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Abstract:  
The paper investigates how comparisons of multivariate inequality can be made robust 
to varying the intensity of focus on the share of the population that are more relatively 
deprived. It follows the dominance approach to making inequality comparisons, as 
developed for instance by Atkinson (1970), Foster and Shorrocks (1988) and Formby, 
Smith, and Zheng (1999) in the unidimensional context, and Atkinson and Bourguignon 
(1982) in the multidimensional context. By focusing on those below a multidimensional 
inequality “frontier”, we are able to reconcile the literature on multivariate relative poverty 
and multivariate inequality. Some existing approaches to multivariate inequality actually 
reduce the distributional analysis to a univariate problem, either by using a utility function 
first to aggregate an individual’s multiple dimensions of well-being, or by applying a 
univariate inequality analysis to each dimension independently. One of our innovations 
is that unlike previous approaches, the distribution of relative well-being in one 
dimension is allowed to affect how other dimensions influence overall inequality. We 
apply our approach to data from India and Mexico using monetary and non-monetary 
indicators of well-being. 
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1 Introduction

In a recent review of the literature on multivariate inequality measurement,
Weymark (2004) concludes that “(...) Although much has already been learned
about multidimensional normative inequality indices, much more remains to be
discovered. Compared to the theory of univariate inequality measurement, the
analysis of multidimensional inequality is in its infancy.” (p.29) This paper is a
contribution to that young literature.

The method we develop and empirically apply is very much in the spirit of
Amartya Sen’s conceptual framework for thinking of inequality. In that frame-
work, it is important to make clear at the outset what one is comparing across
individuals (Sen 1982). The paper adopts the view that therecan be several di-
mensions to well-being, and that comparisons of well-beingacross individuals
should therefore be multidimensional. In addition, in making normative judge-
ments on distributions of well-being, it is important to make explicit the ethical
norms that are used. This has been clearly argued in the context of measuring
both inequality and poverty (Sen 1973 and Sen 1976). The paper makes these
judgements explicit by using classes of multidimensional inequality indices that
are defined on the basis of explicit normative criteria.

In doing this, we build on the dominance approach to making
inequality comparisons, as developed for instance by Atkinson (1970),
Foster and Shorrocks (1988) and Formby, Smith, and Zheng (1999) in the uni-
dimensional context, and Atkinson and Bourguignon (1982) in the multidimen-
sional context. One advantage of this approach is that it is capable of generating
inequality orderings that are robust over broad classes of inequality indices and
over broad classes of aggregation rules across dimensions of well-being.

We start with the framework for multivariatepovertycomparisons developed
in Duclos, Sahn, and Younger (2006). Two modifications of that approach make
it suitable to inequality analysis. First, rather than consider absolute values of
multiple measures of well-being, we normalize them by a reference value, usually
their mean. The robust poverty comparisons of Duclos, Sahn,and Younger (2006)
thus become robustrelativepoverty comparisons. These can be of interest in their
own right (see for instance Sen 1983), but they also permit sensible analysis of
inequality if the poverty lines are allowed to span a suitably large range, extending
beyond the least deprived people in the population.

Second, by taking a relative poverty approach we are able to focus on “down-
side” inequality aversion. Specifically, we consider inequality indices that can
give greater weight to those positioned at the bottom of the well-being distribu-
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tion. This is done by focusing our comparisons on individuals below a multidi-
mensional poverty “frontier” that functions like a povertyline in a single dimen-
sion: people beyond this frontier do not contribute to relative poverty. In this
approach, inequality is the limiting case of relative poverty, the case in which the
poverty frontier is so far from the origin that everyone’s relative position in the
well-being distribution can have an impact on relative poverty. We show how our
orderings can also be considered to be “frontier-robust”.

It is of course possible to think of making multidimensionalrelative poverty
comparisons by performing univariate comparisons independently for each di-
mension of well-being. But that does not allow the level of well-being in one
dimension to influence our assessment of how other dimensions affect overall
relative poverty, something that we argue any reasonable multivariate compari-
son should consider. Thus, an important feature of the inequality and relative
poverty tests we develop is that they take into account the dependence between
two measures of well-being when making multivariate comparisons. This will
be important when that dependence is stronger for one population than it is for
another. In such cases, univariate comparisons carried outin each dimension sep-
arately can yield results that differ from the genuine multivariate comparisons
developed here. For example, populationA may have lower univariate relative
poverty than populationB for two measures of well-beingχ andξ. But if A also
has a greater dependence betweenχ andξ, then it may also havehigherbivariate
relative poverty thanB despite the univariate differences. And of course, the op-
posite is also true. In practice, we find that one-at-a-time univariate comparisons
conclude that one population has lower inequality than another too easily, and that
it is relatively rare to find greater multivariate inequality in A than inB when we
do not find greater univariate inequality inA than inB.

It is ethically important to suppose that the dependence between dimensions
of well-being matters. In particular, someone who is relatively worse-off in terms
of ξ contributes more to the relative poverty and inequality measure if he is also
relatively worse-off in terms ofχ. Without this conviction, one could just as well
study each dimension of well-being separately.

To highlight further the importance of the dependence between multiple mea-
sures of well-being, one of the key theoretical results of our paper is that if popu-
lationB has a greater covariance between the two dimensions than populationA
does, it is impossible forB to dominateA at first or second order over the entire
domain of the joint distribution of relative well-being. Thus, it is impossible to
draw a robust conclusion thatB has lower inequality thanA at first and second
orders, regardless of the dispersions of the marginal distributions, though conclu-
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sions about relative poverty may still be possible. This gives a decisive role to the
covariance between dimensions of well-being; it is analogous to the role of the
mean in univariate generalized Lorenz comparisons, where adistribution with a
lower mean cannot stochastically dominate one with a greater mean regardless of
the dispersions of the two distributions (Shorrocks 1983).

We also extend our approach to making robust inequality comparisons both
in a relative and in an absolute sense. Relative inequality comparisons involve
comparing the ratios of income to average income across individuals. Absolute
inequality comparisons involve comparing distances between incomes and mean
income across individuals. As mentioned above, relative inequality comparisons
can be thought of as a limiting case of relative poverty comparisons, namely, when
the relative poverty frontier extends over everyone in the population. Absolute
inequality comparisons can be thought of as a limiting case of absolute poverty
comparisons, when the poverty frontier extends beyond the least deprived individ-
uals in the population and when deprivation is measured by the absolute income
difference with the mean.

To gain a better understanding of how our proposed comparisons work in prac-
tice, we apply them to several simulated distributions and also to two diverse
sources of data and different dimensions of well-being: the1999 Demographic
and Health Survey from India, where we rely on an important health indicator, the
hemoglobin concentration (g/Dl) of women aged 15-49, and anindex of the assets
owned by those women’s households; and from Mexico’s 2008Evaluacíon Na-
cional del Logro Acad́emico de Centros Escolares(National Evaluation of Aca-
demic Attainment in High Schools), where the indicators of well-being involve
achievement tests administered to all high school studentsin Mexico, in addition
to an asset index constructed in a similar manner to the Indiadata. These applica-
tions are of considerable interest since little is known empirically about multidi-
mensional inequality rankings. In order to add further relevance to our empirical
work, we provide the sampling distribution of the estimators that are needed to
make inferences about the true population rankings.

The stochastic dominance tests that we use yield very strongresults: if we
can reject the null of non-dominance, we can conclude that one population has
greater inequality for broad classes of inequality measures that include arbitrary
aggregation across dimensions of well-being and across individuals. As a result,
we should expect that it is relatively difficult to reject thenull. In fact, for many
of the distributions that we study, both simulated and real,this is the case. Com-
pared to our previous work on multivariate poverty comparisons, we find it sig-
nificantly more difficult to reject the null of non-dominance. One reason for this

3



is that poverty can be lower in one population than another either because it has
greater means or because it has lower dispersions in the marginal distributions,
while relative poverty or inequality comparisons can differ only due to greater
dispersions. But an equally important reason, highlightedin our simulations, is
that the covariance between dimensions of well-being assumes an overwhelming
importance as we extend the test domain to the least deprivedobservations in the
sample. Poverty comparisons do not usually consider these wealthier people (by
the focus axiom), but inequality comparisons must do so. In many cases, it will be
possible to draw robust conclusions for a (relative) poverty comparison, but not
for an inequality comparison, because of the increased rolethat the covariances
play for such comparisons.

2 Multiple indicators of relative well-being

As with several other papers in the literature, we will for simplicity mostly
focus on the 2-dimensional case. Letx andy then be two indicators of individual
well-beingnormalizedby some norm. These indicators could be, for instance,
income, expenditures, calorie consumption, height, cognitive ability,etc., normal-
ized by what is deemed to be enjoyed by a representative individual in a society.
As we will discuss below, these indicators of normalized well-being can be ob-
tained by taking the distance betweennon-normalizedindicators of well-beingχ
andξ and some norm for each, yieldingx andy, respectively.

One alternative to thinking ofx andy as two indicators of normalized indi-
vidual well-being is to define a functionU(χ, ξ) that aggregatesχ andξ into an
overall measure of individual well-being, and think of the distance between this
and a norm defined in units of overall well-being. This approach is fairly common
in the (limited) literature on multivariate inequality measures — see for instance
Weymark (2004) for a discussion. In essence, it reduces the multivariate problem
to a more familiar univariate one, but at a significant cost: it requires specifying a
particular definition ofU(χ, ξ), something that is necessarily arbitrary. By avoid-
ing such “two-step” aggregations, our approach provides more general inequality
comparisons.

Let the distribution of these two indicatorsχ, ξ in the population be given by
an n × 2 matrix denoted asA, wheren is the number of individuals. Let the
domain of admissible distributions be denoted asΞ. We will represent inequality
indices byPA for inequality inA. For anyA,B ∈ Ξ, we will therefore say that
A is more unequal thanB according to indexP if and only if PA > PB. We also
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need two alternative definitions of inequality indices.

Definition 1 P is a strongly relative inequality index if and only ifPA = PAΓ for
all 2 × 2 diagonal matricesΓ with elementsγii > 0 (i = 1, 2) for whichA and
AΓ are both members ofΞ.

Definition 1 is analogous to the scale invariance axiom in univariate inequality
analysis. Let1 be a matrix whose entries are all equal to 1.

Definition 2 P is a strongly translatable inequality index if and only ifPA =
PA+1Γ for all 2×2 diagonal matricesΓ for whichA andA+1Γ are both members
ofΞ.

Definition 2 is also analogous to the translation invarianceaxiom for the anal-
ysis of univariate inequality. These definitions are in the spirit of those found in
Tsui (1995) — see also Weymark (2004). But unlike the univariate case, they may
not be uniformly acceptable. For instance, we may well feel that, if everyone’s
education level is doubled, the contribution of other indicators (such as health or
income) to overall inequality should be affected. In that case, we might not want
to use strongly relative inequality indices since these indices will remain invariant
to such a change.

The above nevertheless suggests that we can think of at leasttwo types of
normalizations to each indicator of well-being. The first normalization (Definition
1) is of a relative type, obtained by a scaling of the indicator by an arbitrary value,
and the second type of normalization (Definition 2) is absolute and is obtained
by a translation of the indicators by an arbitrary value. Themean is an obvious
candidate for these arbitrary values in the context of inequality comparisons, but
other distribution-dependent statistics (such as the median or the mode) could also
be applied.

To implement these mean-normalization procedures, we can use distances be-
tween indicators of well-being and their population mean (for absolute inequality
comparisons) or the same distances but divided by the mean (for relative inequal-
ity comparisons). For an indicatorχ of non-normalized well-being with meanµχ,
let then

xρ = ρ

(

χ− µχ

µχ

)

+ (1− ρ) (χ− µχ) . (1)
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Absolute inequality inχ can be assessed by usingx0, and relative inequality by
usingx1 (and similarly for another indicator of relative well-being, yρ, defined
by replacingχ by ξ in (1)). The use ofx0 andx1 in indices of inequality will
make the indices strongly translatable and strongly relative inx, respectively (and
similarly for y0 andy1 with respect toξ). Intermediate inequality inχ andξ can
be assessed by using0 < ρ < 1. For expositional simplicity, we will however
sometimes omit the indicesρ from xρ andyρ.

We then assume that we wish to compute an aggregate index of inequality
based on the distribution ofx andy. Denote by

λ(x, y) : ℜ2 → ℜ

∣

∣

∣

∣

∂λ(x, y)

∂x
≤ 0,

∂λ(x, y)

∂y
≤ 0 (2)

a summary measure of the degree of relative deprivation of anindividual. Note
that the derivative conditions in (2) mean that different indicators can each con-
tribute to decreasing overall deprivation. We make the differentiability assump-
tions for expositional simplicity, but they are not strictly necessary so long as
λ(x, y) is non-decreasing overx andy.

We may wish to focus on those with the greatest degree of deprivation.This
can be done by drawing an inequality frontier separating those with lower and
those with greater relative deprivation. We can think of this frontier as a series of
points at which overall relative deprivation is kept constant at a critical value. This
frontier is assumed to be defined implicitly by a locus of the form λ(x, y) = 0,
and is analogous to the usual downward-sloping indifference curves in the(x, y)
space. As in the poverty literature,(x, y) values that lie beyond this frontier do not
contribute to aggregate relative deprivation. Thus, to obtain an inequality measure
in the usual sense, the frontier would need to be set beyond the most extreme
values ofx and y. The set of those over whom we want to aggregate relative
deprivation is then obtained as:

Λ(λ) = {(x, y) |(λ(x, y) ≥ 0} . (3)

Consider Figure 1 with thresholdszx andzy in dimensions of indicatorsx and
y. The dottedλ1(x, y) line gives an “intersection” frontier: it considers someone
to be relatively deprived only if he is deprived inbothof the two dimensions of
x andy, and therefore if he lies within the dashed rectangle of Figure 1.λ2(x, y)
(the L-shaped, dashed line) gives a “union” frontier: it considers someone to be
relatively deprived if he is deprived ineitherof the two dimensions, and therefore
if he lies below or to the left of the dotted line. Finally, thecontinuousλ3(x, y)
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line provides an intermediate approach. Someone can be relatively deprived even
if y > zy, if his x value is sufficiently low to lie to the left ofλ3(x, y) = 0.

To define multidimensional inequality indices more precisely, let the joint dis-
tribution of x andy be denoted byF (x, y). For analytical simplicity, we focus
on classes of inequality indices that are additive across individuals. An additive
inequality index that combines the two dimensions of well-being can be defined
generally asP (λ),

P (λ) =

∫ ∫

Λ(λ)

π(x, y;λ) dF (x, y), (4)

whereπ(x, y;λ) is the contribution to inequality of an individual with relative
well-being indicatorsx andy. By the definition of the inequality frontier, we have
that

π(x, y;λ)

{

≥ 0 if λ(x, y) ≥ 0
= 0 otherwise.

(5)

Theπ function in equation (5) is thus the weight that the inequality measure
attaches to someone who is inside the inequality frontier. That weight could be 1
(for a count of how many are relatively deprived), but it could take on many other
values as well, depending on the inequality measure of interest.

A bi-dimensional dominance surfacecan now be defined as:

Dαx,αy(zx, zy) =

∫ zy

0

∫ zx

0

(zx − x)αx(zy − y)αy dF (x, y) (6)

for integersαx ≥ 0 andαy ≥ 0. This dominance surface aggregates products of
distances between indicatorsx andy and thresholdszx andzy — these distances
are usually referred to as poverty gaps in the poverty literature. We can also rewrite
(6) as

Dαx,αy(zx, zy) =

∫ zx

0

(zx − x)αx

[
∫ zy

0

(zy − y)αy dF (y|x)

]

dF (x), (7)

whereF (x) is the univariate (or marginal) distribution function ofx andF (y|x)
is the distribution ofy conditional onx. This says that the bivariate dominance
curve can be thought of as the integral of the univariate dominance curves fory,
conditional onx, weighted by the gaps inx,

∫ zx
0
(zx − x)αxdF (x).

We generate the dominance surface by varying the values ofzx andzy over
an appropriately chosen domain, with the height of the surface given by equa-
tion (6). In particular, if the domain of the integration is the entire(x, y) plane,
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thenDαx,αy(zx, zy) qualifies as a usual measure of inequality.D0,0(zx, zy) =
F (zx, zy) generates a bivariate cumulative density function of relative well-
being. Note also that (6) is a two-dimensional generalization of the FGT index
(Foster, Greer, and Thorbecke 1984) defined over gaps of relative well-being.

An important feature of the dominance surface is that it is influenced by the
covariance betweenx andy, the two indicators of normalized well-being, because
the integrand is multiplicative. Rewriting (6), we find indeed that

Dαx,αy(zx, zy) =

∫ zy

0

(zx − x)αx dF (x)

∫ zx

0

(zy − y)αy dF (y)

+ cov ((zx − x)αx , (zy − y)αy) . (8)

The height of the dominance surface is therefore the productof the two unidi-
mensional curves plus the covariance in the poverty gaps in the two dimensions.
Thus, the higher the correlation betweenx andy, the higher the dominance sur-
faces, other things being equal.

Equation (8) highlights the critical importance of the covariance between di-
mensions of relative well-being in the two populations. Forfirst- and second-order
comparisons (αx = 0, 1;αy == 0, 1), the integrals in the first term on the right-
hand side are equal for all distributions when the values ofzx andzy are beyond
the highest values ofx andy in the populations. In this region, the dominance sur-
faces can differ only if the covariances between the povertygaps in each dimen-
sion differ across the populations. This is true even if the univariate distributions
are significantly more unequal in one population.

3 Dominance conditions

Our inequality comparisons make use of orders of dominance,sx andsy in the
x and in they dimensions, which will correspond respectively tosx = αx +1 and
sy = αy + 1. The parametersαx andαy also capture the aversion to inequality in
thex and in they dimensions, respectively.

To describe the class of inequality measures for which the dominance surfaces
defined in equation (6) are sufficient to establish multidimensional inequality or-
derings, assume first thatπ in (4) is left differentiable1 with respect tox andy
over the setΛ(λ). Denote byπx the first derivative2 of π(x, y;λ) with respect to

1This differentiability assumption is made for expositional simplicity. It could be relaxed.
2The derivatives include the implicit effects ofx andy onλ(x, y).
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x; by πy the first derivative ofπ(x, y;λ) with respect toy; by πxy the derivative of
π(x, y;λ) with respect to bothx andy; and treat similar expressions accordingly.

Let λ+ be an uppermost inequality frontier,i.e., a frontier that encompasses
all of those individuals whose normalized well-being couldeventually enter into
P (λ). We can then define the following two classes of bidimensional relative
poverty indices:

Π1,1(λ+) =















P (λ)

∣

∣

∣

∣

∣

∣

∣

∣

Λ(λ) ⊂ Λ(λ+);
π(x, y;λ) = 0, wheneverλ(x, y) ≥ 0;
πx(x, y;λ) ≤ 0 andπy(x, y;λ) ≤ 0 ∀x, y;
πxy(x, y;λ) ≥ 0, ∀x, y;















(9)

and

Π2,2(λ+) =























P (λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P (λ) ∈ Π1,1(λ+);
πx(x, y;λ) = 0, πy(x, y;λ) = 0, πxx(x, y;λ) = 0,
πyy(x, y;λ) = 0, andπxy(x, y;λ) = 0 whenλ(x, y) = 0;
πxyy(x, y;λ) ≤ 0 andπxxy(x, y;λ) ≤ 0, ∀x, y;
andπxxyy(x, y;λ) ≥ 0, ∀x, y.























(10)

The conditions for membership inΠ1,1(λ) require that the inequality indices
be decreasing in bothx andy. They also demand that this decrease be stronger
the lower the level of the other dimension of relative well-being:πxy(x, y;λ) ≥ 0.
This is equivalent to an assumption of “substitutability” between the dimensions
of well-being. We return below to the interpretation and therole of this assump-
tion.

Note thatπxx(x, y;λ) ≥ 0 ∀x, y andπyy(x, y;λ) ≥ 0 ∀x, y are conditions
that are implied by the continuity conditionsπxx = 0 andπyy = 0 at the frontier
and by the conditionsπxyy(x, y;λ) ≤ 0 andπxyy(x, y;λ) ≤ 0. The conditions
for membership inΠ2,2(λ) thus require that the inequality indices be convex in
both x andy, and that they therefore obey the principle of transfers in both of
these dimensions. This assumption seems more natural in an inequality context
than in a welfare/absolute poverty context. It would indeedseem to make sense
that overall multidimensional equality be monotonically increasing in the equality
of either dimension, everything else being the same. The conditions forΠ2,2(λ)
also require that the transfer principle be more important in one dimension of
relative well-being the lower the level of the other dimension of relative well-
being. Finally, they also impose that the second-order derivative in one dimension
of well-being be convex in the level of the other indicator ofwell-being. This is
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equivalent to saying that the concern for inequality in one dimension is convex in
the level of the other indicator. This is a regularity condition that demands that
equalizing transfers in thex dimension become progressively less important as
the value ofy is increased.3 We also return to this below.

To see how this differs from another popular definition of convexity, we can
introduce the following definition.

Definition 3 (Bistochastic majorization as a multi-attribute version of the Pigou-
Dalton transfer, Weymark 2004) For allA,B ∈ Ξ for whichA 6= B , A is more
unequal thanB if B = ΣA for somen × n bistochastic matrixΣ that is not a
permutation matrix.

As Savaglio (2006) writes, this definition “(...) is a sort ofdecomposability
property, which allows [orderings] to be coherent with an inequality measurement
via an additive evaluation function” (p.90) — see also Dardanoni (1995). Figure
2 illustrates, however, how a bi-stochastic transformation can increase inequality
in well-being as measured by a utility functionU . Assume that an initial distribu-
tion A of well-being is made of pointsa andd. Assume also that a bi-stochastic
transformation moves pointa to pointb and pointd to pointc in order to gener-
ate a new distributionB of well-being made of pointsb andc. The bistochastic
transformation moves pointa andd closer to the center (given byx andy) in both
dimensions at the same time and at the same rate.

Overall well-being (or utilityU(x, y)) was the same atU0 for each pointa
andd in A initially; now it is lower for individualb (at U1) than for individual
c (larger thanU1). Reducing inequality simultaneously and equi-proportionately
in each dimension at the same time thus increases inequalityin theU dimension.
This therefore suggests that a bi-stochastic transformation ofA intoB might lead
to greaterinequality inB.

The conditions for membership inΠ2,2(λ) fortunately do not impose the bis-
tochastic majorization condition. They only imply that inequality should fall if, as
in Figure 3, points{a, c} were moved (simultaneously and at the same speed)
towards pointb, or if points {a, g} were moved towards pointd, or if points
{c, i} were moved towards pointf . These properties follow from the signs of the

3The classesΠ1,1 and Π2,2 are reminiscent of the classes of welfare functions used by
Atkinson and Bourguignon (1982). Atkinson and Bourguignon(1982) nevertheless allow for pos-
sibly different signs forπxy(x, y) andπxxyy(x, y) since they also consider the case of functions
that show “complementarity” in indicators. They do not, however, allow forΛ(λ+) to exclude
anyone.
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second-order derivatives,πxx(x, y;λ) ≥ 0 andπyy(x, y;λ) ≥ 0 ∀x, y. The con-
ditions for membership inΠ2,2(λ) do not, however, require that inequality should
fall if points {a, i} were moved closer together towards pointe — this would be
implied, however, by the bistochastic majorization principle.

The sign of the third-order derivatives,πxyy(x, y;λ) ≤ 0 ∀x, y, also imply that
the fall in inequality (as measured by members of theΠ2,2(λ)) will be larger if
points{a, g} are moved towards pointd than if points{c, i} are moved towards
point f . Similarly, the conditions for membership inΠ2,2(λ) also require that
the fall in inequality will be larger if points{g, i} are moved towards pointh
than if points{a, c} are moved towards pointb. Furthermore, the condition that
πxxyy(x, y;λ) ≥ 0, ∀x, y implies that replacing in Figure 3 points{g, i} and{e, e}
by points{h, h} and{d, f}, respectively, will reduce inequality by more than if
points{d, f} and{b, b} are replaced by points{e, e} and{a, c}.

The inequality impact of the correlation between attributes, as captured by
theπxy(x, y;λ) ≥ 0 condition, is also important. We can illustrate this in three
different ways:

1. First, if we were to replace points{c, g} by points{a, i} on Figure 3, then
bivariate inequality would need to fall, though univariateinequality would
remain unchanged.

2. Second, a movement from points{a, i} to points{d, f}would decrease uni-
variate inequality in they dimension and would leave univariate inequality
in thex dimension unchanged. A movement from points{a, i} to points
{d, f} would, however, not necessarily decrease bivariate inequality since
such a movement would increase the correlation between the attributes.

3. Third, moving pointi beyondf towardsc, and moving pointa beyondd
towardsg, will eventually increasebivariate inequality, since{c, g} is less
equal than{a, i}. This is despite the fact that univariate inequality in both
of the x and y dimensions never increases (and sometimesfalls) in that
movement.

Note that this substitutability assumption is probably more defendable in a mul-
tidimensional inequality context than in a multidimensional poverty context. It
would seem indeed that replacing points{c, g} by points{a, i} on Figure 3 should
almost certainly reduce relative welfare disparities between the individuals, al-
though there might be situations in which that change might increase absolute
poverty — see for instance the discussion in Duclos, Sahn, and Younger (2006).
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Let then ∆P (λ) = PA(λ) − PB(λ) and ∆Dsx−1,sy−1(zx, zy) =

D
sx−1,sy−1
A (zx, zy) − D

sx−1,sy−1
B (zx, zy). This leads to the following dominance

relationships forsx = sy = 1, 2:

Theorem 1 (Πsx,sy relative poverty dominance)

∆P (λ) > 0, ∀P (λ) ∈ Πsx,sy(λ+)

iff ∆Dsx−1,sy−1(zx, zy) > 0, ∀(zx, zy) ∈ Λ(λ+). (11)

Proof: See appendix.
Theorem 1 says that it is possible to order relative poverty across distributions

A andB by checking whether condition (11) holds. If condition (11)holds, then
relative poverty is larger inA than inB for all of the relative poverty indices that
belong to the classΠsx,sy(λ+), sx = sy = 1, 2.

Several remarks follow from Theorem 1.

Remark 1 Inequality dominance (that is, dominance over the entire ranges of
possible values forx andy) is obtained by lettingλ+ lie beyond the largest values
of x andy. Then (11) implies that inequality is larger inA than inB.

Remark 2 Πsx,xy dominance does not imply univariate dominance in either of
the two indicators.

Remark 3 For bivariateΠ2,2 inequality dominance, we need∆cov (x, y) > 0,
that is, that the covariance of the indicators be greater inA than inB.

Remark 4 An array of tests of absolute and relative inequality dominance in each
dimension can be made with Theorem 1 by usingxρ andyρ with different values for
ρ. For instance, usingx0 andy0 leads to a test of absolute inequality dominance in
each dimension; usingx0 andy1 leads to a test of absolute inequality dominance
in thex and of relative inequality dominance in they dimension; and so on.

Remark 5 Because of the normalizations used to obtainxρ andyρ (see (1)),Π1,1

relative poverty dominance is only feasible over a range ofxρ andyρ that does not
extend to the largest value of these variables. Since

∫

zdFxρ
(z) =

∫

zdFyρ(z) = 0
for all values ofρ, it is indeed not possible to find∆D0,0(zx, zy) > 0 for all values
of (zx, zy). Hence,Π1,1 inequality dominance is not possible.
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Remark 6 If theπ(x, y;λ) relative deprivation function in (4) were separable in
x andy, the cross-derivatives involved in the definition of theΠsx,sy(λ+) classes
would all be zero. That would inter alia imply that the impactonπ of changingx
would need to be independent of the value ofy and would need to depend (poten-
tially) only on the value ofx. Such separability is implicit when one is checking
for multivariate inequality dominance by performing univariate comparisons in-
dependently for each dimension of well-being.

Such a separability assumption has undesirable consequences in the context of
multivariate inequality measurement. Consider an exampleinvolving a transfer of
an indicator of cognitive ability (i.e., achievement tests) (the variablex) between
Bill Gates and John School, and assume as above thatπxx(x, y;λ) ≥ 0. Also
assume that despite his vastly superior income (variabley), Bill Gates happens to
score lower on achievement tests than John School. Separability of theπ(x, y;λ)
in x andy would imply that a transfer of ability from John School to Bill Gates
would necessarily reduce overall inequality. This would seem undesirable since
that transfer would also increase the welfare distance between the two individuals.

4 Estimation and inference

We now consider the estimation of the surfaces derived aboveas well as sta-
tistical inference on them. This can be seen as a generalization of the procedures
followed in Duclos, Sahn, and Younger (2006) to the case of surfaces, curves and
indices whose thresholds and individual functions of contributions to total poverty
are subject to sampling variability because they depend on unknown characteris-
tics and moments of the distribution (e.g., the meansµχ andµξ of the variables).

To start with, note that theDsx−1,sy−1(zx, zy) functions defined in (6) above
can be seen as a special case of the more general class of bidimensional surfaces
defined as

D =

∫ gχ(µχ)

0

∫ gξ(µξ)

0

h(χ, ξ;µχ, µξ)dF (χ, ξ), (12)

wheregχ, gξ andh are continuous and differentiable functions ofµχ andµξ. A
natural estimator ofD is obtained by replacingF by its empirical counterpart,
F̂ , and theµχ andµξ by their sampling values. To see this better, suppose that
we have a random sample ofN independently and identically distributed (IID)
observations drawn from the joint distribution ofχ and ξ. We can write these
observations ofχL and ξL, drawn from a populationL = A,B, as (χL

i , ξ
L
i ),
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i = 1, . . . , N . LetI(·) be the indicator function, which is equal to 1 if its argument
is true and 0 otherwise. This gives:

D̂L =
∫ gχ(µ̂L

χ )

0

∫ gξ(µ̂
L
ξ
)

0 h(χ, ξ; µ̂L
χ, µ̂

L
ξ )dF̂

L(χ, ξ)

= N−1
∑N

i=1 I(χ
L
i ≤ gχ(µ̂

L
χ)I(ξ

L
i ≤ gξ(µ̂

L
ξ )h(χ

L
i , y

L
i ; µ̂

L
χ , µ̂

L
ξ ).

(13)

Denotingf+ = max(f, 0), the dominance surfaces defined in (6) are obtained
from (13) by setting

gχ(µχ) = zxµχ

gξ(µξ) = zyµξ

h(χ, ξ;µχ, µξ) =
(

zx −
χ
µχ

)αx

+

(

zy −
ξ
µξ

)αy

+

(14)

for relative inequality both inχ and inξ; by setting

gχ(µχ) = zx + µχ

gξ(µξ) = zyµξ

h(χ, ξ;µχ, µξ) = (zx − (ξ − µχ))
αx

+

(

zy −
ξ
µξ

)αy

+

(15)

for absolute inequality inχ and relative inequality inξ; and by setting

gχ(µχ) = zx + µχ

gξ(µχ) = zy + µξ

h(χ, ξ;µχ, µξ) = (zx − (χ− µχ))
αx

+ (zy − (ξ − µξ))
αy

+

(16)

for absolute inequality both inχ and inξ. Substituting the above into (13) gives es-
timators of the various combinations of absolute and relative dominance surfaces
discussed above. For arbitraryαx andαy, (13) then has the convenient property
of being a simple sum of IID variables, even if we allow for thefact thatχ andξ
will generally be correlated across observations.

The following theorem provides the asymptotic sampling distribution of the
general case given by (13) under relatively minor conditions and in the case in
which we have a sample from each of two populations,A andB, that may or may
not have been drawn independently from each other.

Theorem 2 Let the joint population moments of order 2 ofχA + ξA +
h(χA, ξA;µA

χ , µ
A
ξ ) and χB + ξB + h(χB, ξB;µB

χ , µ
B
ξ ) be finite. Then
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N1/2
(

D̂A −DA
)

andN1/2
(

D̂B −DB
)

are asymptotically normal with mean

zero, with asymptotic covariance structure given by (L,M = A,B)

limN→∞Ncov
(

D̂L, D̂M
)

= E
[(

mL
χχ

L +mL
ξ ξ

L + I(χL ≤ gχ(µ
L
χ))I(ξ

L ≤ gξ(µ
L
ξ ))h(χ

L, ξL;µL
χ , µ

L
ξ )
)

·
(

mM
χ χM +mM

ξ ξM + I(χM ≤ gχ(µ
M
χ ))I(ξM ≤ gξ(µ

M
ξ ))h(χM , ξM ;µM

χ , µM
ξ )

)]

−E
[

mL
χχ

L +mL
ξ ξ

L + I(χL ≤ gχ(µ
L
χ))I(ξ

L ≤ gξ(µ
L
ξ ))h(χ

L, ξL;µL
χ , µ

L
ξ )
]

·E
[

mL
χχ

L +mL
ξ ξ

L + I(χL ≤ gχ(µ
L
χ))I(ξ

L ≤ gξ(µ
L
ξ ))h(χ

L, ξL;µL
χ, µ

L
ξ )
]

(17)

where

mL
χ = g′χ(µ

L
χ)

∫ gξ(µ
L
ξ
)

0 h(gχ(µ
L
χ), ξ;µ

L
χ, µ

L
ξ )f(gχ(µ

L
χ), ξ)dξ

+
∫ gχ(µL

χ )

0

∫ gξ(µ
L
ξ
)

0 hµχ(χ, ξ;µL
χ, µ

L
ξ )dF

L(χ, ξ)

(18)

and
mL

ξ = g′ξ(µ
L
ξ )

∫ gχ(µL
χ )

0
h(χ, gξ(µ

L
ξ );µ

L
χ, µ

L
ξ )f(χ, gξ(µ

L
ξ ))dχ

+
∫ gχ(µL

χ )

0

∫ gξ(µ
L
ξ
)

0 hµξ(χ, ξ;µL
χ, µ

L
ξ )dF

L(χ, ξ),

(19)

and wheref(χ, ξ) is the joint density ofχ andξ.
Proof: See the Appendix (Section 8).

When the samples from the populationsA andB are independent, the variance of
each ofD̂A andD̂B can be found by using (17) and by replacingN by NA and
NB respectively. The covariance between the two estimators isthen zero. The
elements of the asymptotic covariance matrix in (17) can be estimated consistently
using their sample equivalents. Further details are provided in the Appendix of
Section 8.

5 Simulation exercises

To provide a better understanding of how our proposed multivariate inequality
comparisons are likely to work in practice, we undertake simulations that com-
pare a variety of dist ributions. In all cases, we create two populations of 200,000
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individuals and joint distributions ofx andy that are bivariate normal. We always
shift these distributions so that they include no negative values, so the means of the
marginal distributions are usually around 5 or 6. We then sample from those pop-
ulations and compare the samples. In most cases, we use a sample size of 1000,
which is roughly the size of large sub-samples (by region, say) in common house-
hold surveys like the Living Standards Measurement Surveysor the Demographic
and Health Surveys. All the results reported here are for 100such samples.

The phrase “non-statistical results” refers to comparisons made from simply
comparing the surface estimates ofDsx−1,sy−1(zx, zy) without carrying out any
formal statistical testing. The phrase“statistical results” refers to statistical in-
ference results. In testing for inequality dominance, we follow the intersection-
union approach proposed by Kaur, Prakasa Rao, and Singh (1994) and recently
extended by Davidson and Duclos (2006). We posit a null hypothesis of non-
dominance ofA byB and an alternative hypothesis of dominance ofA by B. We
reject the null and accept the alternative thatB has less inequality thanA if and
only if the t statistics at all of the test points exceed the usual 5% critical value of
the normal distribution.

Since the theory we present above stresses the importance ofthe covariance
between dimensions of well-being, our first simulations vary the correlation be-
tweenx andy in the first population, while keeping it at zero for the second. In all
cases, the variance of the marginal distributions is one. Table 1 gives the results.
For a sample size of 1000 and a difference in correlation of 0.2, which is plausi-
ble for several of the actual distributions that we will examine in Section 6, there
are no statistically significant comparisons between the two samples, even though
about half of the non-statistical comparisons find that the dominance surface esti-
mates for sample 1 are above those for sample 2 everywhere. Even for very large
differences in correlations of 0.6, there are relatively few statistically significant
differences between the dominance surfaces, even though virtually all of the non-
statistical comparisons would appear conclusive. The results are similar across
absolute and relative comparisons.

Table 2 shows the number of rejections at each point in the(x, y) domain
where we test for differences in the surfaces. The origin is at the lower left, and
the first column and last row give the coordinates forx andy. This particular
result is for relative inequality comparisons when population 1 has a correlation
of 0.6 and population 2 has no correlation betweenx andy. It is clear that the
reason that we cannot reject the null often is that there are relatively few rejections
in the areas of the surface wherex is relatively large andy is relatively small,
or vice-versa. This is clearly a problem of statistical power: there are too few
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observations in these regions of the surfaces to infer dominance with sufficient
confidence. Unfortunately, even when we increase the samplesizes to 10,000, we
get relatively few significant differences. (See the last two columns of Table 1.)
Thus, for the typical samples from national household surveys that are conducted
in developing countries, it may be difficult to reject the null for samples that differ
only in their correlation between dimensions of well-being. Nevertheless, it will
often be possible to find differences inrelative povertyfor poverty measures that
do not extend to the upper left and lower right corners of the dominance surfaces.
This would include a wide range of intersection relative poverty measures, but no
union measures.

Table 3 gives results for comparisons when the standard deviations of the
marginal distributions in population 2 are a multiple of those in distribution 1
for bothx andy. As equation (8) shows, these surfaces cannot differ over the en-
tire (x, y) domain because they have the same covariance of zero. Thus, we report
statistical differences for all test points except the extreme one at the upper right
of the test domain that is just beyond the maximum value ofx andy. These are,
then, relative poverty comparisons, valid for a very wide range of relative poverty
lines and both union and intersection poverty measures. Once the ratio of standard
deviations reaches 1.4, well within the range that we find in real samples in the
following section, we begin to have a significant number of cases in which the
dominance surfaces differ statistically. Thus, for samples with strong univariate
differences in inequality, we should also find bivariate differences, except at the
extreme of the distribution where only the correlation matters.

Table 4, however, shows that a relatively modest correlation in one population
can offset even rather large differences in univariate dispersions, and vice-versa.
In the first two columns we compare population 2 with univariate standard devia-
tions that are 1.6 times as large as those for population 1. Inthe first column, there
is no correlation in either population and, excluding the extreme test point of the
test domain, there are many significant differences betweenthe dominance sur-
faces. In column 2, population 1 now has correlation betweenx andy of 0.2. This
greatly reduces the number of significant differences between dominance surfaces
drawn from these two populations. In such cases, one-at-time univariate compar-
isons will reject the null of equality between the two samples too easily because
they do not consider the correlation between dimensions.

Column 3 shows that there are some (though relatively few) significant differ-
ences between samples if the correlation betweenx andy in population 1 is 0.6
higher than that in population 2. However, all of these significant differences van-
ish if we increase the standard deviations in the second sample by even a modest
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20 percent. Overall, in cases where one population has greater correlation while
the other has greater univariate variances, it could be uncommon to conclude that
there is a statistically significant difference in multidimensional inequality, be-
cause of the conflicting effects of univariate inequality and joint inequality.

Thus far, our multivariate inequality comparisons are morelikely not to reject
the null of non-dominance than one-at-a-time univariate comparisons, but it is
also possible that a correlation betweenx andy helps to resolve contradictory
univariate results. In particular, it is possible that one univariate test rejects the
null while another does not, but the bivariate test does reject the null of non-
dominance. It is also possible that one univariate test shows significantly less
inequality in distribution A while the other shows less in distribution B, and the
bivariate test still shows greater inequality in one or the other distribution, if it has
a large covariance betweenx andy.

Table 5 gives results for some such cases. In the first column,population 2
has a somewhat smaller standard deviation ofx and a larger standard deviation
of y than population 1. In this case, even a large correlation betweenx andy

in population 1 is insufficient to produce statistically significant differences in
the bivariate comparisons. However, if the variances ofy are the same in both
populations, the larger correlation in the first populationis now sufficient to reject
the null about half of the time.

6 Examples

We turn now to examples using real data. We focus on the interesting cases
in which the bivariate tests that we propose produce different results than one-
at-a-time univariate comparisons for the same dimensions of well-being. Ta-
ble 6 gives results from the 1999 Demographic and Health Survey (DHS) for
India. It considers relative poverty and inequality in two dimensions of well-
being: the hemoglobin concentration (g/Dl) of women aged 15-49, and an index
of the assets owned by those women’s households. Hemoglobinis an impor-
tant health indicator. Low hemoglobin concentrations cause a variety of health
problems and have been shown to reduce physical productivity — see for in-
stance Haas and Brownlie (2001) and Horton and Ross (2003). Household assets
are a good proxy for a household’s material well-being (Sahnand Stifel 2000 and
Sahn and Stifel 2003). The index is constructed as the first factor from a fac-
tor analysis of the household’s water source, type of toiletfacility, the household
head’s years of schooling, and indicators of whether or not the household has elec-
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tricity, a radio, a television, a refrigerator, and a bicycle. Since this distribution is
centered around zero, it is shifted rightward so that it has no negative values.

The comparisons in Table 6 are between the Indian states of Goa and Ra-
jasthan. Note that Goa has lower Gini coefficients for both assets and hemoglobin
concentrations, but also has a significantly higher correlation between those two
variables. The bottom section of the table shows that Goa dominates Rajasthan
in both dimensions of well-being independently: across theentire distribution of
assets or hemoglobin, Goa’s dominance curve is below Rajasthan’s, and these
differences are statistically significant. Based on this information, one would con-
clude that Goa has less inequality than Rajasthan.

However, the bivariate comparison (11) cannot reject the null that Goa has
more inequality than Rajasthan. Table 7 shows the t-statistics for the null hypothe-
sis that the two states’ dominance surfaces are equal at eachof 100 equally spaced
points across the entire domain of the joint distribution ofassets and hemoglobin
concentrations. These differences change sign, indicating that the dominance sur-
faces cross, and the differences are rarely statistically significant; when they are
statistically significant, they also sometimes indicate that Goa has more relative
poverty. Thus, the higher correlation between assets and hemoglobin in Goa is
sufficient to nullify the conclusion drawn from the univariate comparisons.

On the other hand, it is also possible that the univariate comparisons are in-
conclusive or contradictory (showing thatA dominatesB in one dimension while
the opposite is true in the other), yet the bivariate comparison rejects the null
of non-dominance. Tables 8 and 9 show similar comparisons for Goa and the
state of Himachal Pradesh. In this case, Himachal Pradesh has lower asset in-
equality, but we cannot reject the null that Goa has less inequality of hemoglobin
concentrations. The bivariate comparison, however, clearly rejects the null of non-
dominance across the entire domain of the dominance surfaces, so we reject the
null in favor of greater bivariate inequality in Goa.4

To have a sense of how common these results are, Table 10 summarizes uni-
variate and bivariate comparisons across all possible combinations of states in
the 1999 India DHS. The first frame is for relative inequalitycomparisons, for
which the data are divided by their mean. The second frame is for absolute in-
equality comparisons (the mean is subtracted from all data). The third frame is
for non-normalized data; these comparisons are the same as the poverty compar-

4This example is also a caution that simple recourse to the Ginis and correlation coefficients
can be misleading. What matters is the dispersion for each variable and the dependence between
them over the entire distribution.
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isons developed earlier in Duclos, Sahn, and Younger (2006), but with the poverty
frontier extended beyond all of observations in the sample.Thus, they are welfare
comparisons.

A striking result in Table 10 is how few cases of bivariate inequality dom-
inance there are: only 33 for relative inequality and 16 for absolute inequality
(out of 325 possible comparisons across Indian states) at dominance order (2,2),
and somewhat more for order (3,3), especially for the absolute inequality case (70
out of 325). This compares to 125 cases of bivariate dominance for the welfare
comparisons at order (2,2).

Closer examination of the table shows that there are two reasons for this. First,
the last two columns show non-statistical comparisons. That is, if one sample sur-
face is everywhere below another, we conclude that it dominates, regardless of the
statistical significance of that difference. This yields welfare dominance in 197
cases, relative inequality dominance in 129, and absolute inequality dominance
in 90. This is to be expected insofar as the non-normalized welfare distributions
can differ either because the means differ or the dispersions differ. Because the
inequality comparisons normalize the data, they can differonly if the dispersions
around the mean differ. Previous work on incomes (Datt and Ravallion (1992))
and anthropometry (Sahn and Younger (2005)) has shown that distributional dif-
ferences are often dominated by different means rather thandispersions. So it is
not surprising to find fewer differences when examining normalized distributions.

Table 10 also shows that differences in dominance surfaces are less likely to
be statistically significant for the inequality comparisons. For relative inequality,
only 33 of the 129 cases where the surfaces do not cross are statistically signifi-
cant, compared to 125 of 197 for the welfare comparisons. This is despite the fact
that our samples are relatively large – averaging about 1100women per state (but
with some as low as 280).

A second observation about Table 10 is that the interesting cases — those for
which the bivariate and the “one-at-a-time” univariate comparisons come to dif-
ferent conclusions — are relatively rare. For the inequality comparisons, there are
no statistically significant cases of bivariate dominance when both of the univari-
ate dominance tests are insignificant.5 (See the first row of each block.) When
the univariate comparisons both reject the null and are in agreement — the second
row in each block — the bivariate case is statistically insignificant a little more

5The fact that there is only one such case for welfare suggeststhat these results
may depend on the variables that we have chosen. In our prior work on poverty
(Duclos, Sahn, and Younger (2006a)), we found many more suchcases when studying household
expenditures per capita and children’s height-for-age.
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than half the time, and the bivariate surfaces actually cross fairly often. (See the
last two columns.) This is far more common than with the welfare comparisons.
Finally, when the univariate results are inconsistent, either because populationA
dominates populationB in one dimension while the reverse is true in the other, or
because one difference is statistically significant while the other is not, it is rela-
tively rare that the bivariate comparison can resolve this conflict. (See the third
row of each block.) The welfare comparisons are able to do this significantly more
often.

Our second example is more encouraging. The data come from the 2008Eval-
uación Nacional del Logro Acad́emico de Centros Escolares(National Evaluation
of Academic Attainment in High Schools), a test given to all high school students
in Mexico. In addition, a sample of students’ households included information
on asset holdings, with which we have constructed an asset index. The index is
based on a factor analysis of the assets, and we have exponentiated the result to
ensure that all values are positive. Because the test scoreswere standardized, we
use instead each student’s national percentile rank in the distribution of scores.
Results of comparisons across Mexican states are summarized in Table 11, in a
manner analogous to Table 10.

In these comparisons, we reject the null of non-dominance for the relative in-
equality comparisons in about one-third of the cases, though rejections for the
absolute case remain relatively rare, as in the India DHS data. The larger than
normal sample sizes (about 6700 observations per state, on average) appear to
help since statistical and non-statistical results are more closely in line, especially
for relative inequality and for welfare comparisons. The share (about one third) of
rejections is now substantially closer to the share for welfare comparisons (about
half) in this case than it was in any of the India DHS comparisons. It is also notable
that the bivariate comparisons are able to resolve inconsistent univariate compar-
isons in a non-trivial number of cases for relative (28/255), absolute (26/253), and
welfare (37/244) comparisons, unlike the India data, wheresuch cases were rare
for the inequality comparisons. Furthermore, it is quite rare for the second-order
bivariate comparisons for relative inequality (17/144) and welfare (4/200) to re-
verse the univariate comparisons when they are consistent and reject the null of
non-dominance. The bivariate comparisons are more demanding, so we would
expect them to reject less often than the one-at-a-time univariate comparisons. In
this Mexican illustration, therefore, making use of the entire bivariate distributions
does not seem significantly to prevent making robust comparisons of inequality
across distributions.
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7 Conclusion

The paper has considered multivariate relative poverty andinequality compar-
isons. We do so in the spirit of Sen’s “partial orderings” andfollow the stochastic
dominance approach to distributional comparisons. The approach also draws on
our previous work addressing multidimensionalabsolute povertycomparisons.
Here, we use similar methods, but first normalize the data, either relatively (di-
viding by the mean) or absolutely (shifting the mean to zero). We call poverty
comparisons on such normalized variables “relative poverty” comparisons; ex-
tending the relevant poverty frontier to the limits of the joint enables making in-
equality comparisons. As in the stochastic dominance literature, the comparisons
are made robust to the choice of any particular poverty or inequality index that is
a member of some class. An important feature of our approach is that it is also
robust to aggregation procedures across dimensions of well-being. We also de-
rive the sampling distribution of our estimators, thus allowing our distributional
comparisons to be robust to sampling variability.

Based on simulated distributions as well as asset and healthvariables from the
1999 DHS in India and mathematics and Spanish test scores andassets from the
2008 ENLACE in Mexico, we gain some practical experience andinsights into
the methods we propose. Our empirical applications suggests that finding bivari-
ate inequality differences may be difficult with some variables and typical survey
data sample sizes. In particular, bivariate inequality comparisons using assets and
health variables in India do not reject the null of non-dominance nearly as often
as welfare comparisons do for these variables. Further, it is rare for the bivariate
comparisons to reject the null of non-dominance when the univariate comparisons
do not. Comparisons using mathematics test scores and assets in Mexico are more
revealing, as there are more rejections of the null, and morecases in which these
bivariate comparisons “resolve” inconsistent univariatecomparisons in each di-
mension alone. It is likely that results with other variables and distributions will
differ, especially if we consider incomes or expenditures as one of the dimensions
of well-being. That is certainly an interesting avenue for future research.
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Table 1: Results for simulating different correlations
Correlation in sample 1 0.2 0.6 0.2
Sample size 1000 1000 10,000

Statistical Non-Statistical Statistical Non-Statistical Statistical Non-Statistical
Share of relative dominance results 0.00 0.48 0.24 0.94 0.17 0.93
Share of absolute dominance results 0.00 0.45 0.17 0.94 0.20 0.96

Notes: Statistical tests at 95% confidence level

Shares are out of 100 comparisons
Both distributions are normal with mean=5 and variance=1
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Table 2: Number of rejections (out of 100) per test point, relative inequality comparisons

1.58 48 71 83 95 99 100 100 100 100 100
1.26 91 99 100 100 100 100 100 100 100 100
1.17 96 100 100 100 100 100 100 100 100 100
1.10 97 100 100 100 100 100 100 100 100 100
1.05 98 100 100 100 100 100 100 100 100 99
1.00 98 100 100 100 100 100 100 100 100 99
0.95 98 100 100 100 100 100 100 100 100 97
0.90 99 100 100 100 100 100 100 100 100 89
0.84 99 99 100 100 100 100 100 100 98 69
0.73 93 97 98 98 98 98 98 96 92 40
0.00 0.75 0.84 0.90 0.96 1.01 1.05 1.10 1.16 1.25 1.59

Notes: See notes to previous table. Correlation betweenx andy in sample 1 is 0.6. The first column and last
row are the coordinates in the(x, y) plane where comparisons are made.x andy values are normalized by their
respective means.
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Table 3: Results for simulating different variances
Ratio of standard deviations, 1.2 1.4 1.6
sample 2/sample 1
Sample size 1000 1000 1000

Statistical Non-Statistical Statistical Non-Statistical Statistical Non-Statistical
Share of relative dominance results 0.01 0.92 0.47 1.00 0.87 1.00
Share of absolute dominance results 0.01 0.91 0.44 1.00 0.87 1.00

Notes: Statistical tests at 95% confidence level. Tests exclude the last test point at the extreme of the distribution.
Shares are out of 100 comparisons. Both distributions are normal with mean=5 and no covariance. Variance in
sample 1 is 1.
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Table 4: Results for simulating different variances

Ratio of standard deviations, sample 2/sample 11.6 1.6 1.0 1.2
Correlation in sample 1 0.0 0.2 0.6 0.6

Share of relative dominance results 0.87 0.28 0.24 0.00
Share of absolute dominance results 0.87 0.30 0.17 0.00

Notes: Statistical tests at 95% confidence level. Tests exclude the last test point at the extreme of the distribution.
Shares are out of 100 comparisons. Sample size is 1000. Both distributions are normal with mean=5. Variance in
distribution 1 is 1.
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Table 5: Results for simulating different variances forx andy

Ratio of standard deviation for(x, y) (0.8, 1.2) (0.8, 1.0)
distribution 2 / distribution 1
Correlation in distribution 1 0.6 0.6

Share of relative dominance results 0.00 0.47
Share of absolute dominance results 0.00 0.45

Notes: Statistical tests at 95% confidence level. Tests exclude the last test point at
the extreme of the distribution. Shares are out of 100 comparisons. Sample size is
1000. Both distributions are normal with mean=5. Variance in distribution 1 is 1.
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Table 6: Descriptive Statistics and Univariate Relative Inequality Dominance
Comparisons for Household Assets and Women’s Hemoglobin Concentrations,

Goa and Rajasthan

Goa Rajasthan
Gini coefficients

Assets 0.292 0.452
Hemoglobin 0.076 0.089
Correlation 0.176 0.047

Difference Between Dominance Curves
t-statistics for difference

Sample decile Assets Hemoglobin
0.1 -20.51 -1.88
0.2 -25.36 -3.36
0.3 -25.10 -4.50
0.4 -26.05 -5.43
0.5 -26.53 -6.46
0.6 -27.03 -7.10
0.7 -30.49 -7.39
0.8 -42.83 -7.43
0.9 -15.31 -7.04

Source: 1999 DHS for India.
Notes:
The t-statistic tests the difference of Goa - Rajasthan, so anegative value indicates that Goa has
less relative poverty than Rajasthan.
Poverty lines are set and differences are tested at normalized values of assets and hemoglobin
found at each decile of the combined samples.
Normalization is relative,i.e., data are divided by their means. Dominance order is 2.
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Table 7: Bivariate Relative Inequality Dominance Comparisons for Household Assets and Women’s Hemoglobin
Concentrations, Goa and Rajasthan

t-statistics for difference in the surfaces
3.47 -0.62 -1.30 -1.71 -2.06 -2.50 -2.55 -1.85 -0.76 -0.32 1.48
2.20 -0.37 -0.90 -1.15 -1.37 -1.61 -1.55 -1.09 -0.40 0.30 0.47
1.69 -0.10 -0.46 -0.56 -0.67 -0.75 -0.60 -0.16 0.34 0.77 0.40
1.28 0.28 0.12 0.19 0.24 0.40 0.66 1.14 1.672.12 1.66

Household Assets 1.01 0.46 0.41 0.54 0.63 0.82 1.04 1.44 1.872.27 1.89
0.83 0.40 0.46 0.62 0.67 0.78 0.90 1.15 1.44 1.73 1.43
0.67 0.26 0.35 0.44 0.39 0.36 0.31 0.35 0.44 0.57 0.21
0.52 0.00 0.15 0.28 0.28 0.27 0.15 0.09 0.10 0.17 -0.23
0.32 -0.93 -0.95 -0.86 -0.84 -0.83 -0.94 -0.98 -0.91 -0.97 -1.66
0.18 -0.68 -0.98 -0.97 -0.91 -0.83 -0.92 -0.91 -0.80 -0.93-2.22

0.79 0.87 0.93 0.98 1.02 1.05 1.09 1.13 1.18 1.63
Hemoglobin Concentration

Source: 1999 DHS for India.
Notes:
The t-statistic tests the difference of Goa - Rajasthan, so anegative value indicates that Goa has less relative povertythan Rajasthan.
Poverty lines are set and differences are tested at normalized values of assets and hemoglobin found at each decile of thecombined
samples.
Normalization is relative,i.e. data are divided by their means.
Dominance orders are (2,2).
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Table 8: Descriptive Statistics and Univariate Absolute Inequality Dominance Comparisons for Household Assets
and Women’s Hemoglobin Concentrations, Goa and Himachal Pradesh

Goa Himachal Pradesh
Absolute Gini coefficients

Assets 0.506 0.443
Hemoglobin 0.922 0.896
Correlation 0.176 -0.008

Difference Between Dominance Curves
t-statistics for difference

Sample decile Assets Hemoglobin
0.1 8.06 2.09
0.2 9.22 2.03
0.3 10.40 2.02
0.4 11.15 1.99
0.5 11.24 1.92
0.6 11.04 1.80
0.7 10.01 1.66
0.8 7.76 1.50
0.9 5.97 1.38

Source: 1999 DHS for India.
Notes:
The t-statistic tests the difference of Goa - Himachal Pradesh, so a negative value indicates that Goa has less absolute inequality than
Himachal Pradesh.
Poverty lines are set and differences are tested at normalized values of assets and hemoglobin found at each decile of thecombined
samples.
Normalization is absolute,i.e., means are subtracted from the data.
Dominance order is 3.
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Table 9: Bivariate Absolute Inequality Dominance Comparisons for Household Assets and Women’s Hemoglobin
Concentrations, Goa and Himachal Pradesh

t-statistics for difference in the surfaces
2.35 2.57 2.88 3.05 3.14 3.26 3.26 3.12 2.79 2.41 6.41
1.38 2.82 3.18 3.46 3.70 3.94 4.13 4.34 4.65 5.04 4.86
0.77 2.89 3.37 3.74 4.07 4.41 4.69 4.99 5.38 5.85 6.56
0.30 2.92 3.56 4.04 4.47 4.93 5.31 5.70 6.15 6.66 8.94

Household Assets 0.01 2.89 3.63 4.19 4.69 5.21 5.64 6.03 6.46 6.91 10.46
-0.19 2.82 3.62 4.21 4.73 5.28 5.72 6.12 6.53 6.96 11.06
-0.36 2.74 3.56 4.18 4.72 5.29 5.73 6.13 6.56 7.03 11.19
-0.56 2.53 3.36 3.98 4.50 5.05 5.47 5.83 6.19 6.58 10.88
-0.75 2.25 3.04 3.62 4.12 4.64 5.03 5.35 5.67 6.02 10.03
-0.90 1.99 2.68 3.24 3.74 4.24 4.63 5.00 5.42 5.91 8.96

-2.38 -1.39 -0.78 -0.28 0.22 0.62 1.02 1.52 2.12 6.81
Hemoglobin Concentration

Source: 1999 DHS for India.
Notes: The t-statistic tests the difference of Goa - Himachal Pradesh, so a negative value indicates that Goa has less absolute inequality
than Himachal Pradesh.
Poverty lines are set and differences are tested at normalized values of assets and hemoglobin found at each decile of thecombined
samples.
Normalization is absolute,i.e., means are subtracted from the data.
Dominance orders are (3,3).
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Table 10: Summary of Cross-State Inequality and Welfare Dominance Comparisons for Household Assets and
Women’s Hemoglobin Concentration, India (325 comparisons)

Bivariate dominance
Second order Third order 2nd order, non-statistical
yes no yes no yes no

Relative Inequality
No univariate dominance in either dimension0 74 0 36 0 3

Univariate dominance in both dimensions, consistent26 31 37 57 123 37
Univariate results inconsistent 7 187 4 191 6 156

sub-total 33 292 41 284 129 196

Absolute Inequality
No univariate dominance in either dimension0 176 0 91 0 16

Univariate dominance in both dimensions, consistent10 20 64 31 87 66
Univariate results inconsistent 6 113 6 133 3 153

sub-total 16 309 70 255 90 235

Welfare
No univariate dominance in either dimension1 44 1 37 0 9

Univariate dominance in both dimensions, consistent90 24 94 27 167 18
Univariate results inconsistent 34 132 38 128 30 101

sub-total 125 200 133 192 197 128
Source: 1999 DHS for India .

U
n

iv
ar

ia
te

D
o

m
in

an
ce

3
2



Table 11: Summary of Cross-State Inequality and Welfare Dominance Comparisons for Household Assets and
Student Math Test Percentile, Mexico (465 comparisons)

Bivariate dominance
Second order Third order 2nd order, non-statistical
yes no yes no yes no

Relative Inequality
No univariate dominance in either dimension1 65 0 56 1 9

Univariate dominance in both dimensions, consistent127 17 131 19 218 19
Univariate results inconsistent 28 227 25 234 14 204

sub-total 156 309 156 309 233 232

Absolute Inequality
No univariate dominance in either dimension2 201 0 149 0 61

Univariate dominance in both dimensions, consistent5 4 30 35 80 65
Univariate results inconsistent 26 227 8 243 3 256

sub-total 33 432 38 427 83 382

Welfare
No univariate dominance in either dimension0 21 0 20 0 3

Univariate dominance in both dimensions, consistent196 4 202 4 256 3
Univariate results inconsistent 37 207 44 195 30 173

sub-total 233 232 246 219 286 179
Source: ENLACE, Mexico.
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8 Appendix

Proof of Theorem 1.
For sx = 1 andsy = 1 and forsx = 2 andsy = 1, the proof follows from

Theorems 1 and 2 in Duclos, Sahn, and Younger (2006). Forsx = 2 andsy = 2,
start with

P (zx(y), zy) = −

∫ zx(zy)

0

πx(x, zy;λ
+) D0,0(x, zy) dx (20)

+

∫ zy

0

z(1)χ (y) πx(zx(y), y;λ
+) D0,0(zx(y), y) dy (21)

+

∫ zy

0

∫ zx(y)

0

πxy(x, y;λ+) D0,0(x, y) dx dy. (22)

Integrating (22) by parts with respect tox and y, and imposing the continuity
conditions characterizing the indices inΠ2,2(λ+) in (10), we find:

P (zx(y), zy) = −

∫ zx(zy)

0

πxxy(x, zy;λ
+) D1,1(x, zy) dx (23)

+

∫ zy

0

z(1)χ (y) πxxy(zx(y), y;λ
+) D1,1(zx(y), y) dy (24)

+

∫ zy

0

∫ zx(y)

0

πxxyy(x, y;λ+) D1,1(x, y) dx dy. (25)

The rest of the proof follows from Theorem 1 in
Duclos, Sahn, and Younger (2006).

Proof of Theorem 2.
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Leaving out the superscriptL for simplicity, we find

D̂ −D =

∫ gχ(µ̂χ)

0

∫ gξ(µ̂ξ)

0

h(χ, ξ; µ̂χ, µ̂ξ)dF̂ (χ, ξ)−D (26)

=

∫ gχ(µχ)

0

∫ gξ(µξ)

0

h(χ, ξ; µ̂χ, µ̂ξ)dF̂ (χ, ξ) (27)

+

∫ gχ(µχ)

0

∫ gξ(µ̂ξ)

gξ(µξ)

h(χ, ξ; µ̂χ, µ̂ξ)dF̂ (χ, ξ) (28)

+

∫ gχ(µ̂χ)

gχ(µχ)

∫ gξ(µξ)

0

h(χ, ξ; µ̂χ, µ̂ξ)dF̂ (χ, ξ) (29)

+

∫ gχ(µ̂χ)

gχ(µχ)

∫ gξ(µ̂ξ)

gξ(µξ)

h(χ, ξ; µ̂χ, µ̂ξ)dF̂ (χ, ξ) (30)

−D. (31)

Expressions (28), (29) and (30) are of asymptotically lowerorder than (27) and
can thus be neglected. Expanding (27) and leaving out the terms of asymptotically
lower order, we find

D̂ −D ∼= (32)

[µ̂χ − µχ] g
′

χ(µχ)

∫ gξ(µξ)

0

h(gχ(µχ), y;µχ, µξ)dF (y |gχ(µχ))fx(gχ(µχ)) (33)

+ [µ̂χ − µχ]

∫ gχ(µχ)

0

∫ gξ(µξ)

0

hµχ(χ, ξ;µχ, µξ)dF (χ, ξ) (34)

+ [µ̂ξ − µξ] g
′

y(µξ)

∫ gχ(µχ)

0

h(x, gξ(µξ);µχ, µξ)dF (x |gξ(µξ))fξ(gξ(µξ)) (35)

+ [µ̂ξ − µξ]

∫ gχ(µχ)

0

∫ gξ(µξ)

0

hµξ(χ, ξ;µχ, µξ)dF (χ, ξ) (36)

+

∫ gχ(µχ)

0

∫ gξ(µξ)

0

h(χ, ξ;µχ, µξ)d(F̂ − F )(χ, ξ), (37)

wherefχ andfξ are the univariate density ofχ andξ, respectively. Rearranging,
and definingmχ andmξ as in (18), we find:

D̂ −D ∼= mχ

(

N−1
∑

χi − µχ

)

+mξ

(

N−1
∑

ξi − µξ

)

(38)

+
(

N−1
∑

I(χi ≤ gχ(µ
L
χ))I(ξi ≤ gξ(µ

L
ξ ))h(χi, ξi;µχ, µξ)

)

−D. (39)
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The existence of the appropriate population moments of order 1 lets us apply
the law of large numbers to (13) for each distributionA andB. This implies that
D̂ is a consistent estimator ofD. Given the existence of the population moments
of order2, the estimator in (13) is root-N consistent by the central limit theorem,
and it is also asymptotically normal with asymptotic covariance matrix given by
Theorem 2. If the samples are dependent, then the covariancebetween the esti-
mator forA and forB is provided by Theorem 2 by settingL = A andM = B.

In the case thatαx > 0 andαy > 0 for (7), the computation ofmx simplifies
sinceh(gχ(µL

χ), y;µ
L
χ, µ

L
ξ ) = 0 (and similarly formy). In this case, for relative

inequality both inχ and inξ, we have

g′χ(µχ) = zx
g′ξ(µξ) = zy

hµχ(χ, ξ;µχ, µξ) =
αxχ
µ2
χ

(

zx −
χ
µχ

)αx−1

+

(

zy −
ξ
µξ

)αy

+

hµξ(χ, ξ;µχ, µξ) =
αyy

µ2

ξ

(

zx −
χ
µχ

)αx

+

(

zy −
ξ
µξ

)αy−1

+
.

(40)

For absolute inequality inχ and inξ, we have

g′χ(µχ) = 1
g′ξ(µξ) = 1

hµχ(χ, ξ;µχ, µξ) = αx

(

1− χ−µχ

zx

)αx−1

+

(

1−
ξ−µξ

zy

)αy

+

hµξ(χ, ξ;µχ, µξ) = αy

(

1− χ−µχ

zx

)αx

+

(

1−
ξ−µξ

zy

)αy−1

+

(41)

and similarly for a combination of absolute and relative inequality.
The expressions forg′χ(µχ) andg′ξ(µξ) are the same ifαx and/orαy equals 0,

but thenhµχ and/orhµξ reduces to 0. In that case, there is however the complica-
tion of estimating

∫ gξ(µξ)

0
h(gχ(µχ), ξ;µχ, µξ)f(gχ(µχ), ξ)dξ in mχ (and similarly

for mξ). Whenαx = 0, this reduces to

∫ gξ(µξ)

0

h(gχ(µχ), ξ;µχ, µξ)f(gχ(µχ), ξ)dξ (42)

= F (ξ = gξ(µξ)|χ = gχ(µχ))fχ(gχ(µχ)), (43)

which is the distribution function ofξ at gξ(µξ) conditional onχ being equal to
gχ(µχ) times the density ofχ at gχ(µχ). We can estimate this non-parametrically
by kernel weighting the values of the conditional distribution function of ξ at
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gξ(µξ) across values ofχ, using weights that depend on the distance betweenχ

andgχ(µχ). To see this more clearly, let a bivariate kernelKi(χ, ξ) be defined

as the product of two univariate kernels,h−1
χ φ

(

χ−ξi
hχ

)

andh−1
ξ φ

(

ξ−ξi
hξ

)

(both of

them integrating to 1 overχ andξ), for each observationi = 1, ..., N . We can
then estimate (43) as

(Nhχhξ)
−1

∑

i

∫ gξ(µξ)

−∞

φ

(

gχ(µχ)− χi

hχ

)

φ

(

z − ξi

hξ

)

dz (44)

= (Nhχ)
−1

∑

i

φ

(

gχ(µχ)− χi

hχ

)

Φ

(

gξ(µξ)− ξi

hξ

)

, (45)

whereΦ(z) =
∫ z

−∞
φ(u)du. In a bivariate setting, the approximately optimal

window for a Gaussian kernel and a multivariate normal density normalized to
unit variance is given by(1.25N)−1/6 — see Silverman (1986) for instance.
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Figure 1: Inequality frontiers
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Figure 2: Bistochastic transformations may increase inequality in well-being
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Figure 3: Inequality changesy
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