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Résumé / Abstract 
 
Les compagnies pétrolières révisent souvent les chiffres de leurs réserves, ce qui indique que 
l’incertitude concernant les stocks est prévalente. Nous considérons le cas où l’extraction 
donne des informations sur la taille des réserves. Nous prouvons que l’ordre optimal 
d’exploitation des stocks dépend des propriétés du processus d’extraction concernant la 
révélation d’information et des coûts. La différence des coûts, qui est une considération 
importante dans Solow and Wan (1976), doit être balancée contre la valeur informative des 
réserves. Notre modèle fournit une explication du fait que les réserves plus coûteuses sont 
parfois exploitées avant l’épuisement des réserves moins coûteuses. 
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Oil companies often announce revised estimates of their reserves. This indicates that stock 
uncertainty is a prevalent feature of natural resource industries. In this paper we consider the 
multi-deposit case where resource extraction produces information about the size of reserves. 
We show that the optimal order of extracting resource deposits depends both on the 
informational characteristics of the extraction process and on the extraction costs. 
Differences in extraction costs, a key consideration highlighted in Solow and Wan (1976), 
must be balanced against the relative value of information generated by the extraction of 
various deposits. Our model supplies an explanation of why high cost deposits are sometimes 
extracted when lower cost deposits have not been exhausted. 
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1. Introduction

The problem of determining the optimal extraction of a resource
deposit of unknown size was first posed by Kemp (1976), and later
discussed in Kemp (1977), Kemp and Long (1980a, 1985), Gilbert
(1979), Loury (1978), and Kumar (2002, 2005), among others. An-
other question in the theory of exhaustible resources is the optimal
order of extraction of deposits of known sizes, with di erent extrac-
tion costs. This question was first raised by Herfindahl (1967)1, and
subsequently taken up by several authors, including Solow and Wan
(1976), Kemp and Long (1980b), Amigues, Gaudet, Favard and More-
aux (1998), Amigues, Longand Moreaux (2006).
The two problems share a common concern: what is the correct

time path of the charge to users of extracted resources? In the simplest
resource extraction problem, considered by Hotelling (1931), where
there is complete certainty, and only one deposit, the shadow price of
the stock must rise at a rate equal to the rate of interest2. This implies
that the net price (i.e., consumer’s price net of marginal extraction
cost) must rise at the rate of interest. This is known as Hotelling’s
Rule3. Herfindahl (1967) considers the case of several known deposits
with di erent extraction costs, and shows in a partial equilibrium set-
ting that a lower cost deposit should be exhausted before extraction
of the higher cost deposit begins. This implies that even though the
shadow price of each deposit rises at the rate of interest, the net price
(consumer’s price minus marginal extraction cost) does not4: while
the time path of users’ price is continuous, the net price jumps down

1For a comparative static analysis of the Herfindahl model, see Hartwick (1978).
2For an earlier theoretical treatment of the resource extracting firm, see Gray

(1916).
3Of course if extraction cost is stock-dependent, Hotelling’s Rule must be mod-

ified. See Levhari and Leviatan (1977), Kemp and Long (1980c).
4For a simple diagramatic exposition, see Dasgupta and Heal (1979, Diagram

6.4, p. 173).
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(by an amount equal to the di erence in marginal extraction costs)
at transition points. Because of these jumps, it follows that net price,
on average, rises at a rate lower than the rate of interest. Solow and
Wan (1976) confirmHerfindahl’s result in a general equilibrium setting
where capital accumulation takes place and hence the interest rate is
endogenous. Furthermore, they show that, in the case of a continuum
of deposits (so that every point is a “transition point”), the net price
must be larger than the shadow price of the aggregate resource stock
by a factor 1+ , where is the shadow surcharge (over and above the
shadow price) for the use of the resource5.
Kemp (1976), investigating the optimal extraction of a resource

stock of unknown size, shows that net price is possibly non-monotone,
and hence generically not rising at the rate of interest, but for a dif-
ferent reason: the concave utility function of the planner implies a
precautionary motive in the face of stock size uncertainty. If one does
not know how much one has, one must proceed with caution. How
much caution is optimal at any given time depends on the “hazard
rate” at that time. In general the hazard rate is not a constant6. In
fact, the time path of the hazard rate can be influenced by the choice
of the planned extraction path. As extraction proceeds, news arrives
continuously: e.g., one learns what is the probability that the next
million barrells of oil is available.
The present paper raises the following question: what is the opti-

mal order of exploitation when several deposits are of unknown sizes?
Suppose there are two resource deposits, each of unknown size. How
should one exploit them? In our search for an answer to this question,
we find it convenient to begin with a simple model of optimal extrac-
tion of a single two-layered deposit of unknown size. The information
about the size of the second layer arrives as soon as the first layer has
been exhausted. How fast should one exhaust the first layer in view

5Solow and Wan (1976), p. 365.
6The exceptional case of a constant hazard rate (i.e., the distribution is expo-

nential) gives a simple extraction rule; this case is exploited by Loury (1978) and
Robson (1979).
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of one’s ability to influence the information-arrival date? What is the
relationship between the terminal rate of extraction of the first layer
and the initial rate of extraction of the second layer? This section is
followed by a generalisation to the case of two deposits of unknown
size, each composed of two layers. Good news or bad news about the
second layer arrives as soon as the top layer is exhausted. Finally,
we consider a further generalisation: the case where, for each mine,
some learning about its second layer takes place during the extraction
process of its first layer that permits revision of probabilities. One
thus receives “little good news” or “little bad news” some time before
the arrival of the big news about the second layers. We characterize
the optimal extraction order, and in some specific cases, give formu-
las for computing certainty equivalents and for deciding whether one
sequence dominates another.
The implication of our finding for the net price of an exhaustible

resource is that it should reflect the informational value of extraction.
The shadow price of a homogeneous first layer may not rise at the rate
of interest: there is a jump in the shadow price when a little bad news
or a little good news arrive. It may be optimal to extract the top half
of a first layer more quickly to hasten the arrival of information. This
entails a higher initial extraction path, hence a fall in consumer’s price,
reflecting an “informational premium” (in contrast to the “surcharge”
derived by Solow and Wan, 1976, which is derived under conditions of
certainty and which reflects the transition to a higher cost deposit).
In our model, in order to focus on the informational value about re-
serve sizes, we abstract from di erences in extraction costs. In a more
general model, both our informational premium and the Solow-Wan
extraction cost surcharge would be combined to obtain the correct
pricing.
Before proceding to our formal model, we note that, prior to the

present study, there has been some discussion of the issue of sequen-
tial extraction under stock uncertainty, but results have been sparse.
Kemp (1977) formulated the problem of extracting a sequence of de-
posits, including the case where some deposits become available only
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in the future, with unknown delivery date. Robson (1979) found that
if the distribution of deposit size is exponential and is identical for
both deposits, then the order of extraction is a matter of indi erence,
while if the exponential distribution of deposit 1 has a lower mean than
that of deposit 2 then one should exhaust deposit 1 first. Hartwick
(1983) characterized the jump in the price path7 when extraction of a
new deposit begins.
Our paper can be placed in a more general context that encom-

passes several inter-related issues: the value of information, the timing
of the resolution of uncertainty, and the choice of which uncertainty to
resolve first. Following the seminal work of Blackwell (1951), econo-
mists have developed models about optimal learning. Long and Man-
ning (1972) and Kihlstrom (1974) showed how consumers can opti-
mally learn about product quality. Long (1976) explored the implica-
tion of Bayesian learning in a model of foreign investment. Grossman,
Kihlstrom and Mirman (1977) addressed the issue of production of
information and learning by doing. Gittins (1979) demonstrated that
the solution to a class of learning problems consists of choosing at
each stage the action with the largest “dynamic allocation index”8.
Epstein (1980) assumed away optimal learning, and focused instead
on the e ect of the exogenous resolution of uncertainty on decision.
Hartwick and Yeung (1985, 1988, 1989) found conditions under which
a value function is convex in a random variable (such as future prices,
interest rates, or production costs). In our paper, the decision maker
can choose (i) the time of arrival of information, (ii) which uncertainty
to be resolved first, (iii) whether to give priority to obtaining full in-
formation on a mine, or partial information about two mines. These
choices involve costs: early exhaustion of a layer to obtain informa-
tion goes against the normal desire of consumption smoothing. The

7Jumps in price paths were also discussed in Dasgupta and Heal (1979, p. 428-
433) in the context of exploration for new reserves, and in Hartwick, Kemp and
Long (1986) in the context of set-up costs.

8The dynamic allocation index has since become known as the Gittins index.
See for example Brezzi and Lai (2000).
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optimal choice must strike the right balance.
Finally, we would like to emphasize that the kind of uncertainty we

deal with in this paper is not influenced by future events. The size of a
deposit is unknown to the decision maker, but has been determined by
geological history. We are not dealing with “event uncertainty”: some
future events may have impacts on the size of a recoverable stock of
natural resource. Tsur and Zemel (2004) mentioned pollution-induced
events (Cropper, 1976, Tsur and Zemel, 1996), forest fires (Reeds,
1984), sea-water intrusions (Tsur and Zemel, 1995), political events
(Long, 1975, Tsur and Zemel, 1998). Due to limitation of space, we
refrain from discussing the implications of event uncertainty.

2. One deposit of unknown size

Assume we have a mineral deposit with two layers, and one must
exhaust the first layer before reaching the second one. The size of the
first layer is , a known positive number. The size of the second layer
is a random variable which can be zero or , a known positive num-
ber. (Here we use the convention that the capital letter denotes a
random variable, while the lower case is an actual value.) The sub-
jective probability that = is 0 and the subjective probability
that = 0 is 1 0. We assume that the subjective uncer-
tainty is resolved as soon as the first layer, , is exhausted.
The resource is not storable after extraction. If the decision wants
to advance the date at which information becomes available, he must
extract at a faster rate. How fast should the planner exhaust ?
(Think of being invited to a dinner under imperfect information:

you see the first course, but do not know if a second course will be
o ered after completing the first course.)
Let ( ) be the rate of extraction at time . The marginal cost

of extraction is 0. The utility function is strictly concave and
increasing:

= ( ) with (0) = 0, 0 0 and 00 0.
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Whenever explicit solutions are required, we will use the following
functional form.
Special functional form
Constant elasticity of marginal utility (CEMU)

( ) =
1

1

We assume 6= 1. The CEMU function is strictly concave and in-
creasing for all 0 However, in what follows, we do not consider
the case 1, because 1 implies (0) = , and this would
cause awkward problems concerning existence of optimal paths when
the size of the cake is unknown.
After the exhaustion of (at some time ) the consumer receives

either “good news”, i.e. = , or “bad news”, i.e., = 0. In the
case of bad news, her discounted utility stream (from time + to time
infinity) is zero. In the case of good news, it is

+
( ) where ( )

is the solution to the following problem.
Problem S (Optimal consumption of the second layer)

( ) max
( )

Z
+

[ ( ( )) ( )] ( +)

subject to Z
+

( ) =

The following lemmas will be useful.
Lemma 1 At any time +, the current-value Hamiltonian of

the resource extraction problem (Problem S), when evaluated at the op-
timal choice, is equal to the consumer surplus, ( ( )) 0( ( )) ( ).
Proof The present-value Hamiltonian at is

( ) = [ ( ( )) ( )] ( +) ( )

where 0 is the constant present-value shadow price of the stock
. The current value Hamiltonian is

( ) = ( ( )) ( ) ( +) ( )
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We have the necessary condition

[ 0( ( )) ] ( +) =

Substituting this condition into the current-value Hamiltonian, we ob-
tain

( ) = ( ( )) 0( ( )) ( )..........¥

For convenience, we denote the consumer surplus function by ( ):

( ) ( ) 0( )

Lemma 2 The value function ( ) is equal to the present value
of a (fictitious) perpetual stream of consumer surplus ( ( +)), that
is,

( ) =
( ( +))

=
( ( +)) 0( ( +)) ( +)

Proof Use the Hamilton-Jacobi-Bellman relationship ( +) =
( ( +)) ¥
Remark If follows from Lemma 2 that the present value of the op-

timal declining stream of utility (net of extraction costs) is equal to the
present value of a (fictitious) perpetual stream of constant consumer
surplus ( ( +))Z

+

[ ( ( )) ( )] ( +) =
( ( +))

Before receiving the news, the expected utility from layer is

( ) ( ) + (1 ) (0)

We now characterize the optimal plan to extract from layer .
This plan consists of an optimal terminal time , an optimal terminal
extraction rate from layer , denoted by , and an optimal time
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path ( ) which is easily pinned down, once we have determined .
The optimization problem is as follows.
Problem W Find , , and ( ) for [0 ] that solve

( ) = max

Z
0

[ ( ( )) ( )] + ( )

subject to Z
0

( ) =

where ( ) 0 and ( ) = .
It turns out that there is a simple condition that characterizes
, and it does not depend on the size of . This condition is given

by Proposition 1.
Proposition 1 The optimal terminal extraction rate from layer ,

denoted by , must satisfy the condition that the consumer surplus
at is equated the product of the interest rate and the expected
utility ( ) :

( ) = ( ) (1)

It follows that
= 1 ( ( )) (2)

where 1( ) is the inverse of the consumer surplus function.
Proof The present-value Hamiltonian for Problem W is

( ) = [ ( ( )) ( )] ( )

where is the constant present-value shadow price of layer . The
necessary conditions include:
(i) The Hotelling Rule

[ 0( ( )) ] = [ 0( ( )) ] =

(ii) The transversality condition9

( ) ( ) = 0

9See for example Leonard and Long (1992, Chapter 6).
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Using the Hotelling Rule,

( ) = [ ( ( )) 0( ( )) ( )] = ( ( ))

Combining this result with the transversality condition, we obtain
( ) = ( ) ¥
Example 1 Assume the utility function CEMU, and zero extrac-

tion cost. It is easy to show that

( ) =

μ ¶ μ
1

1

¶
1

and the initial rate of extraction (from the second layer) at time +

denoted by is given by

( ) = 0( ) = 0( ) =
μ ¶

=

μ ¶
i.e.,

=

It follows that

( ) =

μ ¶ μ
1

1

¶
1 + (1 ) 0 (3)

Under CEMU, the consumer surplus function is

( ) =
1

1

Applying Proposition 1, we get

( ) =
1

( )1 = ( ) =

μ ¶ μ
1

1

¶
(4)

Thus
( )

( )1
=

(1 )
(5)
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and

= 1( ( )) =

"μ
1

¶
( )

μ ¶ μ
1

1

¶# 1
1

=

μ ¶
1

1

Note that in this case, is homogeneous of degree one in . (This
is due to the CEMU utility function, and zero extraction cost.)
Remark a It follows that =

1
1 ; hence ,

i.e., the rate of extraction jumps up when the good news arrives.
Remark b As is clear from equation (3), under CEMU and zero

extraction costs, the expected utility of the prospect ( 0; 1 ) is
equal to the expected utility of the prospect ( 0; 1 0) if and only if
=

1
1 . In other words, as far as expected utility is concerned,

the certainty-equivalent of ( 0; 1 ) is a stock such that
=

1
1 .

Corollary 1
(i)The optimal extraction rate ( ) satisfies

( ) = 0 1 £ ( )( 0( ) ) +
¤

( )

where, for given , ( ) is an increasing function of .
(ii)The optimal terminal time for layer satisfiesZ

0

( ) =

Therefore

= ( ) = ( 1 ( ( )))

where ( ) is an increasing function of and a decreasing function
of .
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Proof: omitted.

Example 1 (continued) Under CEMU and zero extraction costs,

[ ( )] =
£ ¤

Hence
( ) = ( ) ( )

Exhaustion of requires

=

Z
0

( ) =

Z
0

( )

Hence

=

μ ¶ £
( ) 1

¤
Solving for

= ln 1 +

¸
= ln

"
1 + 1

1

#

Notice that in this case, ( ) is homogeneous of degree zero in ( ).
Lemma 3 The value function of Problem W is

( ; ) =Z ( )

0

©
( ( )) ( )

ª
+ ( ) ( )

Example 1 (continued) Under CEMU and zero extraction costs,
the integral of discounted utility flow obtained from layer is

( )

Z
0

1

1
[ ( )]1

=

Z
0

1

1

n£ ¤
( )

o1
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=
(1 )

£ ¤1 £
( ) 1

¤
=

( )
¸ £

( ) 1
¤

Thus, using (1)

( ; ) = ( ) + ( )

= ( ) +
( )

¸
This gives

( ; ) =
( )

¸ ©£
( ) 1

¤
+ 1
ª

=
( ) h i1

=
( )

1 +

¸1
Simplifying,

( ; ) =
+ ( )

¸1
( )

=
£

+ ( )
¤1 ( )

( )1

¸
( ; ) =

£
+ ( )

¤1 μ
(1 )

¶
(6)

( ; ) =

μ ¶ h
1

1 +
i1 μ

1

1

¶
(7)

It follows that a second layer of size with probability is “equivalent”
to a second layer with size =

1
1 obtained under certainty.

Remark (on the convexity of the value function) The value
function (7) is linear in if = 0, but strictly convex in if 0.
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3. Two deposits, of which one is of unknown size

Now consider a scenario where there are two mines. Mine 1 has two
layers, 1 and 1, where 1 is a known number and 1 is a random
variable, with two possible values, 1 and 0, with probabilities 1 and
(1 1). (Here 1 is a known positive number.) The actual value
taken by 1 is known as soon as 1 is exhausted. Mine 2 has only
one layer, 2. The marginal cost of extraction is , which is identical
for both mines.
It is easy to show that the optimal order of extraction is to exhaust

1 first. After that, 1 is known, and it is a matter of indi erence
whether to exhaust 2 before extracting from 1, or vice versa, or
to have simultaneous extractions from 2 and 1. Intuitively, by
extracting 1 first (rather than 2) one obtains information at an
earlier date. This is valuable for decision making.

4. Two deposits, each of unknown size

Now suppose there are two mines, each of unknown size. Mine 1 is
the same as described in the preceding section. Mine 2 has two layers,
2 and 2, where 2 is a random variable that can take on one of two
possible values 2 or 0 (with probabilities 2 and 1 2 respectively.)
Except in singular cases, 1 6= 2, 1 6= 2 and 1 6= 2. Assume
1 = 2. Under what condition would it be optimal to exhaust 1

before extracting 2?
To answer this question, it is useful to begin by determining the

value of the program conditional on 1 being extracted first.

5. Resolving the uncertainty about deposit 1 first

Suppose that the individual plans to exhaust 1 first, and specifies
some time 1 at which the accumulated extraction from deposit 1 is
1. Then, at time 1, there are two possibilities: (i) Case 1in which
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there is good news about deposit 1, i.e., 1 = 1, or (ii) Case 1in
which there is bad news about deposit 1, i.e., 1 = 0.

5.1. Analysis of Case 1

If case 1 occurs then at 1 the individual will begin to extract
from deposit 2.We denote by 1 the value of this problem. Our
earlier analysis of the one-deposit case (i.e. Problem W) applies. Let
2 denote the optimal length of time to exhaust 2. Clearly 2 is a
function of 2 and 1

2
, just as (in Problem W) is a function of

and . (Here 1

2
denotes the optimal terminal extraction

rate for layer 2, given that 1 has occurred). After the exhaustion
of 2, there are either 2 units of resources left, or none, because 1

means 1 = 0.
Clearly, from Proposition 1,

1

2
= 1 ( ( 2))

and from Corollary 1,

2 = 2( 2
1

2
) = 2( 2

1 ( ( 2)))

Hence
1( 2 2 2) =Z

2( 2
1

2
)

0

©
( 2( 2

1

2
)) 2(

1

2
)
ª

+ 2( 2
1

2
) ( 2)

Lemma B1 After receiving the bad news 1 (i.e., that 1 = 0)
when 1 is exhausted, the value of the remaining program is, under
CEMU and zero extraction costs,

1 =
( 1

2
)
"
1 +

2

1

2

#1
=
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"
1 +

2

1

2

#1
( 2 + 0) =

μ
(1 )

¶
1

2
+ 2

¸1
where

1

2
=

μ ¶
1

1

2 2

Thus
1 =

1

1

μ ¶
2

1
1

2 + 2

¸1
The optimal time it takes to exhaust 2 (given the bad news 1) is

1
2 = ln

"
1 +

2

1

2

#
= ln 1 +

2
1

1

2 2

Proof Omitted.

5.2. Analysis of Case 1

Case 1 is slightly more complicated. The individual will also find
it optimal to begin to extract from deposit 2, knowing that, at the
time the layer 2 is exhausted, he will receive news whether he has
1 + 2 (we call this sub-case 1 2) or has only 1 left (we call this
sub-case 1 2). This is di erent from Case 1 where after exhausting
2 he will have either 2 units left, or none. Clearly, 1

2
is di erent

from 1

2
. A little reflection reveals that

1

2
= 1 ( ( 2 + 1))

where 2 is a random variable, and 1 is a known constant (not a
random variable) because 1 has occured.
Given that 1 has occurred, the value of the sub-case 1 2 (once

2 has been exhausted) is, in the CEMU case,

1 2 ( 1 + 2) =
( 1 + 2)

1

1

μ ¶
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and the value of the sub-case 1 2 (once 2 has been exhausted) is

1 2 ( 1) =
( 1)

1

1

μ ¶
Thus

( 2 + 1) = 2
1 2 + (1 2) 1 2

( 2 + 1) =

μ
1

1

¶μ ¶ h
2( 1 + 2)

1 + (1 2)
1
1

i
The individual would be indi erent between this expected utility and
receiving a certain stock 2 where

1
2 2( 1 + 2)

1 + (1 2)
1
1

i.e., 2 is the certainty-equivalent of the prospect ( 1+ 2 1; 2 1

2) In case 1, the individual must decide on the length 1
2 of the time

interval over which he must use up the layer 2.Given 1 and 1, his
optimization problem is
Problem 1 (After receiving the good news that 1 = 1 0):

Find 1
2 and the time path 1

2
( ) to maximize 1 defined byZ

1+ 1
2

1

( 1)
£
( 1

2
( )) 1

2
( )
¤

+
1

2 [ 2 ( 1 + 2) + (1 2) ( 1)]

subject to Z
1+ 1

2

1

2( ) = 2

Applying Proposition 1 and Corollary1, we get the following re-
sults.
Proposition 2 The solution to Problem 1 consists of (i) a ter-

minal extraction rate for layer 2, denoted by 1

2
, (ii) an op-

timal time 1
2 and (iii) a time path 1

2
( ) over the time interval£

1 1 + 1
2

¤
, with the properties that
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1) 1

2
satisfies the condition that the consumer’s surplus at

1

2
is equated to the product of the interest rate and the social

value of the random variable 2 + 1 (here 1 is a known number),
that is,

( 1

2
) 0( 1

2
) 1

2
= [ 2 ( 1 + 2) + (1 2) ( 1)]

(8)
2) over the time interval

£
1 1 + 1

2

¤
the extraction path satisfies

the Hotelling Rule

0( 2( )) = 0( 1

2
) ( 1+ 2)

3) the path 2( ) over
£
1 1 + 1

2

¤
just exhausts the first layer,

2, that is, Z
1+ 1

2

1

1

2
( ) = 2

Proof Similar to that of Proposition 1, and is therefore omitted.

Applying Proposition 2 to the CEMU case, we get

1

£
1

2

¤1
=

"
2
( 1 + 2)

1

1

μ ¶
+ (1 2)

( 1)
1

1

μ ¶ #
£

1

2

¤1
=

μ ¶1 £
2( 1 + 2)

1 + (1 2)( 1)
1
¤

1

2
=

μ ¶£
2( 1 + 2)

1 + (1 2)( 1)
1
¤1 (1 ) 2 (9)

Notice that 1

2
is homogeneous of degree one in ( 1 2).

Corollary G1 After receiving the good news 1(i.e., that 1 =

1) when 1 is exhausted, the value of the remaining program, under
CEMU and zero extraction costs, is

1 =

μ
(1 )

¶
1

2
+ 2

¸1
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where

1

2
=

μ ¶£
2( 1 + 2)

1 + (1 2)( 1)
1
¤1 (1 )

μ ¶
2

i.e.
1 =

1

1

μ ¶
[ 2 + 2]

1

Proof: Omitted.
Remark: Notice that 1 is homogeneous of degree 1 in

( 2 1 2).

5.3. Optimal time to exhaust 1

We now compute the optimal time 1, given that at time zero the
individual chooses to extract from layer 1 first. The optimization
problem is
Problem 1 Choose the time 1 and the extraction path b 1( )

over [0 1] to maximizeZ
1

0

[ (b 1( )) b 1( )] + 1
£
1

1 + (1 1) 1
¤

subject to Z
1

0

b 1( ) = 1

Remark We use the symbol b 1( ) (with the hat) to denote that
the path is chosen at time 0, when the individual has not received any
news (good or bad) about any of the deposits.

Proposition 3 The solution of Problem 1 consists of (i) a ter-
minal extraction rate for layer 1, denoted by b 1

(ii) an optimal
time 1 and (iii) a time path b 1( ) over the time interval [0 1], with
the following properties.
1) b

1
satisfies the condition that the consumer’s surplus at b

1

is equated to the product of the interest rate and the social value of the
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random variables 2 and 1 (here 1 is unknown, because in choosing
the path b 1( ) at time 0, the layer 1 has not been exhausted).

(b
1
) 0(b

1
)b

1
=

£
1

1 + (1 1) 1
¤

2) Over the time interval [0 1] the extraction path satisfies the
Hotelling Rule:

0(b1( )) = 0(b
1
) 1

3) The path b 1( ) over [0 1] just exhausts the first layer 1 so
that Z

1

0

b 1( ) = 1.

Corollary 3 Given CEMU and zero costs of extraction, the valuesb
1
and 1 can be computed as follows.

1

£b
1

¤1
=

£
1

1 + (1 1) 1
¤

where

1
1

1

μ ¶ ½h
2( 1 + 2)

1 + (1 2)
1
1

i 1
1

+ 2

¾1
1

1

1

μ ¶ n£
2( 2)

1
¤ 1
1 + 2

o1
Thus, if we define the “quantity indices”

1

h
2( 1 + 2)

1 + (1 2)
1
1

i 1
1

+ 2

1
£
2( 2)

1
¤ 1
1 + 2

then b
1
=

μ ¶h
1

¡
1
¢1

+ (1 1)
¡

1
¢1 i 1

1
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Remark: Notice that b
1
is homogeneous of degree one in ( 2 1 2).

Under CEMU and zero extraction costs, the optimal 1 is deter-
mined from the condition

1 =

Z
1

0

b1( ) = b
1

μ ¶£
( ) 1 1

¤
Hence

1 = ln 1 +
( ) 1b

1

¸
The value of the integral of utility over the time interval [0 1] is

( 1; 2 1 2) =
1

(1 )

£b
1

¤1
1
£
( ) 1 1

¤μ ¶
and the value of the program, given that 1 is to be exhausted first,
is

1 = ( 1; 2 1 2) + 1
£
1

1 + (1 1) 1
¤

=

μ
(1 )

¶ b
1
+ 1

¸1
=

1

1

μ ¶ ½h
1

¡
1
¢1

+ (1 1)
¡

1
¢1 i 1

1
+ 1

¾1
6. Which deposit to extract first?

Clearly, by similar reasoning, if we extract from layer 2 first, the
welfare level will be

2 =

μ
(1 )

¶ b
2
+ 2

¸1
where

b
2
=

μ ¶h
2

¡
2
¢1

+ (1 2)
¡

2
¢1 i 1

1
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2

h
1( 1 + 2)

1 + (1 1)
1
2

i 1
1

+ 1

2
£
1( 1)

1
¤ 1
1 + 1

To determine whether to extract 1 or 2 first, we must compare
2 with 1 .
Clearly, 1 must be extracted before 2 if and only if the following

ratio is greater than unity

b
1
+ 1b

2
+ 2

i.e., b
2
+ 2 b

1
+ 1

i.e., h
2

¡
2
¢1

+ (1 2)
¡

2
¢1 i 1

1
+ 2h

1

¡
1
¢1

+ (1 1)
¡

1
¢1 i 1

1

1 0 (10)

We consider three special cases.
Case 1 1 = 2 = , 1 = 2 = , 1 2

In this case, it is optimal to extract 1 first. (See the Appendix
for a proof.) The intuition is that one would want to have news about
the better propect first.
Case 2 1 = 2 = , 1 = 2, 1 2.
In this case, it is optimal to extract 2 first. (See the Appendix

for a proof.) The intuition is that 2 gives news at an earlier date
that 1.
Case 3 1 = 2 = , 1 = 2 = , 1 2. In this case, it is

optimal to extract 1 first.
We summarize our results in the following proposition:
Proposition 4 (Optimal order of extraction of two deposits

of unknown sizes) In the case of two deposits of unknown sizes, the
optimal policy has the following properties:
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a) Other things being equal, the first layer of the deposit with higher
probability of should be extracted (and exhausted) first.
b) Other things being equal, the first layer of the deposit with a

smaller first layer should be extracted (and exhausted) first.
c) Other things being equal, the first layer of the deposit with a

higher should be extracted (and exhausted) first.
Proof: See the Appendix.

7. Extension: Learning while extracting

So far we have assumed that the individual learns about the second
layer (i.e., finds out if it exists or not) only after the exhaustion of
the first layer. It would be a bit more realistic to suppose, instead,
that some information arrives while the individual is in the process
of extracting the first layer. A simple way of modelling this is as
follows. The individual’s subjective probability numbers, 1 and 2,
are only ex-ante, or preliminary, probabilities. When the individual
is in the process of extracting layer , he receives news that allow
him to update his . To make things as simple as possible, suppose
that, for deposit , there exists a number (where 0 1) such
that after the fraction of is used up, he will be able to revise
upwards, to + , or downwards, to . (We restrict so that
0 + 1.) Before is exhausted, he does not know
if the revision is going to be upwards, or downwards. He only knows
that the probability of upward revision is and that of downward
revision is 1 .
How should the individual proceed? How fast should he extract

the first fraction ? Let us begin with the case of a single deposit
with two layers.

7.1. One deposit with learning while extracting

The deposit has two layers. The size of the first layer is , which
is known. The size of the second layer is either or 0. Ex ante, the
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probability that = is and the probability that = 0 is 1 .
We represent this “prospect” by the tuple ( 0; 1 ). As soon as a
fraction (0 1) of is exhausted, the decision maker obtains news
about the second layer. (We assume the number is known to the
individual.) The news is “bad” if must be downgraded to . This
case is denoted by (for “bad”). It is “good” if must be upgraded
to + . This case is denoted by (for “good”).
We must determine the decision maker’s optimal decision at node
and at node . In what follows, we focus on the case of CEMU utility

with zero extraction costs. It is clear that our earlier analysis applies
here, with minor modifications.
At node , the remaining part of the first layer is (1 ) . After

he has learned the good news, the decision maker’s problem is to
maximize Z

0

( ) + [( + ) ( )]

subject to Z
0

( ) = (1 )

Here denotes the optimal length of time to consume the “second
half” of the first layer, i.e., .(For convenience, we use the expression
“second half” to denote , which is in general not 2).
The solution can be characterized by (a) the terminal extraction

rate of the “second half ”of the first layer, given the good news ,

=

μ ¶
( + )

1
1

and by (b) , the length of time to extract the “second half”

= ln

"
1 +

#
= ln

"
1 +

( + )
1

1

#
The welfare (from time ) as seen at node is

= ( ; + ) =

μ ¶ h
( + )

1
1 +

i1 μ
1

1

¶
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Similarly, at node ,

= ln

"
1 +

#
= ln

"
1 +

( )
1

1

#

where the terminal extraction rate of the “second half ”of the first laye
first layer, given bad news, is

=

μ ¶
( )

1
1

The welfare as seen at node is

= ( ; ) =

μ ¶ h
( )

1
1 +

i1 μ
1

1

¶
We must now compute the optimal extraction of the “first half ”

of . The problem to be solved is:

max

Z
0

( ) + ( + (1 ) )

subject to Z
0

( ) =

where is the optimal time to exhaust the “first half” of layer .
The optimal terminal extraction rate for the “first half” of the layer
is obtained from

1

£ ¤1
= ( + (1 ) )

Define the quantity index

( )

½ h
( + )

1
1 +

i1
+ (1 )

h
( )

1
1 +

i1 ¾ 1
1

(11)
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where, in view of
( ) = ( )

1
1

Then the optimal terminal extraction rate for the “first half ”of layer
is

=

and the time it takes to exhaust the first half of layer is

= ln 1 +

¸
= ln 1 +

¸
The optimal value of the whole program is

( ; ) =
+ ( )

¸1
( + (1 ) )

=
+ ( )

¸1
1

μ ¶ μ
1

1

¶
= [ + ]1

μ ¶ μ
1

1

¶
Note that

( 0 ) =
1

1 +

Let us determine whether the optimal value ( ; ) is
higher or lower than the value obtained if there is no expectation of
mid-way revision of . Clearly, if = 0 then the values of the two
problems are identical:

( ; 0 ) = ( ; ) =

μ ¶ h
1

1 +
i1 μ

1

1

¶
The sign of the derivative of ( ; ) with respect to (keep-
ing constant) is the same as the sign of the following expression:

( )
h
( + )

1
1 +

i
( + ) 1 (1 )

h
( )

1
1 +

i
( ) 1



Extracting Several Resource Deposits of Unknown Size: Optimal Order 27

where ( 0 ) = 0. Note that for 0, ( ) 0 if and only if

1

"Ã
( )

1
1 +

( + )
1

1 +

!μ
+

¶ 1
1

#
1

i.e., i

[( )( + )]
1

1 + ( + )
1

1

[( )( + )]
1

1 + ( )
1

1

μ
1

¶ 1

(12)

If = 1 , the inequality (12) is satisfied for all positive and
such that 0 + 1, and 0 1.
Proposition 5 (gain from learning while extracting) The

possibility of learning while extracting increases the welfare of the in-
dividual (compared with the no-learning scenario).

7.2. Two deposits with learning while extracting

Consider now the case of two deposits with learning while extract-
ing. For simplicity, assume = 1 2. Deposit consists of a layer
and a second layer of size where is a random variable that can
take value (a known number) with ex-ante probability , or zero
with ex-ante probability 1 . Extracting the first half of layer
gives information that allows revision of upwards to + or down-
wards to . We assume that the decision maker learns nothing
about one deposit by extracting another deposit. In that sense the
deposits are assumed to be very dissimilar. What is the optimal order
of extraction? We suppose that it is feasible to extract the first half
of , and then costlessly switch to the extraction of the first half of
where 6= . Such a strategy is called “midway switching”. Is it

ever optimal to do midway switching?
We maintain the assumption that it is not possible to extract from

the second layer of a deposit before exhausting its first layer. (That
is, the second layer is not accessible before the first layer is removed).



Extracting Several Resource Deposits of Unknown Size: Optimal Order 28

And we take it as self-evident that it is never optimal to begin ex-
tracting from an accessible second layer before all first layers have
been exhausted.
How should the first layers be extracted? In what follows, we

assume = 1 2 for all . We list below six possible patterns of
extraction
There are two extraction patterns with midway switching in an

inter-weaving mode:

Pattern 1
μ

1

2
2

2
1

2
2

2

¶

Pattern 2
μ

2

2
1

2
2

2
1

2

¶
There are two extraction patterns with midway switching in a bunch-
ing mode:

Pattern 3
μ

1

2
2

2
2

2
1

2

¶
Pattern 4

μ
2

2
1

2
1

2
2

2

¶
And there are two extraction patterns without midway switching:

Pattern 5
μ

1

2
1

2
2

2
2

2

¶

Pattern 6
μ

2

2
2

2
1

2
1

2

¶
These patterns, however, are not strategies. By definition, strategies
are conditional on information received at each node.
Let us simplify by assuming, for the moment, that the first half

of 1 must be exhausted first. Then the first information received is
whether 1 should be upgraded (the news is 1) or downgraded (the
news is 1). Whether the news is good ( 1) or bad ( 1) the next choice
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is whether to extract the second half of 1 or the first half of 2.
Denote these choices by 1 (meaning the second half of 1) and 2

(meaning the first half of 2). One can construct a game tree, with
many branches. The number of strategies is very large, even on the
assumption that we begin with the first half of 1 so that the first piece
of information is either 1 or 1. Below are a few possible strategies,
given 1 (meaning that the first half of 1 must be exhausted first).
Strategy 1

1 2( 1 2 1; 1 2 1); 1 2( 1 2 1; 1 2 1)

This strategy says that if the outcome of 1 is 1, then the next step
is to extract the first half of layer 2, while if the outcome of 1 is
1, then the next step is also to extract the first half of layer 2; the
first two observations can be 1 2, or 1 2, or 1 2, or 1 2. If 1 2 is
observed, then (after extracting 1 and 2) extract the second half of
1 (i.e., choose 1), etc.
Strategy 2

1 2( 1 2 1; 1 2 1); 1 2( 1 2 1; 1 2 2)

This strategy di ers from strategy 1 only in the last entry: after ob-
serving 1 2, choose 2 (and not 1).
Strategy 3

1 2( 1 2 1; 1 2 1); 1 2( 1 2 2; 1 2 1)

Strategy 4

1 2( 1 2 1; 1 2 1); 1 2( 1 2 2; 1 2 2)

Strategy 5
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1 2( 1 2 1; 1 2 2); 1 2( 1 2 1; 1 2 1)

Strategy 6

1 2( 1 2 1; 1 2 2); 1 2( 1 2 1; 1 2 2)

Strategy 7

1 2( 1 2 1; 1 2 2); 1 2( 1 2 2; 1 2 1)

Strategy 8

1 2( 1 2 1; 1 2 2); 1 2( 1 2 2; 1 2 2)

Strategy 9

1 2( 1 2 2; 1 2 1); 1 2( 1 2 1; 1 2 1)

Strategy 10

1 2( 1 2 2; 1 2 1); 1 2( 1 2 1; 1 2 2)

Strategy 11

1 2( 1 2 2; 1 2 1); 1 2( 1 2 2; 1 2 1)

Strategy 12

1 2( 1 2 2; 1 2 1); 1 2( 1 2 2; 1 2 2)
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Strategy 13

1 2( 1 2 2; 1 2 2); 1 2( 1 2 1; 1 2 1)

Strategy 14

1 2( 1 2 2; 1 2 2); 1 2( 1 2 1; 1 2 2)

Strategy 15

1 2( 1 2 2; 1 2 2); 1 2( 1 2 2; 1 2 1)

Strategy 16

1 2( 1 2 2; 1 2 2); 1 2( 1 2 2; 1 2 2)

Strategy 17

1 1( 1 1 2 ; 1 1 2); 1 2( 1 2 1; 1 2 1)

Strategy 18

1 1( 1 1 2 ; 1 1 2); 1 2( 1 2 1; 1 2 2)

Strategy 19

1 1( 1 1 2 ; 1 1 2); 1 2( 1 2 2; 1 2 1)

Strategy 20
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1 1( 1 1 2 ; 1 1 2); 1 2( 1 2 2; 1 2 2)

Strategy 21

1 1( 1 1 2 ; 1 1 2); 1 1( 1 1 2 ; 1 1 2)

While in principle it is possible to compute the expected payo
of each of these strategies, the analytical expressions become very
cumbersome.

8. Concluding remarks

Our analysis of optimal order of exploitation under uncertainty
can be generalised in several directions. First, we can introduce cor-
relations across deposits. Second, extraction costs may di er across
deposits. Then it is possible that the optimal extraction plan requires
a high cost layer 1 of deposit 1 to be exhausted before extracting
a lower cost layer 2 of deposit 2, because the value of information
obtained from extracting 1 may be higher than 2.
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APPENDIX

Proof of Proposition 4
Case 1 1 = 2 = , 1 = 2 = , 1 2.
Let 1 = + , with 0 and 2 = . If = 0, it is a matter

of indi erence whether 2 or 1 is exhausted first. Let us start at
= 0, then increase to a small positive number. This means that,

as increases, the second layer of mine 1 becomes more likely to exist
than the second layer of mine 2. In this case, do we want to have
news about mine 1 before news about mine 2? This would be the case
if ( ), defined below, is negative for small 0. (Conversely, if
( ) 0 for small 0 then we should extract 2 first.)

( )
³ £

( + )(2)1 + (1 1 )
¤ 1
1 +

´1
+(1 )

³
( + )

1
1 +

´1
( + )

³ £
(2)1 + (1 )

¤ 1
1 +

´1
(1 )

³
1

1 +
´1

Clearly ( ) 0 for small 0 if 0( ) 0 at = 0.
Let us calculate this derivative

0( ) =

£
( + )(2)1 + (1 1 )

¤ (1 ) £
(2)1 1

¤³
[( + )(2)1 + (1 1 )]

1
1 +

´
+
(1 ) [ + )] 1³
( + )

1
1 +

´
½³ £

(2)1 + (1 )
¤ 1
1 +

´1
+
³
[ ]

1
1 +

´1 ¾
Note that the term inside the curly brackets is positive. We can show
that 0( ) 0 at = 0 if is small enough. To see this, let 0,
then 0(0) tends to

1
£
(2)1 1

¤
+ (1 ) 1 1

©
(2)1 + 1

ª
(13)
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which has the sign of

1 + (1 ) = 2 0

Case 2 1 = 2 = , 1 = 2, 1 2.
We will show that 0, i.e.h
( + 1)

1 + (1 ) ( + 1)
1
i1 (1 ) h

( + 2)
1 + (1 ) ( + 2)

1
i1 (1 )

1 2 (14)

where £
(2)1 + (1 )

¤ 1
1

[ ]
1

1

Clearly condition (14) holds with equality if = = 0. It is easy to
see that increases in and will increase the left-hand side of (14).
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