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Abstract:

The paper investigates how comparisons of multivariate inequality can be made robust
to varying the intensity of focus on the share of the population that are more relatively
deprived. It follows the dominance approach to making inequality comparisons, as
developed for instance by Atkinson (1970), Foster and Shorrocks (1988) and Formby,
Smith, and Zheng (1999) in the unidimensional context, and Atkinson and Bourguignon
(1982) in the multidimensional context. By focusing on those below a multidimensional
inequality “frontier”, we are able to reconcile the literature on multivariate relative poverty
and multivariate inequality. Some existing approaches to multivariate inequality actually
reduce the distributional analysis to a univariate problem, either by using a utility function
first to aggregate an individual’'s multiple dimensions of well-being, or by applying a
univariate inequality analysis to each dimension independently. One of our innovations
is that unlike previous approaches, the distribution of relative well-being in one
dimension is allowed to affect how other dimensions influence overall inequality. We
apply our approach to data from India and Mexico using monetary and non-monetary
indicators of well-being.
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JEL Classification: D3, I3



1 Introduction

In a recent review of the literature on multivariate inegyaineasurement,
Weymark (2004) concludes that “(...) Although much hasaalyebeen learned
about multidimensional normative inequality indices, imuore remains to be
discovered. Compared to the theory of univariate inequatieasurement, the
analysis of multidimensional inequality is in its infarfcyp.29) This paper is a
contribution to that young literature.

The method we develop and empirically apply is very much & ghirit of
Amartya Sen’s conceptual framework for thinking of inedtyal In that frame-
work, it is important to make clear at the outset what one imEaring across
individuals (Sen 1982). The paper adopts the view that tbanebe several di-
mensions to well-being, and that comparisons of well-be&ogss individuals
should therefore be multidimensional. In addition, in nmgkhormative judge-
ments on distributions of well-being, it is important to neaéxplicit the ethical
norms that are used. This has been clearly argued in thextafteneasuring
both inequality and poverty (Sen 1973 &nd Sen 1976). Therpapkes these
judgements explicit by using classes of multidimensionabfuality indices that
are defined on the basis of explicit normative criteria.

In doing this, we build on the dominance approach to making
inequality comparisons, as developed for instance [by Atkin(1970),
Foster and Shorrocks (1988) ahd Formby, Smith, and Zherifj1& the uni-
dimensional context, and Atkinson and Bourguignon (1982)he multidimen-
sional context. One advantage of this approach is that dpsile of generating
inequality orderings that are robust over broad classeseagfuality indices and
over broad classes of aggregation rules across dimendiovedlebeing.

We start with the framework for multivariafovertycomparisons developed
in [Duclos, Sahn, and Younger (2006). Two modifications of #pmproach make
it suitable to inequality analysis. First, rather than d¢des absolute values of
multiple measures of well-being, we normalize them by arezfee value, usually
their mean. The robust poverty comparisons of Duclos, Satgh,Younger (2006)
thus become robustlativepoverty comparisons. These can be of interest in their
own right (see for instance Sen 1983), but they also permiibke analysis of
inequality if the poverty lines are allowed to span a suitddnige range, extending
beyond the least deprived people in the population.

Second, by taking a relative poverty approach we are ablectasfon “down-
side” inequality aversion. Specifically, we consider inalify indices that can
give greater weight to those positioned at the bottom of te#-lbeing distribu-
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tion. This is done by focusing our comparisons on individuzlow a multidi-

mensional poverty “frontier” that functions like a povetiye in a single dimen-
sion: people beyond this frontier do not contribute to reéapoverty. In this

approach, inequality is the limiting case of relative payethe case in which the
poverty frontier is so far from the origin that everyone’tative position in the

well-being distribution can have an impact on relative poveNe show how our
orderings can also be considered to be “frontier-robust”.

It is of course possible to think of making multidimensiorglative poverty
comparisons by performing univariate comparisons inddeetly for each di-
mension of well-being. But that does not allow the level ofisaeing in one
dimension to influence our assessment of how other dimessifiact overall
relative poverty, something that we argue any reasonablévamiate compari-
son should consider. Thus, an important feature of the ial@guand relative
poverty tests we develop is that they take into account tipemnidence between
two measures of well-being when making multivariate congosus. This will
be important when that dependence is stronger for one pquldan it is for
another. In such cases, univariate comparisons carrieith each dimension sep-
arately can yield results that differ from the genuine nvaltiate comparisons
developed here. For example, populatidmmay have lower univariate relative
poverty than populatio® for two measures of well-being and¢. But if A also
has a greater dependence betwgamd¢, then it may also haviigherbivariate
relative poverty tharB despite the univariate differences. And of course, the op-
posite is also true. In practice, we find that one-at-a-timigariate comparisons
conclude that one population has lower inequality thantsrdbo easily, and that
it is relatively rare to find greater multivariate inequglih A than in B when we
do not find greater univariate inequality ththan inB.

It is ethically important to suppose that the dependenced®t dimensions
of well-being matters. In particular, someone who is re&yi worse-off in terms
of & contributes more to the relative poverty and inequality soea if he is also
relatively worse-off in terms of. Without this conviction, one could just as well
study each dimension of well-being separately.

To highlight further the importance of the dependence betwaultiple mea-
sures of well-being, one of the key theoretical results ofpaper is that if popu-
lation B has a greater covariance between the two dimensions thahgtop A
does, it is impossible foB to dominateA at first or second order over the entire
domain of the joint distribution of relative well-being. Ui, it is impossible to
draw a robust conclusion tha&t has lower inequality thanl at first and second
orders, regardless of the dispersions of the marginalibligions, though conclu-
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sions about relative poverty may still be possible. Thiggia decisive role to the
covariance between dimensions of well-being; it is analsgio the role of the
mean in univariate generalized Lorenz comparisons, whelistabution with a
lower mean cannot stochastically dominate one with a greag¢an regardless of
the dispersions of the two distributions (Shorrocks 1983).

We also extend our approach to making robust inequality @risgns both
in a relative and in an absolute sense. Relative inequatityparisons involve
comparing the ratios of income to average income acrossicdils. Absolute
inequality comparisons involve comparing distances betwiacomes and mean
income across individuals. As mentioned above, relatiegumality comparisons
can be thought of as a limiting case of relative poverty campas, namely, when
the relative poverty frontier extends over everyone in thpytation. Absolute
inequality comparisons can be thought of as a limiting cdsabeolute poverty
comparisons, when the poverty frontier extends beyondeth&t deprived individ-
uals in the population and when deprivation is measured &absolute income
difference with the mean.

To gain a better understanding of how our proposed comparisork in prac-
tice, we apply them to several simulated distributions alsg & two diverse
sources of data and different dimensions of well-being: 1889 Demographic
and Health Survey from India, where we rely on an importaatthendicator, the
hemoglobin concentration (g/Dl) of women aged 15-49, anindex of the assets
owned by those women’s households; and from Mexico’s ZB@&@uacbn Na-
cional del Logro Acaédmico de Centros Escolaréslational Evaluation of Aca-
demic Attainment in High Schools), where the indicators eflseing involve
achievement tests administered to all high school studemexico, in addition
to an asset index constructed in a similar manner to the batea These applica-
tions are of considerable interest since little is known eirgdly about multidi-
mensional inequality rankings. In order to add furthervatee to our empirical
work, we provide the sampling distribution of the estimattitat are needed to
make inferences about the true population rankings.

The stochastic dominance tests that we use yield very stresgts: if we
can reject the null of non-dominance, we can conclude thatpmpulation has
greater inequality for broad classes of inequality measthat include arbitrary
aggregation across dimensions of well-being and acros@dgls. As a result,
we should expect that it is relatively difficult to reject thell. In fact, for many
of the distributions that we study, both simulated and reéd, is the case. Com-
pared to our previous work on multivariate poverty comparss we find it sig-
nificantly more difficult to reject the null of non-dominand®ne reason for this
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is that poverty can be lower in one population than anothteeebecause it has
greater means or because it has lower dispersions in thamahdjstributions,
while relative poverty or inequality comparisons can diftaly due to greater
dispersions. But an equally important reason, highliglmedur simulations, is
that the covariance between dimensions of well-being asswan overwhelming
importance as we extend the test domain to the least deprhsetvations in the
sample. Poverty comparisons do not usually consider thesdthier people (by
the focus axiom), but inequality comparisons must do so.dnyrcases, it will be
possible to draw robust conclusions for a (relative) pgvedmparison, but not
for an inequality comparison, because of the increasedthaliethe covariances
play for such comparisons.

2 Multiple indicators of relative well-being

As with several other papers in the literature, we will famplicity mostly
focus on the 2-dimensional case. keandy then be two indicators of individual
well-being normalizedby some norm. These indicators could be, for instance,
income, expenditures, calorie consumption, height, cogrability, etc, normal-
ized by what is deemed to be enjoyed by a representativeithudilin a society.
As we will discuss below, these indicators of normalizedlseeing can be ob-
tained by taking the distance betwesmn-normalizedndicators of well-beingy
and¢ and some norm for each, yieldingandy, respectively.

One alternative to thinking of andy astwo indicators of normalized indi-
vidual well-being is to define a functioti(y, £) that aggregateg and¢ into an
overall measure of individual well-being, and think of thetdnce between this
and a norm defined in units of overall well-being. This apploa fairly common
in the (limited) literature on multivariate inequality meemes — see for instance
Weymark (2004) for a discussion. In essence, it reduces thevariate problem
to a more familiar univariate one, but at a significant cdstequires specifying a
particular definition of/(x, &), something that is necessarily arbitrary. By avoid-
ing such “two-step” aggregations, our approach providesgergeneral inequality
comparisons.

Let the distribution of these two indicatoxs¢ in the population be given by
ann x 2 matrix denoted asi, wheren is the number of individuals. Let the
domain of admissible distributions be denotecdEadVe will represent inequality
indices byP, for inequality inA. For anyA, B € =, we will therefore say that
A is more unequal thai according to index if and only if P4 > Pg. We also

4



need two alternative definitions of inequality indices.

Definition 1 P is a strongly relative inequality index if and onlyify = Par for
all 2 x 2 diagonal matriced" with elementsy;, > 0 (i = 1, 2) for which A and
AT are both members &.

Definition[1 is analogous to the scale invariance axiom irvaniate inequality
analysis. Letl be a matrix whose entries are all equal to 1.

Definition 2 P is a strongly translatable inequality index if and onlyHf, =
P, 1r forall 2 x 2 diagonal matrices” for which A and A+ 11" are both members
of =.

Definition[2 is also analogous to the translation invariaag®m for the anal-
ysis of univariate inequality. These definitions are in theisof those found in
Tsui (1995) — see also Weymark (2004). But unlike the unatarcase, they may
not be uniformly acceptable. For instance, we may well feat,tif everyone’s
education level is doubled, the contribution of other iadlics (such as health or
income) to overall inequality should be affected. In thatezave might not want
to use strongly relative inequality indices since thes&glwill remain invariant
to such a change.

The above nevertheless suggests that we can think of attleadypes of
normalizations to each indicator of well-being. The firstmalization (Definition
[)) is of a relative type, obtained by a scaling of the indichioan arbitrary value,
and the second type of normalization (Definitidn 2) is absoand is obtained
by a translation of the indicators by an arbitrary value. Tiean is an obvious
candidate for these arbitrary values in the context of iaityucomparisons, but
other distribution-dependent statistics (such as the ameati the mode) could also
be applied.

To implement these mean-normalization procedures, we saxigtances be-
tween indicators of well-being and their population mean ébsolute inequality
comparisons) or the same distances but divided by the meare(&tive inequal-
ity comparisons). For an indicatgrof non-normalized well-being with mean,,
let then

xp:p<X;7XMX)+(1_p)(X_Mx)' (1)



Absolute inequality iny can be assessed by using and relative inequality by
usingz; (and similarly for another indicator of relative well-bgiry,, defined
by replacingy by ¢ in (@)). The use ofty andz; in indices of inequality will
make the indices strongly translatable and strongly kedati z, respectively (and
similarly for y, andy; with respect t&). Intermediate inequality iy and{ can
be assessed by usifig< p < 1. For expositional simplicity, we will however
sometimes omit the indicesfrom z,, andy,,.

We then assume that we wish to compute an aggregate indexeqdatity
based on the distribution afandy. Denote by

May) %2 | 22Y) g OALEY) )
ox dy
a summary measure of the degree of relative deprivation afdimidual. Note
that the derivative conditions ifl(2) mean that differerttioators can each con-
tribute to decreasing overall deprivation. We make theedéftiability assump-
tions for expositional simplicity, but they are not stricthecessary so long as
A(z,y) is non-decreasing overandy.

We may wish to focus on those with the greatest degree of . This
can be done by drawing an inequality frontier separatingehwith lower and
those with greater relative deprivation. We can think o$ tihontier as a series of
points at which overall relative deprivation is kept comstat a critical value. This
frontier is assumed to be defined implicitly by a locus of taef A(z,y) = 0,
and is analogous to the usual downward-sloping indiffezenaves in théz, y)
space. As inthe poverty literature;, ) values that lie beyond this frontier do not
contribute to aggregate relative deprivation. Thus, taiobdn inequality measure
in the usual sense, the frontier would need to be set beyandntist extreme
values ofx andy. The set of those over whom we want to aggregate relative
deprivation is then obtained as:

AN = {(z, y) [(A(z,y) = 0} 3)

Consider Figurgl1 with thresholds andz, in dimensions of indicators and
y. The dotted\(x, y) line gives an “intersection” frontier: it considers someon
to be relatively deprived only if he is deprived looth of the two dimensions of
x andy, and therefore if he lies within the dashed rectangle of &g A\, (z, y)
(the L-shaped, dashed line) gives a “union” frontier: it siolers someone to be
relatively deprived if he is deprived igither of the two dimensions, and therefore
if he lies below or to the left of the dotted line. Finally, thentinuous\s(x, y)
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line provides an intermediate approach. Someone can bevedyadeprived even
if y > z,, if his = value is sufficiently low to lie to the left of;(x, y) = 0.

To define multidimensional inequality indices more prelgidet the joint dis-
tribution of  andy be denoted by'(z,y). For analytical simplicity, we focus
on classes of inequality indices that are additive acradiwisiuals. An additive
inequality index that combines the two dimensions of welidlg can be defined
generally asP(\),

PO = / / T ), (4)

wheren(x,y; \) is the contribution to inequality of an individual with rélee
well-being indicatorg: andy. By the definition of the inequality frontier, we have
that

' > 0if Mz,y) >0
m(z, y; A) { = 0 otherwise ©

The 7 function in equation(5) is thus the weight that the inegyatieasure
attaches to someone who is inside the inequality frontieat Weight could be 1
(for a count of how many are relatively deprived), but it @btdke on many other
values as well, depending on the inequality measure ofaster

A bi-dimensional dominance surfacan now be defined as:

Doz = [ st aPey @

for integerse,, > 0 andey, > 0. This dominance surface aggregates products of
distances between indicatarsandy and thresholds, andz, — these distances
are usually referred to as poverty gaps in the poverty liseea We can also rewrite

©) as
Doenz) = [ o | [T, - g arein] ar, @

where F'(x) is the univariate (or marginal) distribution functionofand F'(y|z)
is the distribution ofy conditional onz. This says that the bivariate dominance
curve can be thought of as the integral of the univariate dantge curves foy,
conditional onz, weighted by the gaps in, [, (2, — x)**dF(z).

We generate the dominance surface by varying the values afd z, over
an appropriately chosen domain, with the height of the serfgiven by equa-
tion (6). In particular, if the domain of the integration ketentire(z, y) plane,
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then D= (z,, z,) qualifies as a usual measure of inequalifp®®(z,, z,) =
F(z;,2,) generates a bivariate cumulative density function of nedatvell-
being. Note also that{6) is a two-dimensional generaliratf the FGT index
(Foster, Greer, and Thorbecke 1984) defined over gaps oiveeiaell-being.

An important feature of the dominance surface is that it fénced by the
covariance betweenandy, the two indicators of normalized well-being, because
the integrand is multiplicative. Rewritingl(6), we find iretkbthat

Do,z = [ =) dF @) [y - )
+ cov ((Zx - x)az’ (Zy - y)ay) . (8)

The height of the dominance surface is therefore the prodiutite two unidi-
mensional curves plus the covariance in the poverty gagseitvto dimensions.
Thus, the higher the correlation betweemandy, the higher the dominance sur-
faces, other things being equal.

Equation [(8) highlights the critical importance of the coaace between di-
mensions of relative well-being in the two populations. #st- and second-order
comparisonsd, = 0,1;«, == 0, 1), the integrals in the first term on the right-
hand side are equal for all distributions when the values, @indz, are beyond
the highest values aof andy in the populations. In this region, the dominance sur-
faces can differ only if the covariances between the powgafs in each dimen-
sion differ across the populations. This is true even if thizariate distributions
are significantly more unequal in one population.

3 Dominance conditions

Our inequality comparisons make use of orders of dominanamds, in the
x and in they dimensions, which will correspond respectivelyto= o, + 1 and
s, = oy, + 1. The parameters, ando, also capture the aversion to inequality in
thex and in they dimensions, respectively.

To describe the class of inequality measures for which timeidance surfaces
defined in equatiori{6) are sufficient to establish multidisienal inequality or-
derings, assume first thatin (4) is left differentiabl@ with respect tar andy
over the set\(\). Denote byr® the first derivativ@ of 7(z,y; \) with respect to

1This differentiability assumption is made for expositibsianplicity. It could be relaxed.
2The derivatives include the implicit effects efandy on \(z, ).
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x; by w¥ the first derivative ofr(x, y; \) with respect tay; by 7*¥ the derivative of
7(x,y; A) with respect to both: andy; and treat similar expressions accordingly.

Let A™ be an uppermost inequality frontiére., a frontier that encompasses
all of those individuals whose normalized well-being coelg:ntually enter into
P(X\). We can then define the following two classes of bidimengdioglative
poverty indices:

AN) C AN,

m(x,y; \) = 0, wheneven\(z,y) > 0;
7 (z,y; A) < 0andr¥(x,y; A) <0
™(z,y; A) > 0, Y, y;

I (A) = ¢ P(V) (9)

and

P(\) € TIVH(AY);

T (x,y;A) = 0,7 (2, y; A) = 0,7 (2, y; A) = 0,

I122(A7) = < P(A) | 7% (z,y; A) = 0, and7®(z, y; A) = 0 when\(z,y) = 0; »(10)
T (z, y; A) < 0 andn™™Y(z,y; A) <0, Va,y;

andn®™¥% (z,y; A) > 0, Vx,y.

The conditions for membership ii'! (\) require that the inequality indices
be decreasing in both andy. They also demand that this decrease be stronger
the lower the level of the other dimension of relative wadidg: 7% (z, y; A) > 0.
This is equivalent to an assumption of “substitutabilitgtlveen the dimensions
of well-being. We return below to the interpretation and tbke of this assump-
tion.

Note thatr™*(z,y; A) > 0 Va,y and7¥(z,y; A\) > 0 Vz,y are conditions
that are implied by the continuity conditiong” = 0 andn¥¥ = 0 at the frontier
and by the conditions®¥(z,y; A\) < 0 andx*¥(x,y; A) < 0. The conditions
for membership in1%2(\) thus require that the inequality indices be convex in
both  andy, and that they therefore obey the principle of transfersath lof
these dimensions. This assumption seems more natural imegnality context
than in a welfare/absolute poverty context. It would indeedm to make sense
that overall multidimensional equality be monotonicafigieasing in the equality
of either dimension, everything else being the same. Thditions for I1>2(\)
also require that the transfer principle be more importanbne dimension of
relative well-being the lower the level of the other dimemsbf relative well-
being. Finally, they also impose that the second-ordevdtve in one dimension
of well-being be convex in the level of the other indicatomadll-being. This is
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equivalent to saying that the concern for inequality in oimeeshsion is convex in
the level of the other indicator. This is a regularity coraditthat demands that
equalizing transfers in the dimension become progressively less important as
the value ofy is increasef. We also return to this below.

To see how this differs from another popular definition of\v@xity, we can
introduce the following definition.

Definition 3 (Bistochastic majorization as a multi-attribute versiditloe Pigou-
Dalton transfer, Weymark 2004) For all, B € = for which A # B, A is more
unequal thanB if B = XA for somen x n bistochastic matrixX. that is not a
permutation matrix.

As Savaglio (2006) writes, this definition “(...) is a sortadécomposability
property, which allows [orderings] to be coherent with aequality measurement
via an additive evaluation function” (p.90) — see &lso Dafa (1995). Figure
illustrates, however, how a bi-stochastic transfornmatian increase inequality
in well-being as measured by a utility functiéh Assume that an initial distribu-
tion A of well-being is made of pointg andd. Assume also that a bi-stochastic
transformation moves poimtto pointb and pointd to pointc in order to gener-
ate a new distributiorB of well-being made of pointé andc. The bistochastic
transformation moves poiatandd closer to the center (given liyandy) in both
dimensions at the same time and at the same rate.

Overall well-being (or utilityU(z,y)) was the same at’° for each pointa
andd in A initially; now it is lower for individualb (at U') than for individual
c (larger thanU'). Reducing inequality simultaneously and equi-propoudiely
in each dimension at the same time thus increases ineqiratte U dimension.
This therefore suggests that a bi-stochastic transfoomati A into B might lead
to greaterinequality in B.

The conditions for membership ii*2?()\) fortunately do not impose the bis-
tochastic majorization condition. They only imply thatdguality should fall if, as
in Figure[3, points{a,c} were moved (simultaneously and at the same speed)
towards pointb, or if points {a, g} were moved towards point, or if points
{c, i} were moved towards poirft These properties follow from the signs of the

3The classedI!! and IT1?? are reminiscent of the classes of welfare functions used by
Atkinson and Bourguignon (1982). Atkinson and Bourguig(it®82) nevertheless allow for pos-
sibly different signs for®¥(x, y) andn**¥¥(z, y) since they also consider the case of functions
that show “complementarity” in indicators. They do not, lewer, allow forA(AT) to exclude
anyone.
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second-order derivatives?”(z,y; A\) > 0 andn¥(x,y; \) > 0 Vx,y. The con-
ditions for membership iii>2()\) do not, however, require that inequality should
fall if points {a, i} were moved closer together towards paint- this would be
implied, however, by the bistochastic majorization pnei

The sign of the third-order derivativesi¥?(x, y; A) < 0 Vz, y, also imply that
the fall in inequality (as measured by members of t¥é (\)) will be larger if
points{a, g} are moved towards poimt than if points{c, i} are moved towards
point f. Similarly, the conditions for membership i#*?(\) also require that
the fall in inequality will be larger if point§g,i} are moved towards poirit
than if points{a, c} are moved towards poit Furthermore, the condition that
T (2, y; \) > 0, Ve, y implies that replacing in Figuté 3 poinfg, i} and{e, e}
by points{h, h} and{d, f}, respectively, will reduce inequality by more than if
points{d, f} and{b, b} are replaced by points, e} and{a, c}.

The inequality impact of the correlation between attrisutas captured by
the 7*¥(z,y; \) > 0 condition, is also important. We can illustrate this in #re
different ways:

1. First, if we were to replace poin{g, g} by points{a,i} on Figure B, then
bivariate inequality would need to fall, though univariatequality would
remain unchanged.

2. Second, a movementfrom poifts i} to points{d, f } would decrease uni-
variate inequality in they dimension and would leave univariate inequality
in the  dimension unchanged. A movement from poifiési} to points
{d, f} would, however, not necessarily decrease bivariate inggsince
such a movement would increase the correlation betweertttiitauses.

3. Third, moving point: beyondf towardsc, and moving point. beyondd
towardsg, will eventuallyincreasebivariate inequality, sincéc, g} is less
equal than{a,i}. This is despite the fact that univariate inequality in both
of the z andy dimensions never increases (and sometifadls) in that
movement.

Note that this substitutability assumption is probably endefendable in a mul-
tidimensional inequality context than in a multidimensibpoverty context. It

would seem indeed that replacing poifitsg } by points{a, i} on Figuréd 8 should

almost certainly reduce relative welfare disparities leetw the individuals, al-
though there might be situations in which that change migbteiase absolute
poverty — see for instance the discussion in Duclos, SaklthYaonger (2006).
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Let then AP(\) = Pa(A) — Pp(\) and ADs= bsv=l(z, 2) =
D (2, 2) — D3 (2, z,). This leads to the following dominance
relationships fos, = s, = 1, 2:

Theorem 1 (I*+* relative poverty dominance)

AP(X) > 0, VP()\) € IIP=% (A1)
iff ADS =157z 2) > 0, V(2 2,) € AAT). (11)

Proof: See appendixm

Theoreni_l says that it is possible to order relative poventyss distributions
A and B by checking whether conditioh (IL1) holds. If conditionl(hbjds, then
relative poverty is larger il than in B for all of the relative poverty indices that
belong to the clasH®** (\"), s, = s, = 1, 2.

Several remarks follow from Theordm 1.

Remark 1 Inequality dominance (that is, dominance over the entineges of
possible values far andy) is obtained by letting\* lie beyond the largest values
of x andy. Then[(11) implies that inequality is larger iithan in B.

Remark 2 II**v dominance does not imply univariate dominance in either of
the two indicators.

Remark 3 For bivariate 122 inequality dominance, we neellcov (z,y) > 0,
that is, that the covariance of the indicators be greatedithan in B.

Remark 4 An array of tests of absolute and relative inequality domirein each
dimension can be made with Theofem 1 by usinandy, with different values for

p. Forinstance, using, andy, leads to a test of absolute inequality dominance in
each dimension; using, andy; leads to a test of absolute inequality dominance
in thex and of relative inequality dominance in thyedimension; and so on.

Remark 5 Because of the normalizations used to obtgjandy, (see[(1))I"*
relative poverty dominance is only feasible over a range,afndy, that does not
extend to the largest value of these variables. SiheéF, (z) = [ zdF, (z) =0
for all values ofp, itis indeed not possible to fild D*°(z,, z,) > 0 for all values
of (2., z,). HenceII*! inequality dominance is not possible.
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Remark 6 If then(x,y; \) relative deprivation function iri.(4) were separable in
x andy, the cross-derivatives involved in the definition of the=v(\*) classes
would all be zero. That would inter alia imply that the impaaotr of changinge
would need to be independent of the valug ahd would need to depend (poten-
tially) only on the value of. Such separability is implicit when one is checking
for multivariate inequality dominance by performing unigée comparisons in-
dependently for each dimension of well-being.

Such a separability assumption has undesirable consegseénthe context of
multivariate inequality measurement. Consider an exanmpigving a transfer of
an indicator of cognitive ability (i.e., achievement t@gthe variabler) between
Bill Gates and John School, and assume as abovetfgtr, y; A) > 0. Also
assume that despite his vastly superior income (varigpl8ill Gates happens to
score lower on achievement tests than John School. Sefigrabithe 7 (z, y; \)
in z andy would imply that a transfer of ability from John School tolBlates
would necessarily reduce overall inequality. This wouldreaundesirable since
that transfer would also increase the welfare distance betwthe two individuals.

4 Estimation and inference

We now consider the estimation of the surfaces derived absweell as sta-
tistical inference on them. This can be seen as a generahzaitthe procedures
followed in|Duclos, Sahn, and Younger (2006) to the case idasas, curves and
indices whose thresholds and individual functions of dbntrons to total poverty
are subject to sampling variability because they depend@&nawn characteris-
tics and moments of the distributioe.¢, the meang., andy., of the variables).

To start with, note that thé@s-=~s~1(z, 2,) functions defined in({6) above
can be seen as a special case of the more general class oébsgianal surfaces
defined as

gx(bx)  pge(pe)
D— / / h(X. €: iy, 1) AF (, €), (12)
0 0

whereg,, g: andh are continuous and differentiable functions;gf and .. A
natural estimator of) is obtained by replacing’ by its empirical counterpart,

F, and they,, and e by their sampling values. To see this better, suppose that
we have a random sample of independently and identically distributed (11D)
observations drawn from the joint distribution gfand{. We can write these
observations ofy* and ¢%, drawn from a populatiod. = A, B, as (xF,&F),
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i=1,...,N.LetI()be the indicator function, which is equal to 1 if its argument
is true and 0 otherwise. This gives:

A N ~L (AL) R . ~

Dt = 9 [ (€ ik, B dE (., €)

(13)
= N7 T < g (B)I(E < ge(f)nOxE yls 1% ).

Denotingf, = max(f,0), the dominance surfaces defined[ih (6) are obtained
from (13) by setting

I (b)) = Zapy
9¢(pg) = zyps (14)

h(ng;,uxmuf) = <Zx - i)_i_ <Zy - i)

+

for relative inequality both iry and in¢; by setting

9x(:“x> = Zg t+ My
ge(pe) = 2ypie (15)

B0 ) = (o = (€ = ) (5= £)

for absolute inequality iry and relative inequality i§; and by setting

Ix(ty) = 22 + py
Ge(y) = 2y + pie (16)
h(XG & s te) = (2o — (X = 11x)) 57 (2 — (€ — pe)) S

for absolute inequality both ig and ing. Substituting the above into (13) gives es-
timators of the various combinations of absolute and redadominance surfaces
discussed above. For arbitrasy andc,, (13) then has the convenient property
of being a simple sum of IID variables, even if we allow for faet thaty and¢
will generally be correlated across observations.

The following theorem provides the asymptotic samplingrdiation of the
general case given b/ (13) under relatively minor condgiand in the case in
which we have a sample from each of two populatichand B, that may or may
not have been drawn independently from each other.

Theorem 2 Let the joint population moments of order 2 gf' + ¢4 +
h(x*, &4 ud, ) and xP + €8 + h(xP, &P P, uf) be finite.  Then
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N1/2 (DA — DA) and N'/2 (DB — DB> are asymptotically normal with mean
zero, with asymptotic covariance structure given byN/ = A, B)

limy_,o Ncov( DE, DM

= B [(myx® +mgeh + 1(x" < gy (u)1(g" < 9e(mg )R, £ pk, uk))
(myM + mMSM IO < g (u)I(EY < 9e(g DRO €l "))
—E [myx® +mggh + 1" < gy (p) (6" < ge(n )) (" €5y 1]
B [myx® +me P IO < g () I(E" < ge(ug))h ( €5 s )]

(17)
where
mL = gl ) o o). & il 1) Fan (), €)dE y
O ) (x5 i) (x, €) -
and
ml = g(u) [ RO ge(ub)s il ) £ (. ge (i) )dx .

080 ) ey ik pBYAFE(x, €),

and wheref(x, &) is the joint density ofy and¢.
Proof: See the Appendix (Sectibn 8).

When the samples from the populatiohsind B are independent, the variance of
each of D and D can be found by using (17) and by replaciNgby N, and
Ng respectively. The covariance between the two estimataitseis zero. The
elements of the asymptotic covariance matrixin (17) carstiemated consistently
using their sample equivalents. Further details are peavid the Appendix of
Sectior 8.

5 Simulation exercises

To provide a better understanding of how our proposed naultite inequality
comparisons are likely to work in practice, we undertakeusittions that com-
pare a variety of dist ributions. In all cases, we create tajoytations of 200,000
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individuals and joint distributions aof andy that are bivariate normal. We always
shift these distributions so that they include no negatalaes, so the means of the
marginal distributions are usually around 5 or 6. We then@ariiom those pop-
ulations and compare the samples. In most cases, we use &essarepof 1000,
which is roughly the size of large sub-samples (by regioy) secommon house-
hold surveys like the Living Standards Measurement Surgeyise Demographic
and Health Surveys. All the results reported here are forsl@h samples.

The phrase “non-statistical results” refers to compasgsmade from simply
comparing the surface estimatesof-—'»~!(z,, z,) without carrying out any
formal statistical testing. The phrase“statistical resutefers to statistical in-
ference results. In testing for inequality dominance, wkvothe intersection-
union approach proposed by Kaur, Prakasa Rao, and SingHl)(B®@ recently
extended by Davidson and Duclos (2006). We posit a null Hyg®is of non-
dominance ofd by B and an alternative hypothesis of dominanceldfy B. We
reject the null and accept the alternative tBabas less inequality thaa if and
only if the ¢ statistics at all of the test points exceed the usual 5%catitialue of
the normal distribution.

Since the theory we present above stresses the importarbe obvariance
between dimensions of well-being, our first simulationsyvée correlation be-
tweenz andy in the first population, while keeping it at zero for the sestoim all
cases, the variance of the marginal distributions is onbleTé gives the results.
For a sample size of 1000 and a difference in correlation&fWhich is plausi-
ble for several of the actual distributions that we will exaenin Sectiori B, there
are no statistically significant comparisons between tleestmmples, even though
about half of the non-statistical comparisons find that thmittance surface esti-
mates for sample 1 are above those for sample 2 everywheea.fBvvery large
differences in correlations of 0.6, there are relatively &atistically significant
differences between the dominance surfaces, even thoughaiy all of the non-
statistical comparisons would appear conclusive. Thelteeare similar across
absolute and relative comparisons.

Table[2 shows the number of rejections at each point in(thg) domain
where we test for differences in the surfaces. The origirt thalower left, and
the first column and last row give the coordinates foandy. This particular
result is for relative inequality comparisons when pogalatl has a correlation
of 0.6 and population 2 has no correlation betweesndy. It is clear that the
reason that we cannot reject the null often is that theresdaéively few rejections
in the areas of the surface wherds relatively large and; is relatively small,
or vice-versa. This is clearly a problem of statistical powhere are too few
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observations in these regions of the surfaces to infer danc@ with sufficient
confidence. Unfortunately, even when we increase the sasigas to 10,000, we
get relatively few significant differences. (See the lagi t@lumns of Tablé]1.)
Thus, for the typical samples from national household stgleat are conducted
in developing countries, it may be difficult to reject theldat samples that differ
only in their correlation between dimensions of well-beitgvertheless, it will
often be possible to find differencesrglative povertyfor poverty measures that
do not extend to the upper left and lower right corners of thmitiance surfaces.
This would include a wide range of intersection relative grby measures, but no
union measures.

Table[3 gives results for comparisons when the standardatiens of the
marginal distributions in population 2 are a multiple of $kan distribution 1
for bothx andy. As equation[(8) shows, these surfaces cannot differ oeeeih
tire (x, y) domain because they have the same covariance of zero. Tauspart
statistical differences for all test points except the &xie one at the upper right
of the test domain that is just beyond the maximum value ahdy. These are,
then, relative poverty comparisons, valid for a very widegeof relative poverty
lines and both union and intersection poverty measurese @wcratio of standard
deviations reaches 1.4, well within the range that we fincead samples in the
following section, we begin to have a significant number fexain which the
dominance surfaces differ statistically. Thus, for sampléh strong univariate
differences in inequality, we should also find bivariatdaténces, except at the
extreme of the distribution where only the correlation et

Tablel4, however, shows that a relatively modest correddatimne population
can offset even rather large differences in univariateati@pns, and vice-versa.
In the first two columns we compare population 2 with univergtandard devia-
tions that are 1.6 times as large as those for populationthelfirst column, there
is no correlation in either population and, excluding thereme test point of the
test domain, there are many significant differences betwemominance sur-
faces. In column 2, population 1 now has correlation betweamdy of 0.2. This
greatly reduces the number of significant differences betva®mminance surfaces
drawn from these two populations. In such cases, one-a&-dimvariate compar-
isons will reject the null of equality between the two samsgieo easily because
they do not consider the correlation between dimensions.

Column 3 shows that there are some (though relatively fegwiicant differ-
ences between samples if the correlation betweandy in population 1 is 0.6
higher than that in population 2. However, all of these digant differences van-
ish if we increase the standard deviations in the second Isdmgeven a modest
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20 percent. Overall, in cases where one population hasegreatrelation while
the other has greater univariate variances, it could berantan to conclude that
there is a statistically significant difference in multidinsional inequality, be-
cause of the conflicting effects of univariate inequalitg gmint inequality.

Thus far, our multivariate inequality comparisons are nidedy not to reject
the null of non-dominance than one-at-a-time univariategarisons, but it is
also possible that a correlation betweemandy helps to resolve contradictory
univariate results. In particular, it is possible that omévariate test rejects the
null while another does not, but the bivariate test doesctdjge null of non-
dominance. It is also possible that one univariate test shaignificantly less
inequality in distribution A while the other shows less isttiibution B, and the
bivariate test still shows greater inequality in one or ttreeodistribution, if it has
a large covariance betweerandy.

Table[5 gives results for some such cases. In the first colpopulation 2
has a somewhat smaller standard deviation ahd a larger standard deviation
of y than population 1. In this case, even a large correlatiowdstx andy
in population 1 is insufficient to produce statistically raficant differences in
the bivariate comparisons. However, if the varianceg afe the same in both
populations, the larger correlation in the first populai®now sufficient to reject
the null about half of the time.

6 Examples

We turn now to examples using real data. We focus on the stiagecases
in which the bivariate tests that we propose produce difiteresults than one-
at-a-time univariate comparisons for the same dimensiénsed-being. Ta-
ble[8 gives results from the 1999 Demographic and Health u(@HS) for
India. It considers relative poverty and inequality in twondnsions of well-
being: the hemoglobin concentration (g/Dl) of women agedQbhand an index
of the assets owned by those women’s households. Hemog®lain impor-
tant health indicator. Low hemoglobin concentrations eaaivariety of health
problems and have been shown to reduce physical prodyctivitsee for in-
stance Haas and Brownlie (2001) and Horton and Ross (20a8)sehold assets
are a good proxy for a household’s material well-being (Saih Stifel 2000 and
Sahn and Stifel 2003). The index is constructed as the ficsbifdrom a fac-
tor analysis of the household’s water source, type of tédeility, the household
head’s years of schooling, and indicators of whether orlmhbusehold has elec-

18



tricity, a radio, a television, a refrigerator, and a bieychince this distribution is
centered around zero, it is shifted rightward so that it lrasegative values.

The comparisons in Table 6 are between the Indian states afd@d Ra-
jasthan. Note that Goa has lower Gini coefficients for bosietssand hemoglobin
concentrations, but also has a significantly higher caiiceldbetween those two
variables. The bottom section of the table shows that Goartaigs Rajasthan
in both dimensions of well-being independently: acrossethigre distribution of
assets or hemoglobin, Goa’s dominance curve is below Rajast and these
differences are statistically significant. Based on thigrimation, one would con-
clude that Goa has less inequality than Rajasthan.

However, the bivariate comparisdn [11) cannot reject tHethat Goa has
more inequality than Rajasthan. Table 7 shows the t-dtatifstr the null hypothe-
sis that the two states’ dominance surfaces are equal ab&aéb equally spaced
points across the entire domain of the joint distributioms$ets and hemoglobin
concentrations. These differences change sign, indg#tiat the dominance sur-
faces cross, and the differences are rarely statisticghjifecant; when they are
statistically significant, they also sometimes indicat& t6oa has more relative
poverty. Thus, the higher correlation between assets ambgiebin in Goa is
sufficient to nullify the conclusion drawn from the univdagaomparisons.

On the other hand, it is also possible that the univariatepasigons are in-
conclusive or contradictory (showing thatdominates3 in one dimension while
the opposite is true in the other), yet the bivariate consparirejects the null
of non-dominance. Tablés 8 ahtl 9 show similar comparison&tm and the
state of Himachal Pradesh. In this case, Himachal Pradeshoher asset in-
equality, but we cannot reject the null that Goa has lesslialg of hemoglobin
concentrations. The bivariate comparison, however, lglegjects the null of non-
dominance across the entire domain of the dominance sarfaoeve reject the
null in favor of greater bivariate inequality in GHa.

To have a sense of how common these results are, Table 10 sir@snani-
variate and bivariate comparisons across all possible swtibns of states in
the 1999 India DHS. The first frame is for relative inequattymparisons, for
which the data are divided by their mean. The second framerialdsolute in-
equality comparisons (the mean is subtracted from all dathg third frame is
for non-normalized data; these comparisons are the sanhe g®verty compar-

4This example is also a caution that simple recourse to thes@imd correlation coefficients
can be misleading. What matters is the dispersion for eaghbla and the dependence between
them over the entire distribution.

19



isons developed earlier|in Duclos, Sahn, and Younger (2@06vith the poverty
frontier extended beyond all of observations in the samfiels, they are welfare
comparisons.

A striking result in Tablé_T0 is how few cases of bivariateguality dom-
inance there are: only 33 for relative inequality and 16 fos@ute inequality
(out of 325 possible comparisons across Indian states)min@mce order (2,2),
and somewhat more for order (3,3), especially for the alvsahequality case (70
out of 325). This compares to 125 cases of bivariate dommé&mcthe welfare
comparisons at order (2,2).

Closer examination of the table shows that there are twonsa®r this. First,
the last two columns show non-statistical comparisonst iBhd one sample sur-
face is everywhere below another, we conclude that it dor@smaegardless of the
statistical significance of that difference. This yielddfae dominance in 197
cases, relative inequality dominance in 129, and absohgquiality dominance
in 90. This is to be expected insofar as the non-normalizdthreedistributions
can differ either because the means differ or the dispesdiiffer. Because the
inequality comparisons normalize the data, they can dafdy if the dispersions
around the mean differ. Previous work on incomes (Datt anc&aRan (1992))
and anthropometry (Sahn and Younger (2005)) has shown igtabdtional dif-
ferences are often dominated by different means ratherdispersions. So it is
not surprising to find fewer differences when examining ralrped distributions.

Table[10 also shows that differences in dominance surfaeeless likely to
be statistically significant for the inequality comparisofror relative inequality,
only 33 of the 129 cases where the surfaces do not cross sisgictdly signifi-
cant, compared to 125 of 197 for the welfare comparisonss iBtdespite the fact
that our samples are relatively large — averaging about fd@0en per state (but
with some as low as 280).

A second observation about Tabld 10 is that the interestisgc— those for
which the bivariate and the “one-at-a-time” univariate gamsons come to dif-
ferent conclusions — are relatively rare. For the inequalitmparisons, there are
no statistically significant cases of bivariate dominancembeth of the univari-
ate dominance tests are insignificEn([See the first row of each block.) When
the univariate comparisons both reject the null and arerneeagent — the second
row in each block — the bivariate case is statistically infigant a little more

5The fact that there is only one such case for welfare suggtsts these results
may depend on the variables that we have chosen. In our pramk von poverty
(Duclos, Sahn, and Younger (2006a)), we found many more sasts when studying household
expenditures per capita and children’s height-for-age.
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than half the time, and the bivariate surfaces actuallyscfaisly often. (See the
last two columns.) This is far more common than with the welt@omparisons.
Finally, when the univariate results are inconsistenhegibecause populatiof
dominates populatio® in one dimension while the reverse is true in the other, or
because one difference is statistically significant whike dther is not, it is rela-
tively rare that the bivariate comparison can resolve tbisflect. (See the third
row of each block.) The welfare comparisons are able to dosignificantly more
often.

Our second example is more encouraging. The data come feg00BEval-
uacidbn Nacional del Logro Acagimico de Centros Escolar@¥ational Evaluation
of Academic Attainment in High Schools), a test given to &hschool students
in Mexico. In addition, a sample of students’ householdsuithed information
on asset holdings, with which we have constructed an asgdex.nlThe index is
based on a factor analysis of the assets, and we have extedrhe result to
ensure that all values are positive. Because the test se@resstandardized, we
use instead each student’s national percentile rank in takaition of scores.
Results of comparisons across Mexican states are summhamiZeablel 11, in a
manner analogous to Talble]10.

In these comparisons, we reject the null of non-dominancehtorelative in-
equality comparisons in about one-third of the cases, thaegctions for the
absolute case remain relatively rare, as in the India DH&. d&he larger than
normal sample sizes (about 6700 observations per statevesage) appear to
help since statistical and non-statistical results areerolmsely in line, especially
for relative inequality and for welfare comparisons. Tharsh{about one third) of
rejections is now substantially closer to the share for avelctomparisons (about
half) in this case than it was in any of the India DHS companssdt is also notable
that the bivariate comparisons are able to resolve inctamgisnivariate compar-
isons in a non-trivial number of cases for relative (28/28Bkolute (26/253), and
welfare (37/244) comparisons, unlike the India data, wiseieh cases were rare
for the inequality comparisons. Furthermore, it is quiteef@r the second-order
bivariate comparisons for relative inequality (17/144) avelfare (4/200) to re-
verse the univariate comparisons when they are consistentegect the null of
non-dominance. The bivariate comparisons are more demgnsio we would
expect them to reject less often than the one-at-a-timeadaie comparisons. In
this Mexican illustration, therefore, making use of tharerivariate distributions
does not seem significantly to prevent making robust corepasi of inequality
across distributions.
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7 Conclusion

The paper has considered multivariate relative povertyirgegluality compar-
isons. We do so in the spirit of Sen’s “partial orderings” &oltbw the stochastic
dominance approach to distributional comparisons. Thecagh also draws on
our previous work addressing multidimensiomadisolute povertycomparisons.
Here, we use similar methods, but first normalize the datheerelatively (di-
viding by the mean) or absolutely (shifting the mean to zeMe call poverty
comparisons on such normalized variables “relative pgle@dmparisons; ex-
tending the relevant poverty frontier to the limits of thenjoenables making in-
equality comparisons. As in the stochastic dominancesalitee, the comparisons
are made robust to the choice of any particular poverty aguagty index that is
a member of some class. An important feature of our appraattt it is also
robust to aggregation procedures across dimensions ofbeelhy. We also de-
rive the sampling distribution of our estimators, thusallgg our distributional
comparisons to be robust to sampling variability.

Based on simulated distributions as well as asset and healtibles from the
1999 DHS in India and mathematics and Spanish test scoreassets from the
2008 ENLACE in Mexico, we gain some practical experience iasgyhts into
the methods we propose. Our empirical applications sugglest finding bivari-
ate inequality differences may be difficult with some valégtand typical survey
data sample sizes. In particular, bivariate inequality pansons using assets and
health variables in India do not reject the null of non-doamce nearly as often
as welfare comparisons do for these variables. Furtherrdre for the bivariate
comparisons to reject the null of non-dominance when theauiaite comparisons
do not. Comparisons using mathematics test scores and asbétxico are more
revealing, as there are more rejections of the null, and rmases in which these
bivariate comparisons “resolve” inconsistent univariedenparisons in each di-
mension alone. It is likely that results with other variabéand distributions will
differ, especially if we consider incomes or expendituresiae of the dimensions
of well-being. That is certainly an interesting avenue fdufe research.
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Table 1: Results for simulating different correlations

Correlation in sample 1 0.2 0.6 0.2

Sample size 1000 1000 10,000
Statistical Non-Statistical Statistical Non-Statistical Statistical Non-Statistica

Share of relative dominance results 0.00 0.48 0.24 0.94 0.17 0.93

Share of absolute dominance resdlts 0.00 0.45 0.17 0.94 0.20 0.96

Notes: Statistical tests at 95% confidence level

Shares are out of 100 comparisons
Both distributions are normal with mean=5 and variance=1
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Table 2: Number of rejections (out of 100) per test poingtiee inequality comparisons

158 48 71 83 95 99 100 100 100 100 100
126 91 99 100 100 100 100 100 100 100 100
1.17| 96 100 100 100 100 100 100 100 100 100
1.10f 97 100 100 100 100 100 100 100 100 100
1.05 98 100 100 100 100 100 100 100 100 99
1.00f 98 100 100 100 100 100 100 100 100 99
095, 98 100 100 100 100 100 100 100 100 97
090, 99 100 100 100 100 100 100 100 100 89
084 99 99 100 100 100 100 100 100 98 69
073 93 97 98 98 98 98 98 96 92 40
0.00| 0.75 084 090 096 1.01 105 1.10 1.16 1.25 1.59

Notes: See notes to previous table. Correlation betweandy in sample 1 is 0.6. The first column and last
row are the coordinates in the, y) plane where comparisons are madeandy values are normalized by their
respective means.
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Table 3: Results for simulating different variances

Ratio of standard deviations, 1.2 1.4 1.6
sample 2/sample 1
Sample size 1000 1000 1000

Statistical Non-Statistical Statistical Non-Statistical Statistical Non-Statisticq
Share of relative dominance results 0.01 0.92 0.47 1.00 0.87 1.00
Share of absolute dominance results 0.01 0.91 0.44 1.00 0.87 1.00

Notes: Statistical tests at 95% confidence level. Testaidrdhe last test point at the extreme of the distribution.
Shares are out of 100 comparisons. Both distributions ammalonith mean=5 and no covariance. Variance in

sample 1is 1.
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Table 4: Results for simulating different variances

Ratio of standard deviations, sample 2/samplel6 | 1.6 | 1.0 | 1.2
Correlation in sample 1 0.0 02| 06| 0.6
Share of relative dominance results 0.87| 0.28| 0.24| 0.00
Share of absolute dominance results 0.87| 0.30| 0.17| 0.00

Notes: Statistical tests at 95% confidence level. Testaidrdhe last test point at the extreme of the distribution.
Shares are out of 100 comparisons. Sample size is 1000. Bathbdtions are normal with mean=5. Variance in

distribution 1 is 1.



Table 5: Results for simulating different variancesfandy

Ratio of standard deviation fdr, y) | (0.8, 1.2)| (0.8, 1.0)
distribution 2 / distribution 1

Correlation in distribution 1 0.6 0.6
Share of relative dominance results 0.00 0.47
Share of absolute dominance results 0.00 0.45

Notes: Statistical tests at 95% confidence level. Testaidrdhe last test point at
the extreme of the distribution. Shares are out of 100 coispas. Sample size is
1000. Both distributions are normal with mean=5. Variamcdistribution 1 is 1.
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Table 6: Descriptive Statistics and Univariate Relativedquality Dominance
Comparisons for Household Assets and Women’s Hemoglobmcé€urations,
Goa and Rajasthan

Goa Rajasthan

Gini coefficients
Assets 0.292 0.452
Hemoglobin 0.076 0.089
Correlation 0.176 0.047

Difference Between Dominance Curves
t-statistics for difference

Sample decile Assets Hemoglobin
0.1 -20.51 -1.88
0.2 -25.36 -3.36
0.3 -25.10 -4.50
0.4 -26.05 -5.43
0.5 -26.53 -6.46
0.6 -27.03 -7.10
0.7 -30.49 -7.39
0.8 -42.83 -7.43
0.9 -15.31 -7.04

Source: 1999 DHS for India.

Notes:

The t-statistic tests the difference of Goa - Rajasthan, segative value indicates that Goa has
less relative poverty than Rajasthan.

Poverty lines are set and differences are tested at nomdalialues of assets and hemoglobin
found at each decile of the combined samples.

Normalization is relativei,e., data are divided by their means. Dominance order is 2.
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Table 7: Bivariate Relative Inequality Dominance Compamsfor Household Assets and Women’s Hemoglobin
Concentrations, Goa and Rajasthan

t-statistics for difference in the surfaces
3.47|-0.62 -1.30 -1.71 -2.06 -250 -255 -1.85 -0.76 -0.32 1.48
220|-0.37 -090 -1.15 -137 -161 -155 -1.09 -0.40 0.30 0.47
1.69| -0.10 -0.46 -056 -0.67 -0.75 -0.60 -0.16 0.34 0.77 0.40
1.28| 0.28 0.12 0.19 0.24 0.40 0.66 114 1. 212 1.66

Household Assets 1.01 0.46 0.41 054 0.63 0.82 1.04 1.44 1. 2.27 1.89
0.83| 040 046 0.62 0.67 0.78 090 115 144 173 1.43
0.67| 026 035 0.44 0.39 0.36 031 035 044 057 0.21
0.52| 0.00 0.15 0.28 0.28 0.27 0.15 0.09 0.10 0.17 -0.23
0.32| -093 -095 -0.86 -0.84 -0.83 -094 -0.98 -091 -097 -1.66
0.18| -0.68 -098 -0.97 -091 -0.83 -092 -0.91 -0.80 -0. -2.22

0.79 0.87 0.93 0.98 1.02 1.05 1.09 1.13 1.18 1.63

Hemoglobin Concentration

Source: 1999 DHS for India.

Notes:

The t-statistic tests the difference of Goa - Rajasthan,reggative value indicates that Goa has less relative potreatyRajasthan.
Poverty lines are set and differences are tested at nomdalizlues of assets and hemoglobin found at each decile afotimbined
samples.

Normalization is relativei,e. data are divided by their means.

Dominance orders are (2,2).
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Table 8: Descriptive Statistics and Univariate Absolutegumality Dominance Comparisons for Household Assets
and Women'’s Hemoglobin Concentrations, Goa and Himaclzaldah

Goa Himachal Pradesh
Absolute Gini coefficients

Assets 0.506 0.443
Hemoglobin 0.922 0.896
Correlation 0.176 -0.008

Difference Between Dominance Curves
t-statistics for difference

Sample decile Assets Hemoglobin
0.1 8.06 2.09
0.2 9.22 2.03
0.3 10.40 2.02
0.4 11.15 1.99
0.5 11.24 1.92
0.6 11.04 1.80
0.7 10.01 1.66
0.8 7.76 1.50
0.9 5.97 1.38

Source: 1999 DHS for India.

Notes:

The t-statistic tests the difference of Goa - Himachal Pshdeo a negative value indicates that Goa has less abso&geality than
Himachal Pradesh.

Poverty lines are set and differences are tested at nomdalizlues of assets and hemoglobin found at each decile afotimbined
samples.

Normalization is absoluté.e., means are subtracted from the data.

Dominance order is 3.
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Table 9: Bivariate Absolute Inequality Dominance Comparssfor Household Assets and Women’s Hemoglobin
Concentrations, Goa and Himachal Pradesh

t-statistics for difference in the surfaces
235 257 288 305 314 326 326 3.12 279 241 641
1.38 282 318 346 3.70 3.94 413 434 465 504 4.86
0.77 289 337 374 407 4.41 469 499 538 585 6.56
0.30 292 356 4.04 447 493 531 570 6.15 6.66 8.94
Household Assets 0.01 289 363 4.19 469 521 564 6.03 6.46 6.91 10.46
-0.19 282 362 421 473 528 572 6.12 653 6.96 11.06
-0.36 274 356 418 472 529 573 6.13 656 7.03 11.19
-056 253 336 398 450 505 547 5.83 6.19 6.58 10.88
-0.75 225 3.04 362 412 464 5.03 535 567 6.02 10.03
-090 199 268 324 374 424 463 500 542 591 8.96
-2.38 -1.39 -0.78 -0.28 0.22 0.62 1.02 152 212 6.81
Hemoglobin Concentration

Source: 1999 DHS for India.

Notes: The t-statistic tests the difference of Goa - HimhBhadesh, so a negative value indicates that Goa has leskiEhmequality
than Himachal Pradesh.

Poverty lines are set and differences are tested at nomdalizlues of assets and hemoglobin found at each decile afotimbined
samples.

Normalization is absoluteé.e., means are subtracted from the data.

Dominance orders are (3,3).
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Table 10: Summary of Cross-State Inequality and Welfare ibante Comparisons for Household Assets and
Women’s Hemoglobin Concentration, India (325 compari¥ons

Bivariate dominance

Univariate Dominance

No univariate dominance in either dimensi
Univariate dominance in both dimensions, consist
Univariate results inconsistel

sub-total

No univariate dominance in either dimensi
Univariate dominance in both dimensions, consist
Univariate results inconsistel

sub-total

yes

on0
e
nt 7
33

on0
edD
nt 6
16

No univariate dominance in either dimensiponl

Univariate dominance in both dimensions, consist

e’®0

Univariate results inconsistent 34

sub-total

125

Second order

no

74
31
187
292

176
20
113
309

44
24
132
200

Third order
yes  no

2nd order, non-statistical
yes no

Relative Inequality

0 36
37 57
4 191
41 284

0 3
123 37
6 156
129 196

Absolute Inequality

0 91
64 31
6 133
70 255
Welfare
1 37
94 27
38 128
133 192

0 16
87 66
3 153
90 235
0 9
167 18
30 101
197 128

Source: 1999 DHS for India
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Table 11: Summary of Cross-State Inequality and Welfare iDante Comparisons for Household Assets and
Student Math Test Percentile, Mexico (465 comparisons)

Bivariate dominance

Univariate Dominance

No univariate dominance in either dimensi
Univariate dominance in both dimensions, consist
Univariate results inconsistel

sub-total

No univariate dominance in either dimensi
Univariate dominance in both dimensions, consist
Univariate results inconsistel

sub-total

No univariate dominance in either dimensi
Univariate dominance in both dimensions, consist
Univariate results inconsistel

sub-total

yes

onl
ehd7
nt28
156

on2
end
nt26
33

on0

ehd6
nt 37
233

Second order

no

65
17
227
309

201

227

432

21

207
232

Third order 2nd order, non-statistical
yes no yes no

Relative Inequality

0 56 1 9

131 19 218 19
25 234 14 204
156 309 233 232

Absolute Inequality

0 149 0 61
30 35 80 65

8 243 3 256
38 427 83 382

Welfare

0 20 0 3
202 4 256 3
44 195 30 173
246 219 286 179

Source: ENLACE, Mexico.



8 Appendix

Proof of Theorem[].

Fors, = 1 ands, = 1 and fors, = 2 ands, = 1, the proof follows from
Theorems 1 and 2 in Duclos, Sahn, and Younger (2006)sfer 2 ands, = 2,
start with

zz(2y)
P(a(y)z) = — / (2, 23 A7) DO(a, 2,) da (20)
0
s [T A )3 D)) dy (@)
0
2y Zz(y)
T / / Ty ) D) de dy. (22)
0 0

Integrating [(2R) by parts with respect foandy, and imposing the continuity
conditions characterizing the indiceslii?(\™) in (I0), we find:

2z (2y)
P(z,(y),2) = —/ W:”:”y(x,zy;)ﬁ) Dl’l(x,zy) dx (23)
0
b [ T ) i) DV ) ) dy (29
0
2y 2z (Y)
- / / T (2, y; AT) DY (2, y) da dy. (25)
o Jo

The rest of the proof follows from Theorem 1 in
Duclos, Sahn, and Younger (2006).

Proof of Theorem[2.
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Leaving out the superscrigt for simplicity, we find

. Ix(Bx)  fge(fie R
h-D = ) _
/0 / WO i fie)dE(.§) =D (26)
gx(tx)  rge(pe) .
- / / W, & i i) AE (0, €) 27)
x(x)  poe(iie)
/ / B € i, i) AE (1, €) (28)
ge(1e)
ge(1e)
/ ( / B € i, i) AE (1, €) (29)
9x Nx
gx Hx g&(ﬂ&
h(x, &; i, fie)dF (x, €) (30)

gx (k) 9g¢ (N&

(31)

Expressiong (28), (29) and (30) are of asymptotically losvder than[(2]7) and
can thus be neglected. Expandingl(27) and leaving out thestef asymptotically
lower order, we find

D— D= (32)

ge(1e)
i — ] 0, (1) / B (1), e 1) AF (5 |9 (1)) o0 (1)) (33)

Ix(Bx) e (pe)
0, — A (X, €5 o, e )AF (X, 34
+ /iy ux]/O /0 (X5 &5 s pe)AF (X, €) (34)
gx(#x)
+ e — e gg(us)/o h(z, ge (11e); txs 1) AF (7 |ge(pae) ) fe(ge(pe)) (35)
gx(x)  pge(pe)
+[ﬂ§—ﬂﬁ]/0 /OE é R (X, & s e )AF (X, §) (36)
ax(px)  pge(pe) N
[ [T s g - FIco), (37)

where f, and f, are the univariate density af and¢, respectively. Rearranging,
and definingn, andm, as in [18), we find:

D-D=m (NS =) +me (N 6—pe)  (39)

+ (NN 106 < 0 DI < ge(éDR(xi & o)) = D.(39)
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The existence of the appropriate population moments ofrdrdiets us apply
the law of large numbers t6 _(1L3) for each distributibmand B. This implies that
D is a consistent estimator @f. Given the existence of the population moments
of order2, the estimator in_(13) is roa¥ consistent by the central limit theorem,
and it is also asymptotically normal with asymptotic cogade matrix given by
Theoreni 2. If the samples are dependent, then the covarmtaeen the esti-
mator for A and for B is provided by Theoreml 2 by settidg= A andM = B.

In the case that, > 0 anda, > 0 for (7)), the computation ofi,, simplifies
sinceh(g, (uy), y; pk, ug) = 0 (and similarly form,). In this case, for relative
inequality both iny and in&, we have

g;((:ux) = Zz
92(#6) = 2y .
x . _ QzX _ X “e _ £ o 40
(X6 i ie) = 5 (zx MX)+ (zy H€>+ (40)
Qg ay—1
huf()ﬁ&;ﬂ;mﬂﬁ) = auigy <Z:v - i)_‘_ <Zy - i>+ .
For absolute inequality iy and in&, we have
Q;C(Nx) =1
ge(pe) =1 »
© /4 v/ +
[ ay—1
P (X 6 i ) =y (1= 55207 (1 £25)
(06 & s e) = = ), w )y

and similarly for a combination of absolute and relativegnaity.
The expressions fay, (12,) andg; (i) are the same if, and/ora, equals 0,
but thenh*x and/orh*¢ reduces to 0. In that case, there is however the complica-

tion of estimating[ogﬁ(”ﬁ) R( gy (ty )5 &; s ) F (95 (1), €)dE in my, (@nd similarly
for m¢). Whenea, = 0, this reduces to

e (1e)
[ honin g e o) 0 “2)
= F(€ = ge(pe)lx = 9x(1x)) fx(9x (2x)), (43)

which is the distribution function of at g¢ (1) conditional ony being equal to
9y (1) times the density of at g, (1,). We can estimate this non-parametrically
by kernel weighting the values of the conditional distribotfunction of ¢ at
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ge(1e) across values of, using weights that depend on the distance between
andg,(1,,). To see this more clearly, let a bivariate kerdgl v, &) be defined

as the product of two univariate kerneﬁglgb (%) and hglgb (%) (both of

them integrating to 1 ovey and¢), for each observation = 1,..., N. We can
then estimatd (43) as

(Nhyhe)™ Z/ e (" )X Xl)sﬁ(zhf)dz (44)
Z¢<9x ) z)q)(gs(uz)g &)7 (45)

where &(z f ¢(u)du. In a bivariate setting, the approximately optimal
window for a Gaussmn kernel and a multivariate normal dgrmsrmalized to
unit variance is given bf(1.25N)‘1/6 — see Silverman (1986) for instance.

References

ATKINSON, A. (1970): “On the Measurement of Inequalityournal of
Economic Theory2, 244—63.

ATKINSON, A. AND F. BOURGUIGNON(1982): “The Comparison of Multi-
Dimensional Distributions of Economic Status,” $ocial Justice and
Public Policy, ed. by L. Harvester Wheatsheaf, London, vol. chapter 2.

DARDANONI, V. (1995): “On multidimensional inequality measuremeént,
in Income distribution, social welfare, inequality and payered. by
C. Dagum and A. Lemmi, Stamford, CT: JAI Press, vol. Refsearch
on economic inequalify201-207.

DATT, G. AND M. RAVALLION (1992): “Growth and Redistribution Com-
ponents of Changes in Poverty Measures: a Decompositidn Ayt
plications to Brazil and India in the 1980'sJournal of Development
Economics38, 275—-295.

DAVIDSON, R.AND J.-Y. DUcLOS(2006): “Testing for Restricted Stochas-
tic Dominance,” IZA Discussion Paper No 2047, IZA.

DucLos, J.-Y., D. E. 3\HN, AND S. D. YOUNGER (2006): “Robust Mul-
tidimensional Poverty ComparisorEconomic Journal113, 113, 943—
968.

37



(2006a): “Robust Multidimensional Spatial Poverty Qmamisons
in Ghana, Madagascar and UgandArid Bank Economic Review®0,
91-113.

FORMBY, J., J. MITH, AND B. ZHENG (1999): “The Coefficient of Varia-
tion, Stochastic Dominance and Inequality: A New Intergtien,” Eco-
nomics Letters62, 319-23.

FOSTER J., J. REER, AND E. THORBECKE (1984): “A Class of Decom-
posable Poverty Measure§tonometrica52, 761-776.

FOSTER J. AND A. SHORROCKS(1988): “Inequality and Poverty Order-
ings,” European Economic Revie®2, 654—661.

HaAs, J. D. AND T. BROWNLIE (2001): “Iron Deficiency and Reduced
Work Capacity: A Critical Review of the Research to DeterearCausal
Relationship,’Journal of Nutrition 131, 676S—690S.

HORTON, S. AND J. R0oss (2003): “The economics of iron deficiency,”
Food Policy 28, 51-75.

KAUR, A., B. L. S. RRAKASA RAO, AND H. SINGH (1994): “Testing for
Second-Order Stochastic Dominance of Two DistributioBEgEdnomet-
ric Theory, 10, 849-66.

SAHN, D. AND D. STIFEL (2000): “Poverty Comparisons Over Time and
Across Countries in Africa,\World Developmen®8, 2123-55.

SAHN, D. E.AND D. C. SriFeL (2003): “Exploring Alternative Measures
of Welfare in the Absence of Expenditure DatRgview of Income and
Wealth 49, 463-489.

SAHN, D. E.AND S. D. YOUNGER (2005): “Improvements in Children’s
Health: Does Inequality Matter?Journal of Economic Inequality3,
125-143.

SAVAGLIO, E. (2006): “Multidimensional inequality with variable pola-
tion size,”Economic Theory28, 85-94.

SEN, A. (1973):0n Economic InequalityOxford Clarendon Press.

(1976): “Poverty: An Ordinal Approach to Measuremeiii¢ono-
metricg 44, 219— 231.

(1982): “Equality of What?” inChoice, Welfare and Measuremgent
Cambridge, Mass.: MIT Press, vol. Chapter 16.

38



(1983): “Poor, Relatively Speaking®xford Economic Papers5,
153-169.

SHORROCKS A. (1983): “Ranking Income DistributionsEconomica50,
3-17.

SILVERMAN, B. (1986): Density Estimation for Statistics and Data Analy-
sis London: Chapman and Hall.

Tsul, K. Y. (1995): “Multidimensional Generalizations of the Relatand
Absolute Inequality Indices: The Atkinson-Kolm-Sen Apach,” Jour-
nal of Economic Theor67, 251-65.

WEYMARK, J. A. (2004): “The normative approach to the measurement

of multidimensional inequality,” Working Paper 03-W14Randerbilt
University, Nashville.

39



Figure 1: Inequality frontiers
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Figure 2: Bistochastic transformations may increase iakiyun well-being
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Figure 3: Inequality changes
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