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Résumé / Abstract 
 

Cet étude développe et applique des nouvelles techniques pour diagnostiquer les prévisions de 

densité de la Banque d’Angleterre (leur “fan charts”). Nous calculons leurs probabilités 

implicites pour des taux d’inflation et de croissance du PIB qui dépassent des seuils critiques 

(soit le taux d’inflation ciblé, soit 2.5%.) En contraste avec des travaux antérieurs sur ces 

prévisions, nous gaugeons leur calibration aussi bien que leur résolution, en donnant des tests 

formels et des interprétations graphiques. Les résultats renforcent des conclusions déjà 

existant sur les limites de ces prévisions et ils donnent de nouvelles évidences sur leurs 

valeurs ajoutées. 

 

Mots clés : calibration, prévisions de densité, probabilités implicites, 

résolution. 

 

 

 

This paper applies new diagnostics to the Bank of England’s pioneering density forecasts (fan 

charts). We compute their implicit probability forecast for annual rates of inflation and output 

growth that exceed a given threshold (in this case, the target inflation rate and 2.5% 

respectively.) Unlike earlier work on these forecasts, we measure both their calibration and 

their resolution, providing both formal tests and graphical interpretations of the results. 

These results both reinforce earlier evidence on some of the limitations of these forecasts and 

provide new evidence on their information content. 
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1. Introduction
Since their introduction in the 1993 Inflation Report, the Bank of England’s prob-

ability density forecasts (“fan charts”) for inflation, and later output growth, have been
studied by a number of authors. Wallis (2003) and Clements (2004) studied the infla-
tion forecasts and concluded that while the current and next-quarter forecast seemed
to fit well, the year-ahead forecasts significantly overestimated the probability of high
inflation rates. Elder, Kapetanios, Taylor and Yates (2005) found similar results for
the inflation forecasts, but also found significant evidence that the GDP forecasts do
not accurately capture the true distribution of risks to output growth at very short
horizons.1 They also explored the role of GDP revisions in accounting for GDP fore-
cast errors and noted that the dispersion associated with predicted GDP outcomes was
increased as a result of their research. Dowd (2008) examined the GDP fan charts and
found that while short-horizon forecasts appear to capture the risks to output growth
poorly, results for longer horizon forecast are sensitive to the vintage of data used to
evaluate the forecasts.

The Bank of England’s most recent performance evaluation of the fan charts was
published in their August 2009 Inflation Report. It noted the failure of the forecasts
made in early 2008 to assign significant probabilities to the inflation and growth out-
comes witnessed over the subsequent year as a result of the financial crisis. While not
mentioning any methodological changes made to address this experience, the Report
noted that the Bank increased the dispersion of GDP outcomes and added negative
skewness to their distribution.

Throughout this evaluative work, the focus has been on whether the risks implied
by the Bank’s fan charts are well matched (in a statistical sense) by the frequency of
the various inflation and output growth outcomes. Gneiting, Balabdaoui and Raftery
(2007) refer to this property as ‘probabilistic calibration’; asymptotic theory for tests
of correct calibration was provided by Diebold, Gunther and Tay (1998). However, it is
well known that different density functions may satisfy this correct calibration property
yet convey quite different amounts of information.2 Mitchell and Wallis note that this
extra information has been referred to as ‘sharpness’, ‘refinement’ or ‘resolution’ in
various contexts and note its relationship to the Kullback-Leibler Information Criterion.
Although forecast sharpness or resolution is desireable, no empirical studies of the
Bank’s density forecasts have investigated this property.

One reason for this may be the difficulty in estimating sharpness. In general, this
requires an empirical characterization of the density of future outcomes f(x) conditional
on some density forecast g(x). Without assumptions restricting the set of density func-
tions {f(x), g(x)} to be considered, this will in general require much more data than is

1Noting the hazards of drawing firm conclusions from small samples, these authors
suggested that “the fan charts gave a reasonably good guide to the probabilities and
risks facing the MPC [monetary policy committee].”
2See Corradi and Swanson (2006) and Mitchell and Wallis (2009) for a discussion.
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typically available in typical macroeconomic settings.3 In this paper, we use an alter-
native approach which provides a practical and general solution to a simpler problem.

Instead of the full forecast density, we work with the implied probabilistic forecasts:
we compute the forecast probabilities of failing to achieve the Bank’s inflation target, or
for GDP growth falling below a fixed threshold. (The methods that we use to do so can
of course be applied to probability forecasts for other thresholds simply by integrating
under different regions of the density forecast; different choices of threshold allow one
to focus on different parts of the forecast distribution.) This is similar in spirit to
Clements’ (2004) examination of the fan chart’s implied interval forecasts.4 We are
able to investigate the calibration of the probabilistic forecasts, that is, the degree to
which predicted probabilities correspond with true probabilities of the outcome. We
are also able to evaluate their resolution: their ability to discriminate among different
outcomes. We also build on Galbraith and van Norden (2008) by extending their tests
of forecast calibration to tests of forecast resolution.

In contrast with earlier evaluations, our results provide strong evidence of a mis-
calibration of the inflation forecasts at very short horizons, even though the degree of
miscalibration appears to be small. Despite the much shorter sample available for the
GDP forecasts, we again find significant evidence of mis-calibration and its magnitude
appears to be much larger than for inflation. Results on the discriminatory power of the
forecasts shows that inflation forecasts appear to have important power to distinguish
high- and low- probability cases up to horizons of about one year, while that of GDP
forecasts is much less and is almost negligible beyond a one-quarter horizon.

The next section of the paper introduces the Bank of England’s probability fore-
casts and provides an informal analysis of descriptions of the data that we use. We
then review the literature on methods for evaluating probability forecasts, introducing
the decomposition of mean-squared forecast errors into calibration errors and forecast
resolution. We briefly discuss the methods introduced in Galbraith and van Norden
(2008) for tests of calibration error and their extension to tests of zero forecast resolu-
tion. The penultimate section of the paper then applies these methods to the Bank of
England data and discusses the findings. The final section concludes.

2. Data and forecasts

The Bank of England’s Inflation Report provides probabilistic forecasts of inflation
and, more recently, output growth in the form of ‘fan charts’ to represent the density of

3For example, consider the problem of determining the effect of variations in the right
tail of g(x) on the right tail of f(x). Only observations in which there is variation in
the relevant region of g(x) will be informative for this problem. However, since we only
observe the outcomes x rather than f(x) directly, we will need to have many of the
above observations on x in order to make inferences about the tail region of f(x).
4The Bank of England also examines such interval forecasts from time to time. For
example, see Table 1 (p. 47) of the August 2008 Inflation Report.
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the forecast distribution.5 Fan charts for RPIX inflation were published from 1993Q1 to
2004Q1, when they were replaced by CPI Inflation fan charts. Both measure inflation
as the percentage change in the corresponding price index over four quarters. The
GDP fan chart was first published in the 1997Q3 report and also forecasts the total
percentage growth over 4 quarters. In addition to providing forecast distributions for
roughly 0 to 8 quarters into the future, from the 1998Q1 forecast onwards these are
provided conditional on the assumption of both fixed interest rates, and a “market-
expectation-based” interest rate profile. The two assumptions typically provide very
similar results, but we will nonetheless present most results below for both sequences
of density forecasts.

For both inflation and GDP growth, we use all available forecasts up to and includ-
ing that published in 2008Q2. We also measure inflation and output growth outcomes
using the 2008Q2 vintage data series. While a few sets of forecast densities are avail-
able at horizons exceeding eight quarters, the sample sizes involved are small. We
therefore report results for nine horizons, zero (the ’nowcast’ of the eventual current-
quarter release) through eight.6 With the four cases noted above (GDP growth and
inflation, assuming interest rates are constant or follow market expectations) we then
have thirty-six sets of density forecasts for evaluation.

While published charts provide a visual guide to the degree of uncertainty that
the Bank of England (BoE) Monetary Policy Committee (MPC) associate with their
forecasts, they are based on an explicit parametric model of forecast uncertainty, as
documented by Brittan, Fisher and Whitley (1998) and Wallis (2003), among others.
Forecast errors are assumed to follow a ‘two-piece normal’ or ‘bi-normal’ distribution,
whose behaviour is completely characterized by three parameters: a mean µ, a mea-
sure of dispersion σ, and a parameter which controls skewness, γ.7 These parameters
therefore allow us to estimate the implied forecast probabilities that inflation or GDP
growth would exceed any given threshold level.8 For GDP forecasts, we examine the
probability that annual real growth is less than 2.5%, while for inflation we examine

5See Wallis (1999) for a careful discussion of the interpretation of these charts; note in
particular that the different bands do not correspond straightforwardly with quantiles
in the general, asymmetric, case.
6The figures below also show some estimates based on longer horizons, although the
sample sizes available are small.
7See Wallis (2003, Box A on p. 66) for a description of the bi-normal distribution and
its alternative parameterizations. Spreadsheets containing the parameter settings for
all of the published fan charts are publicly available on the BoE’s web site (presently at
http://www. bankofengland.co.uk/publications/inflationreport/irprobab.htm). Note
that in the latter part of our sample, γ is commonly set to 0, in which case the implied
forecast distribution is simply Gaussian.
8Like the normal distribution, the bi-normal lacks an exact closed-form formula for its
cumulative distribution function (CDF). When γ 6= 0, we therefore estimated the im-
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the probability that it does not exceed the Bank’s announced inflation target.

2.1 Density forecasts

Figures 1 and 2 plot the results of the probability integral transforms for each
of the sets of forecasts. As these are U(0,1) under the null of correct specification of
the conditional density, the histograms should show roughly the same proportion of
observed forecasts in each of the ten cells. In order to represent the results for nine
forecast horizons (0–8 inclusive) in each figure, we have indicated the height of each
histogram with a colour coding; each row of the figure represents a different horizon,
and each column a particular bin with width 0.1. Uniformly distributed results would
imply a frequency of 0.1 in each bin, and therefore a uniform colour in the figure. Values
well below 0.1 show up as dark blue, and well above 0.1 as red.

While some sampling variation is of course inevitable, these patterns are in general
far from conformity with this condition. GDP growth forecasts (Figure 1) often show an
excessive number of values in the highest cell (near 1) at short horizons, an insufficient
number at long horizons, and an insufficient number of values near zero at virtually
all horizons. Inflation forecasts (Figure 2) show better conformity with the desired
pattern of uniformity, but some of the same tendency is observable. Note that an
insufficient number of values of the probability integral transform near the extremes is
an indication of forecast densities that are too dispersed: actual outcomes occur near
the tail of the forecast density less often than would arise with the true conditional
density, and therefore observed outcomes tend to be in intermediate regions of the
relevant CDF.

2.2 Threshold probability forecasts

Figures 3 and 4 show the implications of the BoE’s density forecasts for the prob-
abilities that real GDP is less than the 2.5% threshold we mentioned above and that
inflation (based on RPIX or CPI) is less than the Bank’s target. Each point corresponds
to the probability (on the vertical axis) that inflation or output growth would be less
than the chosen threshold at the given forecast horizon (given on the horizontal axis.)
The larger (green) dots represent cases in which the eventual outcome was below the
relevant threshold, while the smaller (blue) dots are cases in which the outcome was
above threshold.

Ideal forecasts would have assigned probability one to all the large green dots and
probability zero to the smaller blue dots. Instead, for GDP growth we observe several
high probability blue dots and low probability green dots (see horizons 2-4 in particular)
which indicate “surprises.” We also find most outcomes clustered in the center of the
probability range at horizons 4-8. The probabilistic outcomes for inflation show similar

plied forecast probabilities by numerical integration from probability density function.
The resulting CDF estimates appeared to be accurate to at least 0.001. When γ = 0
the normal CDF was used. Additional details and code are available from the authors
upon request.
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features with respect to changes across horizons, but at the shorter horizons we see a
more marked concentration of large green dots at the higher probabilities and small
blue dots at the lower, suggesting that the inflation forecasts had more discriminatory
power than the GDP forecasts, at least at the short horizons.

While the results in the graph presented this far are suggestive, we would like to
be able to test for systematic problems in the probability forecasts and their ability
to discriminate between different outcomes. In the next section, we review some of
the literature on density forecast evaluation before focusing on tests of probabilistic
forecasts and properties of forecast calibration and resolution.

3. Probability forecast evaluation

3.1 Predictive density evaluation

Let X be a random variable with realizations xt and with probability density and
cumulative distribution functions fX(x) and FX(x) respectively. Then for a given sam-
ple {xt}T

t=1, the corresponding sample of values of the CDF, {FX(xt)}T
t=1, is a U(0,1)

sequence. This well-known result (often termed the probability integral transform of
{xt}T

t=1) is the basis of much predictive density testing, following pioneering work by
Diebold, Gunther and Tay (1998).

These authors noted that if the predictive density f̂X(x) is equal to the true den-
sity, then using the predictive density for the probability integral transform should
produce the same result, i.e. a U(0,1) sequence. This allows us to test whether a given
sequence of forecast densities could be equal to the true sequence by checking whether
{F̂X(xt)}T

t=1 (i.e. the sequence of CDFs of the realized values using the forecast densi-
ties) is U(0,1). This is precisely the relationship that we looked for in Figures 1 and 2,
above.

If this sequence is assumed to be independent, the U(0,1) condition is easily tested
with standard tests (such as a Kolmogorov-Smirnov one-sample test.) The indepen-
dence is unrealistic in many economic applications, however. In particular, violation is
almost certain for multiple-horizon forecasts as the h − 1 period overlap in horizon-h
forecasts induces an MA(h − 1) process in the forecast errors. The inferential prob-
lem is therefore more difficult: test statistic distributions are affected by the form of
dependence.

3.2 Probabilistic forecasts

Rather than analyse the entire predictive density, we instead examine the proba-
bilistic forecasts implied by the BoE forecasts; that is, we only consider the probability
that an outcome (inflation or output growth) will be below some threshold. This implies
a loss of information relative to the full density forecast. Of course, if we are primarily
concerned with the behaviour of our forecasts around these thresholds, this loss of effi-
ciency may be inconsequential. This seems to be the case for the BoE forecasts and the
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thresholds we have chosen; considerable attention is devoted to questions of whether or
not central banks will respect their inflation targets, and whether output growth will be
slightly above or below its mean.9 As we show now, probabilistic forecasts also permit
a particularly simple decomposition that is useful for interpreting forecast behaviour
and the sources of forecast errors.

Following the notation of Murphy and Winkler (1987), let x be a 0/1 binary
variable representing an outcome and let p̂ ∈ [0, 1] be a probability forecast of that
outcome. Forecasts and outcomes may both be seen as random variables, and therefore
as having a joint distribution; see e.g. Murphy (1973), from which much subsequent
work follows.

Numerous summary measures of probabilistic forecast performance have been sug-
gested, including loss functions such as the Brier score (Brier, 1950) which is a MSE
criterion. Since the variance of the binary outcomes is fixed, it is useful to condition
on the forecasts: in this case we can express the mean squared error E((p̂− x)2) of the
probabilistic forecast as follows:10

E(p̂ − x)2 = E(x − E(x))2 + Ef (p̂ − E(x|p̂))2 − Ef (E(x|p̂) − E(x))2, (3.1)

where Ef (z) =
∫

zf(z)dz with f(.) the marginal distribution of the forecasts,
p̂. Note that the first right-hand side term, the variance of the binary sequence of
outcomes, is a fixed feature of the problem and does not depend on the forecasts.
Hence all information in the MSE that depends on the forecasts is contained in the
second and third terms on the right-hand side of (3.1).

3.3 Calibration and resolution

We will call the first of the terms involving p̂ in (3.1),

Ef (p̂ − E(x|p̂))2, (3.2)

9Particularly in light of recent events, some might argue that central banks should be
more attentive to the possibility of extreme drops in output growth. We note that
the methods that we use below can in principle be applied to this question as well by
simply choosing a different threshold level of output growth. Given the relative short
sample over which the GDP growth forecasts are available, however, it is presumably
difficult to say much about the probability of a downturn as severe as that witnessed
in late 2008 with what is essentially a single realization.
10The MSE is of course only one of many possible loss functions, and is inappropri-
ate in some circumstances. We focus on it here because there is no concensus on the
precise form of an appropriate loss function for an inflation-targetting central and be-
cause we argue that the decomposition it presents is helpful in understanding forecast
performance.
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the (mean squared) calibration error: it measures the deviation from a perfect match
between the predicted probability and the true probability of the event when a given
forecast is made.11 If for any forecast value p̂i the true probability that the event will
occur is also p̂i, then the forecasts are perfectly calibrated. If for example we forecast
that the probability of a recession beginning in the next quarter is 20%, and if over all
occasions on which we would make this forecast the proportion in which a recession will
begin is 20%, and if this match holds for all other possible predicted probabilities, then
the forecasts are perfectly calibrated. Note that perfect calibration can be achieved by
setting p̂ = E(x), the unconditional probability of a recession, since the expectation is
taken over the possible values or range of values that the probability forecast can take
on.

Calibration has typically been investigated using histogram-type estimates of the
conditional expectation, grouping probabilities into cells. Galbraith and van Norden
(2008) show how to use smooth conditional expectation functions estimated via kernel
methods to estimate calibration functions and test for miscalibration. They show that
this allows one to correct for the dependence caused by overlapping forecast windows
and leads to an efficiency relative to histogram methods even in the absence of de-
pendence. We use these methods (described in detail in that paper) below to further
examine the performance of the BoE inflation and growth forecasts.

The last term on the right-hand side of (3.1), Ef (E(x|p̂) − E(x))2, is called the
forecast resolution, and measures the ability of forecasts to distinguish among relatively
high-probability and relatively low-probability cases. Note again that the expectation
is taken with respect to the marginal distribution of the forecasts. If resolution is high,
then in typical cases the conditional expectation of the outcome differs substantially
from its unconditional mean: the forecasts are successfully identifying cases in which
probability of the event is unusually high or low. The resolution enters negatively
into the MSE decomposition; high resolution lowers MSE. To return to the previous
example, the simple forecast that always predicts a 5% probability of recession, where
5% is the unconditional probability, will have zero resolution. Perfect forecasts would
have resolution equal to variance (and zero calibration error, so that MSE = 0). In this
special case, the probability forecasts are always 1 when the outcome will be below the
threshold, and are 0 otherwise.

The calibration error has a minimum value of zero; its maximum value is 1, where
forecasts and conditional expectations are perfectly opposed. The resolution also has a
minimum value of zero, but its maximum value is equal to the variance of the binary
outcome process. In order to report a more readily interpretable measure, scaled into
[0, 1], we divide the resolution by the variance of the binary outcome process. Let

11This quantity is often called simply the ‘calibration’ or ‘reliability’ of the forecasts. We
prefer the term calibration error to emphasize that this quantity measures deviations
from the ideal forecast, and we will use ‘calibration’ to refer to the general property of
conformity between predicted and true conditional probabilities.
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n be the number of observed forecasts and µ = E(x); then the maximum resolution
achievable arises where there are nµ 1’s and n−nµ 0’s constituting the sequence E(x|p̂)i.

The resulting maximum total is nµ(1 − µ)2 + n(1 − µ)µ2. Divide by n for the mean;
this quantity is then the maximum resolution and is also equal to the variance of a 0/1
random variable with mean µ. Therefore

Ef (E(x|p̂) − µ)2

µ(1 − µ)2 + (1 − µ)µ2
∈ [0, 1]. (3.3)

The information in the resolution is correlated with that in the calibration; the
decomposition just given is not an orthogonal one (see for example Yates and Curley
1985). However the resolution also has useful interpretive value which we will see below
in considering the empirical results. The calibration and/or resolution of probabilistic
economic forecasts have been investigated by a number of authors, including Diebold
and Rudebusch (1989), Galbraith and van Norden (2007), and Lahiri and Wang (2007).
The meteorological and statistical literatures contain many more examples; some recent
contributions include Hamill et al. (2003) and Gneiting et al. (2007). We now use these
methods to examine the BoE forecasts.

4. Empirical results

Figures 5 and 6 plot the estimated conditional expectation of outcome given fore-
cast, which for correctly calibrated forecasts would lie along the line E(x|p̂) = p̂, i.e.
the 45 degree line. Again, see Galbraith and van Norden (2008) for a description of
the methods used to construct these estimates, including bandwidth choice; all results
depicted here use bandwidth 0.08.

Figure 5 shows these conditional expectations for the GDP growth forecasts at each
forecast horizon. Deviations from perfect calibration (the 45-degree line) are widespread
and often large. Most strikingly, high predicted probabilities of growth falling below
threshold correspond to low observed frequencies of this outcome for virtually all hori-
zons. Calibration is much more reasonable for probabilities in the 0-0.5 range, but falls
dramatically beyond predicted probabilities of around 0.8. Calibration for the small
sample of very long horizon forecasts appears very poor, with a strongly negative slope
everywhere. In contrast, calibration of the inflation forecasts appears more reason-
able at all predicted probabilities, even for the small sample of longer-horizon forecasts
available in the market interest rate case. The corresponding numerical mean squared
calibration errors are presented in Table 1.

One problem in interpreting these graphs and numerical estimates is that the
precision of the estimated conditional expectations may vary widely across the graph.
This makes it difficult to judge whether any of the deviations from the 45 degree are
statistically significant. For that, we turn to formal tests of the null hypothesis of
correct calibration (that is, E(x|p̂) = p̂) given in Table 2. At short horizons, correct
calibration is decisively rejected for both GDP growth and inflation forecasts. At longer
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horizons the results are mixed, with differences emerging between the fixed interest rate
and market interest rate forecasts. Despite the apparently dramatic mis-calibration
visible in the figures for GDP forecasts, we are often unable to reject the null of correct
calibration for the market-interest-rate forecasts. This may be related to the relatively
small number of sample points lying at high forecast probabilities, which would give
the test low power to detect such deviation. Alternatively, it could be due to the highly
non-linear evidence of miscalibration shown in the graphs. Our test is based on a
linear alternative hypothesis and so may have reduced power against some non-linear
alternatives. In contrast, the graphs for inflation showed that the forecast calibration
was much more nearly linear, which should give our tests higher power. This may
therefore explain the relative high number of rejections of the null despite the relatively
better fit shown in the inflation graphs.

Figures 5 and 6 also provide us with information on the resolution of the BoE
forecasts. A forecast with zero resolution will have a constant E(x|p), so the conditional
expectation should simply be a horizontal line. While it is conceivable that some of the
results for the GDP growth forecasts shown in Figure 5 could be consistent with such an
outcome (such as the results for the constant interest rate forecasts at 6-8Q horizons)
this appears much less likely for the inflation forecasts, which all show a persistently
positive slope.

Figures 7 and 8 provide another way of understanding the resolution of the prob-
ability forecasts which does not require estimation of the conditional expectation. For
each horizon (only horizons up to four quarters are shown), each figure presents a pair of
empirical CDF’s: that of probability forecasts in cases for which the eventual outcome
was below threshold, and in cases in which the eventual outcome was above threshold.
In a near-ideal world, probability forecasts should be near one in cases where the out-
come turned out to be below threshold, and near zero when the outcome turned out
to be above. In that case the two CDF’s would lie close to the lower horizontal axis
in the first case, and close to the upper horizontal axis in the second. More generally,
good probability forecasts will discriminate effectively between the two possible out-
comes, and the two empirical CDF’s should be widely separated. At longer horizons,
the value of conditioning information declines and this separation becomes more diffi-
cult to achieve; we therefore expect to see the pairs of CDF’s less widely separated at
longer horizons.

This pattern of reduced separation with horizon is in fact readily observable; at
3-4 quarter horizons, we observe little separation on either forecast series. However, at
shorter horizons, we observe a clear distinction between the GDP growth and inflation
forecasts; separation is much greater in the inflation forecast case (Figure 8, both panels;
there is little observable distinction between the fixed and market interest rate cases),
suggesting much higher forecast resolution. GDP growth forecasts (Figure 7) in fact
show little separation of the CDF’s after the shortest horizons.12 However, for GDP
forecasts there is some observable distinction between the fixed and market interest

12This result which mirrors the low ‘content horizon’ on U.S. and Canadian GDP
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rate cases; the fixed cases show somewhat higher resolution in at short horizons.
These differences are confirmed by the numerical results on scaled resolution pre-

sented in Table 3. Scaled resolution (recall that this estimate is bounded to the [0,1]
interval) in GDP growth forecasts is low even at short horizons, and approximately
zero at moderate and long horizons; by contrast, inflation forecasts show substantial
resolution for several quarters. The market-interest-rate forecast for inflation shows the
highest resolution.

The test results for the null hypothesis of zero resolution (Table 4) are again
compatible with these observations. These are simple t− type tests of H0 : b = 0 in
E(x|p̂) = a + bp̂; robust (Newey-West) standard errors are used in the computation.
Table 4 reports p-values from the asymptotic normal distribution applying to these test
statistics. For inflation forecasts, there is strong evidence against the null in all but one
(horizon 8) case, whereas for GDP forecasts we typically cannot reject zero resolution
(the shortest-horizon fixed-interest forecasts provide the only exception). These results
also reflect other results in the literature mentioned above, which note the difficulty
of the GDP growth forecasting problem and the associated low information content of
such forecasts, by various measures, relative to inflation forecasts.

6. Concluding remarks

By focusing our attention on particular probabilities derived from the fan charts,
we have evaluated the performance of these density forecasts in problems of the type
likely to be of interest to forecast users, as opposed to a general evaluation of whether
the fan charts represent correct conditional densities; it is of course possible that a
forecast density differs in some respects from the conditional density while nonetheless
producing probability forecasts with some valuable features.

A number of interesting empirical results emerge. First, it is apparent even from
the preliminary graphical results presented here that the predicted densities do not
entirely conform with the true conditional densities. We then map these densities onto
particular probabilistic forecasts for evaluation of the calibration and resolution. For
inflation forecasts, deviations from correct calibration appear to be small, although
nonetheless statistically significant at a number of forecast horizons. GDP growth
forecasts produce much larger estimated deviations from correct calibration: that is,
predicted probabilities of GDP falling below our threshold are in many cases far from

growth point forecasts reported by, for example, Galbraith 2003 and Galbraith and
Tkacz 2007: that is, forecasts of GDP growth generally do not improve markedly
on the simple unconditional mean beyond about one or two quarters into the future.
Galbraith and van Norden (2008) estimate conditional expectation functions for the
Survey of Professional Forecasters probabilistic forecasts for US real output contractions
using methods very similar to those used here. They find forecasts are appear to be
essentially unconditional forecasts at horizons of more than 2Q, which implies zero
forecast resolution.
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our estimates of the true conditional probabilities. However, only a subset of the
observed deviations are statistically significant, perhaps because of the limited sample
size.

Resolution falls rapidly with forecast horizon, is higher for inflation forecasts, and
for GDP is in most cases difficult to distinguish statistically from zero.

These results, particularly at longer horizons, reflect differences in inflation and
GDP growth observed in other contexts: the usefulness of conditioning information
allowing us to make forecasts appears to decay much more quickly for GDP growth,
and the persistence in the data is much lower. Whether sufficient information exists to
produce forecast densities for GDP growth which differ from the unconditional densities,
at the longer horizons used by the Bank of England, is an open question.
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Figure 1(i)

Probability integral transforms13

GDP growth vs. threshold; fixed rates
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Figure 2A
GDP Forecast Outcomes

Fixed Interest Rates

13In each of the panels of figure 1 and 2, the ten columns of squares represent the bins
0–0.1, 0.1–0.2, ... 0.9–1.0 and the nine rows of squares represent the horizons 0-8. Each
square represents, via colour, the height of a histogram corresponding with the horizon
and bin. Ideally, the probability integral transforms would yield a U(0,1) sequence, so
that each row would should uniform values equal to 0.1, and therefore uniform colour
in this figure.
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Figure 1(ii)
Probability integral transforms

GDP growth vs. threshold; market rates
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Figure 2(i)
Probability integral transforms

Inflation vs. threshold; fixed rates
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Figure 2(ii)

Probability integral transforms14

Inflation vs. threshold; market rates
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14Note that the colour scale differs substantially in Figure 2(ii); large values are less
extreme than in previous figures.
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Figure 3
Implied probability forecasts from Bank of England fan charts

(i) GDP growth vs. threshold; fixed interest rates

(ii) GDP growth vs. threshold; market interest rates
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Figure 4
Implied probability forecasts from Bank of England fan charts

(i) Inflation vs. threshold; fixed interest rates

(ii) Inflation vs. threshold; market interest rates
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Figure 5
Calibration of GDP growth forecasts, 2.5% threshold

(i) 2008 Q2 vintage data, fixed interest rates

(ii) 2008 Q2 vintage data, market interest rates
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Figure 6
Calibration of inflation forecasts, target threshold

(i) 2008 Q2 vintage data, fixed interest rates

(ii) 2008 Q2 vintage data, market interest rates
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Figure 7
Empirical CDF’s of implied probability forecasts from fan charts

Cases of GDP growth above/below threshold
(i) fixed interest rates

(ii) market interest rates
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Figure 8
Empirical CDF’s of implied probability forecasts from fan charts

Cases of inflation above/below threshold
(i) fixed interest rates

(ii) market interest rates
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Table 1
Mean squared calibration errors

Horizon GDP, fixed GDP, market Infl., fixed Infl., market

0 0.066 0.127 0.008 0.009
1 0.071 0.088 0.015 0.012
2 0.107 0.085 0.017 0.014
3 0.134 0.127 0.017 0.014
4 0.151 0.106 0.020 0.018
5 0.124 0.059 0.018 0.017
6 0.069 0.039 0.013 0.011
7 0.052 0.033 0.005 0.006
8 0.045 0.026 0.002 0.008

Table 2
p-values in linear test of calibration15

H0 : a = 0, b = 1 in E(x|p̂) = a + bp̂

Horizon GDP, fixed GDP, market Infl., fixed Infl., market

0 0.046 0.00 0.01 0.02
1 0.04 0.02 0.02 0.01
2 0.02 0.04 0.01 0.01
3 0.00 0.10 0.08 0.06
4 0.00 0.17 0.36 0.28
5 0.00 0.30 0.41 0.31
6 0.01 0.33 0.32 0.09
7 0.11 0.40 0.58 0.00
8 0.25 0.43 0.96 0.00

15A reported value of 0.00 in Table 2 indicates a computed p-value less than 0.005.
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Table 3
scaled resolution measure (∈ [0, 1])

Horizon GDP, fixed GDP, market Infl., fixed Infl., market

0 0.19 0.05 0.80 0.79
1 0.16 0.09 0.60 0.63
2 0.16 0.11 0.50 0.53
3 0.12 0.19 0.35 0.37
4 0.13 0.12 0.22 0.25
5 0.05 0.03 0.17 0.21
6 0.01 0.01 0.13 0.21
7 0.02 0.02 0.06 0.14
8 0.02 0.02 0.02 0.13

Table 4
p-values in linear test of zero resolution16

H0 : b = 0 in E(x|p̂) = a + bp̂

Horizon GDP, fixed GDP, market Infl., fixed Infl., market

0 0.03 0.28 0.00 0.00
1 0.05 0.23 0.00 0.00
2 0.34 0.32 0.00 0.00
3 0.97 0.60 0.00 0.00
4 0.62 0.76 0.00 0.00
5 0.45 0.78 0.00 0.00
6 0.50 0.72 0.00 0.00
7 0.72 0.68 0.00 0.00
8 0.84 0.67 0.13 0.00

16A reported value of 0.00 in Table 4 indicates a computed p-value less than 0.005.

25




