consumer Goods
10 TB3MS 2 3-Month Treasury Bill: Secondary Market Rate
11 GS10 2 10-Year Treasury Constant Maturity Rate
12 M1SL 6 M1 Money Stock
13 M2SL 6 M2 Money Stock
14 UTL11 1 Capacity Utilization: Manufacturing
15 SP500 5 S&P 500 Index
16 INDPRO 5 Industrial Production Index
17 HOUST 4 Housing Starts: New Privately Owned Housing Units Started
18 AHEMAN 5 Average Hourly Earnings: Manufacturing
19 UNRATE 2 Civilian Unemployment Rate
20 PAYEMS 5 Total Nonfarm Payrolls: All Employees
21 EXUSUK 5 U.S. / U.K Foreign Exchange Rate
22 PMI 1 ISM Manufacturing: PMI Composite Index
23 NAPMNOI 1 ISM Manufacturing: New Orders Index
T (transformation applied to original series): 1 = no transformation, 2 = first differ-
ence, 4 = log, 5 = first difference of logged variables, 6 = second difference of logged
variables. Sample period (after data transformation): 1959Q1-2010Q2 (206 observa-
tions). Data source: St. Louis ALFRED database (http://alfred.stlouisfed.org).

In some series, the constant and the AR(1) coefficients change also, but less spectacularly

than the variance. This happens to the two interest rates. Keeping in mind that they are in

first differences, the changes of the coefficients (in particular the sign change of the constant)

around 1985 correspond to the start of a long period of decrease of interest rates. A change

of sign of the constant happens also in series 21 in the last quarter of 1967 (first break with

KP, second break with PPT). The British pound sterling came under pressure in the mid-

sixties since the exchange rate against the dollar was considered too high and was eventually

devalued by 14.3% to 2.40 on 18 November 1967. This suggests that the first break detected

with PPT in 1967, second quarter, is spurious.
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Table 2: Break dates based on full sample

q PPT-AR(q) KP-AR(q)
1 GDPC96 1 1983:Q1 - - 1983:Q4 -

4 1982:Q2 - - 1983:Q4 -
2 GDPDEF 1 - - - 1984:Q3 2008:Q4

4 - - - 1981:Q2 2008:Q4
3 PCECC96 1 - - - 1993:Q1 -

4 1987:Q2 - - 1992:Q2 -
4 PCECTPI 1 2008Q1 - - 1991:Q3 2006:Q4

4 2007Q3 - - - 2008:Q4

5 GPDIC96 1 - - - 1984:Q4 -
4 - - - - -

6∗ OPHPBS 1 - - - - -
4 - - - - -

7 ULCNFB 1 1983Q2 1999Q2 - 1984:Q1 2000:Q1
4 - - - - -

8 CPIAUCSL 1 2008Q1 - - 2008:Q4 -
4 2007Q3 - - 2008:Q4 -

9 PPIFCG 1 2008Q1 - - 1972:Q3 2008:Q4
4 2007Q3 - - - 2008:Q4

10 TB3MS 1 - 1979Q2 1984Q3 1979:Q4 1985:Q1
4 1965Q1 1978Q3 1983Q4 1979:Q4 1985:Q2

11 GS10 1 1979Q2 1986Q1 - 1979:Q4 1986:Q4
4 1978Q3 1985Q2 - 1966:Q2 -

12 M1SL 1 1978Q4 - - - 2008:Q3
4 1978Q1 - - 1979.Q2 2008:Q4

13 M2SL 1 - - - - -
4 - - - 1979.Q2 -

14∗ UTL11 1 - - - - -
4 - - - - -

15∗ SP500 1 - - - - -
4 - - - - -

16 INDPRO 1 1982Q4 - - 1984:Q1 2008:Q2
4 1980Q3 - - 1983:Q4 2008:Q3

17∗ HOUST 1 - - - - -
4 - - - - -

18 AHEMAN 1 1969Q2 1981Q4 - 1982:Q4 -
4 1980Q2 - 1983:Q4 -

19 UNRATE 1 - - - - -
4 - - - 1983:Q4 -

20 PAYEMS 1 1983Q3 - - 1984Q2 -
4 1982Q2 - - 1983:Q3 -

21 EXUSUK 1 1967Q2 1967Q4 1971Q2 1967:Q4 -
4 1966Q3 - - 1983:Q3 -

22∗ PMI 1 - - - - -
4 - - - - -

23∗ NAPMNOI 1 - - - - -
4 - - - - -

Break dates are defined as the first observation of the new regime, using the median of

the posterior of the states.
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Table 3: Posterior means of AR(1) break models

S R PPT-AR(1) KP-AR(1) AR(1) full sample AR(1) last 40 data

c φ σ2 c φ σ2 c φ σ2 c φ σ2

1 1 0.55 0.30 1.12 0.62 0.28 1.10 0.52 0.32 0.69 0.19 0.49 0.36
2 0.39 0.46 0.32 0.38 0.45 0.29 - - - 0.51 0.29 0.26

2 1 0.12 0.87 0.09 0.14 0.87 0.10 0.11 0.87 0.09 0.33 0.41 0.09
2 - - - 0.24 0.35 0.04 - - - 0.29 0.58 0.03

3 - - - 0.23 -0.19 0.35 - - - - - -

3 1 0.56 0.31 0.46 0.65 0.26 0.51 0.56 0.31 0.45 0.23 0.54 0.20
2 - - - 0.46 0.42 0.22 - - - 0.72 0.02 0.35

4 1 0.13 0.86 0.10 0.13 0.87 0.10 0.15 0.83 0.13 0.42 0.24 0.23
2 0.14 0.51 0.84 -0.09 0.01 0.64 - - - 0.40 0.49 0.08

3 - - - 0.20 0.10 0.45 - - - - - -

5 1 0.07 0.18 0.21 0.10 0.10 0.30 0.07 0.18 0.21 -0.02 0.54 0.12
2 - - - 0.06 0.30 0.11 - - - 0.08 0.02 0.11

6∗ 1 0.56 -0.01 0.72 0.56 -0.01 0.71 0.57 -0.01 0.71 0.59 0.10 0.53
- - - - - - - - - - 0.33 0.14 0.41

7 1 0.60 0.40 1.28 0.60 0.43 1.21 0.51 0.32 1.11 0.26 -0.14 1.01
2 0.47 0.14 0.33 0.47 0.14 0.33 - - - 0.55 0.08 0.34

3 0.39 -0.07 1.33 0.38 -0.07 1.35 - - - - - -

8 1 0.00 -0.29 0.18 0.01 -0.30 0.18 -0.00 -0.30 0.27 -0.01 -0.35 0.76
2 -0.03 -0.30 2.69 -0.17 -0.30 3.62 - - - 0.00 -0.35 0.18

9 1 0.02 -0.38 1.08 0.03 -0.45 0.40 0.02 -0.32 1.69 0.05 -0.27 5.13
2 0.03 -0.30 19.08 0.02 -0.38 1.32 - - - 0.00 -0.37 1.65

3 - - - -0.16 -0.23 21.71 - - - - - -

10 1 0.04 0.36 0.32 0.03 0.33 0.31 -0.01 0.23 0.57 -0.06 0.61 0.19
2 -0.01 0.25 3.80 -0.00 0.19 3.45 - - - 0.01 0.67 0.13

3 -0.03 0.55 0.14 -0.03 0.56 0.14 - - - - - -

11 1 0.04 0.22 0.08 0.03 0.21 0.06 -0.00 0.23 0.23 -0.06 0.02 0.13
2 0.01 0.22 0,93 -0.02 0.24 0.22 - - - -0.05 0.38 0.23

3 -0.04 0.22 0.16 -0.05 0.20 0.15 - - - - - -

12 1 0.01 -0.18 0.36 -0.00 -0.32 0.77 0.00 -0.30 0.96 0.05 -0.28 2.12
2 -0.00 -0.31 1.35 -0.04 -0.24 7.30 - - - -0.07 -0.11 0.94

13 1 -0.00 -0.15 0.48 -0.01 -0.15 0.46 -0.01 -0.15 0.47 -0.04 -0.16 0.79
- - - - - - - - - - -0.05 -0.12 0.30

14∗ 1 0.25 0.97 0.02 0.26 0.97 0.02 0.25 0.97 0.02 0.42 0.94 0.02
- - - - - - - - - - 0.45 0.95 0.01

15∗ 1 0.11 0.24 0.45 0.11 0.23 0.44 0.11 0.23 0.45 -0.04 0.36 0.67
- - - - - - - - - - 0.28 -0.15 0.50

16 1 0.39 0.44 4.00 0.46 0.45 3.11 0.35 0.51 1.99 -0.00 0.70 1.23
2 0.21 0.67 0.85 0.25 0.61 0.69 - - - 0.33 0.54 0.62

3 - - - 0.05 0.76 2.90 - - - - - -

17∗ 1 0.18 0.97 0.01 0.18 0.97 0.01 0.21 0.97 0.01 -0.27 1.03 0.01
- - - - - - - - - - 0.63 0.91 0.01

18 1 0.83 0.14 0.40 0.72 0.52 0.40 0.38 0.65 0.26 0.63 0.04 0.07
2 1.00 0.47 0.26 0.55 0.22 0.07 - - - 0.49 0.28 0.07

3 0.58 0.19 0.08 - - - - - - - - -

19 1 0.01 0.64 0.07 0.01 0.64 0.07 0.01 0.65 0.07 0.03 0.74 0.07
- - - - - - - - - - -0.02 0.70 0.03

20 1 0.14 0.76 0.17 0.15 0.76 0.17 0.08 0.83 0.10 -0.02 0.86 0.07
2 0.03 0.89 0.04 0.03 0.90 0.04 - - - 0.06 0.88 0.03

21 1 -0.00 0.20 0.00 -0.00 0.19 0.00 -0.02 0.26 0.17 0.00 0.41 0.19
2 -0.31 0.27 0.40 -0.03 0.26 0.20 - - - 0.05 0.14 0.35

3 0.01 0.12 0.00 - - - - - - - - -
4 -0.03 0.24 0.22 - - - - - - - - -

22∗ 1 0.89 0.83 0.16 0.96 0.82 0.15 1.01 0.81 0.15 0.93 0.82 0.13
- - - - - - - - - - 0.95 0.82 0.07

23∗ 1 1.20 0.78 0.27 1.31 0.76 0.26 1.40 0.75 0.26 1.36 0.75 0.33
- - - - - - - - - - 1.30 0.77 0.14

S = series number (see Table 2); R = regime number. Each AR(1) is written yt =
c +φyt−1 + σǫt. Two estimations are reported in the block ”AR(1) last 40 data”: on the
first row, the results are for the last 40 points of the full sample, on the second row (in
italics), they are for the last 40 points ending at seventy percent of the full sample.
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4 Forecasting Implementation

In this section, we explain how we forecast with the PPT and KP models, and in sub-section

4.3 we review briefly the other models with which we generate alternative forecasts to be

compared with the forecasts coming from the break models.

The setup is the following: we shall carry out a recursive forecasting exercise for the final

α percent of the observations. This means that we first estimate the models with an initial

sample consisting of 1−α percent of the data, and we forecast future observations. Then we

add one data point, estimate and forecast again, until we have consumed all the data.

4.1 Forecasting with PPT

With the PPT approach, if one were to assume that no breaks occur out-of-sample, forecasting

could be done in a straightforward way based on the posterior density of the the parameters

of the regime that holds at the end of the estimation sample. Such an approach, of course,

does not address the issue of forecasting when breaks can occur out-of-sample. Appendix A

provides details about how predictive simulation is implemented for the PPT model.

To choose the number of breaks, we choose a maximum number of regimes, Kmax, evaluate

the marginal likelihood for K = 1, ..,Kmax and select the optimal number of regimes as the one

which maximizes the marginal likelihood. However, in the context of a recursive forecasting

exercise, we want Kmax to vary over time as the number of regimes can increase as time goes

by. Accordingly, we adopt the following strategy.

Using the initial sample of observations, we calculate the optimal number of regimes as

described in the preceding paragraph. Then we begin our recursive forecasting exercise. Let

Kt be the number of regimes in a model using data through time t. We compute marginal

likelihoods for Kt = {1, . . . ,K∗
t−1 + 1} where K∗

t−1 is the optimal number of regimes at

t − 1 and select K∗
t as the value that maximizes the marginal likelihood. We do this for

t = T0 + 1, . . . , T − h where T0 = αT . Marginal likelihoods are calculated as described in

Bauwens and Rombouts (2010), based on output from the posterior simulator.

We calculate two predictive densities, one which assumes no future break, and one of

which allows for a possible single break in the forecast period. The necessary details are given

in Appendix A.
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4.2 Forecasting with KP

With the KP approach, dealing with out-of-sample structural breaks is straightforward.

Suppose regime j holds at the end of the estimation sample (called t) and, thus, st = j.

The posterior simulation algorithm produces Pr (st+1 = j|Yt) and Pr (st+1 = j + 1|Yt), where

Yt = (y1, .., yt)
′. Furthermore, the posterior simulation algorithm provides us with draws

from p (βj , σj |Yt) and p (βj+1, σj+1|Yt). These are the components needed to do forecast-

ing with structural breaks. Appendix C provides details about how predictive simulation is

implemented for the KP model.

Defining the optimal number of regimes for each sample in our recursive forecasting exer-

cise is done in a way similar to the PPT model described previously, but without the need to

compute marginal likelihoods. Using output from the posterior simulator using data through

time t, we calculate the optimal number of breaks as K∗
t = median(Pr(st|data)), i.e. the

median of the posterior of the state variable of the last observation.

In particular, we run the model for t = T0 (where T0 = αT ) for a large number of breaks.

Then instead of using marginal likelihoods to estimate the optimal number of breaks at time

T0, we just use the estimate K∗
T0

= median(Pr(sT0|data)). In the next period (t = T0 + 1) we

estimate the KP model with KT0+1 breaks and forecast, where we define KT0+1 = K∗
T0

+ 1.

From the Gibbs sampler output we estimate K∗
T0+1

= median(Pr(sT0+1|data)). Then we

increase the observations by one (t = T0 + 2) and set KT0+2 = K∗
T0+1

+ 1 and so on.

In words, with number of observations t we always allow for one more break than the

optimal number of breaks estimated in the previous sample t − 1. However, when we set the

number of breaks using the formula Kt = K∗
t−1 + 1, this doesn’t necessarily mean that we

forecast with exactly K∗
t−1 +1 breaks at time t. This is the maximum number of breaks. This

implies that it might be the case K∗
t = K∗

t−1 so that the number of regimes we use to forecast

hasn’t changed. Therefore, as we progress at time t + 1 we set Kt+1 = K∗
t + 1 = K∗

t−1 + 1.

Nevertheless, if the optimal number of estimated regimes at time t has actually changed to

K∗
t = K∗

t−1 + 1 (we discovered an additional break), then we ought to set at time t + 1 a

maximum number of regimes Kt+1 = K∗
t + 1 = K∗

t−1 + 2.

In the recursive forecasting setting, we repeat this procedure for t = T0 + 1, . . . , T − h.
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4.3 Forecasting with Other Approaches

In addition to the forecasting methods of KP and PPT outlined above, we consider a variety

of other ”no-break” models.

Our first approach is a standard TVP-AR(1) model. This is a restricted special case of

the KP approach. That is, if we adopt the KP framework but set st = t for all time periods

(or equivalently, Kmax
t = t and Pr (st = t|st−1 = t − 1) = 1 then we obtain the standard TVP

model which is of the form

yt = Ztβt + σtεt

βt = βt−1 + ut (8)

log (σt) = log (σt−1) + vt

where εt ∼ N (0, 1), ut ∼ N (0, B0) and vt ∼ N (0, δ). Note that for this special case we need

extra care in defining our priors, since the autoregressive coefficients evolve as random walks

for all t periods and they can easily become explosive. The priors we use for this model are

β0 ∼ Nm (0, 4Im)

log (σ0) ∼ N (0, 1)

B−1
0

∼ Wishart
(

m + 1, (0.0012(m + 1)R)−1
)

δ−1 ∼ Gamma (1, 0.1) .

where R is a diagonal matrix with elements R{1, 1} = 5 for the intercept, and R{i, i} = 1/i

for lag length i = 1, ..., p. Forecasting in this model requires first to simulate the future paths

of the time-varying coefficients βt and log (σt) using their random walk specifications. Then

conditional on these simulated out-of-sample coefficients, we forecast yT+h as in a simple

regression model.

We also present recursive and rolling AR(q) forecasting results (with q set to one and

to four). Bayesian inference is used for these models using the same prior density as in the

PPT implementations if we allow for only a single regime. For the rolling forecasts we use

a window of ten years (forty observations). We tried a window of five years but the forecast

results are much deteriorated by this choice. A window of ten years seems reasonable since

we have about thirty-five years available before the forecast period, and we want to make this
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different enough from the sample used with the recursive approach.4

Finally we also use an unobserved component model with stochastic volatility (UC-SV).

We follow the formulation of Stock and Watson (2007), who specify a model with only a

time-varying trend (no AR dynamics), which takes the form

yt = µt + σǫ,tεt

µt = µt−1 + ση,tηt (9)

log (σǫ,t) = log (σǫ,t−1) + vt

log (ση,t) = log (ση,t−1) + wt

where in this case, (εt, ηt) ∼ N (0, I2), ut ∼ N (0, γ1) and vt ∼ N (0, γ2). For U.S. inflation,

Stock and Watson (2007) set γ1 = γ2 = 0.2. We estimate these parameters and the priors we

use to forecast with this model are

µ0 ∼ Nm (0, 4)

log (σǫ,0) ∼ N (0, 1)

log (ση,t) ∼ N (0, 1)

B−1
0

∼ Gamma (1, 0.1)

γ−1 ∼ Gamma (1, 0.1) .

Forecasting in the above model is similar in spirit with the TVP and KP models. We first

need to simulate the future values of the time-varying parameters, and then plug in these

simulated values in the first equation in 9.

Table 4 lists the models used in the forecasting evaluations, with a short definition.

5 Results of Forecasting Evaluations

For each series listed in Table 1, we carry out a recursive forecasting exercise for the final thirty

percent of the observations: we first estimate the models with an initial sample consisting

of seventy percent of the data, and we forecast at the horizons h equal 1 and 4. Then we

add one data point, estimate and forecast again, until the end of the data. Thus we have

4Choosing the window size optimally is discussed in Pesaran and Timmermann (2007). Their analytical

results do not apply to AR models. Using the cross-validation procedure they propose is left for future research.
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Table 4: Models used in the forecasting evaluations

Name Description

PPT10 PPT, AR(1), 0 break allowed in forecast period

PPT11 PPT, AR(1), 1 break allowed in forecast period

PPT40 PPT, AR(4), 0 break allowed in forecast period

PPT41 PPT, AR(4), 1 break allowed in forecast period

KP1 KP, AR(1)

KP1 KP, AR(4)

TVP1 TVP-AR(1)

TVP4 TVP-AR(4)

ROW1 AR(1) estimated with rolling window of 10 years

ROW4 AR(4) estimated with rolling window of 10 years

REC1 AR(1) estimated on expanding window

REC4 AR(4) estimated on expanding window

UC-SV Unobserved component model with stochastic volatility

61 one-step and 58 four-step ahead forecasts on which we can base the forecast evaluations.

For h > 1, our forecasts are all iterated (see, e.g., Marcellino, Stock, and Watson (2006) for

a motivation for use of iterated over direct forecasts).

Our forecast metrics are RMSE and the average of log predictive likelihoods (APL). RMSE

is based on point forecasts and we use the predictive median as point forecast. The predictive

likelihood is the predictive density evaluated at the observed outcome. This is estimated by

a nonparametric kernel smoother using draws from the predictive simulator.

For each series in Table 1, we provide in Appendix C the RMSE and APL values from the

recursive forecasting exercise. For one-step ahead forecasts, see Tables 13 (RMSE) and 15

(APL) and for four-step ahead forecasts see Tables 14 and 16. We report the relative values,

with the model in the last column (UC-SV) serving as reference.

The RMSE/APL values for the reference model are reported to fix their order of mag-

nitude. For example, in Table 13, we see that for the UC-SV model and the first series,

the RMSE is equal to 0.608, whereas the relative RMSE for PPT10 is 0.989, implying that
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PPT11 has a RMSE 1.1 percent lower than the UC-SV model. For each series, the smallest

(for RMSE) or largest (for APL) value across all models is in bold. If this global minimum is

in the set of break models, the value in italics is the minimum across the no-break models.5

If the global minimum is in the latter group, the value in italics is the minimizer across the

break models.

We discuss the results based on the RMSE criterion in subsection 5.1, and in subsection

5.2 the results based on the APL criterion. Generally, we are interested in three questions:

Question 1: How does the forecasting performance differ between break models and

no-break models?

Question 2: How does the forecasting performance differ between PPT, KP, and TVP?

Question 3: How does the forecasting performance differ between lag orders?

5.1 RMSE Results

To summarize the contents of Tables 13 and 14, we provide in Table 5 the list of the best

model for each series, together with the relative performance of the best break model with

respect to the best no-break model. It appears that according to the RMSE criterion, at

horizon one, the break models are the best in 83 percent of all series (26 for PPT, 22 for

KP1, and 35 for TVP1). At horizon four, the break models forecast better in 70 percent (30

for PPT1, 10 for KP1, and 30 for TVP1). REC is best for four series at horizon one and

five at horizon four, ROW is best only for one series at horizon four, and UC-SV as well.

These scores do not take account of the magnitude of the differences of the RMSE between

the different models (for this see below). Though there are many cases where the best model

differs between horizons one and four, a switch between a break model and a no-break one

happens in seven series on a total of twenty-three.

With the results in Tables 5–13-14, we can answer to our questions about the forecasting

performance of the different models.

Question 1: To answer, we compare the best break model RMSE value to the best no-break

model value, see columns ”% diff.” in Table 5. For example, a value of -3 (+3) means that the

5The set of break models consists of PPT, KP and TVP models, and the set of no-break models consists

of UC-SV, ROW and REC.
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best break (no-break) model has its RMSE three percent smaller (larger) than the RMSE of

the best no-break (break) model. Although for a high proportion of the series the differences

are negative, they are nevertheless small, by what we mean they are less than five percent

(often much less). Exceptions are, at horizon one, series 10 (-6 for KP1), 17 (-18 for TVP1),

and 20 (-11 for KP4). At horizon four, one difference is larger than 5 (series 10, +11 for

REC4). A test for the nullity of the mean of the differences is significant at the five percent

level for horizon one, but not for horizon four. In brief, there is some weak evidence in our

results that break models perform a little better than no-break models.

Table 5: Relative performance of best forecasting models
on last thirty percent of sample

(Root mean squared error criterion)

h = 1 h = 4
best model % diff. best model % diff

1 GDPC96 PPT41 -1.9 TVP4 -2.9
2 GDPDEF TVP4 -0.6 UC-SV 2.0
3 PCECC96 PPT40 -2.7 KP4 -4.6
4 PCECTPI TVP1 -1.2 TVP1 -0.2
5 GPDIC96 PPT40 -0.3 PPT10 -0.8
6∗ OPHPBS REC4 0.2 REC4 0.1
7 ULCNFB TVP1 -1.6 TVP1 -0.3
8 CPIAUCSL TVP4 2.0 PPT10 -0.3
9 PPIFCG TVP4 3.1 REC4 -0.6
10 TB3MS KP1 -5.8 REC4 0.2
11 GS10 PPT40 -0.4 PPT40 -0.3
12 M1SL TVP1 -0.3 PPT11 -0.2
13 M2SL REC4 0.4 KP1 0.0
14∗ UTL11 PPT40 -3.5 PPT40 -1.6
15∗ SP500 PPT11 -0.1 TVP1 -0.5
16 INDPRO KP4 -1.4 TVP4 -1.3
17∗ HOUST TVP1 -17.8 PPT11 -1.0
18 AHEMAN TVP1 -0.6 ROW4 0.3
19 UNRATE KP4 -1.8 PPT41 1.8
20 PAYEMS KP4 -10.6 TVP4 -3.2
21 EXUSUK REC4 0.2 TVP1 -0.5
22∗ PMI KP4 -0.1 REC4 0.2
23∗ NAPMNOI REC4 0.2 REC4 10.6

Mean -1.93 -0.13
St. Dev. 4.39 2.75
t-stat -2.11 -0.24

Source: results in Tables 13-14. See Table 4 for definitions of mod-

els. The ”%diff” are computed as [(smallest RMSE across the break

models/smallest RMSE across the no-break models)-1]x100.

Question 2: The relative differences (in percent) between the RMSE of the different models
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are shown in Table 6. For example, the value -0.49 of series 1 for a comparison of PPT10

and KP1 means that PPT10 is performing better than KP1 by almost half a percent. Means

and standard deviations are given at the bottom of each column. The results show that for

most series the differences are small, and there are a few cases where they are large. On

average, at horizon one, PPT performs slightly better than KP, and TVP better than the

other two models. At horizon four, PPT performs better on average than the other two

models, and TVP dominates KP. Nevertheless given the large standard deviations due to a

few large differences, no mean is significant even at the ten percent level.

Table 6: Performance comparison of break models
on last thirty percent of sample

(Root mean squared error criterion)

Series PPT10

KP1

PPT10

TV P1

KP1

TV P1

PPT40

KP4

PPT40

TV P4

KP4

TV P4

1 GDPC96 -0.49 -1.01 -0.52 -2.02 -1.88 0.14
2 GDPDEF -5.53 1.56 7.50 -1.33 2.74 4.12
3 PCECC96 1.12 -1.55 -2.65 -2.20 -6.06 -3.94
4 PCECTPI -0.19 9.01 9.22 -2.17 4.56 6.87
5 GPDIC96 0.56 -1.23 -1.78 -0.24 -1.26 -1.02
6∗ OPHPBS -1.50 -3.15 -1.67 0.09 -3.89 -3.97
7 ULCNFB -4.78 12.06 17.69 -0.60 2.49 3.11
8 CPIAUCSL 1.76 0.40 -1.33 -42.13 7.39 85.56
9 PPIFCG 1.32 1.15 -0.16 -45.80 5.15 94.01
10 TB3MS 1.92 -9.36 -11.07 -6.70 -8.13 -1.54
11 GS10 -0.58 -0.54 0.03 -0.48 -3.15 -2.68
12 M1SL -5.64 0.18 6.17 20.01 21.60 1.32
13 M2SL -0.11 -0.30 -0.19 -47.93 -2.66 86.94
14∗ UTL11 6.44 29.54 21.70 -3.68 -23.08 -20.14
15∗ SP500 0.21 -0.22 -0.43 -24.30 -1.03 30.74
16 INDPRO -1.12 -6.75 -5.70 16.55 10.33 -5.34
17∗ HOUST -0.81 27.36 28.41 -1.33 -20.82 -19.75
18 AHEMAN -9.09 0.32 10.35 1.49 5.24 3.69
19 UNRATE -1.03 -13.49 -12.59 2.63 -14.77 -16.95
20 PAYEMS -2.35 -10.12 -7.95 2.63 -14.93 -17.11
21 EXUSUK -0.28 -0.95 -0.67 -0.44 -3.01 -2.58
22∗ PMI -1.08 3.03 4.15 1.34 -1.91 -3.21
23∗ NAPMNOI 0.28 -1.48 -1.75 2.72 0.40 -2.26

Mean -0.91 1.50 2.47 -5.82 -2.03 9.39
St. Dev. 3.11 10.10 9.89 17.53 9.96 33.16
t-stat -1.40 0.71 1.20 -1.59 -0.98 1.36

Source: results in Tables 13-14. See Table 4 for definitions of models. The

values for column header A
B

are computed as [(RMSE of model A/RMSE of

model B)-1]x100.

Question 3: The relative differences (in percent) between the RMSE of the different models
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are reported in Table 7. These results indicate that the models with four lags perform a

little better than those with one lag, maybe not a surprise for quarterly data. However, the

differences are significant at the ten percent level on average only for PPT and REC.

Another question of interest is whether allowing for a possible single break (rather than no

break) in the forecast period makes a difference in the PPT approach. Pesaran, Pettenuzzo,

and Timmermann (2006) found on their example (a single series) that this decreases RMSE at

all horizons on their full sample and on several subsamples. We don’t find this to be significant

on average for our series with one lag (t-stat −0.05 at horizon 1 and 0.81 at horizon four), but

with four lags there is some evidence in favor of allowing for a possible break: the performance

is improved on average by 0.49 percent at horizon 1 (t-stat 1.91) and by 2 percent at horizon

four (t-stat 1.75).

5.2 APL Results

We summarize the contents of Tables 15 and 16 in Table 8 where we list the best model for

each series, together with the relative performance of the best break model with respect to

the best no-break model. It appears that according to the APL criterion, at horizon one,

the break models are the best in 22 percent of all series (9 for PPT, 4 for KP1, and 9 for

TVP1). At horizon four, the break models forecast better also in 22 percent (13 for PPT1, 0

for KP1, and 9 for TVP1). ROW is the best at horizon one for fourteen series (61 percent)

and seventeen (74 percent) at horizon four. REC is the best for four series at horizon one

and one at horizon four, and UC-SV is dominated by all other models. These scores do not

take account of the magnitude of the differences of the APL between the different models

but suggest that ROW is by far dominating the other models (for this see question 1 below).

Though there are many cases where the best model differs between horizons one and four,

a switch between a break model and a no-break model happens in six series on a total of

twenty-three.

With the results in Tables 8–15-16, we can answer to our questions about the forecasting

performance of the different models.

Question 1: To answer, we compare the best break model APL value to the best no-break

model value, see columns ”% diff.” in Table 8. For example, a value of +4 (-4) means that

the best break (no-break) model has its APL four percent larger than the APL of the best no-
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Table 7: Performance comparison of lag orders
on last thirty percent of sample

(Root mean squared error criterion)

Series PPT10

PPT40

KP1

KP4

TV P1

TV P4

ROW1

ROW4

REC1

REC4

1 GDPC96 4.46 2.85 3.54 2.88 4.54
2 GDPDEF 4.73 9.39 5.95 -3.48 11.67
3 PCECC96 18.43 14.53 13.01 7.35 14.96
4 PCECTPI 1.99 -0.03 -2.18 -1.60 2.87
5 GPDIC96 1.50 0.70 1.47 -3.07 1.87
6∗ OPHPBS 3.38 5.05 2.59 -1.20 3.85
7 ULCNFB 8.80 13.58 -0.49 -1.60 12.54
8 CPIAUCSL -3.25 -44.97 3.49 1.00 3.29
9 PPIFCG 3.59 -44.59 7.68 3.59 7.65
10 TB3MS 0.02 -8.44 1.37 -7.72 -1.58
11 GS10 4.96 5.06 2.22 4.62 4.97
12 M1SL -17.84 4.49 -0.28 -9.13 -0.82
13 M2SL 13.09 -41.05 10.41 11.03 13.57
14∗ UTL11 54.71 39.99 -8.14 43.62 40.93
15∗ SP500 -0.95 -25.17 -1.75 -9.70 -2.74
16 INDPRO -12.93 2.63 3.02 -4.10 5.94
17∗ HOUST 6.30 5.74 -33.9 1.46 5.61
18 AHEMAN -4.42 6.71 0.27 -2.70 17.20
19 UNRATE -0.11 3.58 -1.59 -5.87 -1.48
20 PAYEMS 8.90 14.47 3.08 4.27 2.60
21 EXUSUK 2.48 2.31 0.35 2.19 2.25
22∗ PMI 12.25 14.98 6.86 10.11 13.91
23∗ NAPMNOI 5.20 7.76 7.21 1.88 7.92

Mean 5.01 -0.45 1.05 1.91 7.46
St. Dev. 13.35 20.40 8.87 10.65 9.25
t-stat 1.80 -0.11 0.57 0.86 3.87

Source: results in Tables 13-14. See Table 4 for definitions of mod-

els. The values for column header A
B

are computed as [(RMSE of

model A/RMSE of model B)-1]x100.
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Table 8: Relative performance of best forecasting models
on last thirty percent of sample

(Average predictive likelihood criterion)

h = 1 h = 4
best model % diff. best model % diff

1 GDPC96 PPT10 0.4 ROW1 -0.4
2 GDPDEF ROW1 -7.2 ROW4 -14.3
3 PCECC96 REC1 -12.4 ROW1 -9.9
4 PCECTPI ROW1 -8.4 ROW4 -22.7
5 GPDIC96 ROW1 -16.0 ROW1 -16.7
6∗ OPHPBS ROW1 -3.1 ROW1 -8.1
7 ULCNFB ROW1 -5.4 ROW1 -4.5
8 CPIAUCSL ROW4 -7.2 ROW1 -4.5
9 PPIFCG REC4 2.9 TVP1 5.9
10 TB3MS ROW1 -0.8 PPT10 6.9
11 GS10 ROW4 -9.9 ROW1 -7.1
12 M1SL REC4 -1.7 REC4 -2.6
13 M2SL TVP4 2.7 ROW1 -1.2
14∗ UTL11 ROW4 -17.8 ROW1 -1.6
15∗ SP500 KP1 0.7 PPT10 0.1
16 INDPRO TVP1 7.8 TVP1 9.7
17∗ HOUST ROW1 -19.0 ROW4 -13.6
18 AHEMAN PPT10 0.1 ROW1 -0.7
19 UNRATE ROW1 -14.2 ROW1 -15.5
20 PAYEMS ROW1 1.6 PPT10 6.8
21 EXUSUK ROW1 -2.5 ROW1 0.5
22∗ PMI ROW4 -13.4 ROW1 -9.1
23∗ NAPMNOI REC4 -0.6 ROW1 -3.9

Mean -5.36 -4.64
St. Dev. 7.40 8.31
t-stat -3.48 -2.68

Source: results in Tables 15-16. See Table 4 for definitions of mod-

els. The ”%diff” are computed as [(largest APL across the break

models/largest APL across the no-break models)-1]x100.

break (break) model. At horizon one, the differences are larger than five percent in absolute

value for twelve series, and only for one (series 16) the difference is positive. At horizon four,

nine differences are smaller than minus five percent and four are larger than five percent. A

test for the nullity of the mean of the differences is significant at the one percent level for both

horizons. In brief, there is strong evidence in our results that the no-break models (especially

ROW) perform much better than break models, though there are a few exceptions (series 16

at both horizons, series 9, 10 and 20 at horizon four).

Question 2: The relative differences (in percent) between the APL of the different models

are shown in Table 9. For example, the value 8.28 of series 1 for a comparison of PPT10 and
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KP1 means that PPT10 is performing better than KP1 by a little more than 8 percent. The

differences vary a lot, and there are a few cases where they are very large. On average, at

both horizons, PPT performs slightly better than KP but not significantly even at the ten

percent level, and TVP is significantly dominated by the other two models.

Table 9: Performance comparison of break models
on last thirty percent of sample

(Average predictive likelihood criterion)

Series PPT10

KP1

PPT10

TV P1

KP1

TV P1

PPT40

KP4

PPT40

TV P4

KP4

TV P4

1 GDPC96 8.28 1.71 -6.07 0.08 1.11 1.03
2 GDPDEF 3.31 48.96 44.18 -3.33 37.08 41.81
3 PCECC96 -1.86 -7.41 -5.65 -7.41 -12.08 -5.04
4 PCECTPI -4.47 19.62 25.22 -2.76 25.70 29.27
5 GPDIC96 -2.65 6.73 9.64 -3.95 6.32 10.69
6∗ OPHPBS -0.83 -4.18 -3.38 -1.63 1.13 2.80
7 ULCNFB 4.92 -3.50 -8.02 -1.66 -7.39 -5.82
8 CPIAUCSL -3.80 14.15 18.66 -3.66 12.83 17.11
9 PPIFCG -1.51 -10.38 -9.00 -4.14 -4.64 -0.52
10 TB3MS -2.33 0.50 2.90 4.16 4.44 0.27
11 GS10 9.48 20.51 10.08 3.25 13.08 9.52
12 M1SL 8.12 -2.35 -9.68 -2.62 -2.25 0.39
13 M2SL -0.89 -4.28 -3.42 69.45 -7.92 -45.66
14∗ UTL11 29.10 306.29 214.72 10.75 337.30 294.86
15∗ SP500 -1.14 6.42 7.64 -0.47 2.88 3.37
16 INDPRO 3.52 -5.72 -8.92 7.66 -15.32 -21.35
17∗ HOUST -1.10 371.17 376.40 -2.92 397.96 412.92
18 AHEMAN 8.09 44.02 33.24 0.49 22.09 21.49
19 UNRATE -2.10 28.62 31.38 -8.20 20.69 31.47
20 PAYEMS 8.28 57.59 45.54 9.65 52.01 38.63
21 EXUSUK -5.57 5.73 11.97 -3.31 -1.97 1.39
22∗ PMI -8.71 39.06 52.32 -4.01 44.46 50.50
23∗ NAPMNOI -0.91 30.98 32.19 -4.96 33.54 40.51

Mean 1.97 17.79∗ 16.56∗ 2.19 15.60∗ 15.29∗

St. Dev. 7.78 26.17∗ 24.77∗ 15.47 26.86∗ 29.09∗

t-stat 1.21 3.12 3.06 0.68 2.66 2.41
Source: results in Tables 15-16. See Table 4 for definitions of models. The

values for column header A
B

are computed as [(APL of model A/APL of model

B)-1]x100. Means and standard deviations with a ∗ superscript are computed

excluding the values for series 14 and 17.

Question 3: The relative differences (in percent) between the RMSE of the different models

are reported in Table 7. On average models with four lags do not perform better than models

with one lag at the ten percent level, except for recursive OLS.

Unlike for the RMSE criterion, the relative performances of PPT with no break and

one break allowed in the forecast period are significantly different on average for our series.
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Allowing for one break deteriorates the performance on average: with one lag by 0.68 percent

at horizon one (t-stat −5.29) and 5.42 percent at horizon four (t-stat −6.65); with four lags

by 0.93 percent at horizon one (t-stat −6.05) and 8.40 percent at horizon four (t-stat 14.4).

This is is explained by the increase of the predictive variances when one break is allowed,

while the predictive means do not change much as witnessed by the RMSE results.

Table 10: Performance comparison of lag orders
on last thirty percent of sample

(Average predictive likelihood criterion)

Series PPT10

PPT40

KP1

KP4

TV P1

TV P4

ROW1

ROW4

REC1

REC4

1 GDPC96 4.36 -3.54 3.75 5.41 -1.57
2 GDPDEF 7.34 0.43 -1.22 0.80 -4.74
3 PCECC96 -4.93 -10.31 -9.73 -7.72 -4.16
4 PCECTPI -5.97 -4.29 -1.19 4.55 -6.49
5 GPDIC96 3.27 1.89 2.87 4.61 -1.80
6∗ OPHPBS -2.70 -3.48 2.69 2.74 -3.98
7 ULCNFB 2.43 -4.00 -1.70 4.75 -7.28
8 CPIAUCSL -5.73 -5.58 -6.82 -3.42 -8.66
9 PPIFCG -2.48 -5.09 3.77 -2.42 -4.42
10 TB3MS 1.73 8.49 5.71 5.43 -3.27
11 GS10 1.03 -4.73 -5.21 -2.64 -2.10
12 M1SL 6.39 -4.17 6.50 6.41 -1.69
13 M2SL -7.51 58.12 -11.03 -5.85 -8.81
14∗ UTL11 -7.43 -20.59 -0.36 -19.11 -21.82
15∗ SP500 3.99 4.69 0.54 3.33 2.86
16 INDPRO 11.49 15.95 0.14 7.18 -7.98
17∗ HOUST -1.42 -3.23 4.18 1.49 -2.75
18 AHEMAN 12.61 4.69 -4.54 1.50 -16.72
19 UNRATE 6.24 -0.39 -0.32 6.15 1.41
20 PAYEMS 9.17 10.55 5.30 3.91 -3.60
21 EXUSUK 7.73 10.31 -0.11 6.83 0.57
22∗ PMI -7.62 -2.87 -4.03 -6.47 -10.15
23∗ NAPMNOI -1.09 -5.13 0.84 3.85 -5.43

Mean 1.34 1.64 -0.43 0.92 -5.33
St. Dev. 6.26 14.52 4.74 6.25 5.54
t-stat 1.03 0.54 -0.44 0.71 -4.61

Source: results in Tables 15-16. See Table 4 for definitions of mod-

els. The values for column header A
B

are computed as [(APL of

model A/APL of model B)-1]x100.

5.3 Discussion of Previous Results

For the APL criterion and the last thirty percent of the sample that serves as forecast period,

we find that the no-break models, especially rolling AR, perform significantly better than the

26



break models. For the RMSE criterion, we find some weak evidence in favor of break models.

Why this difference?

The APL criterion takes into account the whole shape of the predictive density. This

is not normal despite the assumption of normality (conditional on the parameters), because

it is integrated with respect to a posterior distribution that is not symmetric. However our

predictive densities are very moderately skewed since we forecast at short horizons. Therefore,

we can summarize the shape of our predictive by their standard deviation. The RMSE results

indicate that in terms of the location of the point forecasts in the support of the predictive

densities, the two kinds of models (break/no-break) are roughly equivalent on average (of

course, individual exceptions occur). Thus logically the differences in the APL results must

be (at least partly) due to differences in the standard deviation of the predictive densities. In

the results, we find some weak evidence that supports our explanation.

Our rationale uses estimation results reported in Table 3 for the PPT- and KP-AR(1)

models and also for the no-break AR(1) models estimated with an expanding window (AR(1)

full sample header, named REC hereafter) and a rolling window of forty observations (AR(1)

last forty data, named ROW1 hereafter). For the latter, in the last three columns of the table,

we report two sets of point estimates: on the first row the estimates are computed with the

last forty observations of the full sample, on the second row (in italics), they are computed

with the last forty observations of the sample that ends just before the forecast period begins

(1995). We call the latter the pre-forecast sample. For example, for series 1, the posterior

expectation of the error variance is equal to 0.36 for the last forty observations of the full

sample, 0.26 for the pre-forecast sample, and 0.69 for the full sample.

If we compare the pre-forecast ROW1 variance estimates with those of the regime gener-

ating the PPT and KP forecasts, we find that for most series the ROW1 estimate is smaller

than the PPT, KP, or even REC estimates.6 This is nothing else but the effect of the great

moderation. Since the variance of the error determines to a large extent the predictive vari-

ance, we expect that that for the series witnessing this effect, the predictive densities are more

concentrated when based on estimates using essentially data in that period than using data

covering the period that precedes the great moderation (remember that the great moderation

6For series where no break is detected, estimates for the three models should obviously be almost identical,

and this is indeed the case. See series identified by a * superscript on their identification number in Table 3.
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starts in the mid-eighties and our forecast period starts about ten years later). Thus for an

observation that is not far from the mean, the predictive density of ROW1 should be larger

than the predictive of PPT, if the predictive densities have similar means. For an observation

far in the tails, the reverse is true. We indeed observe this on many graphs of predictive

densities. Hence if the observations of the forecast sample are not outliers in the predictive,

and the predictive of both models have approximately the same mean at every date, the APL

of ROW1 should be larger than the APL of PPT.7

To be concrete on this, let us compare the σ2 estimate that is effective at the beginning

of the forecast period from PPT-AR(1) with the σ2 estimate from the AR(1) model on the

pre-forecast period. The error variance estimates of AR(1) models are smaller on average

by 17.45 percent (t-stat −2.42). A comparison of the APL values reveals that they increase

on average by 8.91 percent (t-stat. 4.25) at horizon one, and by 8.42 percent (t-stat 3.26)

at horizon four. The correlation coefficients between the series of percentage changes of the

variances and of the APL are, as expected, negative:−0.21 (t-stat −0.98) for horizon one,

and −0.29 (t-stat−1.41) for horizon four. These negative correlations support our previous

explanation of why ROW1 performs better than PPT in terms of APL, though they are

not much significant statistically (the p-values of the t-statistics are 0.33 and 0.17). Similar

computations with KP-AR(1) instead of PPT10-AR(1) give similar results, with correlations

of −0.21 (t-stat −0.72) at horizon one and −0.14 (t-stat −2.01) at horizon four.

6 Sensitivity Analyses

We perform two sensitivity checks. The first is with respect to the forecast period: we focus

on the last three years of data, starting in 2007, quarter three, which corresponds more or

less to the beginning of the great recession, until the end of the sample. The second check

7A similar argument applies if we compare the APL of PPT10 and PPT11 (and also PPT40 with PPT41).

In PPT11, we allow zero or one break in the forecast period, whereas in PPT10 case, we allow no break, see

Appendix A for details. Therefore the predictive densities of PPT11 are more dispersed by construction than

the densities of PPT10. Hence if the observations of the forecast sample are not outliers in the predictive, and

the predictive of both models have approximately the same mean at every date, the APL of PPT10 should be

larger than the APL of PPT11. We find that this is the case on average for the AR(1) model at horizon one

by 0.68 percent (t-stat 5.29) and at horizon four by 0.93 percent (t-stat 6.05); also for the AR(4) model: at

horizon one, by 5.42 percent (t-stat 6.65), and at horizon four by 8.40 percent (t-stat. 14.4).
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concerns the influence of the prior used in the break models.

6.1 Forecast performance since the middle of 2007

These results were obtained with the same prior as in the previous section. We focus on ques-

tion 1 since for the other questions the previous answers are unchanged, with the exception

that for question 2, using the RMSE criterion, PPT performs significantly better on average

than KP at both horizons.

For the RMSE criterion, break models perform better than no-break models in about

eighty percent of series at both horizons and on average (see the negative means in Table 11).

These differences are significant on average at the five percent level, as the t-statistics in the

table reveal. This is stronger than in the results for the last thirty percent of the sample (see

subsection 5.1).

For the APL criterion, we find that break models perform better than no-break models

in about fifty percent of series at horizon 1, and the (slightly negative) mean difference is

not significant. At horizon four, break models dominate in about eighty percent of series and

the mean difference (of almost +12 percent) is significant at the one percent level. These

conclusions are different from what we found for the last thirty percent of the sample, where

the no-break models, especially ROW, were clearly the winners (see subsection 5.2).

We can explain the improved performance of the break models with respect to ROW

for the last twelve observations by the same argument as in subsection 5.3, but reversed.

Estimated error variances (by ROW) increase at the end of the sample8 due to the impact of

the financial crisis, while break models do not capture this as much (few series have a break

around mid-2007).

6.2 Impact of the prior for break models

In Bayesian inference, it is good practice to assess the sensitivity of the results with respect

to the informative content of the prior. Thus we have computed again all the results with

different sets of prior hyperparameters, one implying a more informative prior (PRIOR M),

and the other a less informative prior (PRIOR L) than our intermediate prior (PRIOR I)

used for getting all the results reported in the previous (sub)sections. The parameter values

8To get an idea of this, compare the two estimates of σ2 for each series in the last column of Table 3.

29



Table 11: Performance comparison
on last twelve observations

RMSE APL

% diff. h = 1 h = 4 h = 1 h = 4
Mean -15.8 -8.51 -0.12 11.96
t-stat -2.40 -2.19 -0.07 3.58
Source: results available on request. Mean

is the mean of percentage differences of the

series.

of PRIOR I are given in Appendix A for the PPT model and in Appendix B for the KP

model.

All our priors (M, I, L) imply that the unconditional prior expectations are equal to

zero for the regression coefficients of the AR(1) or AR(4) equations in each regime since

E(βj) = E[E(βj |β0)] = E(β0) and the latter is set to zero. They imply non-existing second

moments for the regression coefficients because V ar(βj) = V ar[E(βj |β0)] + E[V ar(βj |β0)] =

V ar(β0)+E(B0) and E(B0) is not finite due to setting the degrees of freedom of the Wishart

prior to m + 1, with m = 2 for AR(1) and 5 for AR(4). However V ar(β0) is set to cIm with

c = 1 in PRIOR I and by changing the value of c, we can change the tightness of the prior

on the regression coefficients.

In PRIOR L, we set c = 100, implying standard deviations equal to 10 for β0, that is ten

times larger than the corresponding value in PRIOR I (which has c = 1). We are also less

informative on error variances of AR equations by setting ρ = 0.01 and d = 0.01 (instead of

0.1 for both in PRIOR I) in the PPT model. In the KP model, we set V ω = 100 (instead of

1) and κ1 = κ2 = 0.01 (instead of 0.5).

In PRIOR M, we set c = 0.01Im, implying a more precise prior (with standard deviations

of 0.1) than in PRIOR I. For the other parameters of the prior, the values are the same as in

PRIOR I.

Computed by simulation, the highest prior density interval of ninety percent level for

each regression coefficient is equal to (−17,+17) for PRIOR L, (−3.9,+3.9) for PRIOR I,

and (−2.6,+2.6) for PRIOR M. Notice that if c is set to a smaller value than 0.01, the

last interval does not shrink due to the E(B0) term that is not finite. Compared to the

precisions typically implied by the type of data and sample size we use, all these priors are
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little informative, but PRIOR L is substantially less tight than the other two, while PRIOR

M is slightly more concentrated than PRIOR I. In Table 12, we summarize the difference

between the results with the three priors, for both criteria and for AR(1) specifications.

Table 12: Performance comparison of three priors for AR(1) models
on last thirty percent of sample

PRIOR M/PRIOR I PRIOR L/PRIOR I

horizon PPT10 PPT11 KP1 PPT10 PPT11 KP1
RMSE

1 Mean -0.10 -0.27 -0.02 0.79 0.51 -1.84
t-stat -0.24 -0.68 -0.03 0.91 0.76 -1.22

4 Mean -0.48 -0.80 1.34 0.62 0.14 -2.76
t-stat -0.49 -0.76 1.03 0.77 0.28 -2.12

APL

1 Mean -1.07 -1.07 1.00 -2.20 -2.42 3.12
t-stat -1.67 -1.61 0.82 -1.56 -1.77 3.30

4 Mean -0.92 -0.67 -0.38 -2.34 -5.78 3.26
t-stat -1.16 -0.79 -0.23 -1.27 -4.42 3.26

Source: results available on request. Mean is the mean of percentage differ-

ences of all series.

For each series, horizon, and forecasting model (among PPT10, PPT11, and KP1), we

compute the percentage difference in each criterion value (RMSE and APL) of PRIOR M and

PRIOR L relative to PRIOR I. Then we take the average of these values over all series and

we test the significance of the mean. For example, the positive mean of 0.51 for the RMSE

criterion for PPT11 at horizon one indicates that on average the performance is better with

PRIOR I than with PRIOR L, by half of a percent. The corresponding t-statistic (0.76)

indicates that this is not significant even at the ten percent level. For the APL criterion, a

negative mean such as −2.42 for PPT11 at horizon one indicates a better performance with

PRIOR I than PRIOR L.

For the RMSE criterion, the differences of performance are tiny (nine out of twelve are

under one percent) and statistically insignificant: the largest difference is at horizon four for

KP1 (2.76 percent in favor of PRIOR L relative to I) and it is the single one that is significant

(t-stat −2.12). Globally, for PPT models the mean differences suggest that a more informative

prior reduces the RMSE, but of course this observation is conditional on the range of priors

we have used.

For the APL criterion, the differences are slightly larger in favor of PRIOR I relative to
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M (with one exception for KP1 at horizon one): they are close to one percent but none is

significant at the ten percent level. For PRIOR L relative to I, they vary between two and

six percent in favor of PRIOR I for PPT, and they are slightly over three percent for KP in

favor of PRIOR L. The six t-statistics are larger than one and three of them are significant

at the one percent level. Contrary to what we find for the RMSE, there is no evidence that

a more (or less) informative prior improves the APL values.

7 Conclusion

In this paper, we have compared various forecasting procedures which allow for structural

breaks in a wide variety of common US macroeconomic time series. Our set of forecasting

procedures is divided into two groups: ones which formally model the break process (KP,

PPT and TVP) and those which do not (rolling and recursive OLS forecasts, and UC-SV).

Our empirical results do not tell one single consistent story, but rather a variety of stories.

Most importantly, we have added to the literature establishing the widespread existence of

structural breaks in major macroeconomic time series. Our results also show the importance

of using a forecasting method which allows for parameter change of some sort. However,

perhaps unsurprisingly, we have not established that there is one single forecasting method

that always is to be preferred. Each of our methods performs well in some cases, but not as

well in others.

One of our findings is that, in terms of predictive likelihoods, it is often the case that rolling

(fixed window) forecasts are even better than approaches which formally model the break

process. In Section 5.3, we have offered an explanation for this. However, it is worthwhile

to expand on this finding. In an effort to produce automatic forecasting procedures, suitable

for repeated use with many data sets, this paper has used very simple implementations of

the models of KP and PPT. In particular, for each series, we have used the same models (i.e.

AR models), with the same prior (a relatively noninformative one) and the break process has

been modelled in a very simple way. It is possible that the approaches of KP and PPT are

not well-designed for use in such a black box fashion in such simple models. For instance,

we have imposed that breaks in AR coefficients and error variance occur at the same time.

But in some of the series, it looks to be the case that having separate break processes for the

error variance and AR coefficients would be useful (i.e. ensuring more parsimony by allowing
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breaks in the conditional variance but not in the conditional mean). Also, it is likely that

calibrating priors on a case-by-case basis (or using more sophisticated hierarchical priors as

in KP) could improve forecast performance. And, the hierarchical structures of KP and PPT

will tend to be of most use in more complicated forecasting models (e.g. involving many

predictors or with VARs) where rolling or recursive forecasting methods can perform poorly

(see, e.g., Korobilis and Koop (2010)) rather than simple univariate AR setups.

In sum, in this paper we have established the importance of structural breaks for fore-

casting in many macroeconomic time series. However, we also recommend the careful devel-

opment of appropriate structural break models on a case-by-case basis as opposed to use of

an automatic procedure.
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Appendix A: Technical Details for PPT Approach

In this appendix, we describe posterior and predictive simulation as well as prior elicitation

for our implementation of the PPT approach. Bauwens and Rombouts (2010) provide more

details for posterior simulation and computing the marginal likelihood, which is used for

choosing the number of breaks.

The model is defined by yt = Ztβst + σstεt as in (1) and by the break process which

involves ST = (s1, .., sT )′ where st ∈ {1, 2, ..,K} is a state variable and K is the number of

in sample regimes. Notice that the last regime is an absorbing state over the sample period,

but PPT relax this in the forecast period.

Priors

We use priors of the form:

βj |β0, B0 ∼ Nm(β0, B0),

β0 ∼ Nm(µ
β
, V β),

B−1
0

∼ Wishart
(

ξ,B
)

,

σ−2

j |υ0, d0 ∼ Gamma(υ0, d0),

υ0 ∼ Gamma(λ, ρ),

d0 ∼ Gamma(c, d)

pi ∼ Beta (a, b) .

In particular, in the forecasting exercise we set µ
β

= 0, V β = Im, B = 10Im, ξ = m + 1

(where m is the dimension of Zt), λ = 1, ρ = 0.1, c = 1, d = 0.1, and a = b = 1. This implies

that all priors are proper but little informative.

Posterior simulator

The posterior simulation algorithm is a Gibbs sampler. Given initial conditions, the data,

and in each block the other parameters, the sampling is done as follows:

1. Draw ST using Chib’s (1998) algorithm.
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2. Draw pi from Beta (a + Ti, b + 1) for i = 1, ...,K, where Ti is the number of observations

in regime i.

3. Draw βi|σ
2
i from Normal and σ2

i |βi from Gamma, for i = 1, 2, . . . ,K.

4. Draw β0|B0 from Normal and B−1
0

|β0 from Wishart.

5. Draw d0|υ0 from Gamma and υ0|d0 by numerical evaluation and inversion of its cdf.

Appendix B: Technical Details for KP Approach

In this appendix, we describe posterior and predictive simulation as well as prior elicitation

for our implementation of the KP approach.

It is convenient to write equation (1) as yt = Ztβst + exp (ωst/2) εt. The transition

probabilities between the states are defined in (5) so that the last diagonal element of the

transition matrix is equal to pK rather than one as in the PPT approach.

Priors

We use priors of the form:

βj ∼ Nm (βj−1, B0)

ωj ∼ N (ωj−1, δ)

β0 ∼ Nm

(

0, V β

)

ω0 ∼ N (0, V ω)

B−1

0
∼ Wishart

(

ξ,B
)

δ−1 ∼ Gamma
(

κ1, κ2

)

pi,i ∼ Beta (a, b) .

In particular, in the forecasting exercise we set V β = Im, V ω = 1, B = 10Im, ξ = m + 1,

κ1 = κ2 = 0.5, and a = b = 1. This implies that all priors are proper but very little

informative.
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Posterior simulator

The posterior simulation algorithm is a Gibbs sampler. Given initial conditions, the data,

and in each block the other parameters, the sampling is done as follows:

1. Draw ST using Chib’s (1998) algorithm.

2. Draw pi from Beta (a + Ti, b + 1) for i = 1, ...,K, where Ti is the number of observations

in regime i.

3. Draw [βst ]
T
t=1

using the modified Kalman filter algorithm (see below).

4. Draw [ωst ]
T
t=1

using the modified Kalman filter algorithm, after writing the model in

appropriate linear state space form using the Kim, Shephard and Chib (1998) algorithm.

5. Draw B−1
0

and δ−1, conditional on the draws of βt and ωt, using standard expressions.

Modified Kalman filter algorithm

Consider a state-space model of the following form:

yt = ztast + εt (10a)

aj = aj−1 + ηst (10b)

εt ∼ N
(

0, γ2
1

)

, ηj ∼ N
(

0, γ2
2

)

conditional on knowing st, where (10a) is the measurement equation and (10b) is the state

equation, with observed data yt and unobserved state ast . If the errors ǫt, ηt are iid and

uncorrelated with each other, we can use the Kalman filter to estimate the state a.

Let at|s denote the expected value of at and Pt|s its corresponding variance, using data up

to time s. Given starting values a0|0 and P0|0, the Kalman filter recursions provide us with

initial filtered estimates:

at|t−1 = at−1|t−1

Pt|t−1 =







Pt−1|t−1 + γ2
2 , if st−1 6= st

Pt−1|t−1 , otherwise
(11)

Kt = Pt|t−1z
′
t

(

ztPt|t−1zt + γ2
1

)−1
(12)

at|t = at|t−1 + Kt

(

yt − ztat|t−1

)

Pt|t = Pt|t−1 − KtztPt|t−1.
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Once we reach the last period (t = T ) we take the standard draw asT
∼ N

(

aT |T , PT |T

)

.

If sT = T then a break occurs in each observation and we have a full tvp model, so that

the Carter and Kohn smoother applies to all observations t. However with structural breaks

models it will be the case that sT << T (i.e. the number of breaks is smaller than the

number of observations, i.e. we do not have a full tvp model), we can only simulate aj for

j = sT + 1, ..., T (i.e. the “out-of-sample breaks” in a) using equation (10b). For j = 1, ..., sT

we can use a standard smoother to get smoothed estimates. To do that, we run the backward

recursions for t = T − 1, ..., 1:

at|t+1 = at|t + Pt|tP
′
t+1|t

(

at+1 − at|t

)

, iff st+1 6= st

Pt|t+1 = Pt|t − Pt|tP
′
t+1|tPt|t, iff st+1 6= st

and draw ast ∼ N
(

at|t+1, Pt|t+1

)

iff st+1 6= st.

Appendix C: Predictive Simulator for PPT and KP models

Forecasting with no breaks out-of-sample (PPT model)

Since the PPT model implies that observations following T (the last sample date) are gen-

erated from yT+h|YT+h−1, θK where θK = (βK , σ2
K), i.e. under the last operating regime, we

can compute predictive densities as follows:

p(yT+h|sT+h = K, sT = K,YT ) =
∫

. . .
∫

∏h−1

j=0
p(yT+h−j|YT+h−1−j, θK)

p(θK |θ0, ST , YT ) p(θ0|ST , YT , A) p(ST |YT ) dyT+h−1 . . . dyT+1dθKdθ0dST−1,
(13)

where the integration is done with respect to ST−1 rather than ST since sT = K. This

is implemented by simulation within the Gibbs sampler for the posterior density: for each

Gibbs draw of θK , θ0 and ST−1, we generate sequentially future values yT+1, . . . , yT+h, each

from yT+h−j ∼ p(yT+h−j|YT+h−1−j, θK), and we keep yT+h as a draw of the corresponding

predictive density p(yT+h|sT+h = K, sT = K,YT ). Doing this for e.g. h = 4 provides also the

draws of the predictive densities for h ≤ 4.

Forecasting with breaks out-of-sample (PPT & KP models)

The previous discussion does not allow for a break to occur in the forecast period. In order

to allow in the PPT for the possibility of occurrence of one new regime after T , we lift the
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restriction pK = 1 (something already done in the KP model) and extend the transition

matrix to






























p1 1 − p1 0 . . . 0 0 0

0 p2 1 − p2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . pK−1 1 − pK−1 0

0 0 0 . . . 0 pK 1 − pK

0 0 0 . . . 0 0 1































.

Additional regimes can be added by extending further the transition matrix, but here we

consider the predictive density subject to one break occurring after date T . Assume that

the break occurs at date T + d where d can take any value in the set {1, 2, . . . , h}. For the

predictive simulation of yT+h with h < d (the no-post-sample break case), we proceed as

above. For h ≥ d, the break occurrence implies that yT+h ∼ p(yT+h|YT+h−1, θK+1) where

θK+1 is the parameter characterizing the new regime, and is drawn from its hierarchical prior

density p(θK+1|θ0). The observed sample does not provide information about θK+1 and thus

does not directly update this prior, but it does so indirectly by updating the prior information

about θ0 since this is drawn from its posterior distribution in the Gibbs sampler.

Assume first that h = d = 1. Then, given θ0 (drawn in the Gibbs sampler), θK+1 is drawn

from p(θK+1|θ0) and given this draw, yT+1 is drawn from p(yT+1|YT , θK+1). This procedure

is repeated at each iteration of the Gibbs sampler and delivers a sample of draws from the

predictive density p(yT+1|sT+1 = K + 1, sT = K,YT ).

Next assume that h = 2 and d = 1: yT+1 is simulated as explained just above, and yT+2

is drawn from p(yT+2|yT+1, YT , θK+1) where yT+1 is set at its simulated value and θK+1 is

maintained to be the value used for drawing this yT+1. For h larger than 2, one proceeds

sequentially in the same way, i.e. freezing θK+1 and using the simulated lagged values yT+h−j

(j = 1, 2, . . . , h − 1) in the conditioning of p(yT+h|YT+h−1, θK+1).

Finally if h ≥ d ≥ 1, the values yT+j for j = 1, 2, . . . , d − 1 are sequentially simulated as

in the no-post-sample break case. Then for j = d, θK+1 is drawn from p(θK+1|θ0) and given

this draw, yT+j for j = d, d+1, . . . , h are drawn sequentially. The next formula validates this
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simulation procedure for known break date T + d:

p(yT+h|τK = T + d, sT+h = K + 1, sT = K,YT ) =
∫

. . .
∫

∏h−1

j=0
p(yT+h−j|YT+h−1−j, θK+11{h≥d} + θK1{h<d})

p(θK+1|θ0, ST , YT ) p(θK |θ0, ST , YT ) p(θ0|ST , YT , A) p(ST |YT )

dyT+h−1 . . . dyT+1dθK+1dθKdθ0dST−1

(14)

where 1{h≥d} is equal to 1 if h ≥ d and 0 otherwise, and 1{h<d} = 1 − 1{h≥d}. To marginal-

ize this density with respect to the break date d, we sum over all values of d as follows:

p(yT+h|sT+h = K + 1, sT = K,YT ) =

∑h
d=1

p(yT+h|τK = T + d, sT+h = K + 1, sT = K,YT )

×Pr[τK = T + d|sT+h = K + 1, sT = K,YT ]
(15)

with Pr[τK = T + d|sT+h = K + 1, sT = K,YT ] = pd−1

K (1 − pK)/(1 − ph
K). Finally, we can

integrate p(yT+h|sT+h, sT = K,YT ) with respect to the number of post-sample breaks (0 or

1): p(yT+h|sT = K,YT ) =

p(yT+h|sT+h = K, sT = K,YT )p(sT+h = K|sT = K,YT )

p(yT+h|sT+h = K + 1, sT = K,YT )[1 − p(sT+h = K|sT = K,YT )]
(16)

where p(sT+h = K|sT = K,YT ) = ph
KK. This is simulated by drawing sT+h from its discrete

distribution, and then yT+h from (13) if sT+h = K and from (15) if sT+h = K +1. To sample

the discrete distribution, we need a value of pK . This is simulated in the Gibbs sampler from

its full conditional posterior density, which is Beta(a + TK , b + 1), where TK is the number of

observations in regime K according to the sampled ST vector.

As an example, to implement the simulation of yT+1, we substitute (13), (15) and (14) in

(16) and obtain p(yT+1|sT = K,YT ) =

pK

∫

. . .
∫

p(yT+1|YT , θK) p(θK |θ0, ST , YT ) p(θ0|ST , YT , A) p(ST |YT )

dθKdθ0dST−1

+(1 − pK)
∫

. . .
∫

p(yT+1|YT , θK+1) p(θK+1|θ0, ST , YT ) p(θK |θ0, ST , YT )

p(θ0|ST , YT , A)p(ST |YT ) dθK+1dθKdθ0dST−1.

This formula shows that the simulation for one predictive draw in the KP model, and the

PPT model with the possibility of breaks occurring out-of-sample, is performed as follows:
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1. Draw ST , θ0 and θK from the posterior (i.e. use a draw of the Gibbs sampler once it

has converged).

2. Draw pK ∼ Beta(a + TK , b + 1).

3. Draw sT+1 = K or K + 1 with respective probabilities (pK , 1 − pK).

4. If sT+1 = K, draw yT+1 ∼ p(yT+1|YT , θK). If sT+1 = K+1, draw θK+1 ∼ p(θK+1|θ0, ST , YT )

and yT+1 ∼ p(yT+1|YT , θK+1).

If this is repeated as many times as one iterates in the Gibbs sampler, one obtains as

many draws of the predictive of yT+1. Generalizing this algorithm to h ≥ 2 is not difficult

but requires lengthy formulas.

Appendix D: Additional Tables

These tables may not be included in the paper. They are providing detailed results on which

some tables in the paper are based. They are referenced in the paper, but these links can be

removed without being harmful to the understanding of the paper.
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series PPT10 PPT11 PPT40 PPT41 KP1 KP4 TVP1 TVP4 ROW1 ROW4 REC1 REC4 UC-SV
1 GDPC96 0.989 0.991 0.947 0.945 0.994 0.967 0.999 0.965 1.048 1.019 1.007 0.964 0.608

2 GDPDEF 1.015 1.011 0.969 0.964 1.075 0.983 1.000 0.944 1.021 1.058 1.082 0.969 0.261

3 PCECC96 1.139 1.135 0.962 0.965 1.126 0.983 1.157 1.024 1.070 0.997 1.137 0.989 0.419

4 PCECTPI 1.027 1.030 1.007 1.003 1.029 1.029 0.942 0.963 0.953 0.969 1.037 1.008 0.439

5 GPDIC96 1.011 1.017 0.996 0.998 1.006 0.999 1.024 1.009 1.011 1.043 1.018 0.999 0.354

6∗ OPHPBS 0.831 0.836 0.804 0.802 0.844 0.803 0.858 0.837 0.900 0.911 0.831 0.800 0.844

7 ULCNFB 0.896 0.898 0.824 0.823 0.941 0.829 0.800 0.804 0.813 0.826 0.930 0.827 1.275

8 CPIAUCSL 0.702 0.700 0.725 0.719 0.689 1.253 0.699 0.675 0.714 0.707 0.698 0.676 0.986

9 PPIFCG 0.730 0.730 0.705 0.698 0.721 1.301 0.722 0.671 0.754 0.728 0.729 0.677 2.499

10 TB3MS 0.937 0.939 0.936 0.936 0.919 1.004 1.033 1.019 0.976 1.057 1.051 1.068 0.381

11 GS10 0.844 0.848 0.804 0.808 0.849 0.808 0.849 0.830 0.847 0.810 0.847 0.807 0.433

12 M1SL 0.712 0.714 0.867 0.823 0.755 0.722 0.711 0.713 0.751 0.827 0.713 0.719 1.709

13 M2SL 0.759 0.757 0.672 0.671 0.760 1.290 0.762 0.690 0.781 0.704 0.759 0.668 0.957

14∗ UTL11 0.817 0.812 0.528 0.529 0.768 0.549 0.631 0.687 0.793 0.552 0.771 0.547 0.151

15∗ SP500 0.926 0.922 0.935 0.930 0.924 1.235 0.928 0.945 0.944 1.045 0.923 0.949 0.798

16 INDPRO 0.925 0.923 1.062 1.034 0.935 0.911 0.992 0.963 0.970 1.011 0.980 0.925 1.035

17∗ HOUST 0.844 0.849 0.794 0.791 0.851 0.805 0.663 1.003 0.863 0.851 0.851 0.806 0.090

18 AHEMAN 0.884 0.885 0.925 0.923 0.972 0.911 0.881 0.879 0.886 0.911 1.123 0.958 0.319

19 UNRATE 0.966 0.966 0.967 0.969 0.976 0.942 1.117 1.135 1.001 1.063 0.959 0.974 0.235

20 PAYEMS 0.859 0.857 0.789 0.788 0.880 0.769 0.956 0.927 0.897 0.860 0.889 0.866 0.273

21 EXUSUK 0.898 0.898 0.876 0.879 0.900 0.880 0.906 0.903 0.921 0.902 0.894 0.874 0.406

22∗ PMI 0.821 0.818 0.731 0.732 0.829 0.721 0.796 0.745 0.864 0.784 0.822 0.722 0.379

23∗ NAPMNOI 0.866 0.863 0.823 0.821 0.864 0.801 0.879 0.820 0.909 0.892 0.863 0.799 0.568

See Table 4 for model definitions. Values in the last column are the RMSE for the UC-SV model. Values in other columns are the RMSE values for each
model in the column header, divided by the value for the UC-SV model. For each series, the smallest value across all models is in bold. If this global
minimum is in the category PPT+KP+TVP, the value in italics is the minimum across all other models. If the global minimum is in these other models,
the value in italics is the minimizer across the PPT+KP+TVP models.
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series PPT10 PPT11 PPT40 PPT41 KP1 KP4 TVP1 TVP4 ROW1 ROW4 REC1 REC4 UC-SV
1 GDPC96 0.849 0.852 0.848 0.847 0.857 0.872 0.832 0.824 0.863 0.900 0.864 0.856 0.823

2 GDPDEF 1.116 1.105 1.032 1.028 1.172 1.020 1.046 1.012 1.148 1.011 1.208 1.035 0.268

3 PCECC96 1.031 1.041 0.948 0.944 1.035 0.972 1.000 0.984 1.066 1.057 1.040 0.989 0.550

4 PCECTPI 1.039 1.023 0.991 0.995 1.019 0.999 0.855 0.871 0.857 0.865 1.037 1.000 0.511

5 GPDIC96 0.779 0.779 0.789 0.789 0.782 0.784 0.781 0.781 0.823 1.010 0.785 0.795 0.497

6∗ OPHPBS 0.824 0.822 0.820 0.822 0.817 0.817 0.854 0.860 0.850 0.857 0.819 0.816 0.869

7 ULCNFB 0.947 0.951 0.957 0.959 0.983 0.961 0.921 0.939 0.925 1.008 1.033 0.967 1.105

8 CPIAUCSL 0.836 0.840 0.920 0.884 0.847 0.842 0.837 0.837 0.843 0.871 0.838 0.843 0.886

9 PPIFCG 0.795 0.795 0.780 0.799 0.788 0.771 0.791 0.777 0.793 0.810 0.792 0.775 2.419

10 TB3MS 0.776 0.776 0.776 0.772 0.781 0.781 0.795 0.793 0.807 0.885 0.782 0.771 0.592

11 GS10 0.753 0.754 0.750 0.750 0.759 0.761 0.758 0.759 0.770 0.773 0.754 0.752 0.474

12 M1SL 0.855 0.852 1.003 0.917 0.876 0.893 0.854 0.875 0.860 0.889 0.854 0.888 1.508

13 M2SL 0.835 0.834 0.835 0.833 0.832 1.538 0.834 0.834 0.835 0.846 0.833 0.838 0.875

14∗ UTL11 1.133 1.093 0.937 0.939 0.952 0.943 1.116 1.213 1.105 1.015 0.961 0.952 0.377

15∗ SP500 0.824 0.828 1.085 0.953 0.829 0.832 0.824 0.829 0.843 0.885 0.828 0.830 0.949

16 INDPRO 0.813 0.810 1.028 0.848 0.834 0.806 0.773 0.770 0.964 0.893 0.784 0.785 1.868

17∗ HOUST 0.981 0.980 1.009 1.006 0.983 1.040 1.226 1.395 1.405 1.374 0.989 1.051 0.230

18 AHEMAN 0.816 0.835 0.890 0.892 0.961 0.894 0.836 0.867 0.814 0.813 1.426 0.972 0.350

19 UNRATE 0.865 0.863 0.862 0.860 0.887 0.908 0.865 0.881 0.995 1.066 0.845 0.870 0.386

20 PAYEMS 0.994 0.994 0.969 0.962 1.009 0.959 0.932 0.926 1.151 1.100 0.962 1.020 0.559

21 EXUSUK 0.870 0.866 0.850 0.855 0.852 0.857 0.845 0.846 0.865 0.926 0.850 0.850 0.469

22∗ PMI 0.825 0.817 0.754 0.761 0.815 0.745 1.026 0.989 0.893 0.905 0.805 0.743 0.743

23∗ NAPMNOI 0.800 0.800 0.757 0.787 0.787 0.723 0.992 0.952 0.854 0.724 0.777 0.711 1.022

See Table 4 for model definitions. Values in the last column are the RMSE for the UC-SV model. Values in other columns are the RMSE values for each
model in the column header, divided by the value for the UC-SV model. For each series, the smallest value across all models is in bold. If this global
minimum is in the category PPT+KP+TVP, the value in italics is the minimum across all other models. If the global minimum is in these other models,
the value in italics is the minimizer across the PPT+KP+TVP models.
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series PPT10 PPT11 PPT40 PPT41 KP1 KP4 TVP1 TVP4 ROW1 ROW4 REC1 REC4 UC-SV
1 GDPC96 1.753 1.734 1.680 1.663 1.008 1.678 1.724 1.661 1.747 1.657 1.327 1.348 0.289

2 GDPDEF 3.068 3.019 2.858 2.821 2.970 2.957 2.060 2.085 3.306 3.280 2.505 2.630 0.423

3 PCECC96 1.415 1.403 1.488 1.474 1.441 1.607 1.528 1.692 1.783 1.932 1.425 1.487 0.333

4 PCECTPI 2.264 2.247 2.408 2.391 2.370 2.476 1.893 1.916 2.704 2.586 2.328 2.490 0.388

5 GPDIC96 1.925 1.923 1.864 1.857 1.978 1.941 1.804 1.754 2.354 2.251 1.859 1.893 0.371

6∗ OPHPBS 1.509 1.502 1.551 1.552 1.521 1.576 1.575 1.533 1.626 1.583 1.525 1.588 0.230

7 ULCNFB 1.403 1.408 1.370 1.355 1.337 1.393 1.454 1.479 1.563 1.492 1.275 1.375 0.218

8 CPIAUCSL 2.200 2.201 2.333 2.303 2.287 2.422 1.927 2.068 2.519 2.608 2.282 2.499 0.288

9 PPIFCG 1.558 1.561 1.597 1.599 1.582 1.666 1.738 1.675 1.508 1.545 1.615 1.690 0.157

10 TB3MS 2.142 2.117 2.106 2.083 2.193 2.022 2.131 2.016 2.211 2.097 1.178 1.218 0.378

11 GS10 1.952 1.927 1.932 1.900 1.783 1.871 1.619 1.708 2.110 2.167 1.882 1.922 0.335

12 M1SL 1.672 1.672 1.571 1.561 1.546 1.614 1.712 1.608 1.561 1.467 1.712 1.742 0.177

13 M2SL 1.796 1.796 1.942 1.926 1.812 1.146 1.876 2.109 1.934 2.054 1.808 1.983 0.249

14∗ UTL11 6.347 6.268 6.856 6.687 4.916 6.191 1.562 1.568 6.744 8.336 4.846 6.199 0.466

15∗ SP500 1.626 1.616 1.564 1.567 1.645 1.571 1.528 1.520 1.608 1.556 1.634 1.588 0.268

16 INDPRO 1.357 1.346 1.217 1.196 1.311 1.130 1.439 1.437 1.335 1.245 0.895 0.972 0.257

17∗ HOUST 7.475 7.386 7.583 7.548 7.558 7.811 1.587 1.523 9.639 9.497 7.603 7.818 0.485

18 AHEMAN 2.552 2.519 2.266 2.240 2.361 2.255 1.772 1.856 2.550 2.513 1.616 1.941 0.374

19 UNRATE 2.785 2.749 2.622 2.603 2.845 2.856 2.166 2.172 3.328 3.135 2.674 2.637 0.433

20 PAYEMS 3.423 3.368 3.136 3.064 3.161 2.860 2.172 2.063 3.370 3.244 2.375 2.464 0.419

21 EXUSUK 2.008 1.998 1.864 1.866 2.127 1.928 1.900 1.902 2.181 2.042 2.031 2.019 0.388

22∗ PMI 2.131 2.122 2.307 2.275 2.334 2.403 1.533 1.597 2.596 2.775 2.147 2.389 0.371

23∗ NAPMNOI 1.873 1.875 1.894 1.887 1.891 1.993 1.430 1.418 1.989 1.915 1.895 2.004 0.310

See Table 4 for model definitions. Values in the last column are the average predictive likelihoods (APL) for the UC-SV model. Values in other columns
are the APL values for each model in the column header, divided by the value for the UC-SV model. For each series, the largest value across all models is
in bold. If this global maximum is in the category PPT+KP+TVP, the value in italics is the maximum across all other models. If the global maximum is
in these other models, the value in italics is the maximizer across the PPT+KP+TVP models.
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series PPT10 PPT11 PPT40 PPT41 KP1 KP4 TVP1 TVP4 ROW1 ROW4 REC1 REC4 UC-SV
1 GDPC96 2.590 2.437 2.405 2.134 2.366 2.194 2.581 2.424 2.601 2.399 1.971 1.958 0.182

2 GDPDEF 3.584 3.229 3.712 3.340 3.207 3.771 2.486 2.663 3.995 4.399 2.580 3.301 0.256

3 PCECC96 2.185 2.106 2.127 2.020 2.183 2.184 2.368 2.246 2.628 2.448 2.210 2.223 0.198

4 PCECTPI 2.540 2.449 2.873 2.675 2.720 2.885 2.382 2.371 3.670 3.734 2.575 2.919 0.228

5 GPDIC96 3.231 3.127 3.156 2.945 3.324 3.191 3.119 3.070 3.992 3.762 3.187 3.189 0.211

6∗ OPHPBS 2.070 2.023 2.093 1.956 2.101 2.087 2.055 1.936 2.286 2.161 2.092 2.113 0.165

7 ULCNFB 1.889 1.860 1.752 1.670 1.667 1.803 1.973 1.971 2.066 1.918 1.661 1.812 0.151

8 CPIAUCSL 3.242 3.167 3.142 2.960 3.269 3.216 2.733 2.793 3.425 3.217 3.345 3.275 0.184

9 PPIFCG 2.009 1.974 1.961 1.874 2.033 2.026 2.186 2.035 1.970 1.912 2.064 2.060 0.113

10 TB3MS 3.099 2.864 2.941 2.647 2.911 2.682 3.051 2.915 ⁀2.900 2.535 1.996 1.999 0.211

11 GS10 3.047 2.936 2.913 2.632 2.761 2.762 2.672 2.651 3.278 3.278 2.977 2.933 0.209

12 M1SL 2.051 2.001 1.857 1.749 1.889 1.904 2.030 1.973 1.932 1.781 2.101 2.106 0.137

13 M2SL 2.651 2.564 2.644 2.507 2.632 1.556 2.768 2.845 2.878 2.752 2.668 2.703 0.168

14∗ UTL11 4.959 4.252 3.866 3.425 4.201 3.560 0.852 0.739 5.042 4.621 4.235 3.564 0.247

15∗ SP500 2.567 2.485 2.450 2.312 2.550 2.505 2.315 2.275 2.494 2.222 2.565 2.530 0.164

16 INDPRO 1.830 1.729 1.667 1.506 1.720 1.566 1.969 1.883 1.795 1.641 1.361 1.382 0.142

17∗ HOUST 6.753 6.181 5.865 5.341 6.777 5.882 0.911 0.865 7.298 7.843 6.859 5.959 0.254

18 AHEMAN 4.375 3.985 3.510 3.156 3.889 3.460 2.756 2.720 4.405 4.317 2.100 2.857 0.215

19 UNRATE 3.970 3.792 3.783 3.559 4.300 3.883 3.625 3.592 5.090 4.492 3.919 3.838 0.241

20 PAYEMS 3.506 3.214 2.877 2.542 3.106 2.657 2.106 1.885 3.284 2.788 2.474 2.292 0.246

21 EXUSUK 3.090 3.124 2.986 2.822 3.248 2.966 3.381 3.291 3.365 3.221 3.308 3.242 0.225

22∗ PMI 2.289 2.152 2.216 2.034 2.509 2.334 1.065 1.054 2.760 2.277 2.381 2.392 0.196

23∗ NAPMNOI 2.270 2.122 2.198 2.332 2.332 2.376 1.115 1.108 2.474 2.213 2.393 2.472 0.158

See Table 4 for model definitions. Values in the last column are the average predictive likelihoods (APL) for the UC-SV model. Values in other columns
are the APL values for each model in the column header, divided by the value for the UC-SV model. For each series, the largest value across all models is
in bold. If this global maximum is in the category PPT+KP+TVP, the value in italics is the maximum across all other models. If the global maximum is
in these other models, the value in italics is the maximizer across the PPT+KP+TVP models.
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