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Résumé / Abstract 
 
Dans cet article, nous étudions la distribution asymptotique d’un estimateur linéaire simple en 
deux étapes (de type Hannan-Rissanen) pour un processus vectoriel autorégressif-moyenne-
mobile (VARMA) stationnaire et inversible, formulé sous la forme échelon. Nous donnons 
des conditions générales qui assurent la convergence et la normalité asymptotique de 
l’estimateur. Nous fournissons aussi un estimateur convergent de la matrice de covariance 
asymptotique de l’estimateur, ce qui permet de construire facilement des tests et des 
intervalles de confiance. 
 

Mots-clés : séries chronologiques; VARMA, stationnaire, inversible, forme 
échelon, estimation, normalité asymptotique, bootstrap, Hannan-Rissanen. 
 

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-
type) linear estimator for stationary invertible vector autoregressive moving average 
(VARMA) models in the echelon form representation. General conditions for consistency and 
asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of 
the estimator is also provided, so that tests and confidence intervals can easily be constructed. 
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1. Introduction

Multivariate time series analysis is widely based on vector autoregressive models (VAR), especially
in econometric studies [see Lütkepohl (1991, 2001) and Hamilton (1994, Chapter 11)]. One reason
for this popularity is that VAR models are easy to estimate and can account for relatively complex
dynamic phenomena. On the other hand, very large numbers of parameters are often required to ob-
tain a good fit, and the class of VAR models is not robust to disaggregation: if a vector process sat-
isfies a VAR scheme, its subvectors (such as individual components) do not follow VAR processes.
Instead, the subvectors of VAR processes follow vector autoregressive moving average (VARMA)
processes. The latter class, indeed, includes VAR models as a special case, and can reproduce in a
parsimonious way a much wider class of autocovariance structures. So they can lead to improve-
ments in estimation and forecast precision. Further, VARMA modelling is theoretically consistent,
in the sense that the subvectors of a VARMA model also satisfy VARMA schemes (usually of dif-
ferent order). Similarly, the VARMA class of models is not affected by temporal aggregation, while
a VAR model may cease to be a VAR after it has been aggregated over time [see Lütkepohl (1987)].

VARMA modelling has been proposed a long time ago [see Hillmer and Tiao (1979), Tiao and
Box (1981), Lütkepohl (1991), Boudjellaba, Dufour and Roy (1992, 1994), Reinsel (1997)], but
has remained little used in practical work. Although the process of building VARMA models is, in
principle, similar to the one associated with univariate ARMA modelling, the difficulties involved
are compounded by the multivariate nature of the data.

At the specification level, new identification issues (beyond the possible presence of common
factors) arise and must be taken into account to ensure that unique parameter values can be as-
sociated with a given autocovariance structure (compatible with a VARMA model); see Hannan
(1969, 1970, 1976b, 1979), Deistler and Hannan (1981), Hannan and Deistler (1988, Chapter 2),
Lütkepohl (1991, Chapter 7) and Reinsel (1997, Chapter 3). An important finding of this work is
the importance of the concepts of dynamic dimension and Kronecker indices in the formulation of
identifiable VARMA structures. Further, specifying such models involves the selection of several
autoregressive and moving average orders: in view of achieving both identifiability and efficiency, it
is important that a reasonably parsimonious model be formulated. Several methods for that purpose
have been proposed. The main ones include: (1) techniques based on canonical variate analysis
[Akaike (1976), Cooper and Wood (1982), Tiao and Tsay (1985, 1989), Tsay (1989a)]; (2) methods
which specify an echelon form through the estimation of Kronecker indices [Hannan and Kavalieris
(1984b), Tsay (1989b), Nsiri and Roy (1992, 1996), Poskitt (1992), Lütkepohl and Poskitt (1996),
Bartel and Lütkepohl (1998)]; (3) scalar-component models [Tiao and Tsay (1989), Tsay (1991)].

At the estimation level, once an identifiable specification has been formulated, the most widely
proposed estimation method is maximum likelihood (ML) derived under the assumption of i.i.d.
(independent and identically distributed) Gaussian innovations; see Hillmer and Tiao (1979), Tiao
and Box (1981), Shea (1989), Mauricio (2002), and the review of Mélard, Roy and Saidi (2002).
This is mainly due to the presence of a moving average part in the model, which makes the latter
fundamentally nonlinear. For example, in the Gaussian case, maximizing the likelihood function of
a VARMA(p, q) model is typically a burdensome numerical exercise, as soon as the model includes
a moving average part. Even numerical convergence may be problematic. Note also that, in the
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case of weak white noise innovations, quasi-maximum likelihood estimates may not be consistent.
These problems also show up (at a smaller scale) in the estimation of univariate ARMA models.

From the viewpoint of making VARMA modelling, it appears crucial to have estimation meth-
ods that are both quick and simple to implement with standard statistical software, even if this may
involve an efficiency cost. Another reason for putting a premium on such estimation methods is that
large-sample distributional theory tends to be quite unreliable in high-dimensional dynamic models,
so that tests and confidence sets based on asymptotic approximations are also unreliable (for exam-
ple, the actual size of test procedures may be far larger than their nominal size). This suggests that
simulation-based procedures – for example, bootstrap techniques – should be used, but simulation
may be impractical if calculation of the estimators involved is difficult or time consuming.

In the case of univariate ARMA models, a relatively simple estimation procedure was originally
proposed by Hannan and Rissanen (1982); see also Durbin (1960), Hannan and Kavalieris (1984a),
Zhao-Guo (1985), Hannan, Kavalieris and Mackisack (1986), Poskitt (1987), Koreisha and Pukkila
(1990a, 1990b, 1995), Pukkila, Koreisha and Kallinen (1990) and Galbraith and Zinde-Walsh (1994,
1997). This approach is based on estimating (by least squares) the innovations of the process through
a long autoregression; after that, the lagged innovations are replaced by the corresponding residuals
in the ARMA equation, which may then be also estimated by least squares.

Extensions of this method to VARMA models have been studied by Hannan and Kavalieris
(1984b, 1986), Hannan and Deistler (1988), Koreisha and Pukkila (1989), Huang and Guo (1990),
Poskitt (1992), Poskitt and Lütkepohl (1995), Lütkepohl and Poskitt (1996), Lütkepohl and Claessen
(1997) and Flores de Frutos and Serrano (2002). Work on VARMA estimation has focused on
preliminary use of such linear estimators for model selection purposes. It is then suggested that
other estimation procedures (such as ML) be used. Although consistency is proved, the asymptotic
distribution of the basic two-step estimator has not apparently been supplied.

In this paper, we consider the problem of estimating the parameters of stationary VARMA mod-
els in echelon form using only linear least squares methods. The echelon form is selected because
it tends to deliver relatively parsimonious parameterizations. In particular, we study a simple two-
step estimator that can be implemented only through single equation linear regressions and thus is
remarkably simple to apply. Such an estimator was previously considered in the above mentioned
work on linear VARMA estimation, but its asymptotic distribution has not apparently been estab-
lished. Given the Kronecker indices of the VARMA process, we derive the asymptotic distribution
of this estimator under standard regularity conditions. In particular, we show that the latter has an
asymptotic normal distribution (which entails its consistency), and we provide a simple consistent
estimator for its asymptotic covariance matrix, so that asymptotically valid tests and confidence
tests can be built for the parameters of the model.

The paper is organized as follows. In section 2, we formulate the background model, where
the echelon form VARMA representation is considered to ensure unique parametrization, and we
define the assumptions which will be used in the rest of the paper. The two-step linear estimation
procedure studied in the paper is described in section 3, and we derive its asymptotic distribution
in section 4. We conclude in section 5. The proofs of the propositions and theorems appear in the
Appendix.
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2. Framework

In this section, we describe the theoretical framework and the assumptions we will consider in
the sequel. We will first define the standard VARMA representation. As the latter may involve
identification problems, we will then define the echelon form on the VARMA model, which ensures
uniqueness of model parameters. Finally, we shall formulate the basic regularity assumptions we
shall consider.

2.1. Standard form

A k-dimensional regular vector process {Yt : t ∈ Z} has a VARMA(p, q) representation if it satis-
fies an equation of the form:

Yt =
p∑

i=1

AiYt−i + ut +
q∑

j=1

Bjut−j , (2.1)

for all t, where Yt = (Y1,t, . . . , Yk,t)
′, p and q are non-negative integers (respectively, the autore-

gressive and moving average orders), Ai and Bj the k × k coefficient matrices, and {ut : t ∈ Z} is
a (second order) white noise WN [0, Σu], where Σu is a k × k positive definite symmetric matrix.
Under the stationary and invertibility conditions the coefficients Ai and Bj satisfy the constraints

det {A (z)} 6= 0 and det {B (z)} 6= 0 for all |z| ≤ 1 (2.2)

where z is a complex number, A (z) = Ik−
∑p

i=1 Aiz
i and B (z) = Ik +

∑q
j=1 Bjz

j . This process
has the following autoregressive and moving average representations:

Yt =
∞∑

τ=1

ΠτYt−τ + ut , (2.3)

Yt = ut +
∞∑

τ=1

Ψτut−τ , t = 1, . . . , T , (2.4)

where

Π (z) = B (z)−1 A (z) = Ik −
∞∑

τ=1

Πτz
τ , (2.5)

Ψ (z) = A (z)−1 B (z) = Ik +
∞∑

τ=1

Ψτz
τ , (2.6)

det {Π (z)} 6= 0 and det {Ψ (z)} 6= 0 , for all |z| ≤ 1 . (2.7)

Note also that we can find real constants C > 0 and ρ ∈ (0, 1) such that

‖Πτ‖ ≤ Cρτ and ‖Ψτ‖ ≤ Cρτ , (2.8)
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hence ∞∑

τ=1

‖Πτ‖ < ∞ ,
∞∑

τ=1

‖Ψτ‖ < ∞ , (2.9)

where ‖.‖ is the Schur norm for a matrix [see Horn and Johnson (1985, section 5.6)], i.e.

‖M‖2 = tr
(
M ′M

)
. (2.10)

2.2. Echelon form

It is well known that the standard VARMA(p, q) representation given by (2.1) is not unique, in the
sense that different sets of coefficients Ai and Bj may represent the same autocovariance struc-
ture. To ensure a unique parameterization, we shall consider the stationary invertible VARMA(p, q)
process in echelon form representation. Such a representation can be defined as follows:

Φ (L) Yt = Θ (L) ut , (2.11)

Φ (L) = Φ0 −
p̄∑

i=1

ΦiL
i , Θ (L) = Θ0 +

p̄∑

j=1

ΘjL
j , (2.12)

where L denotes the lag operator, Φi =
[
φlm,i

]
l,m=1, ... , k

and Θj = [θlm,j ]l,m=1, ... , k , p̄ =
max (p, q), Θ0 = Φ0, and Φ0 is a lower-triangular matrix whose diagonal elements are all equal
to one. The VARMA representation (2.11) has an echelon form if Φ (L) = [φlm (L)]l,m=1, ... , k and
Θ (L) = [θlm (L)]l,m=1, ... , k satisfy the following conditions: given a vector of orders (p1, . . . , pk)
called the Kronecker indices, the operators φlm (L) and θlm (L) on any given row l of Φ (L) and
Θ (L) have the same degree pl (1 ≤ l ≤ k) and

φlm (L) = 1−
pl∑

i=1
φll,iL

i if l = m,

= −
pl∑

i=pl−plm+1
φlm,iL

i if l 6= m,
(2.13)

θlm (L) =
pl∑

j=0

θlm,jL
j with Θ0 = Φ0 , (2.14)

for l, m = 1, . . . , k, where

plm = min (pl + 1, pm) for l ≥ m,
= min (pl, pm) for l < m .

(2.15)

Clearly, pll = pl is the order of the polynomial (i.e., the number of free coefficients) on the l-th di-
agonal element of Φ (L) as well as the order of the polynomials on the corresponding row of Θ (L) ,
while plm specifies the number of free coefficients in the operator φlm (L) for l 6= m. The sum of
the Kronecker indices

∑k
l=1 pl is called the McMillan degree. The P matrix formed by the Kro-
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necker indices associated with the model is P = [plm]l,m=1, ... , k . This leads to
∑k

l=1

∑k
m=1 plm

autoregressive and k
∑k

l=1 pl moving average free coefficients, respectively. Obviously, for the
VARMA orders we have p̄ = max (p1, . . . , pk) . Note that this identified parameterization for
VARMA(p, q) models ensures the uniqueness of left-coprime operators Φ (L) and Θ (L) . Although
other identifiable parameterizations could be used – such as the final equations form – the echelon
form tends to be more parsimonious and can lead to efficiency gains. For proofs of the uniqueness
of the echelon form and for other identification conditions, the reader should consult to Hannan
(1969, 1970, 1976a, 1979), Deistler and Hannan (1981), Hannan and Deistler (1988) and Lütke-
pohl (1991, Chapter 7).

The stationarity and invertibility conditions for echelon form of (2.11) are the same as usual,
namely

det {Φ (z)} 6= 0 for all |z| ≤ 1 , (2.16)

for stationarity, and
det {Θ (z)} 6= 0 for all |z| ≤ 1 , (2.17)

for invertibility, where

Φ (z) = Φ0 −
p̄∑

i=1

Φiz
i , Θ (z) = Θ0 +

p̄∑

j=1

Θjz
j , (2.18)

with Π (z) = Θ (z)−1 Φ (z) and Ψ (z) = Φ (z)−1 Θ (z) . It will be useful to observe that (2.11) can
be rewritten in the following form:

Yt = (Ik − Φ0) Vt +
p̄∑

i=1

ΦiYt−i +
p̄∑

j=1

Θjut−j + ut (2.19)

where

Vt = Yt − ut = Φ−1
0

[ p̄∑

i=1

ΦiYt−i +
p̄∑

j=1

Θjut−j

]
. (2.20)

Note that Vt is a function of lagged values of Yt and ut, so that the error term ut in (2.19) is
uncorrelated with all the other variables on the right-hand side of the equation.

Set

Xt =
[
V ′

t , Y ′
t−1, . . . , Y ′

t−p̄, u
′
t−1, . . . , u′t−p̄

]′
, (2.21)

D = [Ik − Φ0, Φ1, . . . , Φp̄, Θ1, . . . , Θp̄]
′ . (2.22)

The vector Xt has dimension (kh)×1 where h = 2p̄+1 while D is a (kh)×k matrix of coefficients.
In view of (2.20), it is clear the covariance matrix of Xt is singular, so it is crucial that (identifying)
restrictions be imposed on model coefficients. Under the restrictions of the echelon form (2.12) -
(2.15), we can find a unique (k2h) × ν full rank matrix R such that β = Rη, where η is a ν × 1
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vector of free coefficients and ν < k2h. Thus Yt in (2.19) can be expressed as

Yt = D′Xt + ut =
(
Ik ⊗X ′

t

)
Rη + ut . (2.23)

The structure of R is such that

β = vec(D) = Rη , (2.24)

R = diag(R1, . . . , Rk) =




R1 0 · · · 0

0 R2 · · · ...
...

... 0
0 0 · · · Rk




, (2.25)

where Ri, i = 1, 2, . . . , k, are (kh)×νi full-rank selection (zero-one) matrices, each one of which
selects the non-zero elements of the corresponding equation, and νi is the number of freely varying
coefficients present in the i-th equation. The structure of Ri is such that R′

iRi = Iνi and βi = Riηi

where βi and ηi are respectively a (kh) × 1 and νi × 1 vectors so that βi is the unconstrained
parameter vector in the i-th equation of (2.19) – on which zero restrictions are imposed – and ηi is
the corresponding vector of free parameters:

β =
(
β′1, β′2, . . . , β′k

)′
, η =

(
η′1, η′2, . . . , η′k

)′
. (2.26)

Note also that successful identification entails that

rank
{
E
[
R′ (Ik ⊗Xt)

(
Ik ⊗X ′

t

)
R

]}
= rank

{
R′ (Ik ⊗ Γ )R

}
= ν (2.27)

where Γ = E(XtX
′
t), or equivalently

rank
{
E
[
R′

iXtX
′
tRi

]}
= rank

{
R′

iΓRi

}
= νi , i = 1, . . . , k . (2.28)

Setting

X(T ) = [X1, . . . , XT ]′ , (2.29)

Y (T ) = [Y1, . . . , YT ]′ = [y1(T ), . . . , yk(T )], (2.30)

U(T ) = [u1, . . . , uT ]′ = [U1(T ), . . . , Uk(T )] , (2.31)

y(T ) = vec[Y (T )] , u(T ) = vec[U(T )] , (2.32)

(2.23) can be put in any one of the two following matrix forms:

Y (T ) = X(T )D + U(T ) , (2.33)

y(T ) = [Ik ⊗X(T )]Rη + u(T ) , (2.34)
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where [Ik ⊗X(T )]R is a (kT )× ν matrix. In the sequel, we shall assume that

rank ([Ik ⊗X(T )]R) = ν with probability 1. (2.35)

Under the assumption that the process is a regular process with continuous distribution, it is easy
that the latter must hold.

To see better how the echelon restrictions should be written, consider the following
VARMA(2, 1) model in echelon form:

Y1,t = φ11,1Y1,t−1 + φ11,2Y1,t−2 + u1,t , (2.36)

Y2,t = φ21,0 (Y1,t − u1,t) + φ21,1Y1,t−1 + φ22,1Y2,t−1 + θ22,1u2,t−1 + u2,t . (2.37)

In this case, we have:

Φ (L) =
[

1− φ11,1L− φ11.2L
2 −φ12,2L

2

−φ21,0 − φ21,1L 1− φ22,1L

]
, (2.38)

Θ (L) =
[

1 + θ11,1L + θ11,2L
2 θ12,1L + θ12,2L

2

θ21,1L 1 + θ22,1L

]
, (2.39)

with φ12,2 = 0, θ11,1 = 0, θ11,2 = 0, θ12,1 = 0, θ12,2 = 0, θ21,1 = 0, so that the Kronecker indices
are p1 = p11 = 2, p2 = p22 = 1, p21 = 2 and p12 = 1. Setting Xt =

[
V ′

t , Y ′
t−1, Y

′
t−2, u

′
t−1

]′
,

Vt = (V1,t, V2,t)
′ , V1,t = (Y1,t − u1,t) and V2,t = (Y2,t − u2,t) , we can then write:

[
Y1,t

Y2,t

]
=

[
0 0

φ21,0 0

] [
V1,t

V2,t

]
+

[
φ11,1 0
φ21,1 φ22,1

] [
Y1,t−1

Y2,t−1

]

+
[

φ11,2 0
0 0

] [
Y1,t−2

Y2,t−2

]
+

[
0 0
0 θ22,1

] [
u1,t−1

u2,t−1

]
+

[
u1,t

u2,t

]
. (2.40)

Here we have:

β =
(
0, 0, φ11,1, 0, φ11,2, 0, 0, 0, φ21,0, 0, φ21,1, φ22,1, 0, 0, 0, θ22,1

)′
, (2.41)

η =
(
φ11,1, φ11,2, φ21,0, φ21,1, φ22,1, θ22,1

)′
, (2.42)

[
Ik ⊗X ′

t

]
R =

[
Y1,t−1 Y1,t−2 0 0 0 0

0 0 V1,t Y1,t−1 Y2,t−1 u2,t−1

]
, (2.43)
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and

[Ik ⊗X(T )]R =




Y1,0 Y1,−1 0 0 0 0
0 0 V1,1 Y1,0 Y2,0 u2,0

Y1,1 Y1,0 0 0 0 0
0 0 V1,2 Y1,1 Y2,1 u2,1
...

...
...

...
...

...
Y1,T−1 Y1,T−2 0 0 0 0

0 0 V1,T Y1,T−1 Y2,T−1 u2,T−1




. (2.44)

The appropriate matrix R is given by:

R′ =




0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




. (2.45)

2.3. Regularity assumptions

In order to establish the asymptotic distribution of the linear estimator defined below, we will need
further assumptions on the innovation process and the truncation lag of the first step autoregression.
We now state the assumptions we shall consider.

Assumption 2.1 STRONG WHITE NOISE INNOVATIONS. The vectors ut, t ∈ Z, are independent
and identically distributed (i.i.d.) with mean zero, covariance matrix Σu and continuous distribu-
tion.

Assumption 2.2 UNIFORM BOUNDEDNESS OF FOURTH MOMENTS. There is a finite constant
m4 such that, for all 1 ≤ i, j, r, s ≤ k and for all t,

E |uitujturtust| ≤ m4 < ∞ .

Assumption 2.3 AUTOREGRESSIVE TRUNCATION LAG OF ORDER LESS THAN T 1/2. nT is a
function of T such that

nT →∞ and n2
T /T → 0 as T →∞ (2.46)

and, for some c > 0 and 0 < δ̄ < 1/2,

nT ≥ cT δ̄ for T sufficiently large. (2.47)
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Assumption 2.4 DECAY RATE OF TRUNCATED AUTOREGRESSIVE COEFFICIENTS. The coeffi-
cients of the autoregressive (2.3) representation

n
1/2
T

∞∑

τ=nT +1

‖Πτ‖ → 0 as T →∞ . (2.48)

Assumption 2.1 means that we have a strong VARMA process, while Assumption 2.2 on mo-
ments of order four will ensure the empirical autocovariances of the process have finite variances.
Assumption 2.3 implies that nT goes to infinity at a rate slower than T 1/2; for example, the assump-
tion is satisfied if nT = cT δ with 0 < δ̄ ≤ δ < 1/2. Assumption 2.4 characterizes the rate of decay
of autoregressive coefficients in relation with nT .

Although the above assumptions are sufficient to show consistency of the two-stage linear es-
timator, we will need another assumption to show that the asymptotic distribution is normal with a
distribution which is unaffected by the use of estimated innovations.

Assumption 2.5 AUTOREGRESSIVE TRUNCATION LAG OF ORDER LESS THAN T 1/4. nT is a
function of T such that

nT →∞ and n4
T /T → 0 as T →∞ . (2.49)

The latter assumption means that nT goes to infinity at a rate slower than T 1/4; for example, it is
satisfied if nT = cT δ with 0 < δ̄ ≤ δ < 1/4. It is easy to see that the condition (2.49) entails (2.46).
Finally, it is worthwhile to note that (2.48) holds for VARMA processes whenever nT = cT δ with
c > 0 and δ > 0, i.e.

T δ
∞∑

τ=nT +1

‖Πτ‖ → 0 as T →∞ , for all δ > 0 . (2.50)

This is easy to see from the exponential decay property of VARMA processes [see (2.8)].

3. Two-step linear estimation

In this section, we describe a simple estimation procedure for a VARMA models in echelon form
with known order. The Kronecker indices characterizing the echelon form VARMA model are taken
as given, and we focus our attention on the estimation of the autoregressive and moving average
coefficients.

Let (Y−nT +1, . . . , YT ) be a random sample of size T + nT , where nT goes to infinity as T
goes to infinity. We consider first a “long” multivariate linear vector autoregression:

Yt =
nT∑

τ=1

ΠτYt−τ + ut(nT ) , t = 1, . . . , T , (3.1)
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and the corresponding least squares estimates:

Π̃ (nT ) =
[
Π̃1(nT ), . . . , Π̃nT (nT )

]
. (3.2)

Such an estimation can be performed by running k separate univariate linear regressions (one for
each variable in Yt). Yule-Walker estimates of the corresponding theoretical coefficients Πτ could
also be considered. Then, under model (2.3) and the assumptions 2.1 to 2.4, it follows from the
results of Paparoditis (1996, Theorem 2.1) and Lewis and Reinsel (1985, proof of Theorem 1) that:

‖Π̃ (nT )−Π (nT ) ‖ = Op(n
1/2
T /T 1/2) (3.3)

where
Π (nT ) =

[
Π1, . . . , ΠnT

]
. (3.4)

As usual, for any sequence of random variables ZT and positive numbers rT , T = 1, 2, . . . , the
notation ZT = Op(rT ) means that ZT /rT is asymptotically bounded in probability (as T → ∞),
while ZT = op(rT ) means that ZT /rT converges to zero in probability. When Yt satisfies a VARMA
scheme, the assumptions 2.3 and 2.4 are satisfied by any truncation lag of the form nT = cT δ with
c > 0 and 0 < δ < 1/2. If, furthermore, the assumptions 2.3 and 2.4 are replaced by stronger ones,
namely

nT →∞ and n3
T /T → 0 as T →∞ , (3.5)

T 1/2
∞∑

τ=nT +1

‖Πτ‖ → 0 as T →∞ , (3.6)

then asymptotic normality also holds:

T 1/2 l (nT )′
[
π̃ (nT )− π (nT )

] −→
T→∞

N
[
0, l (nT )′Q(nT )l (nT )

]
, (3.7)

where l (nT ) is a sequence of k2nT × 1 vectors such that 0 < M1 ≤ ‖l (nT )‖ ≤ M2 < ∞ for
nT = 1, 2, . . . , and

π̃ (nT )− π (nT ) = vec
[
Π̃ (nT )−Π (nT )

]
, (3.8)

Q(nT ) = Γ (nT )−1 ⊗Σu , Γ (nT ) = E[Yt(nT )Yt(nT )′] , (3.9)

Yt(nT ) =
[
Y ′

t−1, Y ′
t−2, . . . , Y ′

t−nT

]′
. (3.10)

Note that a possible choice for the sequence nT that satisfies both n3
T /T → 0 and

T 1/2
∑∞

τ=nT +1 ‖Πτ‖ → 0 is for example nT = T 1/ε with ε > 3. On the other hand nT = ln(lnT ),
as suggested by Hannan and Kavalieris (1984b), is not a permissible choice because in general
T 1/2

∑∞
τ=nT +1 ‖Πτ‖ does not approach zero as T →∞.
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Let

ũt(nT ) = Yt −
nT∑

τ=1

Π̃τ (nT )Yt−τ = Yt − Π̃ (nT ) Yt(nT ) (3.11)

be the estimated residuals obtained from the first stage estimation procedure,

Σ̃u(nT ) =
1
T

T∑

t=1

ũt(nT )ũt(nT )′ (3.12)

the corresponding estimator of the innovation covariance matrix, and

Σ̂T =
1
T

T∑

t=1

utu
′
t (3.13)

the covariance “estimator” based on the true innovations. Then, we have the following equivalences
and convergences.

Proposition 3.1 INNOVATION COVARIANCE ESTIMATOR CONSISTENCY. Let {Yt : t ∈ Z} be
a k-dimensional stationary invertible stochastic process with the VARMA echelon representation
given by (2.11) - (2.15). Then, under the assumptions 2.1 to 2.4, we have:

∥∥ 1
T

T∑

t=1

ut[ũt(nT )− ut]′
∥∥ = Op(

nT

T
) , (3.14)

1
T

T∑

t=1

‖ũt(nT )− ut‖2 = Op

(
n2

T

T

)
, (3.15)

∥∥ 1
T

T∑

t=1

[ũt(nT )− ut][ũt(nT )− ut]
′∥∥ = Op

(
n2

T

T

)
, (3.16)

‖Σ̃u(nT )− Σ̂T ‖ = Op

(
n2

T

T

)
, ‖Σ̃u(nT )−Σu‖ = Op

(
n2

T

T

)
. (3.17)

The asymptotic equivalence between ũt(nT ) and ut stated in the above proposition suggests
we may be able to consistently estimate the parameters of the VARMA model in (2.19) after
replacing the unobserved lagged innovations ut−1, . . . , ut−p̄ with the corresponding residuals
ũt−1(nT ), . . . , ũt−p̄(nT ) from the above long autoregression. So, in order to estimate the coef-
ficients Φi and Θj of the VARMA process, we consider a linear regression of the form

Yt =
p̄∑

i=1

ΦiYt−i +
p̄∑

j=1

Θj ũt−j(nT ) + et(nT ) (3.18)
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imposing the (exclusion) restrictions associated with the echelon form. Setting

Ṽt(nT ) = Yt − ũt(nT ) , (3.19)

this regression can also be put in a regression form similar to (2.19):

Yt = (Ik − Φ0) Ṽt(nT ) +
p̄∑

i=1

ΦiYt−i +
p̄∑

j=1

Θj ũt−j(nT ) + et(nT ) (3.20)

where

et(nT ) = ũt(nT ) +
p̄∑

j=0

Θj [ut−j − ũt−j(nT )] . (3.21)

Note that (3.20) can be written as

Yt =
[
Ik ⊗ X̃t(nT )′

]
Rη + et(nT ) , t = 1, . . . , T , (3.22)

where
X̃t(nT ) =

[
Ṽt(nT )′, Y ′

t−1, . . . , Y ′
t−p̄, ũt−1(nT )′, . . . , ũt−p̄(nT )′

]′
. (3.23)

Therefore the second step estimators η̃ can be obtained by running least squares on the equations
(3.22). Setting

X̃(nT ) =
[
X̃1(nT ), X̃2(nT ), . . . , X̃T (nT )

]′ (3.24)

we get, after some manipulations,

η̃ = {R′[Ik ⊗ X̃(nT )′X̃(nT )
]
R}−1R′[Ik ⊗ X̃(nT )′]y(T )

=
(
η̃′1, η̃

′
2, . . . , η̃′k

)′ (3.25)

where
η̃i = [R′

iX̃(nT )′X̃(nT )Ri]−1R′
iX̃(nT )′yi(T ) . (3.26)

η̃ can be easily obtained by stacking the single equation LS estimators η̃i which are obtained by
regressing yi on X̃(nT )Ri.

4. Asymptotic distribution

We will now study the asymptotic distribution of the linear estimator described in the previous
section. For that purpose, we note first that the estimator η̃ in (3.25) can be expressed as

η̃ = {R′[Ik ⊗ Γ̃ (nT )]}R}−1
{ 1

T

T∑

t=1

R′[Ik ⊗ X̃t(nT )]Yt

}
(4.1)
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where

Γ̃ (nT ) =
1
T

T∑

t=1

X̃t(nT )X̃t(nT )′ . (4.2)

Let also

Υ̃ (nT ) = Ik ⊗ Γ̃ (nT ) , Q̃(nT ) = [R′Υ̃ (nT )R]−1 , (4.3)

Ω̃(nT ) =
1
T

T∑

t=1

R′[Ik ⊗ X̃t(nT )]et(nT ) . (4.4)

It is then easy to see that
η̃ − η = Q̃(nT )Ω̃(nT ) (4.5)

hence
‖η̃ − η‖ ≤ ‖Q̃(nT )‖1‖Ω̃(nT )‖ ≤ ‖Q̃(nT )‖‖Ω̃(nT )‖ (4.6)

where ‖A‖1 = sup
x6=0

{‖Ax‖
‖x‖

}
stands for the largest eigenvalue of A′A and we used the inequality

‖AB‖2 ≤ ‖A‖2
1 ‖B‖2 for any two conformable matrices A and B [see Horn and Johnson (1985,

section 5.6)].
Define

Γ = E
(
XtX

′
t

)
, Υ = Ik ⊗ Γ , Q = (R′ΥR)−1 , (4.7)

ΓT =
1
T

T∑

t=1

XtX
′
t , ΥT = Ik ⊗ ΓT =

1
T

T∑

t=1

Ik ⊗XtX
′
t , (4.8)

QT = (R′ΥT R)−1 , ΩT =
1
T

T∑

t=1

R′(Ik ⊗Xt)ut . (4.9)

Note that R′ΥR is positive definite by the regularity assumption. To study the convergence and
distributional properties of η̃ − η, we need first to establish the following proposition.

Proposition 4.1 Let {Yt : t ∈ Z} be a k-dimensional stationary invertible stochastic process with
the VARMA echelon representation given by (2.11) - (2.15). Then, under the assumptions 2.1 to
2.4, we have the following equivalences:

1
T
‖X̃(nT )−X(T )‖2 = Op

(
n2

T

T

)
, (4.10)

‖Γ̃ (nT )− ΓT ‖ = Op

( nT

T 1/2

)
, (4.11)

‖Υ̃ (nT )− ΥT ‖ = Op

( nT

T 1/2

)
, (4.12)

‖Q̃(nT )−1 −Q−1‖ = Op

( nT

T 1/2

)
, (4.13)
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‖Q̃(nT )−Q‖ = Op

( nT

T 1/2

)
. (4.14)

The latter proposition shows that the matrices Γ̃ (nT ), Υ̃ (nT ), Q̃(nT )−1 and Q̃(nT ) – based on
approximate innovations (estimated from a long autoregression) – are all asymptotically equivalent
to the corresponding matrices based on true innovations, according to the rate nT /T 1/2. Similarly
the norm of the difference between the approximate regressor matrix X̃(nT ) and X(T ) has order
Op(nT /T 1/2). This suggests that η̃ converges to η, and we give the appropriate rate of convergence
in the following theorem.

Theorem 4.1 CONSISTENCY OF SECOND STEP HR ESTIMATES. Let {Yt : t ∈ Z} be a k-
dimensional stationary invertible stochastic process with the VARMA echelon representation given
by (2.11) - (2.15). Then, under the assumptions 2.1 to 2.4, we have

‖ΩT ‖ = Op

(
1

T 1/2

)
, ‖Ω̃(nT )−ΩT ‖ = Op

(
n2

T

T

)
, (4.15)

‖η̃ − η‖ = Op

(
1

T 1/2

)
+ Op

(
n2

T

T

)
. (4.16)

If, furthermore,
n4

T /T → 0 as T →∞ , (4.17)

then

‖η̃ − η‖ = Op

(
1

T 1/2

)
. (4.18)

The latter theorem shows that η̃ is a consistent estimator. If furthermore, n4
T /T → 0 as T →∞,

then η̃ converges at the rate T−1/2 which is typically expected to get asymptotic normality. In order
to derive an asymptotic distribution for η̃, we shall establish that the following random matrices

S̃(nT ) = T 1/2Q̃(nT )Ω̃(nT ) , ST = T 1/2QΩT , (4.19)

are asymptotically equivalent.

Proposition 4.2 ASYMPTOTIC EQUIVALENCE. Let {Yt : t ∈ Z} be a k-dimensional stationary
invertible stochastic process with the VARMA echelon representation given by (2.11) - (2.15). Then,
under the assumptions 2.1 to 2.4, the following equivalence holds

‖S̃(nT )− ST ‖ = Op

(
n2

T

T 1/2

)
.

Finally, we can give the asymptotic distribution of
√

T (η̃ − η) .

Theorem 4.3 ASYMPTOTIC DISTRIBUTION OF TWO-STAGE ESTIMATOR. Let {Yt : t ∈ Z} be
a k-dimensional stationary invertible stochastic process with the VARMA echelon representation
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given by (2.11) - (2.15). If the assumptions 2.1 to 2.5 are satisfied, then the asymptotic distribution
of the estimator η̃ is the following:

√
T

(
η̃ − η

) −→
T→∞

N[0, Ση]

where

Ση = QΣXuQ′ , ΣXu = R′ [Σu ⊗ Γ ] R , (4.20)

Q = (R′ΥR)−1 , Υ = Ik ⊗ Γ , Γ = E
(
XtX

′
t

)
, (4.21)

Xt =
[
V ′

t , Y ′
t−1, . . . , Y ′

t−p̄, u
′
t−1, . . . , u′t−p̄

]′ and Vt = Yt − ut.

An important consequence of the above theorem is the fact that the asymptotic distribution
of η̃ is the same as in the case where the innovations u′t−1, . . . , u′t−p̄ are known rather than ap-
proximated by a long autoregression. Furthermore, the covariance matrix Ση can be consistently
estimated by

Σ̂η = Q̃(nT ){R′[Σ̃u(nT )⊗ Γ̃ (nT )]R}Q̃(nT )′ , (4.22)

where

Q̃(nT ) = [R′Υ̃ (nT )R]−1, Υ̃ (nT ) = Ik ⊗ Γ̃ (nT ) , (4.23)

Γ̃ (nT ) =
1
T

T∑

t=1

X̃t(nT )X̃t(nT )′. (4.24)

Standard t and F -type tests may then be performed in the usual way.

5. Conclusion

In this paper, we have provided the asymptotic distribution of a simple two-stage estimator for
VARMA models in echelon form. The estimator is consistent when the auxiliary long autoregres-
sion used to generate first step estimates of model innovations has an order nT which increases to
infinity at a rate inferior to T δ with 0 < δ0 ≤ δ < 1/2. Further, it has an asymptotic normal distri-
bution provided nT increases at a rate inferior to T δ with 0 < δ0 ≤ δ < 1/4. In the latter case, the
asymptotic distribution is not affected by the fact that estimated lagged residuals are used.

The above results can be exploited in several ways. First, the two-stage estimates and the as-
sociated distributional theory can be directly used for inference on the VARMA model. In partic-
ular, they can be used for model selection purposes and to simplify the model (e.g., by eliminating
insignificant coefficients). Second, two-stage estimates can be exploited to get more efficient esti-
mators, such as ML estimators or estimators that are asymptotically to ML. This can be done, in
particular, to achieve efficiency with Gaussian innovations. Note, however, that such gains of ef-
ficiency may not obtain if the innovations are not Gaussian. Thirdly, because of its simplicity, the
two-stage linear estimator is especially well adapted for being used in the context of simulation-
based inference procedures, such as bootstrap tests. Further, the asymptotic distribution provided
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above can be useful in order to improve the validity of the bootstrap. Several of these issues will be
studied in a subsequent paper.
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A. Appendix: Proofs

PROOF OF PROPOSITION 3.1 Let us write:

‖Σ̃u(nT )−Σu‖ = ‖Σ̃u(nT )− Σ̂T ‖+ ‖Σ̂T −Σu‖ (A.1)

where

Σ̂T −Σu =
1
T

T∑

t=1

[utu
′
t −Σu] , (A.2)

Σ̃u(nT )− Σ̂T =
1
T

T∑

t=1

{
ũt(nT )ũt(nT )′ − utu

′
t

}

=
1
T

T∑

t=1

{
[ũt(nT )− ut]ũt(nT )

′
+ ut[ũt(nT )− ut]

′}

=
1
T

T∑

t=1

{
[ũt(nT )− ut]u

′
t + ut[ũt(nT )− ut]

′
+ [ũt(nT )− ut][ũt(nT )− ut]

′}
. (A.3)

By the assumptions 2.1 and 2.2,

Σ̂T −Σu =
1
T

T∑

t=1

[utu
′
t −Σu] = Op

(
1
T

)
, (A.4)

1
T

T∑

t=1

‖ut‖ = Op (1) ,
1
T

T∑

t=1

‖ut‖2 = Op (1) . (A.5)

Now

ũt(nT )− ut = [Π (nT )− Π̃ (nT )]Yt(nT ) +
∞∑

τ=nT +1

ΠτYt−τ , (A.6)

hence
1
T

T∑

t=1

[ũt(nT )− ut]u
′
t = [Π (nT )− Π̃ (nT )]CY u(nT ) + SY u(nT ) (A.7)

where Yt(nT ) =
[
Y ′

t−1, . . . , Y ′
t−nT

]′
, and

CY u(nT ) =
1
T

T∑

t=1

Yt(nT )u
′
t = [CY u(1, T )′, . . . , CY u(nT , T )′]′ , (A.8)

CY u(τ , T ) =
1
T

T∑

t=1

Yt−τu
′
t , (A.9)
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SY u(nT ) =
1
T

T∑

t=1

∞∑

τ=nT +1

ΠτYt−τu
′
t . (A.10)

Using the fact that ut is independent of Xt, ut−1, . . . , u1, we see that

E‖CY u(τ , T )‖2 = E[CY u(τ , T )CY u(τ , T )′] =
1
T 2

T∑

t=1

E[tr(Yt−τu
′
tutY

′
t−τ )]

=
1
T 2

T∑

t=1

tr[E(u
′
tut)E(Y ′

t−τYt−τ )] =
1
T

tr(Σu)tr[Γ (0)] , (A.11)

E[SY u(nT )] = 0 , (A.12)

where Γ (0) = E(YtY
′
t ), hence

E‖CY u(nT )‖2 = E[CY u(nT )′CY u(nT )] =
nT∑

τ=1

E‖CY u(τ , T )‖2

=
nT

T
tr(Σu)tr[Γ (0)] , (A.13)

nT∑

τ=1

‖CY u(τ , T )‖2 = Op

(nT

T

)
, (A.14)

and

‖[Π̃ (nT )−Π (nT )]CY u(nT )‖ ≤ ‖Π̃ (nT )−Π (nT ) ‖‖CY u(nT )‖ = Op

(nT

T

)
. (A.15)

Using the stationarity of Yt and (2.8), we have:

E
[∥∥SY u(nT )

∥∥] ≤ E
[ 1
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖ ‖ut‖
)]

≤ [
E
(‖Yt‖2

)]1/2[
E
(‖ut‖2

)]1/2 1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖

≤ [
E
(‖Yt‖2

)]1/2[
E
(‖ut‖2

)]1/2 C

T

T∑

t=1

∞∑

τ=nT +1

ρτ

≤ [
E
(‖Yt‖2

)]1/2[
E
(‖ut‖2

)]1/2 C

T

T∑

t=1

ρnT +1

1− ρ

=
[
E
(‖Yt‖2

)]1/2[
E
(‖ut‖2

)]1/2
(

C ρ

1− ρ

)
ρnT = O(ρnT ) (A.16)
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hence ∥∥SY u(nT )
∥∥ = Op(ρnT ) . (A.17)

Consequently,

∥∥ 1
T

T∑

t=1

ut[ũt(nT )− ut]′
∥∥ =

∥∥ 1
T

T∑

t=1

[ũt(nT )− ut]u
′
t

∥∥

≤ ‖[Π̃ (nT )−Π (nT )]CY u(nT )‖+
∥∥SY u(nT )

∥∥
= Op

(nT

T

)
, (A.18)

and (3.14) is established. Finally,

∥∥ 1
T

T∑

t=1

[ũt(nT )− ut][ũt(nT )− ut]
′∥∥ ≤ 1

T

T∑

t=1

∥∥[ũt(nT )− ut][ũt(nT )− ut]
′∥∥

≤ 1
T

T∑

t=1

∥∥ũt(nT )− ut

∥∥2 (A.19)

where

1
T

T∑

t=1

‖ũt(nT )− ut‖2 ≤ 3
T

T∑

t=1

{
‖Π̃ (nT )−Π (nT ) ‖2 ‖Yt(nT )‖2

+
( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)2}

≤ 3 ‖Π̃ (nT )−Π (nT ) ‖2 1
T

T∑

t=1

‖Yt(nT )‖2

+
3
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)2

. (A.20)

Since

E
[ 1
T

T∑

t=1

‖Yt(nT )‖2
]

= E
[ 1
T

T∑

t=1

nT∑

τ=1

‖Yt−τ‖2
]

= nT E
( ‖Yt‖2 )

, (A.21)

we have
1
T

T∑

t=1

‖Yt(nT )‖2 = Op(nT ) . (A.22)
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Further,

E
[ 1
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)]

= E ‖Yt‖ 1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖

≤ E ‖Yt‖ C

T

T∑

t=1

ρnT +1

1− ρ
=

(
C E ‖Yt‖ ρ

1− ρ

)
ρnT

= O(ρnT ) , (A.23)

hence

1
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)

= Op(ρnT ) , (A.24)

1
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)2

≤ T
[ 1
T

T∑

t=1

( ∞∑

τ=nT +1

‖Πτ‖ ‖Yt−τ‖
)]2

= Op(Tρ2nT ) . (A.25)

and

1
T

T∑

t=1

∥∥ũt(nT )− ut

∥∥2 ≤ Op

(nT

T

)
Op(nT ) + Op(Tρ2nT ) = Op

(
n2

T

T

)
, (A.26)

∥∥ 1
T

T∑

t=1

[ũt(nT )− ut][ũt(nT )− ut]
′∥∥ = Op

(
n2

T

T

)
. (A.27)

We can thus conclude that

‖Σ̃u(nT )− Σ̂T ‖ = Op(
nT

T
) + Op

(
n2

T

T

)
= Op

(
n2

T

T

)
, (A.28)

‖Σ̃u(nT )−Σu‖ = Op

(
n2

T

T

)
. (A.29)

PROOF OF PROPOSITION 4.1 Using (4.2) and (4.8), we see that

Γ̃ (nT )− ΓT =
1
T

T∑

t=1

[
X̃t(nT )X̃t(nT )′ −XtX

′
t

]

=
1
T

T∑

t=1

{
[X̃t(nT )−Xt]X ′

t + Xt[X̃t(nT )−Xt]
′}

+
1
T

T∑

t=1

{
[X̃t(nT )−Xt][X̃t(nT )−Xt]

′}
(A.30)
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hence, using the triangular and Cauchy-Schwarz inequalities,

‖Γ̃ (nT )− ΓT ‖ ≤ 2
( 1

T

T∑

t=1

‖Xt‖2
)1/2( 1

T

T∑

t=1

‖X̃t(nT )−Xt‖2
)1/2

+
1
T

T∑

t=1

‖X̃t(nT )−Xt‖2

= 2
( 1

T
‖X(T )‖2

)1/2( 1
T
‖X̃(nT )−X(T )‖2

)1/2

+
1
T
‖X̃(nT )−X(T )‖2 (A.31)

where

X̃t (nT )−Xt =




ut − ũt (nT )
0
...
0

ũt−1 (nT )− ut−1
...

ũt−p̃ (nT )− ut−p̃




, (A.32)

1
T
‖X̃(nT )−X(T )‖2 =

1
T

T∑

t=1

‖X̃t(nT )−Xt‖2

=
p̄∑

j=0

[ 1
T

T∑

t=1

‖ũt−j(nT )− ut−j‖2
]

= Op

(
n2

T

T

)
(A.33)

and, by the stationarity assumption,

1
T
‖X(T )‖2 =

1
T

T∑

t=1

‖Xt‖2 = Op (1) . (A.34)

It follows from the above orders that

‖Γ̃ (nT )− ΓT ‖ = Op

( nT

T 1/2

)
. (A.35)

Consequently, we have:

‖Υ̃ (nT )− ΥT ‖ = ‖Ik ⊗ Γ̃ (nT )− Ik ⊗ ΓT ‖
= ‖Ik ⊗

(
Γ̃ (nT )− ΓT

)‖
= k1/2‖Γ̃ (nT )− ΓT ‖ = Op

( nT

T 1/2

)
, (A.36)
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‖Q̃(nT )−1 −Q−1
T ‖ = ‖R′[Υ̃ (nT )− ΥT

]
R‖

≤ ‖R‖2‖Υ̃ (nT )− ΥT ‖ = Op

( nT

T 1/2

)
. (A.37)

Further, since
‖Q̃(nT )−1 −Q−1‖ ≤ ‖Q̃(nT )−1 −Q−1

T ‖+ ‖Q−1
T −Q−1‖ (A.38)

and

‖Q−1
T −Q−1‖ =

∥∥R′ (ΥT − Υ ) R
∥∥ ≤ ‖R‖2 ‖ΥT − Υ‖

≤ ‖R‖2 ‖Ik ⊗ (ΓT − Γ )‖ = k1/2 ‖R‖2 ‖ΓT − Γ‖

= k1/2 ‖R‖2
∥∥∥ 1
T

T∑

t=1

XtX
′
t − E

(
XtX

′
t

) ∥∥∥ = Op

(
1

T 1/2

)
, (A.39)

we have:
‖Q̃(nT )−1 −Q−1‖ = Op

( nT

T 1/2

)
. (A.40)

Finally, using the triangular inequality, we get:

‖Q̃(nT )‖ ≤ ‖Q̃(nT )−Q‖+ ‖Q‖ , (A.41)

‖Q̃(nT )−Q‖ = ‖Q̃(nT )
[
Q̃(nT )−1 −Q−1

]
Q‖

≤ ‖Q̃(nT )‖‖Q̃(nT )−1 −Q−1‖‖Q‖
≤

[
‖Q̃(nT )−Q‖+ ‖Q‖

]
‖Q̃(nT )−1 −Q−1‖‖Q‖ , (A.42)

hence, for ‖Q̃(nT )−1 −Q−1‖‖Q‖ < 1 (an event whose probability converges to 1 as T →∞)

‖Q̃(nT )−Q‖ ≤ ‖Q‖2‖Q̃(nT )−1 −Q−1‖
1− ‖Q̃(nT )−1 −Q−1‖‖Q‖ = Op

( nT

T 1/2

)
. (A.43)

PROOF OF THEOREM 4.1 Recall that η̃ − η = Q̃(nT )Ω̃(nT ). Then, we have

‖η̃ − η‖ ≤ ‖Q‖1 ‖ΩT ‖+ ‖Q̃(nT )−Q‖1‖ΩT ‖+ ‖Q̃(nT )‖1‖Ω̃(nT )−ΩT ‖
≤ ‖Q‖ ‖ΩT ‖+ ‖Q̃(nT )−Q‖‖ΩT ‖+ ‖Q̃(nT )‖‖Ω̃(nT )−ΩT ‖ . (A.44)

By Proposition 4.1,

‖Q̃(nT )−Q‖ = Op

( nT

T 1/2

)
, ‖Q̃(nT )‖ = Op (1) . (A.45)
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Now

ΩT =
1
T

T∑

t=1

R′ [Ik ⊗Xt] ut = R′vec
[ 1
T

T∑

t=1

Xtu
′
t

]
, (A.46)

so that
E ‖ΩT ‖2 ≤ ‖R‖2 E‖WT ‖2 (A.47)

where

WT =
1
T

T∑

t=1

Xtu
′
t . (A.48)

Then, using the fact that ut is independent of Xt, ut−1, . . . , u1,

E ‖WT ‖2 = E[tr(WT W ′
T )]

=
1
T 2

{ T∑

t=1

E
(
tr

[
Xtu

′
tutX

′
t

])
+ 2

T−1∑

t=1

T−l∑

l=1

{E (
tr

[
Xtu

′
tut+lX

′
t+l

]) }

=
1
T 2

{ T∑

t=1

E
(
tr

[
u′tutX

′
tXt

])
+ 2

T−1∑

t=1

T−l∑

l=1

{E (
tr

[
ut+lX

′
t+lXtu

′
t

]) }

=
1
T 2

{ T∑

t=1

tr
[
E(u′tut)E(X ′

tXt)
]
+ 2

T−1∑

t=1

T−l∑

l=1

{E (
tr

[
E(ut+l)E(X ′

t+lXtu
′
t)

]) }

=
1
T 2

{ T∑

t=1

tr
[
E

(
utu

′
t

)
E

(
X ′

tXt

)] }
=

1
T

tr(Σu)tr(Γ ) (A.49)

hence
‖WT ‖ = Op

(
T−1/2

)
, ‖ΩT ‖ = Op

(
T−1/2

)
. (A.50)

Now, consider the term ‖Ω̃(nT )−ΩT ‖. We have:

Ω̃(nT )−ΩT =
1
T

R′
T∑

t=1

{[
Ik ⊗ X̃t(nT )

]
et(nT )− [

Ik ⊗Xt

]
ut

}

= R′vec
[ 1
T

T∑

t=1

{
X̃t(nT )et(nT )′ −Xtut

′}]

= R′vec
{
Ω̃1(nT ) + Ω̃2(nT )

}
(A.51)

where

Ω̃1(nT ) =
1
T

T∑

t=1

Xt [et(nT )− ut]
′ , (A.52)
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Ω̃2(nT ) =
1
T

T∑

t=1

[
X̃t(nT )−Xt

]
et(nT )

′
, (A.53)

et (nT ) = ũt (nT ) +
p̄∑

j=0

Θj [ut−j − ũt−j (nT )] . (A.54)

We can also write

et (nT )− ut =
p̄∑

j=0

Θ̄j [ũt−j (nT )− ut−j ] (A.55)

where Θ̄0 = Ik −Θ0 and Θ̄j = −Θj , j = 1, 2, . . . , p̄, and

ũt (nT )− ut =
[
Π (nT )− Π̃ (nT )

]
Yt (nT ) +

∞∑

τ=nT +1

ΠτYt−τ

=
nT∑

τ=1

[
Πτ − Π̃τ (nT )

]
Yt−τ +

∞∑

τ=nT +1

ΠτYt−τ , (A.56)

hence

Ω̃1(nT ) =
1
T

T∑

t=1

Xt [et(nT )− ut]
′

=
p̄∑

j=0

{ 1
T

T∑

t=1

{ nT∑

τ=1

XtY
′
t−j−τ

[
Πτ − Π̃τ (nT )

]′ +
∞∑

τ=nT +1

XtY
′
t−j−τΠ

′
τ

}}
Θ̄′

j

=
p̄∑

j=0

{ nT∑

τ=1

{ 1
T

T∑

t=1

XtY
′
t−j−τ

}[
Πτ − Π̃τ (nT )

]′ + 1
T

T∑

t=1

∞∑

τ=nT +1

XtY
′
t−j−τΠ

′
τ

}
Θ̄′

j

= Ω̃11(nT ) + Ω̃12(nT ) (A.57)

where

Ω̃11(nT ) =
p̄∑

j=0

{ nT∑

τ=1

Γ̃j+τ (nT )
[
Πτ − Π̃τ (nT )

]′}
Θ̄′

j , (A.58)

Γ̃j+τ (nT ) =
1
T

T∑

t=1

XtY
′
t−j−τ , (A.59)

Ω̃12(nT ) =
p̄∑

j=0

{ 1
T

T∑

t=1

∞∑

τ=nT +1

XtY
′
t−j−τΠ

′
τ

}
Θ̄′

j . (A.60)
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Now, using the linearity and the VARMA structure of Yt, it is easy to see that

E‖Γ̃j+τ (nT ) ‖2 ≤ 1
T

C1ρ
j+τ
1 (A.61)

for some constants C1 > 0 and 0 < ρ1 < 1, hence

E
[ nT∑

τ=1

‖Γ̃j+τ (nT ) ‖2
]
≤ 1

T
C1

nT∑

τ=1

ρj+τ
1 ≤ 1

T

C1

1− ρ1

= Op

(
1
T

)
. (A.62)

Thus

‖Ω̃11(nT )‖ ≤
p̄∑

j=0

{ nT∑

τ=1

‖Γ̃j+τ (nT ) ‖‖Πτ − Π̃τ (nT )‖
}∥∥Θ̄j

∥∥

≤
p̄∑

j=0

{[ nT∑

τ=1

‖Γ̃j+τ (nT ) ‖2
]1/2[ nT∑

τ=1

‖Πτ − Π̃τ (nT )‖2
]1/2}∥∥Θ̄j

∥∥

≤
p̄∑

j=0

{[ nT∑

τ=1

‖Γ̃j+τ (nT ) ‖2
]1/2

‖Π̃ (nT )−Π (nT ) ‖
}∥∥Θ̄j

∥∥

= Op

(
n

1/2
T

T

)
, (A.63)

while

E‖Ω̃12(nT )‖ ≤
p̄∑

j=0

{
E
[ 1
T

T∑

t=1

∞∑

τ=nT +1

‖Xt‖ ‖Yt−j−τ‖ ‖Πτ‖
]}∥∥Θ̄j

∥∥

≤
p̄∑

j=0

{ 1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖E
[ ‖Xt‖ ‖Yt−j−τ‖

]} ∥∥Θ̄j

∥∥

≤
p̄∑

j=0

{[
E(‖Xt‖2)E(‖Yt‖2)

]1/2 1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖
}∥∥Θ̄j

∥∥

= Op(ρnT ) , (A.64)

hence ‖Ω̃12(nT )‖ = Op(ρnT ) and

‖Ω̃1(nT )‖ ≤ ‖Ω̃11(nT )‖+ ‖Ω̃12(nT )‖ = Op

(
n

1/2
T

T

)
. (A.65)

Now, using (A.55), Ω̃2(nT ) can be decomposed as:

Ω̃2(nT ) = Ω̃21(nT ) + Ω̃22(nT ) (A.66)

25



where

Ω̃21(nT ) =
1
T

T∑

t=1

[
X̃t(nT )−Xt

]
u
′
t , (A.67)

Ω̃22(nT ) =
p̄∑

j=0

{ 1
T

T∑

t=1

[
X̃t(nT )−Xt

]
[ũt−j (nT )− ut−j ]

′
}

Θ̄′
j . (A.68)

Now, in view of (A.32), consider the variables:

Ci(nT ) =
1
T

T∑

t=1

[ũt−i (nT )− ut−i] u
′
t

=
nT∑

τ=1

[
Πτ − Π̃τ (nT )

]( 1
T

T∑

t=1

Yt−i−τu
′
t

)
+

1
T

T∑

t=1

∞∑

τ=nT +1

ΠτYt−i−τu
′
t , (A.69)

Cij(nT ) =
1
T

T∑

t=1

[ũt−i (nT )− ut−i] [ũt−j (nT )− ut−j ]
′ , (A.70)

for i = 0, 1, . . . , p̄. We have:

E‖ 1
T

T∑

t=1

Yt−i−τu
′
t‖2 =

1
T 2

T∑

t=1

Etr[Yt−i−τu
′
tutY

′
t−i−τ ] =

1
T 2

T∑

t=1

tr[E(u
′
tut)E(Y ′

t−i−τYt−i−τ )]

=
1
T

tr(Σu)tr[Γ (0)] (A.71)

where Γ (0) = E(YtY
′
t ), hence

nT∑

τ=1

E‖ 1
T

T∑

t=1

Yt−i−τu
′
t‖2 =

nT

T
tr(Σu)tr[Γ (0)] , (A.72)

nT∑

τ=1

‖ 1
T

T∑

t=1

Yt−i−τu
′
t‖2 = Op

(nT

T

)
, (A.73)

and

‖Ci(nT )‖ ≤
nT∑

τ=1

‖Πτ − Π̃τ (nT )‖‖ 1
T

T∑

t=1

Yt−i−τu
′
t‖

+
1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖‖Yt−i−τ‖‖ut‖
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≤
[ nT∑

τ=1

‖Πτ − Π̃τ (nT )‖2
]1/2[ nT∑

τ=1

‖ 1
T

T∑

t=1

Yt−i−τu
′
t‖2

]1/2

+
1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖‖Yt−i−τ‖‖ut‖

= ‖Π̃ (nT )−Π (nT ) ‖
[ nT∑

τ=1

∥∥ 1
T

T∑

t=1

Yt−i−τu
′
t

∥∥2
]1/2

+
1
T

T∑

t=1

∞∑

τ=nT +1

‖Πτ‖‖Yt−i−τ‖‖ut‖

= Op

(nT

T

)
. (A.74)

Further,

‖Cij(nT )‖ ≤ 1
T

T∑

t=1

‖ [ũt−i (nT )− ut−i] ‖‖ [ũt−j (nT )− ut−j ]
′ ‖

≤
[ 1
T

T∑

t=1

‖ũt−i (nT )− ut−i‖2
]1/2[ 1

T

T∑

t=1

‖ũt−j (nT )− ut−j‖2
]1/2

= Op

(
n2

T

T

)
. (A.75)

Thus

‖Ω̃21(nT )‖ = Op(nT /T ) , ‖Ω̃22(nT )‖ = Op

(
n2

T

T

)
, (A.76)

hence

‖Ω̃2(nT )‖ ≤ ‖Ω̃21(nT )‖+ ‖Ω̃22(nT )‖ = Op

(
n2

T

T

)
, (A.77)

‖Ω̃(nT )−ΩT ‖ ≤ ‖R‖(‖Ω̃1(nT )‖+ ‖Ω̃2(nT )‖)

= Op

(
n

1/2
T

T

)
+ Op

(
n2

T

T

)
= Op

(
n2

T

T

)
. (A.78)

Consequently,

‖η̃ − η‖ ≤ Op

(
1

T 1/2

)
+ Op

(nT

T

)
+ Op

(
n2

T

T

)

= Op

(
1

T 1/2

)
+ Op

(
n2

T

T

)
= op(1) . (A.79)
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If furthermore n4
T /T −→ 0 as T →∞, the latter reduces to

‖η̃ − η‖ = Op

(
1

T 1/2

)
. (A.80)

PROOF OF PROPOSITION 4.2 We have:

‖S̃(nT )− ST ‖ = T 1/2‖Q̃(nT )Ω̃(nT )−QΩT ‖
≤ T 1/2‖Q̃(nT )‖‖Ω̃(nT )−ΩT ‖+ T 1/2‖Q̃(nT )−Q‖‖ΩT ‖ . (A.81)

By Proposition 4.1 and Theorem 4.1, the following orders hold:

‖Q̃(nT )−Q‖ = Op

( nT

T 1/2

)
, ‖Q̃(nT )‖ = Op (1) , (A.82)

‖Ω̃(nT )−ΩT ‖ = Op

(
n2

T

T

)
, ‖ΩT ‖ = Op

(
1

T 1/2

)
. (A.83)

Therefore,

‖S̃(nT )− ST ‖ = Op

(
n2

T

T 1/2

)
. (A.84)

PROOF OF THEOREM 4.3 By the standard central limit theorem for stationary processes [see
Anderson (1971, section 7.7), Lewis and Reinsel (1985, section 2)] and under the assumption of
independence between ut and Xt, we have:

T 1/2ΩT =
1

T 1/2

T∑

t=1

R′(Ik ⊗Xt)ut =
1

T 1/2

T∑

t=1

R′(ut ⊗Xt) −→
T→∞

N[0, ΣXu] (A.85)

where

ΣXu = E
{
R′(ut ⊗Xt)(ut ⊗Xt)′R

}
= E

{
R′ [utu

′
t ⊗XtX

′
t

]
R

}

= R′ [E(utu
′
t)⊗ E(XtX

′
t)

]
R = R′ [Σu ⊗ Γ ] R . (A.86)

Then
ST = T 1/2QΩT −→

T→∞
N

[
0, Ση

]
(A.87)

where
Ση = QΣXuQ′ . (A.88)
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Finally, by Proposition 4.2, we can conclude that
√

T (η̃ − η) = S̃(nT ) −→
T→∞

N
[
0, Ση

]
. (A.89)
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