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Abstract:

This paper studies the quantitative implications of the interaction between robust control
and stochastic volatility for key asset pricing phenomena. We present an equilibrium
term structure model in which output growth is conditionally heteroskedastic. The agent
does not know the true model of the economy and chooses optimal policies that are
robust to model misspecification. The choice of robust policies greatly amplifies the
effect of conditional heteroskedasticity in consumption growth, improving the model’s
ability to explain asset prices. In a robust control framework, stochastic volatility in
consumption growth generates both a state-dependent market price of model
uncertainty and a stochastic market price of risk. We estimate the model using data from
the bond and equity markets, as well as consumption data. We show that the model is
consistent with key empirical regularities that characterize the bond and equity markets.
We also characterize empirically the set of models the robust representative agent
entertains, and show that this set is “small”. In other words, it is statistically difficult to
distinguish between models in this set.
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1 Introduction

This paper studies the implications of the interaction between robust control and stochastic
volatility for key asset pricing phenomena. We quantitatively show that robustness, or fear of
model misspecification, coupled with state-dependent volatility provides an empirically plau-
sible characterization of the level and volatility of the equity premium, the risk free rate, and
the cross-section of yields on treasury bonds. We also show that robustness offers a novel way
of reconciling the shape of the term structure of interest rates with the persistence of yields.
Finally, we quantify the level of robustness encoded in agents’ behavior.

We construct a continuous-time, Lucas (1978)-type, asset pricing model in which a repre-
sentative agent is averse to both risk and ambiguity. The presence of ambiguity stems from the
agent’s incomplete information about the economy’s data generating process (DGP). In other
words, the agent does not know which of several possible models is the true representation
of the economy. Introducing ambiguity aversion into our framework allows us to reinterpret
an important fraction of the market price of risk as the market price of model (or Knightian)
uncertainty. We model ambiguity aversion using robust control techniques as in Anderson et
al. (2003).! In our model, the representative agent distrusts the reference model and optimally
chooses a distorted DGP. His consumption and portfolio decisions are then based on this dis-
torted distribution. Ambiguity aversion gives rise to endogenous pessimistic assessments of the
future.

A key assumption in the model is that the output growth process is conditionally het-
eroskedastic. The consumption growth process inherits this heteroskedasticity, which gives rise
to a stochastic market price of risk. The main contribution of this paper is to show that am-
biguity aversion greatly amplifies the effect of stochastic volatility in consumption growth and,
therefore, can explain asset prices in an empirically plausible way. In the absence of ambigu-
ity aversion, plausible degrees of stochastic volatility in consumption growth do not generate
sufficient variation in the stochastic discount factor.

By choosing a distorted DGP, the robust representative agent has biased expectations of fu-
ture consumption growth. Being pessimistic, the agent tilts his subjective distribution towards

states in which marginal utility is high. With stochastic volatility, positive volatility surges

' Behavioral puzzles such as the Ellsberg paradox (Ellsberg (1961)) led to the axiomatization of the maxmin
decision making by Gilboa and Schmeidler (1989). Robust control is one way of modeling Knightian uncertainty.
For a comprehensive treatment of robustness see Hansen and Sargent (2007a). Examples of the use of robust
control in economics and finance include Anderson et al. (2003), Cagetti et al. (2002), Gagliardini et al. (2004),
Hansen and Sargent (2007b), Hansen et al. (2006), Liu et al. (2005), Maenhout (2004), Routledge and Zin (2001),
Uppal and Wang (2003). An alternative approach to modeling ambiguity allows agents to have multiple priors.
See, for example, Epstein and Schneider (2003), Epstein and Wang (1994).



result in a more diffuse distribution of future consumption growth. In that case, the objective
distribution assigns more probability mass to future ‘bad’ realizations of consumption growth.
The agent seeks policies that can reasonably guard against such ‘bad’ realizations. Conse-
quently, he increases the distortion to his expectations of consumption growth. The interaction
between robustness and stochastic volatility introduces a state dependent distortion to the drift
of consumption growth, and therefore, to the drift in the agent’s intertemporal marginal rate
of substitution. This state dependent distortion generates sharp implications for asset pricing
phenomena.

We estimate our model and assess its implications using data from the equity and bond
markets, as well as consumption data. We exploit cross-equation restrictions across bond and
equity markets to improve both the identification of structural parameters in our model and
the estimation of the market price of risk and uncertainty.? Our main findings are as follows.

First, we show that our model, calibrated with a unitary degree of risk aversion and elasticity
of intertemporal substitution (EIS), can reproduce both the high and volatile equity premium
and the low and stable risk free rate observed in the data. Previous studies, such as Mehra
and Prescott (1985) and Weil (1989), show that explaining the behavior of the equity premium
requires implausibly high levels of risk aversion. Ambiguity aversion generates an uncertainty
premium that helps to alleviate the difficulties encountered in these previous studies. Since there
is no benchmark value for the degree of ambiguity aversion, we use detection error probabilities
to show that the degree of robustness required to fit the data is reasonable. In other words, we
show empirically that the set of models the robust representative agent entertains is small. By
this we mean that it is statistically difficult to distinguish between models in this set.

Second, our model can account for the means of the cross-section of bond yields. In partic-
ular, we can replicate the upward sloping unconditional yield curve observed in the data. This
result highlights a novel interpretation of the uncertainty premium generated by robustness. On
empirical grounds, we assume that the conditional variance of output growth, and hence con-
sumption growth, is stationary and positively correlated with the consumption growth process.
This positive correlation implies that when marginal utility is high the conditional variance of

consumption growth is low. Consequently, a downward bias in the subjective conditional ex-

2Campbell (2000) argues that "it is important to reconcile the characterization of the SDF provided by
bond market data with the evidence from stock market data. Term structure models of the SDF are ultimately
unsatisfactory unless they can be related to the deeper general-equilibrium structure of the economy. Researchers
often calibrate equilibrium models to fit stock market data alone, but this is a mistake because bonds carry
equally useful information about the SDF. The short-term real interest rate is closely related to the conditional
expected SDF and thus to the expected growth rate of marginal utility; in a representative-agent model with
power utility of consumption, this links the real interest rate to expected consumption growth...The risk premium
on long-term bonds is also informative."



pectations of consumption growth induces a negative distortion to the subjective expectations
of variance changes. We show that this negative distortion is a linear function of the level of
the conditional variance process. Consequently, the unconditional distortion is a linear negative
function of the objective steady state of the variance process. Therefore, the subjective steady
state of the variance process is lower than the objective steady state. In other words, on average,
the agent thinks that the conditional variance of consumption growth should decrease. Since
the unconditional level of bond yields and the steady state level of the conditional volatility
of consumption growth are inversely related, the agent expects, on average, that yields will
increase. Consequently, the unconditional yield curve is upward sloping.

Third, our model can replicate the declining term structure of unconditional volatilities of
real yields, and the negative correlation between the level and the spread of the real yield curve.
The fact that the robust distortion to the conditional variance process is a linear function of
the level of the variance implies that the distorted process retains the mean reversion structure
of the objective process. Since shocks to the conditional variance are transitory, the short end
of the yield curve is more responsive to volatility shocks relative to the long end. Hence, short
maturity yields are more volatile than long maturity yields. Also, our model implies that yields
are an affine function of the conditional variance of consumption growth. Therefore, all yields
are perfectly positively correlated. Short yields are more responsive to volatility shocks than
long yields, but both move in the same direction. So, when yields decrease, the spread between
long yields and short yields increases and becomes more positive. As a result, the level and
spread of the real yield curve are negatively correlated.

Fourth, the model can reconcile two seemingly contradictory bond market regularities: the
strong concavity of the short end of the yield curve and the high degree of serial correlation
in bond yields.®> The intuition for this result is closely linked to the mechanism behind the
upward sloping real yield curve. Generally, in a one-factor affine term structure model, the
serial correlation of yields is driven by the serial correlation of the state variable implied by
the objective DGP. In contrast, in our model the slope of the yield curve is shaped by the
degree of mean reversion of the conditional variance process implied by the agent’s distorted
(i.e., subjective) distribution. The state dependent distortion to the variance process not only
changes the perceived steady state of the variance but also its velocity of reversion. With
positive correlation between consumption growth and the conditional variance process, we show
that the subjective mean reversion is faster than the objective one. Ex ante, the agent expects

shocks to the variance process to die out fast, but ex-post these shocks have a longer lasting

3In a standard one-factor model, it is difficult to separate these two properties, since both observations are
directly tied to the persistence of the underlying univariate shock process.



effect than expected. The slope of the yield curve is a reflection of how fast the agent expects
the effect of variance surges to dissipate. The positive slope of the yield curve declines rapidly
when the subjective mean reversion is high. The serial correlation of yields is measured ex-
post, using realized yields. If the objective persistence of the variance process is high, yields
are highly persistent, which is in line with the empirical evidence. We also show that when
the agent seeks more robustness, the separation between the ex-ante and ex-post persistence is
stronger.

The remainder of the paper is organized as follows. In section 2 we present our continuous
time model and discuss its implications for the equity and bond markets. We derive analytical
affine term structure pricing rules and discuss the distinction between the market price of
risk and uncertainty. In sections 3 and 4 we describe our estimation procedure, present the
empirical results and explain why our model can match a number of asset pricing stylized facts.
We also present independent evidence that supports our modeling assumptions in section 5.
We investigate the implied level of uncertainty aversion exhibited by the representative agent
in section 6. Finally, we offer our concluding remarks and discuss potential avenues for future

research in section 7 .

2 Robustness in a Continuous Time Model with Sto-
chastic Volatility

In this section we present an infinite horizon, continuous time, general equilibrium model in
which a robust representative agent derives optimal policies about consumption and invest-
ment.? For simplicity we assume a Lucas tree type economy with a conditionally heteroskedas-
tic growth rate of output. Our ultimate goal is to analyze the implied equilibrium yield curve in
this economy and, in particular, identify the implications of robustness for the term structure

of interest rates.”

4In the working paper version available at http://neumann.hec.ca/pages/nicolas.vincent/ we present the
robust control idea in a simple two-period asset pricing model.

5Gagliardini et al. (2004) also study the implications of robust control for the behavior of the term structure
of interest rates in a Cox et al. (1985)-type economy. We differ from their analysis along two dimensions. First,
they study a two factor model closely related to Longstaff and Schwartz (1992), while we focus on a one factor
model. Second, and more importantly, we study the empirical implications of our model and quantify the
contribution of the state dependent market price of model uncertainty to our understanding of asset prices both
in the equity and bond market. We also present supporting evidence for our key assumption of state dependent
volatility in consumption growth. Finally, we estimate the implied degree of uncertainty aversion implied by
the data.



2.1 Reference and Distorted Models

The representative agent in our economy uses a reference or approximating model. However,
since he fears that this model is potentially misspecified, he chooses to diverge from it when
making his decisions.® In the context of this paper, the reference model is assumed to generate
the observed data. In contrast with the rational expectations paradigm, the agent entertains
alternative DGPs. The size of the set of possible models is implicitly defined by a penalty func-
tion (relative entropy) incorporated into the agent’s utility function. So the agent chooses an
optimal distorted distribution for the exogenous processes. In other words, the agent optimally
chooses his set of beliefs simultaneously with the usual consumption and investment decisions.
The robust agent distorts the approximating model in a way that allows him to incorporate
fear of model misspecification. We will refer to the optimally chosen model as the distorted

model.”

2.2 The Economy

There is a single consumption good which serves as the numeraire. Let D be an exogenous
output process that follows a geometric Brownian motion and solves the following stochastic
differential equation (SDE),

dD; = Dipdt + Dy\/v1d By. (2.1)

The probability measure IP on the Brownian process represents the reference or approximat-
ing model. However, the agent entertains a set of possible probability measures which size is
determined by a penalty function (relative entropy) that is incorporated into the agent’s utility
function. We denote the distorted measure which the agent chooses by Q.* The conditional

expectation operators under P and Q are denoted respectively by E; (-) and E? (+).

6 Another possibility is to claim that for some reason the agent dislikes extreme negative events and wants
to take special precautionary measures against these events. If we choose this behavioral interpretation, we can
then assume the agent knows the true DGP, but that his marginal utility function is very high in bad states of
the world. Low consumption is so costly that the agent requires policies that are robust to these states. Even
though there is complete observational equivalence between the two approaches, they are utterly different from
a behavioral perspective.

"An alternative is to allow for the possibility that a different, unspecified model, is actually the DGP. In this
scenario, it is likely that neither the distorted nor the reference model generate the data. The agent must in this
case infer which model is more likely to generate the data. See Hansen and Sargent (2007b) for an example.

8Formally, we fix a complete probability space (Q,F,P) supporting a univariate Brownian motion B =
{B; : t > 0}. The diffusion of information is described by the filtration {F;} on (2, F). All stochastic processes
are assumed to be progressively measurable relative to the augmented filtration generated by B. The set of
possible probability measures on (2, F) entertained by the agent is denoted by P. Every element in P defines
the same null events as P. Note that the assumption that the penalty function is the relative entropy imposes
a lot of structure on the possible distorted measures. By Girsanov’s theorem we require the distorted measure
to be absolutely continuous with respect to the reference measure.



We can obviously think of D as a general dividend process of the economy. We allow
the trading of ownership shares of the output tree. The parameters p and v are the local
expectations (drift) and the local variance of the output growth rate, respectively. We assume

that v follows a mean-reverting square-root process:

dUt = (CL[) + a1Ut> dt + \/’U_tO'UdBt, (22)
a > 0, a1 <0, o, €R, 2a020%.

Note that the same shock (Wiener increments) drives both the output growth and the output
growth volatility processes.” We impose this assumption to retain parsimony. The requirement
a1 < 0 guarantees that v converges back to its steady state level —¢ (= v) at a velocity —ay.
The long run level of volatility is positive since ag > 0. The Feller condition 2aq > o2 guarantees
that the drift is sufficiently strong to ensure that v > 0 a.e. once vy > 0. The parameter o, is
constant over time and will play an important role in our model.

When v is constant over time, the market price of risk is state independent, and the ex-
pectations hypothesis of the term structure of interest rates holds. This result stands in sharp
contrast to the empirical evidence (e.g., Fama and Bliss (1987), Campbell and Shiller (1991),
Backus et al. (1998), Cochrane and Piazzesi (2002)). We discuss in the next section how sto-
chastic volatility interacts with robustness considerations to affect the predictions of our model.

Let dR; be the instantaneous return process on the ownership of the output process and S;

be the price of ownership at time ¢. Then, we can write

dS; + D,dt
Sy
= fip4dt + oRrdBy,

dR,

(2.3)

where 1 and op are determined in equilibrium. We also let 7 be the short rate process, which

is determined in equilibrium.

2.3 The Dynamic Program of the Robust Representative Agent

The robust representative agent consumes continuously and invests both in a risk-free and a
risky asset. The risky asset corresponds to the ownership of a share of the output process (the

tree). The risk free asset is in zero net supply in equilibrium. The agent chooses optimally

9We could also make the expected instantaneous output growth rate, u, stochastic. By assuming, for example,
an affine relation between 1, and v, the model remains tractable and can be solved analytically. For the purpose
of this paper, however, we maintain the assumption of a constant drift in the output process.



a distortion to the underlying model in a way that makes his decisions robust to statistically

small model misspecification. Formally, the agent has the following objective function

sup inf {B? [[ e s Du(Cy) ds] + R, (Q) } (2.4)
C,a

subject to his dynamic budget constraint
th = [TtWt + O{tWt (MR,t — Tt) — Ct] dt + atWtUR,tdBt> (25)

where Q is the agent’s subjective distribution, W is the agent’s wealth, p is the subjective
discount factor, C' is the consumption flow process, « is the portfolio share invested in the risky
asset, and 6 is the multiplier on the relative entropy penalty R. The level of  can be interpreted
as the magnitude of the desire to be robust. When 6 is set to infinity, (2.4) converges to the
expected time-additive utility case. A lower value of # means that the agent is more fearful of
model misspecification and thus chooses Q further away from P in the relative entropy sense.
In other words, the set of alternative DGPs is larger the smaller 6 is.
Under some regularity conditions and by Girsanov’s theorem, we can define a Brownian
motion under Q as
B = B, — [}hyds, t>0. (2.6)

With this setup at hand, the relative entropy process R (Q) for some Q can be expressed

conveniently as'’

1 o _p(s—
R (Q) = §E9 [[Fe P Dn2ds], ¢ > 0. (2.7)
and (2.4) becomes
sup i%f {E?Lme_p(s_t) {u (Cs) + ghg} ds} . (2.8)
C,a

The change of measure (2.6) also allows us to write (2.1), (2.2) and (2.5) under the distorted
measure Q. This introduces a drift distortion, which in the context of the market return has
an obvious interpretation: it is the uncertainty premium the agent requires for bearing the risk

of potential model misspecification

dR; = | g, — (—hioRy) dt + JRﬂdei@. (2.9)
—_——

Uncertainty premium

10See, for example, Hansen et al. (2006) and section 3, and especially proposition 4, in Skiadas (2003).



The process h is the (negative of the) process for the market price of model uncertainty.
The diffusion part op, on the return process is, as usual, the risk ezposure of the asset. The

product —h,o R, is the equilibrium uncertainty premium.t

2.4 Optimal Policies with Robust Control

Let J (W, v;) denote the agent’s value function at time ¢ where W; and v, correspond to current
wealth and the conditional variance level respectively.!? One can show that optimal distortion
h is given by

hy = —% (JW,tUW,t + Jv,tO'U\/iTt) . (2.10)

A few observations are in order at this point. First, since volatility is stochastic, the ro-
bustness correction h is state dependent: the robust agent derives the distorted conditional
distribution in such a way that the reference conditional distribution first order stochastically
dominates the chosen distorted conditional distribution. If it was not the case then there would
be states of the world in which the robust agent would be considered optimistic. Also, the agent
wants to maintain the optimal relative entropy penalty constant since 6 is constant. In order to
achieve this when conditional volatility is stochastic, the distortion has to be stochastic and in-
crease with volatility. Second, the size of the distortion is inversely proportional to the penalty
parameter #: the distortion vanishes as # — oo. Third, whenever the marginal indirect utility
and volatility of wealth (Jy and oy ) are high, the agent becomes more sensitive to uncertainty
and distorts the objective distribution more. Low levels of wealth imply large marginal indirect
utility of wealth. These are states in which the agent seeks robustness more strongly. The
second term in the parentheses corresponds to the effect of the state v on the distortion h.
Since J, < 0 for all reasonable parametrizations, the sign of o, dictates the optimal response
of the agent. Consider the benchmark case when o, is positive. Following a positive shock,
marginal utility falls as consumption rises, and volatility v increases. Therefore, the investment
opportunity set deteriorates exactly when the agent cares less about it. Since the evolution of v
serves as a natural hedge for the agent, he reduces the distortion h. The opposite occurs when
o, < 0.

Given the choice of a distortion level, the optimal portfolio holding of the risky asset at

time t, oy, can be expressed in two equivalent forms, each emphasizing a different aspect of the

1By rewriting the return process under the risk neutral measure, one can also show that there is a perfect
correlation between risk and uncertainty premia in our model.

12See the working paper version at http://neumann.hec.ca/pages/nicolas.vincent,/ for a more detailed deriva-
tion of the policies and the value function. Anderson et al. (2003) and Maenhout (2004) also use similar
formulations.



intuition:

Q
HBri— Tt
ORt
_ Hpg Tt I hy
U%Jt ORt

The first line of equation (2.11) states that the demand for the risky asset is myopic: the
agent only cares about the current slope of the mean-variance frontier. However, this slope is
constructed using his subjective beliefs. From an objective point of view, the agent deviates
from the observed mean-variance frontier portfolio due to his (negative) distortion to the mean
h: he optimally believes the slope is lower and thus decreases his demand for the risky asset.

We posit the guess that the value function is concave (log) in the agent’s wealth and affine

in the conditional variance, which allows us to rewrite (2.10) as

1/1
h; = —5 (; + (5101,) \/U_t (2.12)

Here, we see that the distortion, or the (negative of the) market price of model uncertainty
is linear in the conditional volatility of the output growth rate. In equilibrium /v is the
conditional volatility of the consumption growth rate.

We can also rewrite (2.11) as

1
L flgy — Tt 3

0
= 1 2 T Ju0y
1+E aR,t 1—|—%

Myopic‘aemand Hedging demand

The first element on the RHS corresponds to a variant of the usual trade-off in a log-utility

13 The second

setup between excess return compensation and units of conditional variance.
element is the hedging-type component arising from uncertainty aversion. It is positive since
Jyo, > 0 (recall the discussion of (2.10)), and larger in absolute terms the larger J, or o,
ceteris paribus.

The consumption policy is unchanged when the agent seeks robust policies: C' = pWW. Here,
robustness entails that the agent perceives the local expectations on the risky asset to be lower

than the objective drift on the same asset. The substitution effect implies that the agent should

13Note that the coefficient is not unitary, as in the usual log problem. The reason is that when introducing
robustness, we effectively increase risk aversion, but maintain the unitary EIS. This pushes down the demand
schedule for the risky asset.



invest less since the asset is expected to yield low return in the future. In contrast, the wealth
effect predicts that he should consume less today and save instead. In the case of log utility,
these two effects cancel each other. Consequently, the effect of robustness on the consumption
policy is eliminated. Changing a log-agent’s desire to be robust will only affect the risk free

rate and the return on the risk free asset.

2.5 Robust Equilibrium

In this section we solve for the equilibrium prices of assets and discuss the pricing of the term

structure of interest rates in our model. First, in our setup a robust equilibrium is defined as:

Definition 1 A robust equilibrium is a set of consumption and investment policies/processes
(C, ) and a set of prices/processes (S, r) that support the continuous clearing of both the market
for the consumption good and the equity market (C' = D, =1) and (2.8) is solved subject to
(2.5), (2.2) and (2.6).1

In equilibrium, since the agent consumes the output (C' = D) the local consumption growth
rate and the local output growth rate are the same (u- = p). Also, the agent’s equilibrium
path of wealth is identical to the evolution of the price of the ‘tree’ since a« = 1. Therefore,
W = S. Hence, D = C = pW = pS. As is usually the case with a log representative agent, not
only the consumption wealth ratio is constant but so is the dividend-price ratio (% = % = p).
Consequently, robustness considerations do not affect the consumption policy and the pricing
of the ‘tree’. Instead, the implications of uncertainty aversion show up in the risk free rate
and the way expectations are formed about growth rates or the return on the risky asset. The

equilibrium risk free rate can be derived from (2.11)

re = p+ oy T V/Uihe — v

= ptp— by (2.13)
where L /1
p=1+— (——l—dlav).
0 \p

As in a standard framework, a larger subjective discount rate p or higher future expected
consumption growth both make the agent want to save less today and lead to a higher equi-

librium real short rate. Also, higher consumption volatility activates a precautionary savings

!4The same definition also appears in Maenhout (2004). Without stochastic volatility considerations, he also
derives the equilibrium risk free rate and equity premium.

10



motive, so that the real rate must be lower to prevent the agent from saving. However, here the
presence of ¢ implies a role for uncertainty aversion. Intuitively, robustness amplifies the effect
of the precautionary savings motive (h < 0 when 6 < 00), and thus lowers the equilibrium level
of the short rate. In other words, the robust agent wants to save more than an expected utility
agent and therefore needs a stronger equilibrium disincentive to save in the form of lower risk
free rate.

The equilibrium local expected return on the risky asset can immediately be derived from
(2.3) and the fact that S = D/p

dR, = (pp,+p)dt+opdB,
= (:U’D,t +p+ htO'D,t) dt + 0'D7tdB;@.

The observed equity premium is'®

-1 = v = v + - 1o
KRt t ¢ t ' t ‘ (¢ ) t
Risk Premium  Uncertainty Premium

dC, 1/1
= — dR - =+ 6,0, .
COUt(C't’ t)—i—@(p-l- IU)Ut

The equity premium has both a risk premium and an uncertainty premium components. The
former is given by the usual relation between the agent’s marginal utility and the return on
the risky asset. If the correlation between the agent’s marginal utility and the asset return is
negative, the asset commands a positive risk premium [covt <‘%’f, th> > O] and vice versa. The
higher the degree of robustness (i.e., the smaller the parameter @), the larger the uncertainty
premium and the market price of model uncertainty. While a decrease in 6 increases the equity
premium, it also decreases the risk free rate through the precautionary savings motive. The
EIS is independent of .6

15We use the qualifier ‘observed’ to emphasize again that what the agent treats as merely a reference model
is actually the DGP. Therefore, anything under the reference measure is what the econometrician observe when
he has long time series of data.

6 Previous studies (e.g., Anderson et al. (2003), Skiadas (2003), Maenhout (2004)) have shown that when
eliminating wealth effects from robustness considerations, a robust control economy is observationally equivalent
to a recursive utility economy in the discrete time case (Epstein and Zin (1989), Weil (1990)) or to a stochastic
differential utility (SDU) in the continuous time economy as in Duffie and Epstein (1992a) and Duffie and
Epstein (1992b). Thus, our combined market price of risk and uncertainty can be viewed as an effective market
price of risk in the SDU economy. The difficulty with such approach is that it requires implausibly high degrees
of risk aversion. Another difficulty arises in the context of the Ellsberg paradox. Our approach assumes that
agents do not necessarily know the physical distribution and want to protect themselves against this uncertainty.

11



We see that robustness can potentially account for both a high observed equity premium
and low level of the risk free rate. What about the volatility of the risk free rate? Since we
do not change the substitution motive, the only magnification is through the precautionary
savings motive. Empirically v is extremely smooth and contributes very little to the volatility
of r.17

Next, we need to price the term structure of interest rates, the main object of this study.!®
Denote the intertemporal marginal rate of substitution (IMRS) process by A where A; =

e P /Cy. Tto’s lemma allows us to characterize the dynamics of A as

dA;

L= —rydt — \/;dBY, (2.14)
t

where the drift is the (negative of) the short rate and the diffusion part is the market price of
risk. It is then straightforward to price default-free bonds using (2.14). The excess expected

return on a bond over the short rate is given by

dp; dA dp;
B2 (=) —rdt = ——— 2 2.1
' (Pt) " A p (2.15)
= By (7)ovur (2.16)

where the second line follows from our guess of an affine yield structure, and /3, is positive and
determines the cross section restrictions amongst different maturity bonds. The excess expected
return is determined by the conditional covariance of the return on the bond and marginal
utility, or alternatively, by the product of the market price of risk and the risk exposure of the
bond. The sign of the risk premium is determined by the correlation of the output growth rate
and the conditional variance, o,. In times of high volatility, the agent’s decision to shift his
portfolio away from the equity market and towards bonds leads to a rise in bond prices. When
o, > 0, this implies that bonds pay well in good times and the risk premium is positive.
Moreover, the observed excess return that long term bonds earn over the short rate is not

completely accounted for by the risk premium component. Under the objective measure we

I7Tf we allow for a stochastic p with positive correlation with v, fluctuations in v will be countered by
movements in y since they affect the risk free rate with opposite sign. In other words, if we allow the substitution
effect and the precautionary motive to vary positively over time, the risk free rate can be very stable.

18 QOur paper belongs to the vast literature on affine term structure models. The term structure literature is too
large to summarize here but studies can be categorized into two strands - equilibrium and arbitrage free models.
Our paper belongs to the former strand. The advantage of the equilibrium term structure models is mainly the
ability to give meaningful macroeconomic labels to factors that affect asset prices. Dai and Singleton (2003)
and Piazzesi (2003), for example, review in depth the term structure literature.
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have,

dp (T;v
ﬁ = |ri+ 5, (7) ovv + 3y (1) opvy (¢ — 1)/ dt + B, (1) 0y \/v:dBy. (2.17)
o Risk l;gmium Uncertain?;Premium

In the presence of uncertainty aversion, there is an uncertainty premium that drives a wedge
between the return on a 7-maturity bond and the short rate. The more robust the agent, the
larger the market price of uncertainty is in absolute terms (i.e., ¢ is larger so —h = (¢ — 1) /v
is larger). Also, higher conditional variance increases the uncertainty premium since the agent
distorts the mean of the objective model more. In other words, higher o, also increases the
uncertainty exposure of the asset. In section 4 we discuss the intuition behind the predictions
of the model, and especially the role robustness plays in our context.

Finally, the yield on a given bond is simply an affine function of the conditional variance

1
V() = —;lnp(T;Ut) )

The two extreme ends of the yield curve are lim, o) (7;v;) = r and lim, o YV (T;v¢) =
p + 1 — aof3,. Thus the spread is

lim YV (7;v;) — lii%y (T501) = —aoBy + ¢uy,

T—00

where 3, is a function of the model parameters.

3 Model Estimation

Since the model permits closed-form expressions for first and second moments we use the
generalized method of moments (GMM) to estimate our model parameters (Hansen (1982)).
Our procedure is similar to the one used by, for example, Chan et al. (1992). Our approach
is to exploit mainly the time series restrictions to estimate the structural parameters. We
do not focus on the cross sectional restrictions of the model as in Longstaff and Schwartz
(1992) and Gibbons and Ramaswamy (1993). Since we have a single factor model, yields are
perfectly correlated. Therefore, including cross sectional restrictions may reduce the power
of the overidentifying restrictions in small samples. We use our point estimates to generate
the model’s implied yield curve and compare it to the empirical yield curve. In that sense, our
approach is more ambitious. It is important to note that since our model only makes statements

about the real economy, all the data we use is denominated in real terms. The description of
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the data is relegated to Appendix A.!"
We need to estimate 6 parameters {ag, a, i, p,0,0,}. We form orthogonality conditions
implied by the model using the following notation

[ AC,
Yin = |AY (L), Ry, —o= Y (40) = Y (1;0,) |

I Ci
Xt = y(l;'l)t),
[ AC,
Z, = 1,y(1;vt),Rt,C—t],
L t—1

where Y;,; is observed at time ¢ + 1 and contains the change in the one-quarter real yield
(AY (1;v441)), the realized real aggregate market return (R;y;), the realized real aggregate
consumption growth rate (Ag—tt“) and the real spread between the 1-year and 3-months real
yields (Y (4;v,) — YV (1;v;)). X; is the explanatory factor. Even though conditional variance is
not directly observable in the data it is theoretically an affine function of the short rate (or any
other real yield with arbitrary maturity). Therefore, we use the short rate (3-months yield) as
an observable that completely characterizes the behavior of the conditional variance. Last, we
use lagged 3-months, market return and realized consumption growth rate as instruments in
the vector Z,.

The stacked orthogonality conditions are given in m

Utgr1 = Y1 — MY,t|Xt7

I - / !
uzer1 = diag (Ul,t+1U1,t+1 - UY,tUY,t|Xt) )
M1 = [Ul,tﬂ U2,t+l] ® Z.

We draw first and second moment restrictions. py,|X; and oy,|X; have the parametric forms

implied by the model and are affine in X;.

19 A few studies, for example Brown and Schaefer (1994) and Gibbons and Ramaswamy (1993), also use real
data to estimate a term structure model. However, they do not draw restrictions from the equity market and
consumption data and their preferences assumption is standard which implies that the equity premium and risk
free rate puzzles are still present in the models they estimate.

Also, some authors have used nominal data to estimate real models (e.g., Brown and Dybvig (1986)).
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4 Empirical Results

In this section we first present the parameter estimates over various samples before analyzing
the empirical fit of our model. We pay particular attention to discussing how the interaction of

robust control and stochastic volatility allows us to address a number of asset pricing facts.

4.1 Point Estimates of the Structural Parameters

Table 4.1 presents the point estimates over different time periods. Aside from the robustness
parameter 6, all coefficients are immediately interpretable. All parameters are statistically
different from zero. Also, the model is not being rejected according to the J-test. We will

explain the DEP’s column later.

Table 4.1: Model estimation with consumption volatility over different time intervals. The data is in quarterly
frequency and in quarterly values. 6 parameters are estimated using an iterated GMM. There are 8 moments
and 4 instruments that produce 32 orthogonality conditions. T' is the number of observation in each estima-
tion. Robust t-statistics are indicated below each point estimate. The standard error are corrected using the
Newey-West procedure with 4 lags. p-val is the p-value for the J-test statistic distributed y? with 26 degrees
of freedom. The DEP column reports the detection error probabilities.

Period T ag ay ! P 0 Ty J-stat/P-val  DEP

Q2.52-Q4.06 218 0.0005 -0.1951 0.0052 0.0145 9.5730 0.0189 33.5147 4.41%
6.7904 -10.1242 29.0936  7.6824 3.7579 7.7160 14.77%

Q1.62-Q4.06 180 0.0004 -0.1594 0.0051 0.0125 14.9578 0.0175 28.0792 11.01%
6.9588  -10.7284 28.2098  6.3202 2.7028 5.5972 35.46%

Q1.72-Q4.06 140 0.0004 -0.1611 0.0048 0.0148 11.8660 0.0149 22.3470 10.86%
6.3636 -10.3456 28.4321 6.1634 2.5565 5.1858 66.96%

Q1.82-Q4.06 100 0.0004 -0.1314 0.0054 0.0208 6.6591  0.0082 17.3000 7.31%
6.2872  -6.6014 34.0290  8.7880 3.7862 7.4882 89.97%

Q1.90-Q4.06 68 0.0003 -0.0997 0.0050 0.0172  9.0779  0.0064 12.2261 14.49%
8.1423  -9.7387  36.4052 10.5310  5.7235  10.3818 98.98%
Q2.52-Q4.81 118 0.0007 -0.2528 0.0050 0.0115 13.4790 0.0431 20.2067 17.11%

7.1360 -13.8242 20.8878  5.6148 2.7839 6.0434 78.17%
Q2.52-Q4.89 149 0.0006 -0.2232 0.0053 0.0140 10.6126 0.0290 24.2714 10.10%
6.2481  -9.5348 24.3649 6.3682 3.2241 6.9336 56.04%

Note that both u (equal to the average real aggregate quarterly consumption growth rate)

and p are stable over different samples.?’ What is obvious from Table 4.1 is that the estimation

20Tn results available from the working paper version, we also estimated the model without imposing the
volatility of consumption growth. What we find is that the parameters u, p, ag and a; are mostly unaffected.
The penalty parameter 6, however, is higher: without imposing the smooth consumption process , the implied
pricing kernel (SDF) is much more volatile and less robustness is needed to justify the observed asset prices.
Similarly, the implied evolution of v is much more volatile leading to a higher value for o,,.
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procedure detects mostly high frequency movements and not the slow moving component in
consumption growth volatility identified by Bansal and Yaron (2004). Hence, it appears that
the high-frequency component from the market data dominates in the full-model estimation.

We will discuss further our parameter estimates in the context of the fit of the model.

4.2 Theoretical and Empirical Moments

Table 4.2 presents a comparison of model-implied and empirical moments over different time
spans for the main focus of our study, the bond market. In general, the model fares very well:
it can generate average bond yields very similar to those in the data. In addition, it is able to
fit the autocorrelation of yields as well as the return from a strategy of holding a one-year bond

for three quarters.

Table 4.2: Empirical and theoretical bond market moments (with consumption volatility restriction). The
period column represents the time interval of the data that is used to estimate the model. The data is in
quarterly frequency with quarterly values. T is the number of quarterly observations used to estimate the
model. Columns with the number (1) present the empirical moments. Empirical moments computed with the
data and theoretical moments are implied by the estimated model. Columns with the number (2) present the
theoretical moments. The theoretical moments were generated using 1,000 replications of the economy that
was calibrated using the estimated parameters over the corresponding period. Robust standard errors are
given below each moment. The standard errors were corrected using the Newey-West procedure with 4 lags.
The standard errors for the theoretical moments were computed over the 1,000 replications. All moments,
aside from the autocorrelations, are given in % values. Vs, Y1y, and p (V3m) are the real 3 month yield, real
1 year yield and the first order autocorrelation coefficient of the real 3 month yield, respectively. The last
column reports real holding period return for buying a one year to maturity bond and selling it after three
quarters.

Period T Vm Viy pVsm) — In | B
H @ O @ O @ @B @

Q252 — Q4.06 218 1.531 1.838 2250 2.570 0.843 0.863 2.465 2.802
0.263 0.083 0.234 0.055 0.060 0.004 0.274 0.047

QL.62—Q4.06 180 1.749 2.191 2241 2.614 0.835 0.878 2.394 2.750
0.292 0.011 0.279 0.008 0.071 0.000 0.321 0.007

Q72— Q4.06 140 1.686 2216 2.214 2.680 0.830 0.875 2.359 2.847
0.362  0.080 0.351 0.058 0.075 0.004 0.406 0.047

QL.82—Q4.06 100 2.190 2.584 2.742 3.071 0.862 0.891 2.932 3.232
0.366 0.109 0.378 0.084 0.062 0.003 0.443 0.073

QL.90 — Q4.06 68 1.666 1.914 2015 2.233 0.897 0.890 2.118 2.346
0.422 0.135 0371 0.111 0.058 0.006 0.420 0.110

Q252 —Q4.81 118 0.965 1572 1.865 2471 0.804 0.784 1.976 2.764
0.330 0210 0.247 0.118 0.096 0.010 0.275 0.090

Q252 — Q4.89 149 1.469 2207 2.358 2.996 0.823 0.825 2.586 3.257
0.328 0.143 0.292 0.088 0.077 0.007 0.348 0.070
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Table 4.3 shows some key moments for the equity and consumption data. While the model-
implied moments are comparable to their empirical counterparts, in fact we may say that our
model is performing too well: it generates an equity premium larger than in the data, while
still matching the low consumption growth rate as well as the bond market facts. The same
conclusion seems to hold over different time horizons. Note, however, that since we are imposing
consumption growth volatility, the model compromises on the implied market return volatility
being somewhere between the empirical consumption growth rate volatility and the empirical

market return volatility.?!

Table 4.3: Empirical and theoretical equity and goods market moments (with consumption volatility restric-
tion). The period column represents the time interval of the data that is used to estimate the model. The
data is in quarterly frequency with quarterly values. T is the number of quarterly observations used to esti-
mate the model. Columns with the number (1) present the empirical moments. Empirical moments computed
with the data and theoretical moments are implied by the estimated model. Columns with the number (2)
present the theoretical moments. The theoretical moments were generated using 1, 000 replications of the
economy that was calibrated using the estimated parameters over the corresponding period. Robust standard
errors are given below each moment. The standard errors were corrected using the Newey-West procedure
with 4 lags. The standard errors for the theoretical moments were computed over the 1,000 replications. All
moments are given in % values. pg, fic, 0r, and Vs, are the real return on the market (including dividends),
real growth rate of consumption, volatility of real aggregate market return and real 3 month yield, respec-
tively.

Period T IR e — Vam OR 1%
(1) 2 @ (2 (1) 2 @ (@
(Q2.52 — (Q4.06 218 8.690 12.346 7.069 10.354 16.445 9.861 2.096 2.099
1.120 0.078 1.133  0.118 1.112 0.081 0.086 0.075
(1.62 —(Q4.06 180 7.440 10.589 5.606 8.245 17.092 9.708 2.074 1.526
1.233 0.111 1.239  0.160 1.254 0.172  0.093 0.110
Q1.72 —(Q4.06 140 7.973 11.023 6.198 8.645 17.418 10.224 1.927 1.524
1.456 0.093 1.457  0.132 1.440 0.111 0.101  0.092
(Q1.82 —(4.06 100 11.159 12.294 8.807 9.501 16.579 10.507 2.199 1.588
1.544 0.151 1.532 0.204 1.478 0.168 0.088 0.152
@190 —Q4.06 68 9.110 10.033 7.342 7.991 15.984 10.068 2.028 1.349
1.920 0.178 1.894 0.241 1.841 0.136  0.100 0.176
(Q2.52 — (Q4.81 118 6.787 15.933 b5.777 14.187 16.223 9.901 1.988 1.802
1.541 0.152 1.592 0.256 1.624 0.300 0.138 0.141
(22.52 — (Q4.89 149 8.498 14.082 6.944 11.665 16.653 9.897 2.128 1.826
1.388 0.117 1.418 0.188 1.379 0.199 0.116 0.114

Next, we provide intuition about the role of robustness in matching bond market moments.

2'We also tried to reestimate the model without imposing consumption growth volatility. The results were
qualitatively similar. Not surprisingly, this version was better able to match the aggregate market return
volatility, at the expense of higher consumption growth rates. Results for the yield curve were however relatively
unchanged.

17



4.2.1 Bond Returns and Upward Sloping Yield Curve

Results for the 3-months and 1-year real yields reveal that the model is doing a good job at
reproducing the shape of the short end of the yield curve. To get a better idea of its ability to
replicate the term structure of interest rates, the top panel in Figure 4.1 presents estimation
results over the years 1997 — 2006. During this period TIPS bonds were traded in the U.S.
and thus provide a good proxy to real yields. The solid line is the average level of the yield
curve over this period with 95% confidence bands. The dot-dashed line is the model-implied
average yield curve. Note that we only impose two bond market restrictions in the estimation

procedure and yet the model can imitate reasonably well the shape of the entire yield curve.

Data (Solid Line) and Model Implied Real Yield Curves

1 1 1 1 1 1 1 1 1
1
0 50 100 150 200 250 300 350 400 450
Maturity in Months

Data (Solid Line) and Model Implied Volatilities of Real Yields
45—

35—

2.5

%

1.5

05 - —— .

0 50 100 150 200 250 300 350 400 450
Maturity in Months

Figure 4.1: Top panel: average real yield curve extracted from the TIPS data from M1.97 — M12.06 (solid
line) with 95% confidence bands with Newey-West (12 lags) correction. Model implied average yield curve
(dot-dashed line). The model is estimated over the same period as the empirical yield curve. Bottom panel:
empirical term structure of unconditional volatilities of the TIPS data (solid line). with 95% confidence bands
with Newey-West (12 lags) correction. The model is estimated over the same period as the empirical yield
curve.

Two elements allow our model to match the term structure of interest rates. First, recall
from expression (2.17) that robustness introduces an uncertainty premium in addition to the

usual risk premium through the precautionary savings motive. Both premia are positive as long
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as 0, > 0, (i.e. shocks to consumption growth and volatility are positively correlated). The
magnifying role of robustness means that one can match the excess return on long term bonds
relative to short term bonds with a moderate amount of stochastic volatility.

Second, with robustness the (perceived) evolution of v under the distorted measure Q is
different from the evolution of v under the objective measure P in two respects. In Figure
4.2 we plot the objective and perceived impulse response functions for the conditional variance
v following a shock. Note that, unlike a rational expectations agent, the robust agent is on
average wrong about the future evolution of v: uncertainty aversion leads him to distort his
beliefs such that, on average, he expects the conditional variance to decrease over time.?? In
Section 6 we argue that this bias is not statistically unreasonable. This observation provides
an additional channel for an upward-sloping yield curve: through the precautionary savings
motive, lower future volatility results in higher expected yields.

Another manifestation of the forces just described is apparent in the last column of Table
4.3. It captures the return of a strategy in which the agent buys a 1-year bond and sells it
after 3 quarters. Backus et al. (1989) point to the difficulty of representative agent models to
account for both the sign and magnitude of holding period returns in the bond market. Note
that we did not impose any holding period returns conditions in the estimation procedure and
yet the model captures the returns dynamics well.

The bottom panel of Figure 4.1 depicts the term structure of the volatilities of yields.
Clearly, the model can replicate the downward slope due to the mean reversion in the estimated
conditional variance process, as discussed earlier. The impression is that the procedure anchors
the implied first and second moments of the 1-year yield to its empirical counterpart, but it is

still doing a good job in approximating the entire curve.

22To see this algebraically, write (2.2) under both measures

d'Ut = —Ky ('Ut — ’l_)) dt —+ 0y \/adBt
= k2 (v, — 99) dt + 0\ /0;dBR. (4.1)

Here, &, is the velocity of reversion and v is the steady state of v, both under the reference measure. However,
the subjective velocity of reversion is

K2 = o, — 0y (1 — B) > Ky (4.2)
and the subjective steady state is
9 = %@ < 7. (4.3)
Ko

where the inequality follows from our finding that x, < x2 across all samples.
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Figure 4.2: Biased expectations. Using the parameters estimated over the entire period 2.52 — 24.06, the
figure shows the impulse response function of the conditional variance to a positive and negative shocks. The
solid line represents the objective evolution of v and the dashed line represents what the robust agent believes
the evolution of v is going to be.

4.2.2 Slope of the Yield Curve and Persistence of Yields

Traditionally, one-factor models encounter an inherent difficulty in trying to account simultane-
ously for the rapidly declining slope of the yield curve (i.e., strong convexity of the slope of the
yield curve) and the high persistence of yields. Time-series evidence implies that interest-rate
shocks die out much more slowly than what is implied from the rapidly declining slope of the
average yield curve (Gibbons and Ramaswamy (1993)).

Even though we present a one-factor model, we can account for these two facts with a single
parametrization. Figure 4.1 shows that the agent prices the yield curve as if shocks to v die out

fast. However, Table 4.2 confirms that the model can still match the persistence of the short
rate (p (Vam)).>

23The term structure literature usually identifies 3 factors that account well for most of the variation in the
yield curve (Litterman and Scheinkman (1991)): level, slope and curvature. The level slope is very persistent
and, thus, accounts for most of the observed persistence of yields. Also, note that we do not impose this
restriction in our estimation and yet the model is able to match this moment with high accuracy.
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The key for understanding the success of our model on that dimension lies in expression
(4.2). The agent believes that the conditional variance reverts to its steady state faster than
under the objective measure (k2 > k,). Since yields are affine functions of the conditional
variance of consumption growth, they inherit the velocity of reversion of v under the objective
model. In other words, the persistence of yields is measured ex-post and is solely determined
by the objective evolution of v without any regard to what the agent actually believes.

At the same time, the slope of the yield curve (or the pricing of bonds) is completely
determined by what the agent believes the evolution of v will be, as discussed earlier. If x2 is
substantially larger than ,, the slope of the yield curve can flatten at relatively short horizons,
reflecting the beliefs of the agent that v will quickly revert to its steady state level. Since the

agent persistently thinks that ¥ > x, the slope can be on average rapidly declining.

4.2.3 Spread and Level of Yields

In quarterly data over the sample 52.Q02 — 06.Q04 the correlation between the level and slope of
the real yield curve is —0.5083 with standard errors of 0.0992 (where the slope is the difference
between the 1-year and 3-months yields). This finding is robust over different time intervals
and different frequencies. The model can account for this fact in the following way?!: recall
that a positive shock to conditional volatility lowers yields. Also note that yields are perfectly
(positively) correlated since all of them are an affine function of the same factor. However,
short yields are more sensitive to conditional volatility shocks. To understand why, it helps to
think about the mean reversion of the conditional variance (the ergodicity of its distribution).
The effect of any shock is expected to be transitory. The full impact of the shock happens at
impact and then the conditional variance starts reverting back to its steady state. Therefore,
the effect of, say, a positive shock is expected to dissipate and yields are expected to start to
climb back up. This expected effect is incorporated into long term yields immediately. Short
yields in the far future are almost unaffected by the current shock since it is expected that the
effect of the shock will disappear eventually. Since long term yields are an average of future
expected short yields plus expected risk premia, they tend to be smoother than short term
yields.

The expected risk premium is also a linear function of the state, and thus inherits its mean
reversion. Therefore, the expected risk premium in the far future is also smoother than the risk

premium in the short run. This also contributes to the rotation of the yield curve: since the

24We explain the intuition through the time variation of the conditional volatility of consumption growth
rate. One can alternatively use the substitution channel and focus on time variation in expected consumption
growth rate.
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short end of the yield curve is very volatile relative to the long end (recall Figure 4.2), whenever
yields decrease, the spread increases (or become less negative, depending on the initial state).

The opposite also holds true.

5 Additional Evidence

The success of our model in replicating numerous moments for both the equity and bond
markets rests on two ingredients: (1) state-dependent volatility of consumption growth, and
(2) a positive correlation between shocks to consumption growth and volatility (¢, > 0). In this
subsection we provide direct empirical evidence about the level and behavior of the conditional

variance of real aggregate consumption growth.

5.1 ARMAX-GARCH Real Consumption Growth Rate

We start with a simple univariate time series parametric estimation. The model we are fitting
to the consumption growth process is an ARMAX(2,2,1) model and a GARCH(1,1) to the

innovations process:

AC,
A(L) C't_j = ¢+ B(L)Ri1+C(L)ngy, (5.1)
Newrr = OciEcit, €op~ N(0,1),

D(L)ocy = w+F(L)ngy,

where A, B, C, D, F are polynomials of orders 2, 1,2, 1, 1 respectively, in lag operators. A(ftl , Ry,

C
7, are, respectively, the realized real consumption growth rate at time ¢, the real returnton the
aggregate market index at time ¢ — 1, and an innovation process with time-varying variance. In
Figure 5.1 we plot the GARCH volatility estimates for both real aggregate consumption growth
rate and the real return on the aggregate stock market. We also plot a measure of realized
volatility for both consumption growth and market return series that we obtain by fitting an
ARMA(2,2) to the original data and then use the square innovations to construct the realized
variance series. The sample period is ()2.52 — ()4.06.

First, there seems to be evidence of what has been dubbed as the ‘Great Moderation’ (e.g.,
Stock and Watson (2003)). It is clear that consumption growth volatility has slowly declined
over the sample period but the volatility of the market return did not. This pattern is apparent
in both measures of conditional volatility.

Second, it appears that there are both high frequency (business cycle) fluctuations and
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Figure 5.1: ARMAX-GARCH estimation for both real consumption growth rate and real aggregate market
return. We fit model (5.1) and present the GARCH estimates for the conditional variance of real consumption
growth rate and real aggregate market return in the left panel. The right panel present the square innovations
from an ARMX specification to real consumption growth and real aggregate market return. The quarterly
data is (92.52 — 4.06. The gray bars are contraction periods determined by the NBER.

a very low frequency stochastic trend in consumption growth volatility. Panel A of Table 5.1
presents the implied reversion coefficient and half life derived using the autoregressive coefficient
from the GARCH estimated conditional variance series.?> For comparison purposes, Panel A of
Table 5.1 presents the half life of the volatility shock process implied by our earlier estimation
results. We also present in that panel the perceived half life by the robust agent. Expression
(4.2) shows that the perceived velocity of mean reversion is faster than the physical speed at
which shocks to volatility die out. In general, the point estimates imply that shocks to volatility
die out relatively fast. These results confirm that without forcing asset market restrictions on
the consumption series, we observe a very slow moving process for conditional variance. At the

same time, the conditional variance of the aggregate market return is much less persistent. The

25Qur point estimates correspond to quarterly data. In general, with data sampled at quarterly frequency one
can map an autoregressive coefficient to a coefficient governing the speed of reversion as our x,. Let & denote
the autoregressive coefficient. Then, the quarterly speed of reversion coefficient «, = —In (&) and the half life
is In (2) /ky.
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general estimation procedure results in panel A are, to some extent, a combination of these two

effects.?6

Table 5.1: Panel A: Point estimates of the velocity of reversion coefficient and the implied half life (in quar-
ters) of the conditional variance process. Objective referes to the physical rate in which the conditional vari-
ance gravitates to its steady state. Distorted referes to the rate in which the robust agent believes the condi-
tional variance gravitates to its steady state. These point estimates are from the estimation procedure that
imposes the volatility of real aggregate consumption growth rate as a moment condition. Panel B: implied
reversion coefficients and half lifes (in quarters) for the conditional volatility of consumption growth rate and
aggregate market return derived from the GARCH procedure. The consumption growth rate mean is modeled
as an ARMAX(2,2,1) and the aggregate market return is modeled as ARMA(2,2).

Panel A: (02.52 — (Q4.06
Estimate Half Life (Q)

Consumption 0.010 68.373

Market 0.4069 1.704

Panel B: @2.52 — (4.06 ?1.90 — Q4.06

Estimate Half Life (Q) Estimate Half Life (Q)

Objective 0.1951 3.553 0.0997 6.952
Distorted 0.2994 2.315 0.1343 5.161

The recent ‘long run risks’ literature usually calibrates asset pricing models with a highly
persistent conditional variance process.?” For example, Bansal and Yaron (2004) assume that
the autoregressive coefficient (with monthly frequency data) in the conditional variance of the
consumption growth process is 0.987.2% This number implies a half life of 13.24 quarters, which
is almost 4 times higher than the number we obtain in our empirical results. As explained
earlier, this difference is driven largely by the inclusion of equity and bond markets in our set
of moments. What we show in this paper is that robust decision making coupled with state
dependent volatility requires moderate levels of persistence in the conditional variance of the
consumption growth process. Recall that we assume a constant drift in consumption growth.
If we assume a stochastic and highly persistent x, as in Bansal and Yaron (2004), we would
need to worry about the volatility of the risk free rate. In other words, if the substitution effect

channel is very persistent and the precautionary savings motive is much less persistent, the

260We conduct this comparison only for the entire period Q2.52 — 4.06 since we want to examine evidence
concerning very low frequency components. Even our longest sample is somewhat short to conveniently detect
the slow moving component. We believe that shorter samples will make the detection exercise impossible.

2TBansal and Yaron (2004) find that introducing a small highly persistent predictable component in consump-
tion growth can attenuate the high risk aversion implications of standard asset pricing models with recursive
utility preferences. However, this persistent component is difficult to detect in the data. Croce et al. (2006)
present a limited information economy where agents face a signal extraction problem. Their model addresses
the identification issues of the long run risk component. Hansen and Sargent (2007b) is another example for
the difficulty in identifying the long run risk component. However, in addition to a signal extraction problem,
their agent seeks robust policies and consequently his estimation procedure is modified.

28Gee table IV in Bansal and Yaron (2004).
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short rate can potentially be very volatile. If shocks to p were to die out much slower than
shocks to v, the ergodic distribution of the short rate would be very volatile. In that sense, we
might be able to reconcile our results with the calibration exercise of Bansal and Yaron (2004)
if we assumed an expected consumption growth rate process.

Our hypothesis is that higher frequency fluctuations are channeled through the asset market
while there are other aspects which we do not identify that contribute to the low frequency
fluctuations. In other words, when we estimate the full model, the effect of the equity and
bond market restrictions is reflected in the implied persistency of the conditional variance
process. Here, we use the Hodrick-Prescott filter with parameter 1600 to disentangle these
two components of consumption growth volatility. Figure 5.2 presents this result and makes
clear that the decline in the low frequency component started in the 60, before the Great
Moderation.?’

We also use the volatility estimates to explain asset prices (see also Chapman (1997), Bansal
and Yaron (2004), Bansal et al. (2005)). In particular, in figure 5.3 we examine the dynamic
cross correlation patterns between consumption growth volatility obtained from the GARCH
estimation in (5.1) and the spread between the real 1-year real yield and the real 3-months real
yield.

These patterns agree with the model’s predictions. We know that shorter maturity yields
respond more than longer maturity yields to a volatility shock. This result is mainly due to
the ergodicity of the state variable that affect yields. If the state is assumed to revert back to a
known steady state, we expect the longer yield to have a smaller response to contemporaneous
shocks. Note that we do not identify the type of shock in this exercise. We merely observe a
shock that happens to affect both consumption growth volatility and the bond market.

The second result is the sign response of the yields to a volatility shock. When conditional

volatility increases we see that yields decrease. From the precautionary savings motive effect

2In our model it is hard to make ‘conditional’ statements about the economy, mainly because we modeled a
constant drift to the consumption growth rate process. It is obviously interesting to think about the correlation
structure of expected consumption growth rate and the conditional variance process. Empirically, there is
evidence that suggests that interest rates are procyclical (e.g., Donaldson et al. (1990)) and volatility is either
countercyclical or at least slightly leads expected growth rates which are believed to be countercyclical (e.g.,
Whitelaw (1994)). Our conditional variance process is assumed to correlate positively with realized consumption
growth rate. Also, the conditional variance correlate negatively with interest rates. In this sense, variance and
real interest rates behave as in the data. If, for example, expected growth rate correlate negatively with realized
consumption growth rates, they will correlate negatively with the conditional variance. In that case, a positive
shock to consumption growth rate will have a double negative effects on real interest rates. Expected growth
rates will be low and thus the substitution effect will make equilibrium real interest rates lower. At the same
time, conditional variance will be higher and the precautionary savings motive will push the equilibrium real
interest rate even lower. Also, Chapman (1997) documented the strong positive correlation of real yields and
consumption growth rate when excluding the monetary experiment period of 1979 — 1985.
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Figure 5.2: HP-flitered conditional variance of real consumption growth rate derived from an ARMAX-
GARCH estimation in (5.1). The top panel presents the low frequency trend and bottom panel presents the
cyclical component. The HP-filter parameter is 1600. The quarterly data is over the period @)2.52 — Q4 — 06.

we do expect such response. Since in our model ambiguity aversion amplifies the precautionary
savings motive, we expect this channel to play an important role when linking consumption
growth volatility and yields. When combining these two results, we expect the spread to increase
with a volatility shock. In other words, on average, the yield curve rotates when a shock to
volatility occurs.

There are three caveats to these results. First, the upper left panel in Figure 5.1 depicts the
behavior of the conditional variance of real consumption growth. One can argue that the series
exhibit a non-stationary behavior. If this is the case, then the GARCH process is potentially
misspecified. Given the slow-moving component we identified, it is hard to convincingly argue
against such hypothesis. Second, our macro data is sampled at quarterly frequency. Drost and
Nijman (1993) have shown that temporal aggregation impedes our ability to detect GARCH
effects in the data. Even if our model is not misspecified, the fairly low frequency sampling
may suggest it is (see also Bansal and Yaron (2004)). Third, we showed that the (sign of

the) correlation between shocks to realized consumption growth and the conditional variance
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Figure 5.3: Dynamic cross-correlation between real consumption growth rate volatility and the real spread
between the 1 year and 3 months yields. The quarterly data covers the period 22.52 — @4.06.

is important in explaining risk and uncertainty premia. The simple GARCH exercise does not

help us identify the sign of this correlation. We address this difficulty next.

5.2 Real Dividends Growth Rate: GJR-GARCH

Since we argue that the sign of o, plays an important role in understanding risk premia in our
model, we also estimate a GJR-GARCH(1, 1) (Glosten et al. (1993)). Originally, this model
was constructed to capture ‘leverage’ effects when examining market returns (i.e., a negative
shock to returns means lower prices and more leveraged firms, hence higher volatility of future
returns). Here we use it with a different interpretation in mind. We use the leverage coefficient
to extract information about the sign of the correlation between consumption/dividends growth
rate innovations and conditional variance innovations. Since we argue that the sign of o, is

positive, as indicated by asset prices behavior, we hope to find the reverse of a leverage effect.?’

30Even though our interpretation has nothing to do with the leverage effect discussed in Glosten et al. (1993),
we still use this term for convenience.
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We fit the following time series model

AC,
= CH o 5.2
Ot,1 nC,t ( )
Nowr1 = Ocicert, €ox~ N(0,1),

D (L) Ooct = W + F (L) 7720,15 + G (L) I{nc,t<0}né,t7
where the polynomial G' captures the leverage effects and

I i 1 7707t <0
{no.<o} 0 otherwise

We regress the realized consumption growth rate only on a constant (effectively demeaning
the growth rate) since we assume in our model that dividends growth rate drifts on a constant.
The more negative 7 is, the larger is n?. Thus, we expect the leverage effect coefficient to
be negative in order to capture the positive correlation between shocks to growth rates and
conditional variance. In most lag specifications we estimated, the leverage coefficients in the G
polynomial have a negative sign, which suggests that negative shocks to the dividends growth
rate implies a negative shock to the conditional variance. However, and perhaps not surprisingly,
with quarterly frequency data it is hard to detect these GARCH effects. Leverage effects are
especially hard to detect. In most cases we cannot reject the null that leverage effects are
not present. In order to investigate the sign of o, further, we use real dividends instead of
consumption. To alleviate the problem with the GARCH estimation, we use monthly data.®!
Figure 5.4 displays the results of a GJR-GARCH(1, 1) estimation where c is the unconditional
mean of the real growth rate of aggregate dividends.

This figure shows the presence of volatility clustering. The estimation procedure suggests
that o, is indeed positive since the leverage coefficient is always negative and statistically
significant. On average, when a negative shock hits the dividends growth rate, we tend to see
a decline in the conditional variance of the same process. Table 5.2 summarizes the estimation
results for the leverage coefficient over different time intervals.??

It is interesting to note that the earlier post-war data supports more strongly the hypothesis
that shocks to dividends are positively correlated with shocks to volatility. This covariation
measures the risk exposure of default free bonds to risk and uncertainty. If the market prices of

these risks and uncertainty did not move in the opposite direction one should, ceteris paribus,

31'We obtained the real dividends series from Robert Shiller’s website. See also Appendix A.
32This suggestive evidence is also consistent with different time intervals and with EGARCH estimation (see
Nelson (1991)) over the same time intervals. Results are available from the authors upon request.
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Figure 5.4: GJR-GARCH(1, 1) estimation (model 5.2) of the conditional variance of real aggregate dividends
growth rate with monthly observations over the period M1.52 — M4.06.

expect to observe higher risk premia in the earlier part of the sample.
In summary, the data seems to confirm two things. First, the existence of a small time-
varying component in the volatility of growth rates. Second, the correlation of shocks to

dividends growth rate and shocks to conditional variance is positive.

5.3 Biased Expectations: Pessimism and (the Reverse of) Doubt

Abel (2002) argues that one can potentially account for the equity premium and the risk free
rate when modeling pessimism and doubt in an otherwise standard asset pricing (Lucas tree)
model. Pessimism is defined as a leftward translation of the objective distribution in a way
that the objective distribution first order stochastically dominates the subjective distribution.
Doubt is modeled in a way that the subjective distribution is a mean preserving spread of the
objective distribution.

There is evidence that people tend to consistently underestimate both market return and
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Table 5.2: Estimating the ‘leverage’ coefficient over different time intervals. The data is monthly real aggre-
gate dividends over M1.52 — M12.06 from Robert Shiller’s website. A negative point estimate means that a
negative shock to realized dividends growth rate is accompanied by a negative shock to the conditional vari-
ance of dividends growth rate.

Period ‘Leverage’ Coefficient Standard Errors
M1.52 — M12.06 —0.390 0.129
M1.62 — M12.06 —0.242 0.175
M1.72 — M12.06 —0.312 0.215
M1.82 — M12.06 —0.263 0.163
M1.90 — M12.06 —0.256 0.195
M1.52 — M12.81 —0.509 0.167
M1.52 — M12.89 —0.442 0.156

the conditional volatility of output growth rate (e.g., Soderlind (2006)). Also, Giordani and
Soderlind (2006) confront the Abel (2002) suggestion with survey data and find strong support
for the pessimism argument in growth rates of both GDP and consumption. The result is
robust over forecasts of different horizon and with both the Livingston survey and the Survey
of Professional Forecasters data. However, they also find evidence of overconfidence in the sense
that forecasters underestimate uncertainty. Therefore, the evidence suggests the existence of
the reverse of doubt.

Our model endogenously predicts both phenomena.?® First, robustness requirements lead
the agent to pessimistic assessments of future economic outcomes (e.g., expression (2.9) in which
the agent negatively distorts the expected return on the risky asset). Consequently, the agent
persistently underestimates expected growth rates of both the risky asset and consumption. In
that sense, robustness endogenizes the pessimism idea of Abel (2002). Our model also predicts
biased expectations concerning the dynamics of the conditional variance process v in a way
that is consistent with the data. Expressions (4.2) and (4.3) formalize this idea. In the case
where 0, > 0 (an assumption that we later support empirically), a pessimistic assessment of
expected output growth rate leads to what can be interpreted as optimistic beliefs about future
output growth volatility. In other words, the model predicts also the reverse of doubt. Note
that here the agent knows exactly the current conditional variance but wrongly estimates its

future evolution.

33For a decision-theoretic link between ambiguity averse agent and the setup of Abel (2002), see Ludwig and
Zimper (2006).

30



6 ‘Disciplining Fear’: Detection Error probabilities

In this section, we undertake the task of interpreting . We showed so far that the model can
account for different asset pricing facts and puzzles. Nevertheless, we have yet to tackle an
important question - does the model imply too much uncertainty aversion? Even though we
showed that coefficients of relative risk aversion and elasticity of intertemporal substitution of
unity are sufficient, we still need to gauge the amount of ambiguity aversion implied by the
data. Detection error probabilities (DEP’s) are the mechanism through which we can interpret
0, and consequently, assess the amount of ambiguity aversion implied by our estimation.

In order to quantify ambiguity aversion, we ask the following: when the agent examines the
(finite amount of) data available to him and has to decide whether the reference or the distorted
model generated the data, what is the probability of making a model detection mistake? If the
probability is very low, this indicates that the two models are far apart statistically, and that
the agent should easily be able to distinguish between them. In this case, one might be led
to conclude that the degree of robustness implied by our estimation is unreasonably high. If
to the contrary, the DEP is high, then it is reasonable to believe that the agent would find it
difficult to determine which model is the true representation of the economy.?*

Technically, DEP’s are a mapping from the space of structural parameters to a probability
space, which is inherently more easily interpretable than parameter values. Based on our
estimate of the parameter 6, we infer the detection error probabilities from the data. It then
allows us to interpret whether the degree of ambiguity aversion in our parameterization seems
excessive. Appendix B details how to derive the DEP for a given economy using simulations.

The last column in Table 4.1 presents the implied DEP’s in each economy. First, it is
important to point out that DEPs have to be between 0% and 50% (if both models are the
same, then there is a 50% chance of making a mistake when assessing which model is the
true one). What we find is that our implied DEPs are not unreasonably small, particularly
in the context of a framework where the only source of uncertainty is a single shock. This is,
once again, an outcome of the interaction between the two main building blocks of our model
- robust decision making and state dependent volatility. Together they imply a high enough
market price of risk and uncertainty. Consequently, with stochastic volatility our framework
does not require a drastic distortion to the reference model. In addition, we should note that
imposing consumption growth rate volatility in our procedure makes rejecting the distorted

model easier: if we do not impose such restrictions, the DEPs are significantly higher, ranging

34For an elaborate discussion of DEP’s see, for example, Anderson et al. (2003) and Barillas et al. (2007). For
a textbook treatment of robustness and DEP’s see chapters 9 and 10 in Hansen and Sargent (2007a).
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between 15% and 30%.3°

Figure 6.1 presents two comparative statics exercises on the implied DEPs. The left panel
fixes the benchmark model and varies only 6. The right panel introduces variation only in the
number of observations available to the econometrician. We see a clear pattern: Higher 6 means
less robustness. Thus, it becomes harder to statistically distinguish between the reference and
the distorted models as the agent distorts less and less. As § — oo the DEP reaches 0.5. This
is not surprising, since § = oo implies that the distortion to the DGP is zero (recall (2.12)) and
both models are therefore indistinguishable. On the other hand, a lower value of # means more
robustness and the models become statistically distant from each other (in the relative entropy

sense), reflected in a lower DEP. Similarly, more observations reduce the DEP, in line with our

earlier intuition.
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Figure 6.1: Comparative statics on DEP’s. Left panel: Fixing all the estimated parameters in the bechmark
case with consumption growth volatility as a restriction and over the longest sample 2.52 — (4.06. Varying
robustness in the model (by varying 6 on the x-axis) we compute the implied DEP’s (y-axis). Right panel:
Fixing all the parameters in the benchmark model and varying only the hypothetical number of observations
(x-axis) and computing the implied DEP’s (y-axis).

35See the working paper version for more details.
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7 Conclusion

We presented an equilibrium dynamic asset pricing model that can account for key regularities
in the market for default free bonds, while predicting an equity premium, risk free rate and
consumption growth as in the data. We estimated the model and showed that it performs
well, even though the structural parameters of risk aversion and elasticity of intertemporal
substitution are unitary. The results are driven by the interaction of the robust control decision
mechanism and state dependent conditional volatility of consumption growth. We interpreted
most of what is usually considered risk premium as a premium for Knightian uncertainty. The
agent is being compensated in equilibrium for bearing the possibility of model misspecification.

We showed that under the assumption of state dependent conditional volatility of consump-
tion growth, not only the market price of risk is stochastic but also the market price of model
uncertainty. As part of our research agenda, we are currently investigating a model with het-
erogenous robust control agents. Such a model can generate both state dependent risk and
uncertainty premia even though the conditional volatility of consumption is constant. The
channel through which the model generates stochastic market prices of risk and uncertainty is
the trade between the agents and the consequent fluctuations in the agent’s relative wealth.

We also suggested that different frequencies in the conditional volatility of consumption
growth are potentially important in understanding asset prices. We find it easier to detect
high frequency variation in the volatility of consumption growth rate. Also, the full estimation
of the model has trouble detecting the lower frequency component. We believe that further
investigation of this point is warranted. In addition, an interesting extension would be to
consider the link between the evolution of volatility over time and the behavior of asset prices,
in the presence of ambiguity aversion. This is directly linked to the recent literature on the
Great Moderation in macroeconomics.

We also believe that extending the empirical investigation to a broader asset class can
be fruitful. Liu et al. (2005), for example, examine options data in the context of a robust
equilibrium with rare events. We believe that one can address different empirical regularities
pertaining to the valuation of interest rate sensitive assets with robust considerations. Also,
we think that robustness can shed more light on our understanding of exchange rate dynamics,
and in particular the failure of uncovered interest rate parity. Finally, our model is a complete
characterization of a real economy. One can extend this framework to a nominal one either by

assuming an exogenous price level process as in Cox et al. (1985) and Wachter (2001) or by

36Liu et al. (2005) introduce state dependent market price of uncertainty by modeling rare events. Hansen
and Sargent (2007b) introduce state dependent market price of uncertainty through the distortion (tilting) of
Bayesian model averaging.
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modelling an exogenous money supply process as in Buraschi and Jiltsov (2005) to derive an

endogenous price level.
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A Data
Unless otherwise stated, all data are quarterly from ()2.1952 — Q)4.2006.

e McCulloch-Kwon-Bliss data set: nominal prices and yields of zero coupon bonds - see
McCulloch and Kwon (1993) and Bliss (1999). In the estimation exercises we use only
the 3 month and 1 year nominal yields at the quarterly frequency to create the real

counterparts. The data we use spans the period ()2.52 — (Q4.96

e Treasury Inflation-Protected Securities (TIPS) data from McCulloch: real yields from
M1.97 — M12.06. Although the data is available at higher frequencies, we use only

observations at quarterly frequency
e Quarterly market index (NYSE/AMEX/NASDAQ) including distributions from CRSP

e Quarterly CPI (all items), SA, from the BLS (see FREDII data source maintained by the

federal reserve bank of St. Louis for full description)

e Semi-annual inflation expectations from the Livingston survey (maintained by the federal
reserve bank of Philadelphia) - period H1.52 — H1.81. From ()3.81 quarterly inflation

expectations data from the Survey of Professional Forecasters (SPF) becomes availabe

e Quarterly inflation expectations from the SPF maintained by the federal reserve bank of
Philadelphia. The sample period covers ()3.81 — (04.06

e Quarterly real Personal Consumption Expenditures (PCE): services and nondurables from
the BEA, SA

e Quarterly real Personal Consumption Expenditures PCE: imputed services of durables

from the Federal Board of Governors
e (ivilian Noninstitutional Population series from the BLS

e Monthly real dividends obtained from Robert Shiller’s website over the period M1.52 —
M12.06 (http://www.econ.yale.edu/ shiller/data.htm). This data set was used in the
GARCH-GJR exercise

Since we use only real data in the estimation, we convert nominal prices to real ones using
the price level data. For the short rate (3 months) we use a 3 year moving average of realized

inflation to construct a 3 month ahead expected inflation measure. For the 1 year yield we use
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both the Livingston and SPF survey data to construct a quarterly series of expected inflation.
The SPF is sampled at quarterly frequency but it is available only in the latter part of the
sample. We interpolate the semi-annual Livingston data to construct quarterly data using

piecewise cubic Hermite interpolation.

B Computing Detection Error Probabilities

In this appendix we shortly discuss how we compute DEP’s. The discussion is based on chapter

T
9 in Hansen and Sargent (2007a). The econometrician observes {A(éft“} and construct the
=1

log-likelihood ratio of the distorted model relative to the objective model

A G
ETZlongLtjleoog.

C

The distorted model is denoted with f(:|0 < co) and the reference model is denoted with
f (-|0 = 00). The distorted model is selected when ¢7 > 0 and the objective model is selected
otherwise.

There are two types of detection errors:

1. Choosing the distorted model when actually the reference model generated the data

P ("> 0] = 00) =E (1yrs0y|0 = 00) .

2. Choosing the reference model when actually the distorted model generated the data

P(" <0/ <o0) = E(Lyreglf <oo)
= E (eXp (gT) 1{gT<0}‘0 = OO) .

Therefore, the average error (denoted p) with a prior of equiprobable models is

o = 5 [F(7> 019 =o00) + B ({7 < 0}f < o0)]

= %E {min [exp (¢7),1] |§ = oo} . (B.1)

We can write an (approximate) transition likelihood ratio as
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B 2 2
o) () ()
= exp |—=
f<ACC“’tt+1|9:OO> 2 Uy
[ 2(2 k) -9 u+ (1-¢)e?
= exp |—= X
2 Ve
[ /AC 1— )
- (422 ) a-o- 0]

We simulate the economy 5,000 times using the point estimates of the parameters and

construct a likelihood ratio for each economy. Using (B.1) we can immediately derive g.
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