
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Montréal 
Novembre 2006 

 
 
 
 
© 2006 Hassan Benchekroun, Seiichi Katayama, Ngo Van Long. Tous droits réservés. All rights reserved. 
Reproduction partielle permise avec citation du document source, incluant la notice ©. 
Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source. 
 
 
 

 

 

Série Scientifique 
Scientific Series 

 

  2006s-26  
 

Non-Smooth Sustainable 
Development With 

Overshooting 
 

Hassan Benchekroun, Seiichi Katayama, 
Ngo Van Long 



CIRANO 

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de 
son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention 
d’infrastructure du Ministère du Développement économique et régional et de la Recherche, de même que des subventions et 
mandats obtenus par ses équipes de recherche. 

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research 
activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère du 
Développement économique et régional et de la Recherche, and grants and research mandates obtained by its research 
teams. 
 
Les partenaires du CIRANO 
 
Partenaire majeur 
Ministère du Développement économique, 
de l’Innovation et de l’Exportation 
 
Partenaires corporatifs 
Alcan inc. 
Banque de développement du Canada 
Banque du Canada 
Banque Laurentienne du Canada 
Banque Nationale du Canada 
Banque Royale du Canada 
Bell Canada 
BMO Groupe financier 
Bombardier 
Bourse de Montréal 
Caisse de dépôt et placement du Québec 
Fédération des caisses Desjardins du Québec 
Gaz de France 
Gaz Métro 
Hydro-Québec 
Industrie Canada 
Ministère des Finances du Québec 
Pratt & Whitney Canada 
Raymond Chabot Grant Thornton 
Ville de Montréal 
 
Partenaires universitaires 
École Polytechnique de Montréal 
HEC Montréal 
McGill University 
Université Concordia 
Université de Montréal 
Université de Sherbrooke 
Université du Québec 
Université du Québec à Montréal 
Université Laval 
 
Le CIRANO collabore avec de nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son 
site web. 

ISSN 1198-8177 

Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO 
afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées 
et les opinions émises sont sous l’unique responsabilité des auteurs et ne représentent pas nécessairement les positions 
du CIRANO ou de ses partenaires. 
This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The 
observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent 
positions of CIRANO or its partners. 



Non-Smooth Sustainable Development  
With Overshooting 

 
 

Hassan Benchekroun*, Seiichi Katayama†, Ngo Van Long‡ 
 
 

Résumé / Abstract 
 
Nous démontrons que, dans un modèle avec la substitution entre le capital et les ressources 
naturelles, le sentier du développement peut être non-monotone. Si l’on commence avec un 
niveau faible de capital et de ressources naturelles, le sentier optimal peut dépasse le niveau 
du capital de l’état stationnaire. La convergence s’effectue en temps fini. 
 

Mots clés : développement soutenable, ressources naturelles renouvelables 
 
 
 

We show that, in a model with substitutability between capital and resources, the path of 
sustainable development may be non-smooth, and may exhibit the overshooting property: 
starting from low levels of capital and resources, the economy may accumulate capital 
beyond its steady-state level, before converging to it in finite time. 

 
Keywords: sustainable development, renewable resources 
 
Codes JEL : C73, H41, D60 

                                                 
* Department of Economics, McGill University, 855 Rue Sherbrooke Ouest, Montreal, Quebec, H3A 2T7, 
Canada. Email hassan.benchekroun@mcgill.ca 
† Research Institute for Economics and Business Administration, Kobe University, Nada-ku, Kobe, Japan. Email: 
katayama@rieb.kobe-u.ac.jp 
‡ Cirano and Cireq, Department of Economics, McGill University, 855 Rue Sherbrooke Ouest,, Montreal, 
Quebec, H3A 2T7, Canada. Email; ngo.long@mcgill.ca 



1 Introduction

Since man-made capital and natural resources are substitutable inputs in

the aggregate production function, a natural question that arises is how to

optimally accumulate capital and manage the resource stock. The case where

the natural resource stock is non-renewable has been studied by Solow under

the the maximin criterion, and Dasgupta and Heal (1979) and Pezzy and

Withagen (1998) under the utilitarian criterion. Solow assumed a Cobb-

Douglas production function, and showed that if the share of capital is greater

than the share of natural resource, then a constant path of consumption

is feasible, and along such a path, the man-made capital stock increases

without bound. Dasgupta and Heal (1979) and Pezzy and Withagen (1998)

showed that, under the utilitarian criterion, the man-made capital stock will

reach a peak, and afterwards both stocks fall to zero asymptotically. Long

and Katayama (2002) obtain similar results in a di erential game model of

common proprty resources and private capital accumulation.

In this paper, we study the optimal path for an economy that produces an

output using a stock of capital and a resource input extracted from a stock of

renewable natural resource. We retain the Solow-Dasgupta-Heal assumption

that capital and resource are substitutable inputs in the production of the

final good, but our model di ers from theirs because the resource stock is

renewable. We wish to find the optimal growth path of the economy under

the utilitarian criterion.We show that there exists a unique steady state with

positive consumption. We ask the following questions: (i) Can it be optimal

to get to the steady state in finite time under the assumption that the utility

function is strictly concave? (ii) Can finite-time approach paths to the steady

state be smooth, in the sense that there are no jumps in the control variables?

(iii) Are there non-smooth paths to the steady state?

The answers to the above questions are as follows.
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There exists a set of initial conditions (which forms a one-dimensional

manifold, i.e., a curve, in the state space) such that the approach path to the

steady state takes a finite time, and is smooth. If the economy starts with

a low resource stock, the path along the manifold toward the steady state

involves gradual accumulation of the resource stock, and gradual running

down of the capital stock toward its steady state level.

If the initial conditions are not on that one-dimensional manifold, then it

may be optimal to get to some point on that manifold first, and then move

along the manifold to get to the steady state.The path that gets to a point

on the manifold is not smooth at the time it meets the manifold.

We show that starting from low levels of capital stock and resource stock,

the optimal policy consists of three phases. In phase I, the planner builds

up the stock of man-made capital above its steady state level, while the

resource stock is kept below its steady state level. In phase II, the capital

stock declines steadily, while the resource stock continues to grow, until the

steady state is reached. In phase III, the economy stays at the steady state.

Thus, our model exhibits the “overshooting” property.

Before proceeding, we would like to note that there are a number of ar-

ticles that are somewhat related to our paper, where the authors discussed

thr optimal use patterns for renewable resources and the sustainability of

economies. Clark et al.(1979) provided a general formulation with irreversible

investment.They focussed on irreversibility, and did not obtain an “over-

shooting” result. Among the relatively recent papers, Beltratti et al.(1998)

addressed the problem of optimal use of renewable resources under a variety

of assumptions about the objective of that economy (with the di erent types

of the utility function.) They constructed a model in which a man-made

capital stock and a renewable resource are used for production, and give a

very general characterization of the paths which are optimal in various senses.

Their basic model is similar to ours, however they focused on di erent issues.
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We are not aware of any paper which examines the precise characteristics of

steady state and of the approach paths to the steady state in a model with

man-made capital and renewable resource.

2 The Model

We consider a continuous-time model. Let and denote the stock of man-

made capital, and the stock of a renewable natural resource. Let denote

the resource input. The output of the final good is

= ( ) =

Output can be consumed, or invested. Let denote consumption and

denote investment. Then

= ( ) (1)

Assume there is no depreciation of capital. Then

˙ = (2)

Let ( ) be the natural growth function of the resource stock. We assume

it has the shape of a tent. Specifically, we assume that there exists a stock

level b 0 such that ( ) = if b , and ( ) = b ( b) forb where 0, 0. The net rate of growth of the resource stock is

˙ = ( ) (3)

Remark 1: The function ( ) has a kink at b, so the derivative 0( )

is not defined at b. At that point, we define the generalised gradient of
( ), denoted by , as the real interval [ ], where is the right-hand

derivative, and is the left-hand derivative. When applying optimal control
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theory, we must modify the equation for the shadow price of when is atb. (This will be discussed in detail later.)
The consumption yields the utility

( ) =

The objective of the planner is to maximize the integral of the discounted

stream of utility:

max

Z
0

where we assume

0

This assumption ensures that the optimal solution involves building the

resource stock to the level b.
The maximization is subject to

˙ = (4)

˙ = ( ) (5)

with boundary conditions (0) = 0 0, (0) = 0 0, and

lim ( ) 0, lim ( ) 0

The set of positive stock levels is partitioned into two regions. Region I

is the set of points ( ) such that 0 b, and 0. Region II is the

set of points ( ) such that b, and 0.

We will show that there is no steady state in region I, and there is a

unique steady state in region II. After that, we will show that in region I,

there exists a unique one-dimensional manifold along which a smooth path

converges to the steady state in region II. This manifold is downward sloping

in the space ( ), so that along the smooth convergent path, the capital
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stock falls and the resource stock rises. We then turn to region II and show

that in that region, there exists also a unique one-dimensional manifold along

which a smooth path converges to the steady state. We show that along this

path, the capital stock rises and the resource stock falls.

From the above results, we infer that if the initial pair of stock levels

( 0 0) does not belong to either of the two manifolds, the optimal path

from such an initial point, if it converges to the steady state, must either

involve a jump in some control variables, or an “overshooting” along the

path.

3 Necessary conditions and steady state

3.1 Necessary conditions in Region I

We define the current value Hamiltonian

= + 1

h i
+ 2 [ ( ) ]

where 1 is the shadow price of man-made capital and 2 is the shadow price

of the renewable resource.

The necessary conditions are

=
1

2
1 = 0 (6)

=
1

2 1

r
2 = 0 (7)

˙
1 = 1(

1

2

r
) (8)

˙
2 = 2 ( ) (9)

Notice that 1 0 by (6). It follows that 2 0 by (7). So, in region I,

2 (the shadow price of the resource stock) is always falling because .
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Thus we obtain the following result:

Result 1: There is no steady state in Region 1.

Discussion:

Here we make some remarks about the economic meaning of the necessary

conditions.

From equations (7), (8) and (9) we get

( ) ( ) =
˙
2

2

˙
1

1

=
1 ( )

Hence

= +
1 ( )

(10a)

We may call equation (10a) the Modified Hotelling Rule: the rate of

capital gain (rate of increase in the price of the extracted resource) plus the

biological growth rate must be equated to the rate of interest on the capital

good, .

From (6) and (8), we get

˙

2
= (11)

which is theRamsey-Euler Rule: the proportional rate of consumption growth,

multiplied by the elasticity of marginal utility, must be equated to the dif-

ference between the rate of interest and the utility-discount rate, .

It is convenient to define a new variable :

( ) =
( )

( )

This variable is the capital/resource-input ratio, and is a measure of the

capital intensity of the production process at time .

Using (7) we get

( ) =
2 2( )

1( )

¸2
(12)
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From this equation, we get

Result 2: ( ) jumps at some time 1 only if either 1 or 2 jumps at 1

Discussion: 2 is continuous in Region I, but when ( ) reaches b
(which is in Region II) the kink in the growth function ( ) may cause 2

to jump.

3.2 The necessary conditions in Region II

The necessary conditions for Region II are a bit more complicated, because at

the point b the function ( ) is not di erentiable. Thus we must deal with

a “non-smooth” problem. For a general treatment of non-smooth optimal

control problem see Clarke and Winter (1983), or Clarke (1983); here we

follow the exposition in Docker et al (2000, pages 74-79).

Since ( ) has a kink at b, with left-hand derivative equal to 0

and right-hand derivative equal , the generalized gradient of ( ) at b is
defined as

(b) = [ ]

The necessary conditions are

=
1

2
1 = 0 (13)

=
1

2 1

r
2 = 0 = 0 (14)

˙ = (15)

˙ = b ( b) if b (16)

˙
1 = 1(

1

2

r
) (17)

and, from Docker et al. (2000, pages 74-79),

( ˙ 2 2) [ 2 2] if = b (18)
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( ˙ 2 2) = 2 if b (19)

Result 3 : There exists a unique steady state in Region II. The steady

state resource stock is

= b
and the steady state capital stock is

= = b ¸1 (1 )

Proof:

Let us find the corresponding steady state values of other variables. From

(16), at the steady state,

= b (20)

From (17), at the steady state,μ ¶ 1

= (21)

Thus

= b ¸1 (1 )

(22)

= =

¸1 (1 )

(23)

Using (15), at the steady state

= b ¸ (1 )

(24)

Thus, from (13) and (24)

1 =
³ b´ ¸ (1 )
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and, from (14)

2 =
³ b´ (1 )

¸ (1 ) (1 )

which is consistent with (18) because [ ].

4 Dynamics in Region I

Since the steady state in region II is at the the boundary between the two

regions, we are particularly interested in paths in Region I that converges to

the steady state in region II, i.e. ( ( ) ( )) ( ) in finite or infinite

time. An important subclass of such convergent paths is called the paths of

smooth convergent paths, by which we mean the control variables ( ) and

( ) do not jump (and hence ( ) does not jump).

4.1 The time path of capital/resource-input ratio in
Region I

Lemma 1: In region I, the time path of the capital/resource-input ratio,

( ), satisfies the di erential equation:

1

2

1
2 +

1

2

˙
= (25)

It follows that:

(1) if 0 is optimally chosen, then

( ) =

μμ
0

1

2

¶
+
1

2

¶2
(2) if at some time , the variable takes the value , then

( ) =

μμ
1

2

¶
( ) +

1

2

¶2
[ ( ; )]2 (26)
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Proof: See Appendix A1.

Remark 2: If we impose the condition that at some time the variable

( ) takes the following value (which is its steady state value in region II)

= (
1

2
)2 = (27)

then we can say something more definite about ( ). See Lemma 2 below.

Lemma 2: If ( ) = , then over the time interval [0 ] the

capital/resource-input ratio ( ) decreases steadily.

Proof: From (26)

˙ ( ) = 2 ( ; ) 0( ; ) = 2

μ
1

2

¶
( ) ( ; ) 0

because

=
1

2

1

2

Remark 3: It can be shown (see Appendix A2) that if = then

˙ ( )

( )
= 2 1

1³³
1
´

( ) + 1
´

4.2 The time path of 1

Lemma 3: In region I, the time path of 1 is

1 ( ) = 1 ¡¡ 1
2

¢
( ) + 1

2
( )( )

¢
Proof: See Appendix A3.

Lemma 4: if ( ) = then over the time interval [0 ] the

shadow price of capital, 1 ( ) increases steadily.

Proof: See Appendix A4.
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4.3 The time path of consumption in Region I

Lemma 5: In region I, the time path of consumption is

( ) =

¡¡
1
2

¢
( ) + 1

2

¢2
2( )( ) =

( )
¸

2( )( )

If ( ) = over the time interval [0 ] then consumption

decreases steadily.

Proof: See Appendix A5.

4.4 The time path of extraction in Region I

Lemma 6: In region I, the time path of extraction is

( ) =

μ
1

2

¶
exp (2 2 2 + 2 ) + 2

where satisfies

=

μ
1

2

¶
+ 2

Thus, if (i) ( ) = (ii) ( ) = and (iii) ( )

= then = 0, and extraction will be rising steadily:

˙ ( ) = 2 ( ) b 2( )( ) 0

Proof: See Appendix 6.

4.5 The path of capital in region I

We now turn to the capital, we have

Lemma 7: Along the optimal path in Region I

˙
=

1
2 2
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Along a smooth convergent path (i.e. ( ) = ) the capital stock

( ) falls steadily.

Proof: See Appendix A7.

Lemma 8: Along a smooth convergent path in Region I, there is a

positive relationship between the time and the initial stock 0. It is given

by

0 = (0) = b 2( )

μμ
1

2

1

2

¶
+
1

2

¶2
(28)

with
0

0 (29)

Proof: See Appendix A8.

4.6 The path of the resource stock in Region I

In Region I, the resource stock follows the law of motion

˙ =

Thus we get

Lemma 9: Along a smooth convergent path in Region I (with ( )

= = b) , there is a negative relationship between the time and

the initial resource stock 0.

0 = bÃ ¡
( 2 ) 1

¢
+ 2

+ 1

!
(30)

with
0

0 (31)

Proof: See Appendix 9.

PROPOSITION 1: In Region I, the set of initial stock pairs ( ) from

which the optimal path is a smooth convergent path is the one dimensional
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manifold defined by the two equations (28) and (30). This manifold has a

negative slope in the space ( ).

Proof: Use (29) and (31):

0

0
0

5 Dynamics in Region II

5.1 The time path of capital/resource-input ratio in
Region II:

Lemma 1b: In region II, the time path of the capital/resource-input ratio,

( ), satisfies the di erential equation:

1

2

1
2 +

1

2

˙
= (32)

It follows that:

(1) if 0 is optimally chosen, then

( ) = ( ) =

μμ
0 +

1

2

¶
1

2

¶2
(2) if at some time , the variable takes the value , then

( ) =

μμ
+
1

2

¶
( ) 1

2

¶2
[ ( ; )]2

Proof: See Appendix 10

Lemma 2: In Region II, over the time interval [0 ] the capital/resource-

input ratio ( ) increases steadily.

Proof: from (32)

1

2
+
1

2

˙
=

1
2
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so ˙ must be positive.

Remark 3b: We retrieve the results of Region I if we substitute by

5.2 The path of 1 in region II

Lemma 3b: In region I, the time path of 1 is

1 ( ) =
1 ( )

( + )( )¡¡
1 +

¢
( )

¢
Proof: See Appendix 11.

5.3 The time path of consumption in Region II

Lemma 5b: In region II, the time path of consumption is

( ) =

Ã¡¡
+ 1

2

¢
( ) 1

2

¢
( + )( )

!2
=

( )
¸

2( + )( )

If ( ) = over the time interval [0 ] then consumption

decreases steadily.

Proof: See Appendix 12.

5.4 The path of extraction in region II

Lemma 6b: In region I, the time path of extraction satisfies the di erential

equation

˙ = 2
2( + )( )

Thus, if (i) ( ) = (ii) ( ) = and (iii) ( )

=

( ) = b 2( + )( )
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˙ ( ) 0

Proof: See Appendix 13

5.5 The path of capital in region II

We now turn to the capital, we have

Lemma 7b: Along the optimal path in Region II

˙
=

1
2 2

Along a smooth convergent path (i.e. ( ) = ) the capital stock

( ) falls steadily.

Proof: See Appendix 14.

Lemma 8b: Along a smooth convergent path in Region II, there is a

positive relationship between the time and the initial stock 0. It is given

by

0 = (0) = bμμμ +
1

2

¶
1

2

¶
( + )

¶2
Proof: See Appendix 15.

5.6 The path of the resource stock in Region II

In region II we have
˙ = b ( b)

Substituting gives

˙ = b ( b) b 2( + )( )

˙ + = b+ b b 2( + )( )

˙ + = b¡ + 2( + )( )
¢
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Note that
˙ ( ) + b = b

and thus
˙ ( ) = 0

We now solve for the path of the resource stock

0 =
¡
+ 2( + )( )

¢
( ) =

The exact solution is:

( ) = +
2
exp ( 2 + 2 2 + 2 ) 2

+

( + 2 )

( ) =
b
+ b+ b

+ 2
2( + )( ) 2 ( ) b +

( + 2 )

we check that ( ) = + b+
+2

2 b +
( +2 )

= b
Moreover

˙ ( ) = bμ 2 ( + )

+ 2
2( + )( ) + 2 ( ) +

( + 2 )

¶
˙ ( ) = 2 b2 ( ) +

( + 2 )

¡
( +2 )( ) + 1

¢
0

There exists a smooth path reaching b at if 0 satisfies

0 = (0) =
b
+ b+ b

+ 2
2( + ) 2 b +

( + 2 )

0
=

2 ( + ) b
+ 2

2( + ) 2 b +

( + 2 )

0
= 2 b +

( + 2 )

¡
( +2 ) 1

¢
0
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In Region II we also have
0

0

and
0

0

so
0

0
0

In Both region I and region II we have

0

0
0

This implies either overshooting or jump in the control paths.

6 Concluding Remarks

We have been able to show that the path to a steady state may exhibit

the overshooting property. The economy accumulate capital to some level

much higher than its steady-state level, before running it down. This is

because when the renewable resource is still at a low level, more output can

be generated by accumulating capital, while using the resource sparingly.

When a su cient large level of resource has been achieved, it becomes more

e cient to use more resource, and less capital, in the production process.

Our model displays two additional features: it takes a finite time to get to

the steady state, and the paths to the steady state is generally non-smooth,

unless the economy happens to have a combination of stock levels that lies

on the smooth one-dimensional manifold.

Acknowledgments: We thank Richard Hartl, Kim Long, and Akio Mat-

sumoto for comments, and SSHRC and FQRSC for financial support.
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APPENDIX 1:

Proof of Lemma 1

Step 1:

We first show that satisfies the following di erential equation This is

shown from the necessary conditions (??), (6) and (8),

=
1

2
1 = 0 (33)

1

2
= 1 (34)

1

2
ln = ln 1 + ln 2 (35)

˙

2
=
˙
1

1

(36)

but
˙
1

1

=
1

2

1
2 (37)

so we have
˙

2
=
˙
1

1

=
1

2

1
2 (38)

We get the relationship between 1 and

=
1

2 1

r
2 = 0 (39)

or
1

2 1 2 = 0 (40)

ln 2 + ln 1 +
1

2
ln 2 = 0 (41)

so that
˙
2

2

=
˙
1

1

+
1

2

˙
(42)

and

( ) =
1

2

1
2 +

1

2

˙
(43)
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or

=
1

2

1
2 +

1

2

˙
(44)

This ends Step 1.

Step 2: Solving for ( ) :

We have

=
1

2

1
2 +

1

2

˙
(45)

multiplying each side by gives

1

2
+
1

2

˙
=

1
2 (46)

let
1

2
+ ˙ = (47)

the solution can be written in two forms:

( ) =

μ
0

1

2

¶
+
1

2

or

( ) =

μ
1

2

¶
( ) +

1

2

where 0 = (0) or = ( ) and therefore we have

( ) =

μμ
1

2

¶
( ) +

1

2

¶2
(48)

APPENDIX 2:

If = then

˙ ( )

( )
= 2

¡
1
2

¢
( )¡¡

1
2

¢
( ) + 1

2

¢
˙ ( )

( )
= 2

Ã
1

1 2¡¡
1
2

¢
( ) + 1

2

¢!
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˙ ( )

( )
= 2

Ã
1

1 2¡¡
1
2

¢
( ) + 1

2

¢!

˙ ( )

( )
= 2 1

1 2³³
1
2

1
2

´
( ) + 1

2

´
˙ ( )

( )
= 2 1

1³³
1
´

( ) + 1
´

so since
³

1
´

0 then ˙ ( )
( )

0 .

APPENDIX 3: Proof of Lemma 3.

We can solve for 1 from (12)

˙
2

2

=
˙
1

1

+
1

2

˙
(49)

with
˙
2 = 2 ( ) (50)

so

˙
1

1

=
1

2

˙

integrating gives

ln 1 ( )

1 ( )
= ( ) ( ) ln

s
( )

( )

or

1 ( ) = 1 p
( )

( )( )

1 ( ) = 1 ¡¡ 1
2

¢
( ) + 1

2

¢ ( )( )

1 ( ) = 1 ¡¡ 1
2

¢
( ) + 1

2
( )( )

¢
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APPENDIX 4: Proof of Lemma 3

The denominator is ( ) =
¡

1
2

¢
( ) + 1

2
( )( ) is such

that

0 ( ) =
μ

1

2

¶
( ) ( )

1

2
( )( )

0 ( ) =
μ
1

2

1

2

¶
( ) ( )

1

2
( )( )

0 ( ) =
1

2

μ μ
1

¶
( ) ( ) ( )( )

¶
0 ( ) =

1

2

¡
( ) ( ) ( ) ( )( )

¢
0 ( ) =

1

2
( ) ( )

¡
1 ( )

¢
0

since . So
˙
1 ( ) 0

APPENDIX 5: Proof of Lemma 5

1

2
1 = 0

or
1

2 1

=

or μ
1

2 1

¶2
=

that is

( ) =
1μ

2 1 (( 1
2 ) ( )+ 1

2 )
( )( )

¶2
( ) =

¡¡
1
2

¢
( ) + 1

2

¢2
(2 1 )

2
2( )( )
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( ) =

¡¡
1
2

¢
( ) + 1

2

¢2
2( )( ) =

( )
¸

2( )( )

The evolution of the consumption path is given by

˙
= 2

˙
1

1

If ( ) = over the time interval [0 ] the falls steadily because

1 rises steadily.

APPENDIX 6

From the definition of = , we have

˙ = ˙ + ˙

and
˙ = =

so
˙ + ˙ = (51)

˙ =
¡

˙
¢

(52)

or
˙ =

μ
1 ˙

¶
(53)

using (25) yields

=
1

2

1
2 +

1

2

˙

so
˙ = 2 (54)

where

( ) =

¡¡
1
2

¢
( ) + 1

2

¢2
2( )( )
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and

( ) =

μμ
1

2

¶
( ) +

1

2

¶2
so

˙ = 2

(( 1
2 ) ( )+ 1

2 )
2

2( )( )¡¡
1
2

¢
( ) + 1

2

¢2 (55)

Hence
˙ = 2

2( )( )

(56)

The solution is

( ) =
1

2
exp (2 2 2 + 2 ) + 2

and

=
2
+ 2

with

= =
1

2

¸2
= b 1

2

¸
(57)

Now

= b (58)

so

=

μ
2

¶
2 = 0

and

( ) = b 2( )( ) (59)

˙ ( ) = 2 ( ) b 2( )( ) 0

APPENDIX 7: Proof of Lemma 7

=

24



˙
=
˙
+
˙
=
˙
+ 2 ( )

˙
= 2 +

1
2 + 2 ( )

˙
=

1
2 2

since ˙ 0 we have
1
2 0 with ( ( ))

1
2 = 2 and therefore

1
2 2 0

for all and thus
˙
=

1
2 2 0

APPENDIX 8: Proof of Lemma 8

Substituting for and gives

= = b 2( )( )

μμ
1

2

¶
( ) +

1

2

¶2
at time = 0 we have

0 = (0) = b 2( )

μμ
1

2

1

2

¶
+
1

2

¶2
0
= b 2( )

μμ
1

2

1

2

¶
+
1

2

¶2

0
= b

μ³
( )

³³
1
2

1
2

´
+ 1

2

´´2¶

Let ( ) = ( )
³³

1
2

1
2

´
+ 1

2

´
we have

( ) =

μ
1

2

1

2

¶
+
1

2
( )

0 ( ) =
μ
1

2

1

2

¶
( )

1

2
( )

0 ( ) =
1

2

μ μ
1

¶
( ) ( )

¶
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0 ( ) =
1

2
( )

¡
1

¢
0

So
0
= b2 0 ( ) ( ) 0

APPENDIX 9: Proof of Lemma 9.

Substituting to get

˙ = b 2( )( )

The exact solution is:

( ) = bμ
+ 2

2( )( ) + 2 ( ) +

( + 2 )

¶

( ) = b 2 ( ) ( ) 2( )( )

(2 ( ) )

¸
˙ ( ) = bμ 2 ( )

+ 2
2( )( ) + 2 ( ) +

( + 2 )

¶
˙ ( ) = 2 ( ) ( ) bμ 1

+ 2
( 2 )( ) 1

( + 2 )

¶
˙ ( ) = 2 ( ) ( ) bμ ( 2 )( ) 1

( + 2 )

¶
0

The initial stock must be

0 = (0) = bμ
+ 2

2( ) + 2
+

( + 2 )

¶

0 = bÃ ¡
( 2 ) 1

¢
+ 2

+ 1

!
0
= bμ 2 ( )

+ 2
2( ) 2

+

( + 2 )

¶
0
= 2 ( ) b μ

1 ( 2 )

+ 2

¶
0
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So we have

0
= 2 ( ) b μ

1 ( 2 )

+ 2

¶
0

and
0

0

and therefore in Region I:
0

0
0

APPENDIX 10. Proof of Lemma 1b.

Step 1:

We first show that satisfies the following di erential equation

1

2

1
2 +

1

2

˙
= (60)

This is shown from the necessary conditions (??), (6) and (8),

=
1

2
1 = 0 (61)

1

2
= 1 (62)

1

2
ln = ln 1 + ln 2 (63)

˙

2
=
˙
1

1

(64)

but we know from the necessary conditions

˙
1

1

=
1

2

1
2 (65)

so we have
˙

2
=
˙
1

1

=
1

2

1
2 (66)
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The relationship between 1 and is from

=
1

2 1

r
2 = 0 (67)

or
1

2 1 2 = 0 (68)

ln 2 + ln 1 +
1

2
ln 2 = 0 (69)

so that
˙
2

2

=
˙
1

1

+
1

2

˙
(70)

and from the necessary conditions we have

˙
2 = 2( + ) (71)

so we have

+ =
1

2

1
2 +

1

2

˙
(72)

or

=
1

2

1
2 +

1

2

˙
(73)

This ends Step 1

Step 2: Solving for ( ) :

We have

=
1

2

1
2 +

1

2

˙
(74)

multiplying each side by gives

1

2
+
1

2

˙
=

1
2 (75)

let
1

2
+ ˙ = (76)
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the solution can be written in two forms:

( ) =

μ
0 +

1

2

¶
1

2

or

( ) =

μ
+
1

2

¶
( ) 1

2

where 0 = (0) or = ( ) and therefore we have

( ) =

μμ
+
1

2

¶
( ) 1

2

¶2
or

( ) =

μμ
0 +

1

2

¶
1

2

¶2
This ends Step 2.

APPENDIX 11: Proof of Lemma 3b

We have
˙
2

2

=
˙
1

1

+
1

2

˙

+ =
˙
1

1

+
1

2

˙
(77)

+ =
˙
1

1

+
1

2

2
¡

+ 1
2

¢
( )

¡¡
+ 1

2

¢
( ) 1

2

¢¡¡
+ 1

2

¢
( ) 1

2

¢2 (78)

+ =
˙
1

1

+

¡
+ 1

2

¢
( )¡¡

+ 1
2

¢
( ) 1

2

¢ (79)

( + ) ( ) = ln 1 ( )

1 ( )
+ ln

¡¡
+ 1

2

¢
( ) 1

2

¢
(80)

( + )( ) = 1 ( )

1 ( )

¡¡
+ 1

2

¢
( ) 1

2

¢
(81)

1 ( )
( + )( )¡¡

+ 1
2

¢
( ) 1

2

¢ = 1 ( ) (82)
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1
2 1 ( )

( + )( )³³
1
2
+ 1

2

´
( ) 1

2

´ = 1 ( ) (83)

1 ( )
( + )( )¡¡

1 +
¢

( )
¢ = 1 ( ) (84)

APPENDIX 12

From
1

2
= 1 (85)

we have

=

μ
1

2 1

¶2
=

Ã¡¡
+ 1

2

¢
( ) 1

2

¢
2 1 ( )

( + )( )

!2

=

Ã¡¡
+ 1

2

¢
( ) 1

2

¢
( + )( )

!2
=

³³³
1 +

´
( )

´
( + )( )

´2
=

³³
1 +

´
( ) ( + )( )

´2
˙ =

³ ³
1 +

´
( ) + ( + ) ( + )( )

´³³
1 +

´
( ) ( + )( )

´
˙ =

³ ³
1 +

´
( ) +

³
1 +

´
( + )( )

´³³
1 +

´
( ) ( + )( )

´
˙ =

³
1 +

´ ¡
( ) + ( + )( )

¢ ³³
1 +

´
( ) ( + )( )

´
˙ =

³
1 +

´
2 ( )

¡
1 + ( )

¢ ³
1 +

¡
1 ( )

¢´
˙ 0

since

1 +
¡
1 ( )

¢
0

APPENDIX 13
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We have
˙ =

μ
1 ˙

¶
(86)

but now

=
1

2

1
2 +

1

2

˙
(87)

so
˙ = 2 0 (88)

˙ = 2

μ
(( + 1

2 ) ( ) 1
2 ) ( + )( )

¶2
¡¡

+ 1
2

¢
( ) 1

2

¢2 (89)

˙ = 2
2( + )( )

(90)

with

( ) =
1

2

¸2
(91)

( ) = b ¸
(92)

˙ = 2
b 2( + )( )h

1
2

i (93)

( ) = b exp ( 2 + 2 2 + 2 ) + 2 (94)

( ) = b+ 2 = b
= 0

so

( ) = b 2( + )( )

˙ ( )
= 2 ( + ) 0

APPENDIX 14

=
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so

+
1

2

1
2 = +

1

2

˙
(95)

˙
=
˙
+
˙
=
˙

2 ( + )

˙
=

1
2

Since ˙ 0 then
³

1
´

0 so 1

( )

1

( )
= 2 for all and

therefore
˙

0

APPENDIX 15

Moreover substituting and yields

( ) = ( ) ( )

( ) =

μμ
+
1

2

¶
( ) 1

2

¶2 b 2( + )( )

there exist a smooth path reaching at is 0 satisfies

0 = (0) = bμμμ +
1

2

¶
1

2

¶
( + )

¶2
Let ( ) =

¡¡
+ 1

2

¢
1
2

¢
( + )

( ) =

μ
+
1

2

¶
1

2
( + )

0 ( ) =
μ
1

2
+
1

2

¶
( + )

1

2
( + )

0 ( ) =
1

2

μ μ
+ 1

¶
( + )

¶
0 ( ) =

1

2
( + )

¡
1

¢
0

0
= b ( ) 0 ( ) 0
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