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Abstract:  
Change-point models are useful for modeling times series subject to structural breaks. 
For interpretation and forecasting, it is essential to estimate correctly the number of 
change points in this class of models. In Bayesian inference, the number of change-
points is typically chosen by the marginal likelihood criterion, computed by Chib’s 
method. This method requires to select a value in the parameter space at which the 
computation is done. We explain in detail how to perform Bayesian inference for a 
change point dynamic regression model and how to compute its marginal likelihood. 
Motivated by our results from three empirical illustrations, a simulation study shows that 
Chib’s method is robust with respect to the choice of the parameter value used in the 
computations, among posterior mean, mode and quartiles. Furthermore, the 
performance of the Bayesian information criterion, which is based on maximum 
likelihood estimates, in selecting the correct model is comparable to that of the marginal 
likelihood. 
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1 Introduction

Economic and financial time series are subject to changes in their pattern over long periods,

see e.g. Stock and Watson (1996) for US macroeconomic data, Pastor and Stambaugh (2001)

and Liu and Maheu (2008) for financial series. It is therefore interesting to take into account

the possibility of structural change in time series models, both for interpreting historical data

and for forecasting future values. Researchers do not usually assume that break dates are

known. Models allowing for the possibility of changing structure or parameters have thus

been developed over the last twenty years. In particular, the change in model parameters can

be modelled by a Markov-switching discrete process, following the impetus given by Hamilton

(1989). The states of this process, which correspond to the parameter values, are recurrent

as the process can move from one state to any other state at any date. A particular case

of this model is the change-point model that has non-recurrent states: the process can only

stay in the same state or move to the next one. An important and difficult issue is the choice

of the number of states of the hidden Markov chain, since this determines the number of

structural breaks in the time series. For this issue, Bayesian inference is useful: one can

estimate the model for a range of values of the number of states and choose the model that

delivers the highest marginal likelihood. When maximum likelihood estimation is feasible, one

can likewise choose the model according to the Bayesian (or Schwarz) information criterion

(BIC).

The computation of the marginal likelihood of a given Markov-switching model can be

performed by the method of Chib (1995). This method only uses the Gibbs output, while other

methods like those Newton and Raftery (1994) and Gelfand and Dey (1994) are either unstable

or need an additional tuning function. Chib’s method is based on the marginal likelihood

identity, namely that the marginal likelihood is equal to the product of the likelihood and

the prior divided by the posterior. Since each element on the right hand side of this identity

depends on the model parameters, a particular value must be chosen, even if the result does

not depend in principle on this value. Chib recommends to choose a high posterior density

value for numerical efficiency reasons. Many researchers use the posterior mean, see e.g. Kim

and Nelson (1999), Elerian, Chib, and Shephard (2001), Kim and Piger (2002), Kim, Morley,

and Nelson (2005), Pesaran, Pettenuzzo, and Timmermann (2006), Johnson and Sakoulis

(2008), Liu and Maheu (2008), Maheu and Gordon (2008), Fruhwirth-Schnatter and Wagner
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(2008), Nakajima and Omori (2009), and few, such as Paroli and Spezia (2008), use the

mode. To the best of our knowledge, no study has clearly documented the sensitivity of the

marginal likelihood value obtained by Chibs’ method to the value of the parameter chosen

for its computation in the case of Markov-switching models.

The first goal in this paper is precisely to assess this sensitivity in the case of a change-

point regression model. As mentioned above, change-point models are a particular case of

Markov-switching models. In the general case of recurrent states, the number of parameters

of the transition matrix of the Markov chain is equal to K2 −K, where K is the number of

states. A change-point model is much more parsimonious in this dimension since it requires

only K − 1 parameters. Even if a change-point model may require a higher K than a general

Markov-switching one, it is not likely that the number of change points will be as high as

K2 −K. Another advantage of change-point models is the fact that they are not subject to

the label switching problem of general Markov-switching models, which renders estimation

much more difficult.

Based on a simulation study, our conclusion is that Chib’s method is not much sensitive

to the chosen value of the parameter for computing the marginal likelihood, and we recom-

mend to use indifferently the posterior mode, mean or median rather than other values. Our

simulation study is based on three change-point regression models whose specification and

parameter values are closely inspired by models that we estimated using real time series.

Moreover, for models of the type we consider, Chib’s method uses, as always, the output

of the Gibbs sampler, but requires additional simulations due to the presence of the latent

variables. This explains, at least partially, why computations are typically heavy. The second

objective of this paper is to compare the model choices resulting from the application of

the BIC and of the marginal likelihood criterion. Computing the BIC requires of course to

maximize the log-likelihood function, which is not an easy task when the number of change

points is large, the reason being the existence of multiple local maxima. The simulation results

show that the BIC leads to choose the correct model in a higher proportion of replications

than the marginal likelihood criterion, and that a correct computation of the BIC is not

necessarily less heavy than for the marginal likelihood.

The paper is structured as follows: in Section 2, we present change-point models and how

Bayesian inference is done. This is done in detail so as to make the presentation, done in
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Section 3, of the computation of the marginal likelihood and BIC understandable. Section 4

contains the empirical examples and Section 5 the simulation results. Section 6 concludes.

2 Model and inference

In Section 2.1 we explain how breaks can be introduced in a time series model, drawing on

the work of Chib (1998) and Pesaran, Pettenuzzo, and Timmermann (2006). In Section 2.2,

we define the prior densities, and in Section 2.3, we explain how to compute the posterior

density of the parameters of this type of model by Gibbs sampling.

Concerning notations, we adopt some conventions: by default vectors are columns and

y′ denotes the transpose of y. Data densities (including predictive) for observable or latent

variables, whether discrete or continuous, are denoted by f(.). Prior and posterior densities

are denoted by ϕ(.). Parameters of prior densities are identified by underscore bars (e.g. a),

those of posterior densities by overscore bars (e.g. a).

2.1 Model

Let yt be the time series we want to model over the sample period {1, 2, . . . , T}. Let st be

an integer latent variable (also called state variable) taking its value in the set {1, 2, . . . ,K},
K being assumed known. The state variable st indicates the active regime generating yt at

period t in the sense that yt is generated from the data density

f(yt|Yt−1, θst), (1)

where Yt−1 = (Y ′
0 y1 . . . yt−1)′, Y0 being a vector of known initial conditions (observations

prior to date t = 1), and θst is a vector of parameters indexing the density. There are

potentially K regimes, hence K parameter vectors θ1, θ2, . . . , θK .

We assume that the active regime at t is selected by a discrete first-order Markov process

for the st process. As in Chib (1998), the transition probability matrix PK (more simply

denoted by P when indicating the number of regimes is not important) allows either to stay

in the regime operating at t−1 or to switch to the next regime and has therefore the following
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structure:

PK =




p11 1− p11 0 . . . 0 0

0 p22 1− p22 . . . 0 0

...
...

...
...

...
...

0 0 0 . . . pK−1,K−1 1− pK−1,K−1

0 0 0 . . . 0 1




. (2)

Notice that the last regime is an absorbing state over the sample period. Given the zero

entries in P , the discrete Markov chain generates potentially K − 1 breaks, at random dates

τk (k = 1, 2, . . . , K − 1) defined by τk being the integer in {1, 2, . . . , T} such that sτk
= k

and sτk+1 = k + 1. A posterior density on these dates is therefore a direct by-product of

the inference on the state variables. A convenient prior density, based on the assumption

of independence between the parameters of the matrix P , takes the form of a product of

identical beta densities with parameters a and b:

ϕ(p11, p22, . . . , pK−1,K−1) ∝
K−1∏

i=1

p
a−1
ii (1− pii)b−1. (3)

The assumption that the beta densities are identical can be easily relaxed. This prior implies

that the (strictly positive integer) duration of regime k, dk = τk − τk−1 (setting τ0 = 0 and

τK = T ) is approximately geometrically distributed with parameter pii and expected value

(a+b)/a. For example, by fixing a = b = 1, the prior is uniform for each probability. Actually,

fixing a = b implies that E(dk) = 2 and a priori, on average, a lot of regimes. To choose a prior

on the probabilities consistent with K, T/K should be the expected number of observations

per regime. Hence one should fix E(pii) = 1− (K/T ), which implies that a/b = K/(T −K)

and fixes one of the parameters given the other. The other parameter can be deduced by

fixing the variance of the beta distribution and solving.1

Following Pesaran, Pettenuzzo, and Timmermann (2006), an essential ingredient of the

model specification is the prior assumption that the parameter vectors θi are drawn indepen-

dently from a common distribution, i.e. θi ∼ ϕ(θi|θ0) where θ0 itself is a parameter vector
1If one substitutes bK/(T −K) for a in v = ab/[(a + b)2(a + b + 1)] where v is the assigned prior variance,

one obtains a second degree equation in b and a positive solution can be found under some conditions.
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endowed with a prior density ϕ(θ0|A), A denoting the prior hyper-parameters. This is called

a hierarchical prior or a meta-distribution. For example, if θi contains location parameters

and a scale one, the prior can be a normal density on the location parameters and a gamma

density on the scale one. Generally, the joint prior on the θ parameters is

ϕ(θ0, θ1, θ2, . . . , θK) = ϕ(θ0|A)
K∏

i=1

ϕ(θi|θ0). (4)

Behind the common prior (4) lies the belief that the regime parameters differ and evolve

independently of each other. Another possible prior belief is that the regime parameters

evolve in a more structured way. For example the conditional mean of yt could be increasing

(µk−1 < µk). This idea can be formalized through a joint normal prior on (µ2 − µ1, µ3 −
µ2, . . . , µK − µK−1)′ with mean vector m0ιK−1 and covariance matrix V0, where m0 and V0

are the hyper-parameters to be endowed with a prior density implying that m0 is positive

with high probability.

The model is fully specified by defining the conditional densities f(yt|Yt−1, θst). In this

study, we use the following assumption:

yt|Yt−1, θst ∼ N(x′tβst , σ
2
st

), (5)

where xt is a vector of m exogenous variables and βst a vector of coefficients, so that θst =

(β′st
σ2

st
)′. In our applications, the model within a regime is autoregressive, i.e. xt includes

the constant 1 and p lags of yt, hence m = p + 1.

2.2 Prior densities for location and scale parameters

In the model developed in the previous sub-section, the hierarchical prior (4) is defined by

a prior for each βj (j = 1, 2, . . . , K) and an independent prior for each σ2
j , given additional

random parameters (forming θ0) defined below, to which prior densities are assigned. The

hierarchy can be divided into two independent pieces, one for the regression coefficients and

one for the variances. We define the two pieces, provide the formulas of some moments, and

discuss how to define weakly informative (proper) prior densities. Improper prior densities

are excluded as we want to compute the marginal likelihood.

5



Regression coefficients

The hierarchical prior is

βj |b0, B0 ∼ Nm(b0, B0), (6)

b0 ∼ Nm(µ
β
, Σβ), (7)

B−1
0 ∼ Wm(υβ, V −1

β ), (8)

with b0 independent of B0. Wm(ν, S) denotes a Wishart density of dimension m with scale

parameter S, a positive-definite symmetric matrix, and ν degrees of freedom (ν > m − 1).

If m = 1, this reduces to a Gamma(ν, s) defined below, see (14). Equivalently, B0 has

an inverted Wishart density, B0 ∼ IWm(ν, S), see Appendix A of Bauwens, Lubrano, and

Richard (1999), with E(B0) = V −1
β /(υβ −m− 1) if υβ > m+1. Although the prior marginal

density of βj is not known analytically, its moments can be obtained by applying the law of

iterated expectations:

E(βj) = µ
β
, (9)

Var(βj) = E(B0) + Var(b0) =
V −1

β

υβ −m− 1
+ Σβ if υβ > m + 1. (10)

To be weakly informative on the βj parameters, one usually sets B−1
0 close to 0 and

diagonal in (6), meaning the variances are large and the elements are independent, and

b0 = 0, though taking another value does not matter if B−1
0 close to 0. In our hierarchical

setup one can set µ
β

= 0 instead of b0 = 0. In view of (10), one can achieve large variances

through Var(b0) or E(B0). It is more direct and easier for understanding the prior to make

Var(b0) large, rather than E(B0). For Var(b0), this means setting Σβ = c1Im with a large

value of c1, but what ”large” means has to be considered relatively to the order of magnitude

of the βj parameters. We set υβ = m + 2 and V β = Im, such that E(B0) = Im.

Variances

The hierarchical prior is defined as

σ−2
j |υ0, d0 ∼ Gamma(υ0,d0), (11)

υ0 ∼ Gamma(λ0, ρ0
), (12)

d0 ∼ Gamma(c0, d0), (13)
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with υ0 independent of d0. We use the following definition of a Gamma(ν,s) density for x

where ν is the degrees of freedom and s is the scale parameter:

fG(x|ν, s) =
(s

2

) ν
2

[
Γ

(ν

2

)]−1
x

ν
2
−1 exp

(
−s

2
x
)

for x > 0. (14)

Its expected value is ν/s and its variance is 2ν/s2. Equivalently to (11), and using the

terminology of Bauwens, Lubrano, and Richard (1999), σ2
j has an inverted gamma-2 density,

σ2
j |υ0, d0 ∼ IG(υ0, d0), with

E(σ2
j |υ0, d0) = d0/(υ0 − 2) if υ0 > 2, (15)

Var(σ2
j |υ0, d0) =

4d2
0

(υ0 − 2)2(υ0 − 4)
if υ0 > 4. (16)

The prior marginal density of σ−2
j (or its inverse) cannot be computed analytically, but

its expectation can:

E(σ−2
j ) = E(υ0)E(

1
d0

) =
λ0

ρ
0

d0

c0 − 2
if c0 > 2. (17)

Note however that E(σ2
j ) does not exist since υ0 < 2 has a non-zero probability if υ0 ∼

Gamma(λ0, ρ0
).

The non-informative version of a prior density on a variance σ2
j is usually taken as ϕ(σ2

j ) ∝
1/σ2

j or equivalently ϕ(σ−2
j ) ∝ 1/σ−2

j . This corresponds to setting υ0 = d0 = 0. This approach

is not feasible when υ0 and d0 are random variables. The same type of non-informative prior

for υ0 and d0 is obtained by setting their hyper-parameters at 0. This implies that E(σ−2
j )

does not exist. The full conditional posterior density of d0 is still a proper density even if

c0 = d0 = 0 since it is a Gamma(Kυ0 + c0,
∑K

j=1 σ−2
j + d0), as shown in the next sub-section.

The latter result suggests that d0 should not dominate the sum of the inverted variances if

one wishes to be weakly informative on d0. Setting the prior degrees of freedom c0 is more

difficult since it is added to Kυ0 which is random. The prior mean of Kυ0, equal to Kλ0/ρ
0
,

can serve as reference value to fix c0. As PPT, we set c0 = 1 and d0 = 0.01, hence E(d0) = 100

and Var(d0) = 20000.

In the next sub-section where the Gibbs algorithm is described, it is shown that the full

conditional posterior density of υ0 does not belong to a known class of density functions.

Hence it is not possible to compare the hyper-parameters λ0 and ρ
0

to their counterparts

from the information set. We set λ0 = 1 and ρ
0

= 0.01, so that the prior mean and standard

deviation of υ0 are both equal to 100, such that our prior densities are weakly informative
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2.3 Inference

The joint posterior density of ST = (s1 s2 . . . , sT )′ and the parameters is proportional to

T∏

t=1

f(yt|Yt−1, θst)f(st|st−1, P )
K−1∏

i=1

p
a−1
ii (1− pii)b−1

K∏

i=1

ϕ(θi|θ0) ϕ(θ0|A), (18)

where f(st|st−1, P ) is the transition probability from state t − 1 to state t and is one of the

non null elements of P . The parameters are θi, i = 0, 1, . . . ,K, jointly denoted by Θ (or ΘK

to emphasize that K regimes are assumed), and the diagonal elements of the matrix P . This

density lends itself to simulation by Gibbs sampling in three blocks corresponding to the full

conditional densities:

1. ϕ(ST |Θ, P, YT ) ∝ ∏T
t=1 f(yt|Yt−1, θst)f(st|st−1, P ),

2. ϕ(P |ST ) ∝ ∏T
t=1 f(st|st−1, P )

∏K−1
i=1 p

a−1
ii (1− pii)b−1, which does not depend on Θ and

YT , and

3. ϕ(Θ|ST , YT ) ∝ ∏T
t=1 f(yt|Yt−1, θst)

∏K
i=1 ϕ(θi|θ0) ϕ(θ0|A), which does not depend on P .

Sampling ST is done as Chib (1998) and detailed below (notice that sT = K by assump-

tion). Sampling P is done by simulating each pii from a beta density with parameters a + Ti

and b + 1 where Ti is the number of states equal to i in the sampled ST vector. Sampling Θ

implies usually to break it into sub-blocks and to sample each sub-block given the other, plus

ST . We give all the necessary details below for the case when f(yt|Yt−1, θst) is the normal

density defined in (5).

Chib’s algorithm for sampling the states

The algorithm is explained in Chib (1996) for the case when the matrix P is not restricted

and in Chib (1998) for the case when P is restricted like in (2), but the differences between

the two cases are minor. The state vector ST is sampled from ϕ(ST |Θ, P, YT ), by sampling

sequentially from T to 1 using the backward sequential factorization

ϕ(sT−1|sT , YT ,Θ, P ) . . . ϕ(st|st+1, YT , Θ, P ) . . . ϕ(s2|s3, YT ,Θ, P ) (19)

and the fact that the model structure implies that sT = K and s1 = 1 with probabil-

ity 1. In the above factorization, ϕ(st|st+1, YT , Θ, P ) should in principle be replaced by
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ϕ(st|st+1, st+2, . . . , sT , YT , Θ, P ), but the added conditions st+2, . . . , sT are not needed since

ϕ(st|st+1, st+2, . . . , sT , YT ,Θ, P ) ∝ f(st|Yt, Θ, P )f(st+1|st, P ), (20)

which also shows that ϕ(st|st+1, YT ,Θ, P ) = ϕ(st|st+1, Yt, Θ, P ). Indeed, as in equation (7)

in Chib (1996), and using the notation St+1 = (st+1 st+2 . . . sT ) and similarly for Y t+1,

ϕ(st|St+1, YT , Θ, P ) ∝ f(st|Yt, Θ, P )f(Y t+1, St+1|Yt, st, Θ, P ) (21)

∝ f(st|Yt, Θ, P )f(st+1|st, P )f(Y t+1, St+2|Yt, st, st+1,Θ, P ) (22)

∝ f(st|Yt, Θ, P )f(st+1|st, P ). (23)

The first line (21) follows from

ϕ(st|St+1, YT ,Θ, P ) ∝ f(st, S
t+1|Yt, Y

t+1, Θ, P )

∝ f(st, S
t+1, Y t+1|Yt, Θ, P )

∝ f(st|Yt, Θ, P )f(St+1, Y t+1|st, Yt,Θ, P ).

For (22),

f(Y t+1, St+1|Yt, st, Θ, P ) = f(st+1|Yt, st, Θ, P )f(Y t+1, St+2|st+1, Yt, st,Θ, P )

and f(st+1|Yt, st,Θ, P ) = f(st+1|st, P ) from the model assumption about the Markov chain

for the states. The third line (23) follows from from the fact that the third factor of the rhs

of the second line does not depend on st.

One starts with generating a random draw from ϕ(sT−1|sT = K, YT−1, Θ, P ), then con-

tinues with ϕ(sT−2|sT−1, YT−2,Θ, P ) where sT−1 is set equal to the random draw generated

from the previous factor, and so on until s2 is generated. Actually, ϕ(st|st+1, Yt, Θ, P ) can

only take two values given the structure of P in (2), therefore one can just compute these two

values according to the rhs of (20) and divide by their sum to obtain normalized probabilities.

In the rhs of (20), f(st+1|st, P ) is the same as in (18), and f(st|Yt,Θ, P ) is computed by

recurrence from f(st−1|Yt−1,Θ, P ). One starts at t = 2 with initial condition f(s1|Y1, Θ, P ) =

1 if s1 = 1 and = 0 otherwise (at t = 1, only state 1 can occur), and one ends at T − 1 since

f(sT |YT , Θ, P ) = 1 if sT = K and = 0 otherwise. The passage from f(st−1|Yt−1,Θ, P ) to

f(st|Yt,Θ, P ) is done in two steps (prediction and updating):
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Prediction step: by the law of total probability,

f(st|Yt−1,Θ, P ) =
K∑

j=1

f(st|st−1 = j, P )f(st−1 = j|Yt−1,Θ, P ), (24)

given that f(st|st−1 = j, P ) = f(st|st−1 = j, Yt−1,Θ, P ) from the assumptions on the model.

Update step: by Bayes theorem,

f(st|Yt,Θ, P ) ∝ f(st|Yt−1, Θ, P )f(yt|Yt−1, Θst), (25)

which is easily normalized by dividing by the sum of the rhs over all values of st (even if

actually the rhs is strictly positive only for two values of st).

Gibbs algorithm for Θ

Given (5), yt|Yt−1 ∼ N(x′tβj , σ
2
j ) when st = j. The prior densities are given in (6)-(8) and (11)-

(13). The parameters are divided into 4+2K blocks: b0, B0, υ0, d0 (altogether corresponding

to θ0 in (4)), βj , and σ2
j (for each j = 1, . . . , K). We provide the conditional posterior density

of each block (given the relevant other parameters and the state vector ST when it is needed).

Each of these is obtained by keeping all parts of
∏T

t=1 f(yt|Yt−1, θst)
∏K

i=1 ϕ(θi|θ0) ϕ(θ0|A)

that depend on the relevant elements. The hyperparameter A corresponds to the parameters

of (7), (8), (12), and (13). Given ST , we assign each observation to one of the K regimes and

thus we form K vectors yj and matrices Xj that contain the yt and x′t observations assigned

to regime j. We denote by Tj the number of observations assigned to regime j. Below we

state the result for each block and sketch how we obtain it.

• For each j = 1, . . . , K: βj |σ2
j , b0, B0, ST , YT ∼ Nm(β̄j , V̄j), where V̄j = (σ−2

j X ′
jXj + B−1

0 )−1

and β̄j = V̄j(σ−2
j X ′

jyj + B−1
0 b0). Indeed, denoting β̂j = (X ′

jXj)−1X ′
jyj ,

p(βj |σ2
j , b0, B0, ST , YT ) ∝ exp−0.5[(βj − b0)′B−1

0 (βj − b0) + σ−2
j (yj −Xjβj)′(yj −Xjβj)]

∝ exp−0.5[(βj − b0)′B−1
0 (βj − b0) + σ−2

j (βj − β̂j)′X ′
jXj(βj − β̂j)]

∝ exp−0.5[(βj − β̄j)′V̄ −1
j (βj − β̄j).

• For each j = 1, . . . , K: σ−2
j |βj , υ0, d0, ST , YT ∼ Gamma(υ0+Tj , d0+(yj−Xjβj)′(yj−Xjβj)),

since

p(σ−2
j |βj , υ0, d0, ST , YT ) ∝ (σ−2

j )υ0/2−1 exp[−0.5σ−2
j d0]

(σ−2
j )Tj/2 exp[−0.5σ−2

j (yj −Xjβj)′(yj −Xjβj)].
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• b0|β1, . . . , βK , B0, YT ∼ Nm(µ̄β, Σ̄β), where Σ̄β = (Σ−1
β + KB−1

0 )−1 and µ̄β = Σ̄β(Σ−1
β µ

β
+

B−1
0

∑K
j=1 βj). This comes from

p(b0|β1, . . . , βK , B0, YT ) ∝ exp[−0.5(b0 − µ
β
)′Σ−1

β (b0 − µ
β
)]

K∏

j=1

exp[−0.5(βj − b0)′B−1
0 (βj − b0)].

• B−1
0 |β1, . . . , βK , b0, YT ∼ Wm(νβ, V

−1
β ), where νβ = νβ + K and V

−1
β = V −1

β +
∑K

j=1(βj −
b0)(βj − b0)′. Indeed,

p(B−1
0 |β1, . . . , βK , b0, YT ) ∝ |B−1

0 |
νβ+m+1

2 exp[−0.5trB−1
0 V −1

β ]
K∏

j=1

|B0|−1/2 exp[−0.5(βj − b0)′B−1
0 (βj − b0)]

∝ |B−1
0 |

νβ+K+m+1

2 exp[−0.5trB−1
0 (V −1

β +
K∑

j=1

(βj − b0)(βj − b0)′].

• d0|σ1, . . . , σK , υ0, YT ∼ Gamma(c0 + Kυ0, d0 +
∑K

j=1 σ−2
j ), since

p(d0|σ1, . . . , σK , υ0, YT ) ∝ d
c0/2−1
0 exp[−0.5d0d0]

K∏

j=1

d
υ0/2
0 exp[−0.5d0σ

−2
j ].

• υ0|σ1, . . . , σK , d0, YT ∝ fg(υ0|λ0, ρ0
)
∏K

j=1 fg(σ−2
j |υ0, d0). Since this is not belonging to a

known class of densities, we simulate it by inverting numerically its cdf computed by Simpson’s

rule (rather than using a a Metropolis algorithm as PPT do).

3 Marginal likelihood and BIC computation

In this section, we give details about the computation of the marginal log-likelihood (MLL)

and the Bayesian information criterion (BIC). We are interested by the following questions:

1. Is the value of the MLL computed by Chib’s algorithm reliable?

2. If we apply the BIC to choose the number of change points, do we get approximately

the same results as if we apply the MLL criterion?

Answers to these questions are provided in Sections 4 and 5. The motivation for using the BIC

is that it is well known, and in large samples it usually leads to choose the model also picked
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by the MLL criterion, see the discussion in Kass and Raftery (1995). The BIC is generally

more quickly programmed and computed than the MLL. For the change-point models we

consider, this is especially true in terms of programming time. Once a correct computer

program is available, only computing time matters, and in that respect computing the BIC

is not necessarily quicker than computing the MLL, because obtaining the global maximum

of the log-likelihood function may require many computations (see below).

3.1 Marginal likelihood

The posterior density defined in (18) is conditional on a known value of K, the number of

regimes in the sample period. Obviously, K can range from 1, the no break scenario, to T

(the sample size). The latter case can be interpreted as a time-varying parameter (TVP)

model, for which one often assumes θi = θ0 + Φθi−1 + vt where θ0, Φ are parameters (often

set equal to 0 and I, respectively) and vt is a multivariate normal vector with zero mean and

unknown covariance matrix.

We can choose the model corresponding to the value of K that maximizes the marginal

likelihood (also called predictive density) of the sample. We can also use model averaging, over

a range of values of K, say K ∈ {1, 2, . . . , K̄} where K̄ is the largest number of regimes that

we wish to consider. Model averaging requires posterior model probabilities, which themselves

require prior model probabilities and the marginal likelihood value for each model.

To compute the marginal log-likelihood for the data YT and the model MK with parame-

ters ΘK = (θ0, θ1, . . . , θK) and PK = (p11, p22, . . . , pK−1,K−1) defined in the previous section,

we use the idea of Chib (1995). The predictive density is related to the prior, posterior and

data density by the equality

f(YT |MK) = f(YT |MK ,ΘK , PK)ϕ(ΘK , PK |MK)/ϕ(ΘK , PK |MK , YT ).

Since this holds for any admissible parameter value, we can pick a value (Θ∗
K , P ∗

K) of the

parameters and compute

log f(YT |MK , Θ∗
K , P ∗

K) + log ϕ(Θ∗
K , P ∗

K |MK)− log ϕ(Θ∗
K , P ∗

K |MK , YT ) (26)

to approximate log f(YT |MK). Notice that all densities in the above equation must be proper

(i.e. integrate to 1), hence the requirement to use a proper prior. In principle, (Θ∗K , P ∗
K)
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can be any value in the parameter space, but the posterior mean or mode is an easy and

recommended choice. In Sections 4 and 5, we report results throwing light on the sensitivity

of the value of the marginal log-likelihood with respect to the value of Θ∗
K .

The first term in (26) is the log-likelihood function of the model, which can be written as

log f(YT |MK , Θ∗
K , P ∗

K) =
T∑

t=1

log f(yt|YT−1,Θ∗
K , P ∗

K) (27)

where

f(yt|YT−1,Θ∗
K , P ∗

K) =
K∑

j=1

f(yt|Yt−1, Θ∗
K , P ∗

K , st = j)f(st = j|Yt−1, Θ∗
K , P ∗

K). (28)

In each term of the above sum, the first factor is equivalent to f(yt|Yt−1, θ
∗
j ) and the second

is obtained by the prediction step of Chib’s algorithm, see (24). Actually, the log-likelihood

function does not depend on θ∗0.

The prior density is defined analytically and easily computed. The difficult part is the

computation of the log-posterior since it must be computed numerically. We use the factor-

ization

ϕ(Θ∗
K , P ∗

K |MK , YT ) = ϕ(Θ∗
K |MK , YT )ϕ(P ∗

K |Θ∗
K ,MK , YT ), (29)

where

ϕ(P ∗
K |Θ∗

K ,MK , YT ) =
∫

ϕ(P ∗
K |MK , YT , ST )ϕ(ST |Θ∗

K , MK , YT )dST

since PK is independent of ΘK given ST . This is estimated by

H−1
H∑

h=1

ϕ(P ∗
K |MK , YT , ST,h),

where {ST,h}H
h=1 are H draws generated from the Gibbs sampler described in sub-section 2.3,

conditioned on Θ∗, i.e. it iterates between ϕ(ST |Θ∗, P, YT ) and ϕ(P |ST ).

The first density in the right-hand side of (29) can be expressed as

ϕ(Θ∗
K |MK , YT ) =

∫
ϕ(Θ∗

K |MK , YT , ST )ϕ(ST |MK , YT )dST .

It could be estimated by

G−1
G∑

g=1

ϕ(Θ∗
K |MK , YT , ST,g), (30)
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where {ST,g}G
g=1 are G draws generated from the posterior density through the Gibbs sampler

described above, if ϕ(Θ∗
K |MK , YT , ST,g) were known analytically. However this is not typically

the case. To solve this problem, we partition Θ∗
K in B blocks {Θ∗

K,b}B
b=1, such that the full

conditional posterior densities ϕ(Θ∗
K,b|MK , YT , ST , {Θ∗

K,c}c6=b) are known analytically or if not

can be computed by numerical integration. These blocks are those used for implementing step

3 of the Gibbs sampler (see sub-section 2.3). Then, we factorize ϕ(Θ∗
K |MK , YT ) as

ϕ(Θ∗
K,1|MK , YT )ϕ(Θ∗

K,2|MK , YT , Θ∗
K,1) . . . ϕ(Θ∗

K,B|MK , YT , Θ∗
K,1, . . . ,Θ

∗
K,B−1),

and we implement an auxiliary Gibbs sampler to compute each density of this factorization

in the same way as (30). For example, ϕ(Θ∗
K,2|MK , YT , Θ∗

K,1) is estimated as

G−1
G∑

g=1

ϕ(Θ∗
K,2|MK , YT , ST,g, Θ∗

K,1, ΘK,3,g, . . . , ΘK,B,g)

where {ST,g,ΘK,3,g, . . . ,ΘK,B,g}G
g=1 are draws from the auxiliary Gibbs sampler. This sampler

is the one defined in sub-section 2.3 conditioned on Θ∗
K,1 and Θ∗

K,2.

In the context of the normal regression model (5) for each regime, B = 6 and ΘK,1

corresponds to the K vectors βj , ΘK,2 to the K parameters σ−2
j , ΘK,3 to b0, ΘK,4 to B−1

0 ,

ΘK,5 to d0, and ΘK,6 to υ0. This way of partitioning ΘK minimizes the computational time

by exploiting the conditional independence features of the posterior, since the the last four

blocks do not require integration with respect to the states. The last block is reserved for υ0

since it requires numerical integration that can be done only once since the other parameters

are then fixed.

3.2 BIC

To compute the BIC, we must of course compute the maximum likelihood estimator since

we need to evaluate the log-likelihood at its maximum and penalize it by the usual term

0.5mK log T , where mK is the number of parameters of model MK . The log-likelihood function

of the change-point model is given in (27)-(28). We maximize it by a gradient method

(algorithm BFGS of Ox). There may be several local maxima. Thus we maximize the

objective function many times, using different starting values. We choose them as follows:

for a given number of change points, we draw randomly the break dates, taking care that

each regime has at least 30 observations, and given these dates, we estimate the model by
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OLS in each regime, thus obtaining starting values for the autoregressive coefficients and the

variance of the error. The starting values for the transition probabilities pkk are set to 0.98

or 0.99, since transitions are not frequent. For the applications reported in the next section,

we did 100 maximizations and chose as value of the log-likelihood for computing the BIC the

maximum of the 100 log-likelihood values. For the simulation results in Section 5, we used

20 maximizations in each experiment.

For running the Gibbs sampler, we use as starting values the MLE values used for com-

puting the BIC.

4 Empirical examples

In this section, we apply the change-point model to three time series. Our empirical results

serve to motivate and design the simulation experiments reported in the next section.

4.1 Quarterly growth rate of US GDP

The sample for this series covers the period from the first quarter of 1947 to the last one of 2008

(248 observations). The original series of the real GDP is seasonally adjusted. It was down-

loaded from the web site of the Federal Reserve Bank of St. Louis (http://alfred.stlouisfed.org/,

series GDPC1 20090130). The growth rate series is plotted in Figure 6.

We use an AR(p) model in each regime, with p ≤ 4. We limit the number of regimes to

be equal to 3 at most. According to the BIC and MLL criteria, the best model is an AR(1)

with two regimes. Table 1 reports, for p = 1, the BIC and several MLL values, obtained

by applying formula (26) for different parameter values: posterior means, mode, medians,

0.25-quantiles, and 0.75-quantiles, where the quantiles are from each marginal distribution.

The choice of two regimes is consistent across the BIC and all values of the MLL. The latter

hardly differ for each K. The posterior means, standard deviations, mode, medians and other

quantiles of the main parameters of the best model are reported in Table 2. The posterior

median of the break date is 1983, second quarter (July) as shown in Figure 6. The break

corresponds to a large reduction of the error variance and is called ”the great moderation”

by economists. The persistence parameter of the AR(1) hardly changes after the break.
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4.2 Monthly growth rate of US industrial production

The sample for this series covers the period from January 1950 to January 2009 (709 obser-

vations). The original series, downloaded from Datastream (USIPTOT.G series), is a volume

index of the industrial production of the USA and is seasonally adjusted, equal to 100 in

2002. We work with the growth rate series, plotted in Figure 6, defined as the first difference

of the logarithm of the original series.

We use an AR(1) model in each regime. We limit the number of regimes to be equal to

7 at most. According to the BIC and MLL criteria, the best model has four regimes, see

Table 3. The choice of four regimes is consistent across the BIC and the values of the MLL

with the exception of the MLL evaluated at the mode which leads to select K = 5. One can

notice that differences between the criteria values between 3 and 4 regimes are much more

important than between 4 and 5.

The MLL values hardly differ for each K. The posterior central values, standard devia-

tions, and 0.25/0.75 quantiles of the main parameters of the best model are reported in Table

4. The posterior medians of the break dates are April 1960, January 1984, and June 2008,

as shown in Figure 6. The first break corresponds to a large reduction in the variance of the

growth rate: the posterior mean of the residual variance is divided by three. The second break

corresponds to a further reduction (division by 2.5). The last break corresponds clearly to

the big recession triggered by the subprime crisis of 2007, with a huge increase of the residual

variance. The coefficients of the AR(1) equation are very similar in the first two regimes, and

change a lot in the last two regimes though the precision of the estimation for the last regime

is low due to the very small number of observations.

4.3 Monthly US 3-month T-bill rate

This monthly series was analyzed by Pesaran, Pettenuzzo, and Timmermann (2006) using an

AR(1) model for the level. We extend the sample by almost five years, covering the period

July 1947 to September 2008 (735 observations). The estimation results for an AR(1) model

indicate that most of the regimes are nearly integrated. Therefore, we use an AR(0) model for

the first difference. The series (from the CRSP database) is shown in Figure 6, together with

the regimes resulting from the detected break dates (posterior medians of change points).

The number of regimes is equal to 11 according to the BIC to the different values of the MLL
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criterion (see Table 5). The decrease of the criteria values as K increases is marked until

K = 8, indicating that the choice of the number of regimes after that is not clear. A similar

pattern is prevalent in the other applications, suggesting that there is a much bigger risk of

picking too many regimes than too few in this type of model.

The posterior means, standard deviations, and modes for 11 regimes are reported in Table

6. The regime changes seem to correspond mainly to changes in the the error term variance.

Changes in the mean coefficients of the interest rate changes (βj2, j=1,2,. . . ,11) seem less

important as their posterior means are close to 0 except in regimes 3, 10 and 11.

5 Simulation study

The simulation design is inspired by the empirical results of the previous section. We choose

three DGPs, one with a single change point, one with three, and one with seven. In each

regime, a sample of size T is generated by an AR(1) process with parameter values and

regime durations close to the corresponding estimated results of the previous section. The

three DGPs are presented in Tables 7, 10, and 13. For DGPs 1 and 2, 100 repetitions are used,

and for the last DGP this number is reduced to 50 because computations are taking a lot of

time. A repetition means that a sample of size T is simulated from the DGP and for each

sample, the BIC and MLL values are computed for AR(1) models with varying number of

regimes. These sets of 100 (or 50) values are then used to produce averages and proportions.

5.1 Single change point (K = 2)

The results of the simulations are contained in Tables 8 and 9. Table 8 contains means

(across the 100 repetitions) of BIC and MLL values. Table 9 shows the proportions in which

the models with 1, 2 (the true value), 3 or 4 regimes are selected by the BIC or the MLL

criterion. From these results, the answers to the two questions we raise in the beginning of 3

are rather clear:

1) The MLL values depend very little on the parameter value chosen for its computation,

when the values being considered are the means, mode, medians, 0.25-quantiles (q25), and

0.75-quantiles (q75), where the quantiles are from each marginal distribution. For a given K,

the largest difference is 2 (K = 4, T = 500) when comparing mean, mode, and median-based
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results (Table 8), which is very small compared to 692. Between mode and median, the differ-

ence is always smaller than 1. When comparing mean, mode or median with the quartiles, the

differences are a bit larger, with the largest difference occurring for q25 in the cases K = 2,

T = 250 (difference of 3.622) and 500 (difference of 6.19). The sensitivity does not seem to

be related to the sample size T and may be slightly more pronounced for K = 4 than for

smaller values. This is expected as inference for an over-parameterized model is likely to be

less precise.

2) Concerning the model selection criteria (Table 9), the performance of the BIC in the

selection of the correct model is very good (at least 97 per cent of correct choices) and even

slightly better than for the MLL. The MLL performance is the best when its computation is

based on central values of the parameters (more than 90 per cent of correct choices). When T

is increased from 250 to 500, the performance of the BIC and MLL computed with the mode

and median increases.

5.2 Three change points (K = 4)

The results of the simulations are contained in Tables 11 and 12. Table 11 contains means

(across the 100 repetitions) of BIC and MLL values. Table 12 shows the proportions in which

the models with 2 to 6 regimes are selected by the BIC or the MLL criterion. From these

results, the answers to the questions raised are rather clear:

1) The MLL values depend very little on the parameter values chosen for its computation.

For a given K, the largest difference is 3.95 (for K = 3) when comparing mean, mode, and

median-based results (Table 11), which is very small compared to 913. Between mode and me-

dian, the difference is smaller than 1 except for K = 3, where the value at the mode is slightly

different. When comparing mean, mode or median with the quartiles, the differences are in-

creasing with K, because inference for an over-parameterized model is likely to be less precise.

2) Concerning the model selection criteria (Table 12), the performance of the BIC and the

MLL criterion (whatever the evaluation point) is good, since the right model (4 regimes) is

picked in about 89 to 94 per cent of the repetitions. The risk of choosing a wrong number of

regimes is entirely concentrated on the over-parameterized models (especially the model with

5 regimes).
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5.3 Ten change points (K = 11)

The results of the simulations are contained in Tables 14 and 15. Table 14 contains means

(across the 50 repetitions) of BIC and MLL values. Table 15 shows the proportions in which

the models with 9 up to 13 regimes are selected by the BIC or the MLL criterion. From these

results, the answers to the questions we are interested in are rather clear:

1) The MLL values (Table 14) do not depend much on the parameter value chosen for its

computation, but they vary more than in the two previous cases. The largest difference oc-

curs for K = 13 between mean and mode (difference of the order of 10 per cent). However,

between mode and median, the differences are very small.

2) Concerning the model selection criteria (Table 15), the performance is not good. The BIC

selects the correct number of breaks only in 24 per cent of the repetitions and puts too much

weight (50 per cent) on over-parameterized models (K = 12 and 13). This is even much

more pronounced with the MLL criterion, since it selects the models with too many regimes

in 90 per cent of the repetitions. This bad performance of the criteria may be explained

by the following feature of the DGP: there are many regimes, among which some with few

observations, and some which are not very different. This confirms our intuition, based on

the applications to real data, that there is a tendency to select too many breaks with the type

of model we consider.

6 Conclusion

There are two objectives in this paper. The first is to assess the sensitivity of the marginal

likelihood value obtained by Chibs’ method in the case of a change-point regression model.

The second objective is to compare the model choices resulting from the application of the BIC

and of the marginal likelihood criterion. Our findings are firstly that the value of the marginal

likelihood computed by Chib’s algorithm is reliable for the class of Markov-switching autore-

gressive models. Secondly that the MLL criterion and BIC provide a good performance in

choosing the right model, with a marginally better performance of the BIC, except apparently

in the case where the number of regimes is large and difficult to identify.
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Table 1: BIC and MLL of AR(1) models (US GDP growth rate)

K BIC MLL mean MLL mode MLL median MLL q25 MLL q75
1 -336.44 -349.03 -349.06 -349.03 -348.96 -349.01
2 -321.04 -332.66 -332.39 -332.66 -333.62 -333.88
3 -322.02 -334.98 -333.37 -334.68 -335.78 -336.86
BIC: Bayesian information criterion. MLL: marginal log-likelihood, computed by
formula (26) using different parameter posterior values: mean, mode, median,
0.25-quantile (q25) and 0.75 quantile (q75).

Table 2: Posterior results for 1-change point AR(1) model (US GDP growth rate)

Parameter Mean St. dev. Mode Median q25 q75
β11 0.576 0.420 0.592 0.580 0.491 0.672
β12 0.345 0.313 0.334 0.336 0.276 0.396
β21 0.478 0.369 0.554 0.481 0.404 0.558
β22 0.333 0.409 0.246 0.330 0.242 0.417
σ2

1 1.471 2.889 1.381 1.282 1.178 1.398
σ2

2 0.344 0.779 0.261 0.278 0.252 0.313
p11 0.985 0.053 0.993 0.991 0.986 0.996

Table 3: BIC and MLL of AR(1) models (US industrial production growth rate)

K BIC MLL mean MLL mode MLL median MLL q25 MLL q75
1 -927.28 -945.11 -945.13 -945.11 -944.91 -944.94
2 -885.37 -894.61 -894.35 -894.60 -894.90 -894.79
3 -869.70 -882.18 -882.39 -882.16 -882.96 -882.72
4 -855.70 -859.11 -859.35 -859.13 -859.93 -859.67
5 -859.79 -861.68 -858.98 -862.22 -861.35 -863.64
6 -864.41 -864.02 -862.44 -861.88 -867.37 -865.45
7 -872.63 -865.63 -859.97 -864.84 -883.67 -869.86
See Table 1 for explanations.
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Table 4: Posterior results for 3-change point AR(1) model (US industrial production growth
rate)

Parameter Mean St. dev. Mode Median q25 q75
β11 0.195 0.157 0.307 0.199 0.103 0.291
β12 0.470 0.093 0.441 0.470 0.415 0.526
β21 0.171 0.057 0.200 0.170 0.136 0.207
β22 0.405 0.062 0.395 0.405 0.368 0.443
β31 0.191 0.034 0.171 0.191 0.168 0.213
β32 0.100 0.067 0.144 0.099 0.059 0.139
β41 -0.200 0.520 -0.036 -0.189 -0.523 0.129
β42 0.184 0.354 0.463 0.179 -0.045 0.400
σ2

1 2.075 0.364 2.065 2.043 1.868 2.240
σ2

2 0.680 0.066 0.668 0.678 0.639 0.717
σ2

3 0.262 0.025 0.283 0.260 0.246 0.275
σ2

4 5.390 4.174 4.857 4.259 2.993 6.523
p11 0.988 0.011 0.996 0.991 0.984 0.995
p22 0.995 0.004 0.998 0.996 0.993 0.998
p33 0.995 0.004 0.999 0.996 0.993 0.998

Table 5: BIC and MLL of AR(0) models (US T-bill rate)

K BIC MLL mean MLL mode MLL median MLL q25 MLL q75
1 -512.41 -523.48 -523.48 -523.52 -523.49 -523.49
2 -425.85 -494.43 -438.59 -452.81 -531.50 -527.74
3 -295.82 -307.67 -307.61 -307.67 -308.12 -307.96
4 -269.43 -280.02 -280.08 -280.02 -280.29 -280.32
5 -253.42 -263.06 -263.11 -263.02 -263.53 -263.63
6 -229.82 -235.82 -235.93 -235.86 -236.31 -236.34
7 -226.00 -229.10 -229.47 -229.14 -229.70 -229.76
8 -215.08 -214.96 -215.20 -215.02 -215.56 -215.63
9 -211.38 -208.81 -209.40 -208.90 -209.72 -209.90
10 -212.86 -223.06 -207.33 -210.18 -224.07 -262.45
11 -209.98 -207.65 -198.02 -197.58 -199.03 -208.86
12 -219.39 -213.93 -199.20 -201.70 -221.98 -241.31
See Table 1 for explanations.
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Table 6: Posterior results for 10-change point AR(0) model (US T-bill rate)

Parameter Mean St. dev. Mode Median q25 q75
β1 0.023 0.014 0.027 0.023 0.014 0.032
β2 -0.03 0.083 -0.064 -0.036 -0.091 0.018
β3 0.036 0.015 0.040 0.036 0.026 0.046
β4 0.027 0.065 -0.006 0.030 -0.011 0.069
β5 0.073 0.078 0.116 0.069 0.017 0.125
β6 -0.04 0.194 -0.045 -0.042 -0.172 0.085
β7 -0.005 0.046 -0.046 -0.006 -0.036 0.026
β8 -0.03 0.028 0.039 -0.037 -0.052 -0.019
β9 -0.08 0.124 -0.357 -0.035 -0.057 -0.022
β10 0.092 0.033 0.032 0.095 0.068 0.114
β11 -0.22 0.122 -0.137 -0.226 -0.307 -0.147
σ2

1 0.023 0.003 0.026 0.022 0.021 0.024
σ2

2 0.264 0.073 0.247 0.252 0.212 0.302
σ2

3 0.015 0.003 0.015 0.014 0.012 0.017
σ2

4 0.187 0.123 0.351 0.114 0.075 0.303
σ2

5 0.218 0.210 0.099 0.257 0.090 0.314
σ2

6 2.541 0.640 2.563 2.439 2.083 2.880
σ2

7 0.158 0.028 0.103 0.155 0.138 0.175
σ2

8 0.049 0.009 0.038 0.050 0.044 0.055
σ2

9 0.028 0.048 0.132 0.007 0.006 0.011
σ2

10 0.019 0.005 0.017 0.018 0.016 0.021
σ2

11 0.258 0.113 0.256 0.232 0.185 0.302
P11 0.988 0.010 0.992 0.991 0.983 0.995
P22 0.959 0.033 0.995 0.967 0.943 0.983
P33 0.979 0.018 0.989 0.983 0.971 0.991
P44 0.969 0.060 0.989 0.983 0.965 0.992
P55 0.973 0.046 0.986 0.985 0.969 0.993
P66 0.962 0.030 0.980 0.970 0.948 0.984
P77 0.982 0.014 0.984 0.986 0.975 0.993
P88 0.990 0.009 0.987 0.992 0.986 0.996
P99 0.938 0.057 0.925 0.954 0.917 0.977
P1010 0.966 0.029 0.989 0.974 0.954 0.987

Table 7: DGP with 1 change point

Regime Duration Equation

1 140 yt = 0.60 + 0.35yt−1 +
√

1.50zt

2 110 yt = 0.45 + 0.30yt−1 +
√

0.35zt

zt simulated from N(0, 1) distribution.
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Table 8: MLL evaluated in different points for DGP with 1 change point

K Mean Mode Median q25 q75
T = 250 (140 + 110)

1 -373.45 -373.45 -373.42 -373.34 -373.38
2 -358.73 -358.07 -358.49 -361.69 -359.93
3 -361.00 -360.36 -360.26 -361.72 -362.05
4 -364.08 -363.17 -362.44 -366.09 -365.89

T = 500 (280 + 220)

1 -730.14 -730.14 -730.11 -729.97 -730.02
2 -686.71 -685.95 -686.22 -692.14 -687.30
3 -689.09 -688.59 -688.25 -689.15 -689.67
4 -692.50 -691.29 -690.50 -692.60 -692.99
Reported MLL values are means computed from 100 replica-
tions. In each replication, T observations are simulated from
the DGP defined in Table 7.

Table 9: Model selection performance for DGP with 1 change point

K BIC Mean Mode Median q25 q75
T = 250

1 0.01 0.01 0.01 0.01 0.02 0.02
2 0.97 0.95 0.91 0.95 0.72 0.91
3 0.02 0.04 0.08 0.04 0.26 0.07
4 0.00 0.00 0.00 0.00 0.00 0.00

T = 500

1 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.93 0.96 0.98 0.79 0.90
3 0.00 0.07 0.04 0.02 0.21 0.10
4 0.00 0.00 0.00 0.00 0.00 0.00
Proportions based on same replications as for Table 8.
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Table 10: DGP with 3 change points

Regime Duration Equation

1 123 yt = 0.20 + 0.47yt−1 +
√

2.10zt

2 285 yt = 0.17 + 0.40yt−1 +
√

0.68zt

3 293 yt = 0.19 + 0.10yt−1 +
√

0.26zt

4 16 yt = −0.2 + 0.18yt−1 +
√

5.39zt

zt simulated from N(0, 1) distribution.

Table 11: MLL evaluated in different points for DGP with 3 change points

K Mean Mode Median q25 q75
2 -937.32 -937.18 -937.32 -937.66 -937.58
3 -913.62 -909.67 -912.69 -916.82 -915.14
4 -878.51 -878.21 -878.41 -882.22 -879.36
5 -882.55 -879.71 -879.81 -886.76 -882.79
6 -885.43 -881.90 -881.93 -892.35 -887.00
Reported MLL values are means computed from 100 repli-
cations. In each replication, 707 observations are simulated
from the DGP defined in Table 10.

Table 12: Model selection performance for DGP with 3 change points

K BIC Mean Mode Median q25 q75
2 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.91 0.94 0.89 0.96 0.91 0.94
5 0.09 0.06 0.10 0.04 0.08 0.05
6 0.00 0.00 0.01 0.00 0.01 0.01
Proportions based on same replications as for Table 11.
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Table 13: DGP with 10 change points

Regime Duration Equation

1 122 yt = 0.023 +
√

0.02zt

2 33 yt = −0.040 +
√

0.26zt

3 72 yt = 0.038 +
√

0.02zt

4 103 yt = 0.006 +
√

0.28zt

5 52 yt = 0.110 +
√

0.12zt

6 37 yt = −0.040 +
√

2.51zt

7 91 yt = −0.01 +
√

0.15zt

8 129 yt = −0.01 +
√

0.04zt

9 20 yt = −0.23 +
√

0.08zt

10 59 yt = 0.06 +
√

0.02zt

11 20 yt = −0.23 +
√

0.26zt

zt simulated from N(0, 1) distribution.

Table 14: MLL evaluated in different points for DGP with 10 change points

K Mean Mode Median q25 q75
9 -210.70 -210.76 -210.39 -211.47 -212.44
10 -209.56 -207.17 -207.75 -211.77 -215.59
11 -207.55 -202.33 -202.71 -207.12 -213.84
12 -206.81 -198.47 -199.45 -204.46 -210.51
13 -205.84 -193.95 -194.22 -199.76 -207.00
Reported MLL values are means computed from 50 repli-
cations. In each replication, 736 observations are simulated
from the DGP defined in Table 13.

Table 15: Model selection performance for DGP with 10 change points

K BIC Mean Mode Median q25 q75
9 0.12 0.00 0.00 0.00 0.00 0.00
10 0.16 0.04 0.00 0.00 0.04 0.04
11 0.24 0.08 0.00 0.04 0.04 0.04
12 0.20 0.16 0.20 0.12 0.20 0.20
13 0.28 0.72 0.80 0.84 0.72 0.72
Proportions based on same replications as for Table 14.
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Figure 1: Real U.S. GDP growth rate. Sample period: 1947.Q1-2008.Q4 (248 observations)
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Figure 2: U.S. Industrial production growth rate. Sample period: January 1950-January 2009
(707 observations)
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Figure 3: Three month U.S. T-bill rate change. Sample period: July 1947-September 2008
(735 observations)
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