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Abstract:  
This paper analyzes the trade of an indivisible good within a two-stage mechanism, 
where a seller first negotiates with one potential buyer about the price of the good. If 
the negotiation fails to produce a sale, a second-price sealed-bid auction with an 
additional buyer is conducted. The theoretical model predicts that with risk neutral 
agents all sales take place in the auction rendering the negotiation prior to the 
auction obsolete. An experimental test of the model provides evidence that average 
prices and profits are quite precisely predicted by the theoretical benchmark. 
However, a significant large amount of sales occurs already during the negotiation 
stage. We show that risk preferences can theoretically account for the existence of 
sales during the negotiation stage, improve the fit for buyers’ behavior, but is not 
sufficient to explain sellers’ decisions. We discuss other behavioral explanations that 
could account for the observed deviations. 
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1 Introduction

Traditionally, outcomes of negotiations have been analyzed separately from those

of one or double sided auctions. More recently, attention has been diverted towards

the analysis of strategic interaction in hybrid environments which combine both ne-

gotiation and auction. A prototype of such an environment presents a seller who

negotiates the sale of a good with a small number of buyers before, in case of dis-

agreement, auctioning off the good to a broader set of agents. Such two-stage mech-

anism is the focus of the current paper.

One of the reasons for the growing interest in such environments is their increas-

ing use by successful internet auction sites like eBay, Yahoo, and QXL,1 all of which

offer sellers the possibility to sell their products at a fixed price directly before or

during the auction. eBay, for example, offers sellers the possibility to announce ad-

ditionally to their call for bids a “Buy It Now” price, where the sale is concluded

once a buyer accepts this “Buy It Now” offer. If the price finds no buyer, then the

good is auctioned off. Shortly after the introduction of the “Buy It Now” feature

in November 2000, eBay reported that 30%, 35% and later even 45% (eBay Q1,Q2

and Q4 2001) of all listings in eBay auctions made use of the “Buy It Now” feature.

Supporting this number, recent investigations in eBay’s “Buy It Now” feature have

observed 40% of listings with a “Buy It Now” offer (Reynolds and Wooders, 2003).

The economic relevance of such hybrid mechanisms is reflected in the magnitude

of fixed price trades which in the first half of 2004 comprised only on eBay 4.4 bil-

lion USD, which translates to 28% of the total Gross Merchandize Volume of the

company during this period.2

Early theoretical analysis fails to explain these stylized facts. For example, Bulow

and Klemperer (1996) compare auctions to negotiations emphasizing the benefit to

sellers in waiving any type of bargaining power. They consider also the sequential

combination of negotiation and auction and conjecture that “... if a seller could ne-

gotiate with N bidders while maintaining the right to subsequently hold an English

auction without a reserve price and with an additional bidder, the seller would al-

ways do better to proceed directly to the auction.”(page 182), a conjecture in clear

contrast to the behavior observed in reality.

More recently, Kirkegaard (2004) reconsiders the results by Bulow and Klem-

perer and shows that bargaining is more profitable than an English auction if de-

1http://www.ebay.com; http://www.yahoo.com; http://www.qxl.com
2According to eBay, acceptance of the “Buy It Now” feature is the primary contributor to the fixed

price trades.
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mand is discrete and agents are sufficiently patient. He also demonstrates that the

English auction can be improved by negotiations prior to the auction if buyers are

asymmetric or the marginal revenue is non-monotonic.

Two further implicit assumptions made by Bulow and Klemperer (1996), risk

neutrality of agents and high discount rates, are also believed to hamper a success-

ful prediction of the existence and the magnitude of sales during the negotiation

phase. Mathews (2004) shows that the probability of successful settlements in the

negotiation stage increases with the impatience of either sellers or buyers. eBay, for

example, indicates that the average auction duration decreased by almost 10%, a re-

sult which the company reports to be caused by an increased adoption of the “Buy

It Now” feature (eBay, Q4 2002). This provides some evidence, although not conclu-

sive, supporting the impatience hypothesis. But also risk preferences can account

for successful trades already in the negotiation stage. The riskiness of the auction as

an outside option can contrive risk averse buyers to accept price offers in the nego-

tiation that are higher than the expected price from the auction (see, Reynolds and

Wooders, 2003).3 Alternatively, risk averse sellers might favor an agreement in the

negotiation stage by asking for lower prices than those expected from the auction

(Mathews and Katzman, 2006).

In this study, we introduce and experimentally test a model based on the situ-

ation considered by Bulow and Klemperer: A seller can make a take-it-or-leave-it

offer to a buyer who might either accept or reject the offer. In the latter case, a

second buyer joins and a second–price sealed–bid auction takes place (see Bulow

and Klemperer, 1996, section II.C, page 189). In our setup, contrary to the models

mentioned above (Reynolds and Wooders, Mathews, Mathews and Katzman), the

price offer is not made simultaneously to all bidders and the buyer joining the auc-

tion is not informed about the price offer from the negotiation.4 We provide the

theoretical closed form solution supporting the conjecture of Bulow and Klemperer

and use experimental tests to explore whether actual behavior in a controlled envi-

ronment exhibits similar qualitative properties as the theoretical prediction: In the

3Risk preferences are also seen to cause successful sales in similar hybrid mechanisms, where a

seller negotiates the sale of the good while simultaneously auctioning it off: Budish and Takeyama

(2001) show that risk neutral sellers can increase their profits offering a permanent buy price during

the auction to risk averse buyers, whereas Hidvégi, Wang and Whinston (forthcoming) propose a

model where risk aversion of both, sellers and buyers, are combined to yield sales in the negotiation.
4We believe that such procedure resembles reality very closely. For instance, the “Buy It Now”

price at eBay disappears once some potential buyer opened the auction by placing a bid. Additional

bidders are not informed about the former “Buy It Now” price.
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negotiation stage sellers should make sufficiently high price offers that will always

be rejected by the buyers and all sales will be achieved in the auction.

Average prices and profits in the experiment are very close to the theoretical pre-

diction. However, we observe a substantial amount of sales in the negotiation phase.

Our experimental design allows us to exclude time preferences and asymmetry of

the bidders as possible explanation for the deviation of the actual behavior from the

theoretical predictions. We investigate whether and to which extend individual het-

erogeneity in risk preferences can account for the success of negotiations. We show

that by relaxing the assumption of risk neutrality for both, sellers and buyers, suc-

cessful sales during the negotiation stage can occur in equilibrium. Using existing

population estimates of risk preferences we provide quantitative predictions for the

distribution of sellers’ price offers. Our experimental results show that relaxing the

assumption of risk neutrality can only partly explain agents’ behavior: It improves

the fit for buyers’ behavior, but it is not sufficient to explain sellers’ deviations from

equilibrium prices. More than one third of all observed price offers lie outside the

predicted price range with heterogeneous agents indicating systematically under

and over pricing. Therefore, we discuss other behavioral concepts that might be

considered to understand and to explain agents’ decisions.

The remainder of the paper is organized as follows. In section 2 we derive the

theoretical solution. The experimental design and procedure are presented in sec-

tion 3. Section 4 contains the analysis of the experimental results. In section 5 we

investigate whether and to what extent incorporating risk attitudes into the model

can explain our experimental data. In section 6 we discuss alternative behavioral

concepts. Section 7 concludes.

2 Model and Predictions

In the model a seller who offers a single indivisible item for sale faces two potential

buyers. Buyers’ valuations of the product, vi with i = 1, 2, are private information

and independently drawn from a uniform distribution with support [0, 1]. We de-

note the cumulative distribution function (cdf) of vi by F(x) = x and its probability

distribution function (pdf) by f (x) = 1. The distribution of buyers’ valuations as

well as seller’s value of the object, which is zero, are common knowledge. All agents

are assumed to risk-neutral.

First, the seller makes a take-it-or-leave-it price offer to one of the buyers, who

may accept or reject. If the buyer accepts, he receives the product for the agreed
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upon price. If the negotiation fails to produce a sale, a second–price sealed–bid

auction without a reservation price is conducted with both potential buyers. Buy-

ers place their bids simultaneously. The bidder who submits the highest bid is the

winner of the auction and pays the second highest bid. The buyer, who does not par-

ticipate in the negotiation, is not informed about the price offered at the negotiation

stage.

In a second–price sealed–bid auction truthful bidding is an equilibrium in weakly

dominant strategies. The buyer’s expected profit from the auction is
∫ v

0 (v− x) f (x)dx.

Facing a price offer, p, a negotiating buyer has to decide whether he prefers the profit

in the negotiation, in which case he receives (v− p), or to take a chance in the auc-

tion. Therefore, solving

v− p =
∫ v

0
(v− x) f (x)dx (1)

results in v∗(p), the threshold value, returning the valuation at which a buyer will

be indifferent between accepting and rejecting a given price offer. Given our distri-

butional assumptions on the buyers’ valuations,

v∗(p) =

{
1−√

1− 2p if p < 1
2

1 if p ≥ 1
2 .

(2)

Contrary to the buyer, the seller has no choice between one or the other institu-

tion as he enters the combined mechanism with his price offer. Nevertheless, the

seller can increase the probability to sell in the auction by raising his price offer

towards p = 1. Similarly, by decreasing the price offer, the seller increases the like-

lihood that the price offer is accepted and the auction will not take place.

The seller receives his price offer if the buyer accepts, i.e., if the value of the buyer

he is negotiating with is in the interval (v∗(p), 1]. If the buyer rejects, which happens

when the buyer’s valuation is in the range [0, v∗(p)], the seller’s profit is determined

by the outcome of the auction which is the minimum of the valuations of the two

bidders. Note, that either only the first buyer’s value or both buyers’ values might

lay in the interval [0, v∗(p)], which is taken into account by the density of the first

order statistic below. The maximization problem a seller faces is choosing a price

offer such that

max
p∈[0,1]

ΠS(p) = p
∫ 1

v∗(p)
f (x)dx +

∫ v∗(p)

0
yg(1)(y, v∗(p))dy

∫ v∗(p)

0
f (x)dx (3)

where g(1)(y, v∗(p)) = (1 + v∗(p)− 2y)/v∗(p) is the density function of the mini-

mum value (the first order statistic) for cdf G(x) = x/v∗(p) when either one or both
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bidders’ valuations lay in the interval [0, v∗(p)] (for the derivation of g(1)(y, v∗(p))
see appendix A).

The resulting first order condition (FOC) is

ΠS
p(p) = (1− v∗(p)) + (v∗p(p)/2) (v∗(p) (2− v∗(p))− 2p) (4)

where zp(·) denotes the derivative of a function z(·) at p.

There exists no price in 0 < p < (1/2) at which the FOC, eq. (4), becomes zero.

This result, combined with (i) ΠS
p(p) > 0 for p ∈ (0, 1/2), (ii) ΠS

p(p) = 0 as the

expected profit function is a constant for prices p ∈ (1/2, 1), and (iii) ΠS(1/2) =
ΠS(1) = ΠS(1/2 < p < 1) = 1/3, leads to the conclusion that the expected profit

function of the seller reaches its maximum for prices p∗ ∈ [1/2, 1]. Figure 1 plots

the seller’s expected profit in the [0, 1]–range of price offers.

Thus, taking the threshold value of the buyer in the negotiation into account, a

seller’s expected profit for the whole game is maximized by choosing a rather high

price offer, p∗ ≥ 1/2, at the negotiation stage which in return will be rejected by the

buyer, v∗(p∗) = 1, and the final price is determined by the auction. Therefore, no

price offer will be accepted in the negotiation and sales will always take place at the

auction stage.5 Expected earnings are 1/3 for the seller as well as E[v2
i /2] = 1/6

and v2
i /2 for the two buyers i ∈ {1, 2} before and after knowing the realization of

the own valuation, respectively.

3 Experiment

In order to test our theoretical predictions and to investigate behavior in such a se-

quential mechanism we conducted an experiment. In the experiment each subject

was either a buyer or a seller. One seller and two buyers constituted a trading group

in which they interacted as described by the model. The composition of the trad-

ing groups was changed between periods as each period sellers and buyers were

rematched randomly. An experimental session consisted of four cycles of eight

trading periods. A buyer was assigned the right to negotiate either in the odd or

the even cycles, so that each buyer negotiated 16 times out of the 32 periods (eight

times in the first and eight times in the second part of the experiment). Buyers’ pri-

vate reselling values for the product were randomly and independently drawn from

5Myerson (1981) shows that any two mechanisms that always lead to the same allocation of the

good (and meet one further trivial condition) would yield the same expected revenue. In the auction

the product will always be allocated to the buyer with the highest value, this is not necessarily so in

the presented combined mechanism. It follows that the auction is better.
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the set V = {0, 1, 2, ..., 99, 100} with all vi ∈ V being equally likely. Subjects could

choose integer bids and price offers between 0 and 100. All values were denoted in

a fictitious currency termed ECU for Experimental Currency Unit.6

In the beginning of a single period the trading groups were formed and sell-

ers were asked to submit their price offer. Buyers who attended the negotiation

stage were informed about their private values and the seller’s price offer, which

they could accept or reject. At the end of the negotiation stage each group member

was told whether or not a sale had been reached, i.e., whether the price offer was

accepted by the buyer or not. If the price offer was accepted, the sale was accom-

plished in the negotiation stage and there was no auction. If the price offer was re-

jected, the other buyer, who did not negotiate, was now informed about his private

value (but not about the price offered at the negotiation stage) and a second–price

sealed–bid auction with both buyers took place. At the end of the auction stage all

group members were informed about the outcome in this stage: who won the auc-

tion, the price paid by the winner, and their own payoff in the current period. In

addition, they were given an account of their total profit up to this period. After

the experiment participants answered a post–experimental questionnaire. Besides

standard demographic questions, they were additionally asked to comment briefly

on their reasoning during the experiment.

The experiment comprised 10 sessions with a total of 90 participants. We con-

ducted 5 sessions with 6 and 5 sessions with 12 participants each. We pooled the

data from the sessions of different sizes since we did not find any differences be-

tween them. All experimental sessions were computerized and the software sys-

tem was created with z-Tree (Fischbacher, 1999). The experiment was conducted at

Humboldt-University Berlin, Germany, and most participants were students of eco-

nomics, business administration, law, and physics. One session lasted on average 90

min. The conversion rate of ECU earned by each participant into cash was: 1 ECU

= 0.0125 EUR. Participants’ total earnings ranged between 8.05 EUR to 16.86 EUR

with a mean of 11.82 EUR (as a seller: 13.14 EUR, as a buyer: 11.15 EUR).7

6See appendix B for a shortened and translated version of the instructions. Complete sets of the

original instructions (in German) are available upon request to the authors.
7These numbers include a starting capital for buyers of 5 EUR.
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4 Results

Our results show that average experimental outcomes are close to the theoretical

prediction. Table 1 reports descriptive statistics for all periods and, in order to il-

lustrate the changes over time, for all cycles. In total we have 960 trades. Average

prices (column 1) with p = 0.51 as well as average earnings for sellers and buyers

with 0.33 and 0.15 (columns 3) are stable over time and in line with the theoretical

benchmark.8

The second–price auction is efficient since truthful bidding is an equilibrium in

dominant strategies.9 However, applying this combined mechanism might result

in a loss of efficiency compared to a pure auction. Column 4 of Table 1 lists the

share of efficient outcomes achieved in the experiment. The efficiency of observed

sales is with 85% quite comparable to those reported in second–price sealed–bid

auction experiments. For instance, the share of efficient allocations by Kagel and

Levin (1993) is 79%. Güth, Ivanova-Stenzel and Wolfstetter (2005) report 88% and

Pezanis-Christou (2002) about 91% of efficient allocations.

The theoretical relation between prices and expected profits (see eq. (3) and Fig-

ure 1) is reflected in the experimental data. The solid line in Figure 2 presents the

nonparametric estimate of sellers’ profits earned in the experiment conditional on

prices: ΠS = E(ΠS|P = p) + ε = m(p) + ε where the error term ε has the prop-

erties E(ε|p) = 0 and E(ε2|p) = σ2(p). The surrounding dotted lines are the 95%

(pointwise) confidence bounds of the expected profit estimate around a given price.

The expected profit reaches the predicted outcome of E(ΠS) = 0.33 already at a

price p = 0.44, much earlier than the predicted price p = 0.5. We observe further,

that for prices p ≥ 0.35 the expected profit in the experiment is not significantly

different from 0.33, the theoretical profit.

Furthermore, contrary to the theoretical prediction, we observe successful trades

in the negotiation phase comprising one third of all sales (column 2 of Table 1), an

amount which remains stable over time.10 In order to understand these contradict-

ing findings, we continue with an elaborate analysis of individual price setting and

acceptance behavior. Prices depend on the behavior of buyers at the negotiation

stage, which in turn relates to buyer’s expected outcome from the auction. There-

8For ease of comparison to the theoretical model we report our results for normalized valuations,

i.e., all experimental outcomes are transformed from the [0, 100] to the [0, 1]–range.
9Efficiency requires that the buyer with the highest valuation purchases the product.

10Considering only price offers which were below the valuation of buyers, 63% of all sales occur

during the negotiation stage.
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fore, we will first investigate buyers’ bidding behavior in the auction and continue

with their acceptance behavior during the negotiation stage before we turn our at-

tention to sellers’ price setting behavior.

Bidding should (theoretically) not be influenced neither by the negotiation nor

by buyers’ risk attitudes since bidding the own value is a weakly dominant strategy.

The experience from the negotiation does not seem to change behavior in the auc-

tion. Half of all observed bids are equal to subjects’ valuations. Moreover, truthful

bidding rises from 31% in the first to 64% in the last period. These numbers increase

to 56% and 74%, respectively, considering bids within a range of 0.05 around the

valuation. Despite some slight over- and underbidding, we do not find significant

differences between bids and the predicted equilibrium bidding strategy.11 Given

these observations, truthful bidding turns out to be a reasonably good prediction

for buyers’ behavior in the auction.

At the negotiation stage, buyers have to choose between accepting the price offer

or joining the auction. In the experiment, each buyer was confronted half of the time

with a price offer of different sellers, which leaves us with information about the

acceptance behavior of each buyer for 16 periods. We find that only five out of 60

buyers (8%) behave according to the theoretical benchmark, i.e., accept a price offer

when their valuation lays above the corresponding threshold value of eq. (2) and

reject the offer when their valuation is below this threshold. The majority of buyers

either accept offers below the threshold (57%) or reject offers above the threshold

(18%), which obviously violates the game theoretic prediction.12

Given their expectations about buyers’ behavior, sellers have to make only one

decision: to choose a price offer. Figure 3 presents the density estimate of price offers

which range from 0.05 to 1. Half of the price offers (48.4%) are conform with the

theory, i.e., are greater or equal to 0.50. However, the other half (51.6%) of observed

prices is below 0.50, which is clearly not in line with the theoretical benchmark.

Price offers remain stable over time.

All these results show that the game theoretic model assuming homogeneous

and risk-neutral agents seems to be a good predictor for average prices and prof-

1122% of all bids lay above the dominant strategy, the own valuation, which is rather low compared

to other sealed–bid second–price auction experiments (see Kagel, 1995, for a survey). A t-test cannot

reject the hypothesis that the relative bid deviation is equal to zero (p=0.365 and and p=0.789 in the

first and second part of the experiment).
12The remaining 10 buyers (17%) could not be classified as the deviation of their behavior was

not consistent, i.e., price offers were accepted (rejected) a risk neutral person would have rejected

(accepted).
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its. Nevertheless, it cannot very well rationalize observed individual decisions that

appear to drive the contradictory finding of successful sales during the negotiation

stage.

This leaves us with the possibility that behavior might be based upon unob-

served heterogeneity in subjects’ preferences. One feasible explanation for the ob-

served deviations might be heterogeneity in risk preferences of both, sellers and

buyers. Risk aversion might, for instance, explain, why the majority of buyers ac-

cept offers, which yield them a lower profit then their expected profit from the auc-

tion and which a risk neutral buyer would have rejected. Another indication for

possible risk aversion of buyers can be found in the substantial increase in sellers’

profits compared to the theoretical prediction for the case of high price offers. On

the other hand, price offers below the theoretical prediction might be driven by risk

aversion of sellers.

5 Heterogeneous Risk Attitudes

In this section we investigate whether and to what extent incorporating individ-

ual risk preferences into the model can explain our experimental data. Therefore,

all agents are assumed to be expected utility maximizers and have preferences that

can be represented by utility function u(·) which is twice differentiable, strictly in-

creasing and satisfies u′′(·) ≤ 0 everywhere on its support. More precisely, for our

analysis we restrict risk preferences to belong to the class of constant relative risk

aversion, u(x) = x(1−α)/(1− α), where α is the Arrow-Pratt measure of relative risk

preferences.13 Constant relative risk aversion (hereafter CRRA) can provide an ex-

cellent fit for data patterns, a reason why this utility function has been commonly

applied in the experimental literature examining risk preferences.

Buyer

Allowing for heterogeneous risk preferences leads to a threshold value that depends

not only on the price but also on the individual risk attitude. The threshold value

can be derived from the decision problem of the buyer, i.e., u(v − p) =
∫ v

0 u(v −
x) f (x)dx. However, given our distributional assumptions and functional form, the

13This specification implies risk loving behavior for α < 0, risk neutrality for α = 0 and risk

aversion for α > 0. When α = 1, the natural logarithm, u(x) = ln(x), is used.
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threshold can only implicitly be defined by

p = v∗ −
(

v∗(2−αB
i )

2− αB
i

)(
1

1−αB
i

)

Figure 4 plots the threshold values for buyers with different levels of risk prefer-

ences. Note that if a buyer is risk-averse the monotonicity of the threshold value

is not maintained. For example a buyer with αB = 0.7 will not only reject a price

offer of 0.64 if his valuation is lower than 0.79 but also if his valuation is higher

than 0.88, meaning that a buyer with a very high valuation is more likely to accept

the risky outcome from the auction rather than the certain outcome from the nego-

tiation. Note also that if a buyer is sufficiently risk averse, i.e. αB ≥ 1, he would

be willing to accept a price equal to his valuation.14 The threshold is shifted up-

wards with increasing levels of αB implying that higher prices are more likely to be

accepted when a buyer is more risk averse.

We can estimate buyers’ risk preferences directly from the experimental data

based on their decision rule. In the model a buyer accepts a price offer if

u(v− p) + ε1 ≥
∫ v

0
u(v− x) f (x)dx + ε2 (5)

where we assume the unobservable error terms, εi with i ∈ {1, 2}, to follow a normal

distribution εi ∼ N(0, σ2
i ). Assuming that risk preferences can be represented by

u(x) = x1−α/(1 − α), given the distributional assumptions and the decision rule

in eq. (5), we estimate the risk preference parameter in the buyers’ population by

maximum likelihood.15

The parameter estimate for buyers’ risk preferences is α̂B = 0.45 with a loglike-

lihood function value of −274.48. The model assuming risk neutral buyers (fixing

αB = 0), results in a likelihood function value of −297.35. A likelihood ratio–test

with a test value of 45.74 (5% χ2 critical value of 3.84) corroborates that allowing for

risk preferences improves significantly the fit of the data. Overall, buyers seem to

react in a risk averse manner, which might explain acceptance of high price offers.

14This is somewhat counterintuitive since in this case such a buyer would get zero payoff whereas

by rejecting he would have a chance of a positive net payoff. On the other hand, given the assumption

of CRRA and the specification of the utility function, a buyer with αB > 1 and a valuation between 0

and 1 will always have negative net utility from entering the auction.
15For v ≥ p (N = 482) the choice probabilities are given by

Pr

(
1

1− α

(
(v− p)(1−α) − v(2−α)

2− α

)
≥ ε

)

with ε = ε2 − ε1 and ε ∼ N(0, 1).
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The estimated level of buyers’ risk attitudes is in line with risk preference esti-

mates in the literature. Numerous estimates of risk attitudes for student subjects im-

ply the average level of risk preferences to be around 0.3− 0.7 and to be quite robust

to different decision environments, e.g., gambles, other individual decision tasks,

games, and auctions. For example, Cox and Oaxaca (1996), Goeree, Holt and Palfrey

(2002), Chen and Plott (1998), and Ivanova-Stenzel and Salmon (2004) estimate rel-

ative risk preferences in private value auction experiments to be α = 0.67, 0.52, 0.48,

and 0.34, respectively. Goeree, Holt and Palfrey (2003) and Holt and Laury (2002)

use experimental data from single decision tasks to estimate individual risk para-

meters. They find the average risk attitudes (for payment levels used in laboratory

experiments) to be around 0.28 and 0.32, respectively.

Seller

Contrary to the risk neutral case, we could not derive an explicit solution for the case

of general risk preferences for sellers. Nevertheless, we can solve numerically for

optimal prices sellers would choose and derive the distribution of prices for given

distribution of agents’ risk attitudes. This also implies that we can only indirectly

investigate whether risk preferences improve the fit of the model for sellers. We

will do this by comparing predicted price distributions to the prices observed in the

experiment.

To derive quantitative price predictions using “reasonable” levels of risk pref-

erences, we rely on estimated risk preference distributions in the literature. In or-

der to check for the robustness of the predictions, we will use four different fre-

quency distributions of estimated individual risk preferences provided by the stud-

ies mentioned above (Cox and Oaxaca (henceforth C&O) and Ivanova-Stenzel and

Salmon (henceforth I&S) for auctions as well as Goeree, Holt and Palfrey (2003,

henceforth G,H&P) and Holt and Laury (henceforth H&L) for individual decision

tasks). Estimated individual risk attitudes of those four studies lay in the interval

−1.48 ≤ α ≤ 1.37 and characteristics of the distribution (10%, 50% and 90% quan-

tiles) are reported in column 3 of Table 2.16 Based on these distributions we simulate

outcomes allowing for varying risk preferences of both, buyers and sellers.17 We in-

16H&L classify their participants in 9 categories. We assign all subjects within a category the mean

of this category as individual risk parameter. Subjects in the outer categories α < −0.95 and α > 1.37

were assigned α = −0.95 and α = 1.37. We do the same for G,H&P who distinguish between 7 risk

categories, with α < −0.56 and α > 0.93 as lower and upper bound.
17We assume common knowledge about the population distribution of risk attitudes, which is the
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vestigate the quantitative change in the decision variables and the expected amount

of successful sales during the negotiation stage.

Buyers will accept prices up to 1 when they are strongly risk averse, i.e., αB ≥ 1,

and only up to 0.45 when they are risk loving, i.e., αB = −1.48, which is the lowest

level of the preference parameter estimates reported by the four studies. This trans-

lates into an increase (decrease) of the maximum price a risk neutral agent would

accept by 100% (−10%). In order to determine the impact of risk on sellers’ price

setting behavior, we simulate prices offered by sellers with different risk attitudes.

Sellers can anticipate the reaction of buyers with different risk preferences towards

prices and, knowing the distribution of buyer’s risk preferences, calculate their ”op-

timal price offer” given their own risk attitude. Figure 5 presents predicted price

frequencies for each of the estimated population distributions of risk preferences.

The price range spanned by all predictions is p ∈ [0.43, 0.69]. Compared to the risk

neutral benchmark, this price range is smaller in size and is shifted downwards.

However, the lowest bound is with 0.43 still close to the prediction for risk neutral

agents of 0.5. The stronger decrease of the upper bound from 1.0 to 0.69 can be ex-

plained by the fact that when buyers are risk averse even high prices have a chance

of still being accepted. The seller can therefore increase his profit by keeping prices

high yet affordable to risk averse buyers. For instance, a risk neutral seller (αS = 0)

who meets a strongly risk averse buyer (αB ≥ 1) maximizes his profit by asking for

a price of 0.73.

The price distributions are strikingly similar with medians at 0.55 (G,H,&P), 0.53

(H&L), 0.54 (C&O) and 0.51 (I&S), reported in Table 2. Predictions based on pa-

rameter estimates elicited via lottery choices (G,H&P and H&L) are more widely

spread than those based on auction data (C&O and I&S). Columns 4a in Table 2 re-

port quantiles of the predicted price distribution. 10% quantiles are with 0.48 up to

0.51 below but quite close to the risk neutral benchmark. The 90% quantiles lay like

wise below the upper bound of the risk neutral prediction, however, they are with

0.56 up to 0.68 further away. Column 4b of Table 2 reports the expected amount of

sales during the negotiation phase for each distribution. Predicted acceptance rates

in the negotiation vary between 17.6% and 36.9%.

Thus, allowing for general risk preferences opens a price floor within which

agreements are possible already during the negotiation stage. The exact magnitude

depends, however, on the particular preference distribution.

The acceptance rate of 33% observed in our experiment is within the range of

same for both, buyers and sellers.
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predicted acceptance rates with heterogeneous agents. Observed median prices are

with 0.49 close to the predicted median prices (0.51 − 0.55). However, allowing

for heterogeneous risk preferences seems to improve the explanatory power of the

model only little for sellers. The prediction p ∈ [0.43, 0.69] covers more than half of

the price offers (56%) in the experiment, which is an improvement by 8% with re-

gard to the (risk neutral) benchmark prediction. Still, almost half of the offers remain

unexplained. Price offers in lower and higher ranges are much more dispersed than

predicted. Figure 6 plots two price distributions. The light bars present the average

predicted price offer frequencies of the four studies. The dark bars show the price

frequencies observed in the experiment. A Pearson Goodness of fit test strongly re-

jects the prediction of the model for each of the estimated distributions separately

as well as the combination of them.18

Furthermore, whereas price offers above 0.69 can be explained by the risk neutral

benchmark, price offers below 0.43 are not captured by neither model. What seems

to be puzzling is that those low offers comprise 29% of all prices. This observation

is not only stable over time but is generally caused by the same sellers: One third of

all sellers offer prices below 0.43 more than half of the time.

6 Discussion

In the previous section we have shown that allowing for heterogeneous risk pref-

erences can theoretically explain the existence of successful negotiations in equilib-

rium. Participants’ comments in the post–experimental questionnaire confirm that

risk attitudes might indeed account for sales during the negotiation stage. For exam-

ple, some participants in the seller’s role were concerned with the auction because

it generated “too volatile prices” and mentioned that they favored an agreement

during the negotiation phase. Participants in the role of buyers emphasized that

they preferred to negotiate as “the chance of buying the item was higher.” The ex-

perimental results show, however, that real behavior can only partly be explained

by agents’ risk attitudes. Even though, relaxing the assumption of risk neutrality

improves significantly the fit for buyers’ behavior, it is not sufficient to account for

sellers’ behavior. Observed prices vary much more than predicted with a substantial

amount of over and under pricing.

18The Pearson Goodness of Fit test, also known as χ2-Test, requires independent observations. As

different price offers of an individual seller might not fulfil this requirement, we use mean price

offers of individual sellers for the test.
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One might be tempted to explain the excess variance in price offers with noise

in behavior. There are two problems with this argument. First, the observed distri-

bution of price offers is far from uniform, as would be required by a model where

sellers randomly choose across all possible price offers. Second, noise would pre-

sumably decline over time as participants have the opportunity to learn and adjust

their price offers during the 32 periods of the experiment. Nevertheless, the ob-

served price offer distribution remains stable over time, with systematically under

and over pricing compared to the theoretical predictions.

Another possible way to look at our results is in light of bargaining literature

investigating environments with asymmetric information. For example, Samuelson

and Bazerman (1985) show that subjects systematically deviate from the predicted

behavior and fall prey to the “winner’s curse,” in the sense that they either enter

into loss–making purchases or forgo profit–making opportunities. The latter might

apply also to our experimental situation where the seller in the negotiation (the

uninformed party) has to condition his behavior on the strategic action of the buyer

(his informed opponent).

In our experiment a seller faces a cognitively very demanding decision task.

First, he has to consider buyers’ acceptance threshold values. Second, conditional

on these threshold values, he has to form expectations about his utility for different

prices and find the price offer that maximizes this utility. Such reasoning requires

that sellers not only optimize but also condition correctly their price offer on the

buyer’s reaction.

Let’s assume for a moment that there are sellers who do not optimize and do

not condition. Then from the view of such (bounded rational) seller any accepted

price offer, p, which generates utility above the expected utility from the auction will

increase his profit. Such seller has to ensure that his price offer is above the expected

auction profit and will be accepted with positive probability such that E(πA) ≤ p ≤
E(v), for a seller whose utility is equal to his expected profit. For example, with

E(πA) = 1/3 and E(v) = 1/2, a non–optimizing non–conditioning seller might

offer prices between 1/3 ≤ p ≤ 1/2.

Following this argument we can not only explain the existence of low prices but

also the fact that the observed under pricing remains stable over time. Suppose a

seller neglects the strategic reaction of a buyer towards his own price offer and uses

solely his experience to build his expectation about the prospects of selling either in

the negotiation or the auction. Such seller might form false expectations about the

prospects of the auction. A seller who offers low prices in the negotiation is more
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likely to experience lower profits in the auction: buyers with relatively high values

might accept low prices, but buyers who cannot even afford those low price offers,

reject and go to the auction. This leads to the selection of low value buyers into

the auction and consequently to low auction prices, reinforcing seller’s expectation

about low prospects of the auction. Sellers who reason this way forgo therefore

profit opportunities.

Our data do not allow us to test directly this conjecture. However, it is very

likely that subjects in our experiment fall pray to such ‘seller’s curse.’ Some sellers

indeed argued in the post–experimental questionnaire that the “auction generated

too low prices” and that this was the reason why they preferred to reach an agree-

ment during the negotiation stage. Experimental investigations testing this conjec-

ture and other behavioral explanations might yield promising answers and further

interesting insights in behavior in such hybrid mechanisms. We plan to pursue such

investigations in our future research.

7 Summary

In this paper, we presented a model of a sequential mechanism combining nego-

tiation and auction. A seller can first negotiate with one potential buyer to sell a

single indivisible good and, in case the negotiation did not lead to a sale, he con-

ducts an auction with the current and an additional buyer. We derived the closed

form solution for this model and show that with risk neutral agents sales will always

take place in the auction rendering the negotiation prior to the auction obsolete. An

experimental test of the theory suggested that the theoretical benchmark can very

well predict average prices and profits in such combined mechanism. However, in-

dividual buyers and sellers deviate from the theoretical prediction bringing about

a substantial amount of successful negotiations. This last finding led us to explore

other behavioral explanations in order to account for the observed deviations.

First, we investigated whether and to which extend heterogeneity in prefer-

ences can account for successful negotiations by incorporating risk attitudes into

our model. We showed that allowing for individual heterogeneity in risk prefer-

ences of both market sides leads to sales already during the negotiation phase. This

result seems to be driven rather by risk aversion of buyers than of sellers as risk

averse buyers accept more often higher offers but sellers lower their price offer only

marginally below the price prediction for risk neutral sellers. By using existing pop-

ulation estimates of risk preference parameters we were able to make quantitative
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predictions for the distribution of sellers’ price offers and acceptance behavior of

buyers. When we compared these predictions to the experimental data, we found,

however, that the experimental behavior can only partly be explained with agents’

risk preferences. Relaxing the assumption of risk neutrality improves the fit of the

model for buyers, but cannot account for a big part of individual seller’s decisions.

A great deal of sellers offer prices which are too low as well as too high to be ex-

plained by heterogeneity in risk preferences alone. This is especially striking for

low price offers. Even though participants experienced the mechanism for several

periods, they did not increase their price offers, thus their profit opportunities, dur-

ing the experiment.

We, therefore, discussed an alternative explanation for individual deviations of

sellers to the theoretical benchmark. An important issue seems to be whether or

not uninformed agents take into account the strategic behavior of their informed

opponents. If sellers fail to anticipate buyers’ strategic reaction to their price offer

they might choose prices which are too low and forgo profit–making opportunities,

a fallacy which resembles the winner’s curse in negotiations.
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8 Appendix

A Derivation of the first order statistic

For simplicity in notation we will continue to write v∗ instead of v∗(p), leaving
implicit the dependance on the price p. If an auction takes place, either only the
first buyer’s value or both buyers’ values are in the interval [0, v∗]. The probability
that only the first buyer’s value is below v∗ is π(1) = P(v2 > v∗) = (1− v∗) and
that both values are below v∗ is π(2) = P(v2 ≤ v∗) = v∗. Where π(k) denotes the
probability that k values lay in the interval [0, v∗].

Following Rohatgi (1987) we determine the cumulative distribution function
(cdf) and the probability distribution function (pdf) of the first order statistic un-
der the constraint that the number of random draws, N, in the range [0, v∗] might
be one or two. Let πi = P(N ≥ i) = ∑∞

k=i π(k). For |s| < 1 let φ(s) denote the
probability generating function of N, φ(s) = ∑∞

n=1 snπ(n). The pdf and cdf of v in
the range [0, v∗] are g(x) = 1/v∗ and G(x) = x/v∗, respectively.

The cdf of the ith order statistic in random sampling from a cdf G(x) with random
sample size is

G(i)(x) =
1

(i− 1)!πi

∫ G(x)

0
ti−1φ(i)(1− t)dt

in the case when G(x) has a pdf g(x) this function of the ith order statistic is given
by

g(i)(x) =
1

(i− 1)!πi
Gi−1(x)g(x)φ(i) (1− G(x)) .

In our application the probability generating function reduces to φ(s) = (1 −
v∗)s + v∗s2. Let φ(1)(s) denote the first derivation of φ(s), which is φ(1)(s) = 1 +
(2s− 1)v∗ and π1 = P(N ≥ 1) = 1. The cdf and pdf of the first order statistic of our
application G(1) and g(1) are therefore

G(1)(x) =
x(1 + v∗ − x)

v∗

and
g(1)(x) =

1 + v∗ − 2x
v∗

.

B Instructions

The experiment was conducted in German language, and the original experimental instruc-
tions were also in German (available upon request). This is a shortened translated version
of the instructions. Participants read the paper instructions before the computerized experi-
ment started. In the beginning of the instructions, everybody was informed that instructions
were the same for every participant, that any decision made would be anonymous and could
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not be related to a person. At the end of the paper instructions, participants were also in-
formed that wins and losses from all periods would be added, that the exchange rate from
ECU (Experimental Currency Units) to EURO was: 40 ECU = EURO 1, and that buyers
would receive an initial endowment of 5 EURO. The main instructions were as follows:

In every period one person (a seller) offers two other persons (buyers) a ficti-
tious commodity for sale. At the beginning of the experiment each participant is
randomly assigned to a role (seller or buyer) and keeps this role throughout the
entire experiment.

All valuations are denoted in a fictitious Experimental Currency Unit (ECU). In
each period the private value for the product of each buyer, v, is independently
drawn from the interval 0 ≤ v ≤ 100, with every integer number between 0 and 100
being equally likely. Each buyer is informed only about his own private value and
will not get to know the private value of the other buyer. The seller is not informed
about the private values of the buyers.

Each period consists of either one or two stages and proceeds as follows:
In the first stage, the seller negotiates with one of the two buyers. He makes a price
offer (in the range from 0 to 100) to this buyer. The buyer can either accept or reject
this price offer.
1.) If he accepts, then he pays the price and receives the product. The period is
terminated. The buyer’s profit is the difference between his private value for the
product and the price. The seller receives the price. The other buyer (who has not
participated in the negotiation) does not receive anything and does not pay any-
thing, i.e., he makes a zero profit.
2.) If he rejects then the period proceeds to the second stage. In the second stage, an
auction takes place with the seller and the two buyers. Both buyers submit simulta-
neously their bids. The bidder with the highest bid buys the commodity. The price
he has to pay is equal to the second highest bid. His profit is the difference between
his private value for the product and the price. The seller receives the price. The
bidder who submits the second highest bid does not receive anything and does not
pay anything, i.e., he makes a zero profit. If both bids are equal, the buyer is chosen
randomly. In this case the second highest bid is equal to the highest bid.

Each participant receives the following information: After the first (negotiation)
stage the seller and both buyers are informed whether the sale takes place.
1.) In case of a sale, parties involved in the negotiation (the seller and one of the
buyers) are informed about the price and own profits in this period. In addition all
participants are informed about their own total profit up to this period.
2.) In case of a second (auction) stage the seller and both buyers are informed about
the winner of the auction, the price which has to be paid by the buyer, the own profit
in this period, and the own total profit up to this period.

In each period trading groups (one seller and two buyers) are formed randomly.
Altogether, there will be 32 periods, which consist of 4 cycles of 8 trading periods.
After each cycle buyers who participated in the first (negotiation) stage will change
and participate in the auction only and vice versa.
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C Figures and Tables
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Figure 1: Sellers’ expected profit in the combined mechanism for risk neutral agents
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Figure 2: Expected profits in the experiment for sellers. The thick line represents the
nonparametric regression of expected profits on price offers using a gaussian kernel
and bandwidth chosen by cross-validation. Dotted lines represent 95% pointwise
confidence intervals. The dashed line is at 0.33, the seller’s expected profit in a
second–price sealed–bid auction.
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Figure 3: Posted price density estimation, gaussian kernel
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Figure 4: Threshold value for different levels of risk aversion
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Figure 5: Predicted price offers based on risk preference distribution estimates of
four studies
“G, H & P”-Goeree, Holt and Palfrey (2003), “H & L”–Holt and Laury (2002),
“C & O”–Cox and Oaxaca (1996), “I & S”–Ivanova-Stenzel and Salmon (2004).
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Figure 6: Predicted∗ and experimental price offers
*based on the average of different risk preference distribution estimates
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(1) (2) (3) (4)
cycle Nobs Price offer Accept- Profits Effi-

ance rate Seller Buyer ciency
Mean (StD.) (in %) Mean (StD.) Mean (StD.) (in %)

1 240 0.53 (0.17) 35 0.34 (0.19) 0.14 (0.11) 80.4
2 240 0.51 (0.18) 35 0.32 (0.20) 0.16 (0.12) 85.0
3 240 0.52 (0.18) 28 0.33 (0.19) 0.16 (0.12) 87.9
4 240 0.50 (0.16) 36 0.32 (0.18) 0.16 (0.11) 86.7

all 960 0.51 (0.17) 33 0.33 (0.19) 0.15 (0.11) 85.0

Theory: 0.5 ≤ p ≤ 1 0 0.33 0.17 100

Table 1: Descriptive Statistics: Number of observations, price offers, acceptance
rates, profits reported for sellers and buyers, and share of efficient sales for all peri-
ods and per cycle (1 cycle = 8 periods) and summary of the theoretical prediction

(1) (2) (3) (4a) (4b)
Study Nobs Distribution of Prediction of

α–Estimates Prices (p) Accept-
Quantiles Quantiles ance rate

10% 50% 90% 10% 50% 90% (in %)
G, H & P 42 −0.38 0.14 0.89 0.48 0.55 0.68 17.6

H & L 175 0 0.28 0.83 0.48 0.53 0.56 21.2
C & O 40 0.37 0.72 0.92 0.53 0.54 0.56 36.9
I & S 55 −0.17 0.46 0.72 0.51 0.51 0.56 25.8

Table 2: Summary of different studies (col. 1) with varying sample sizes (col. 2) of
their reported distribution of individual risk attitude (α) estimates (10%, 50% and
90% quantiles in col. 3), predicted price distributions (10%, 50% and 90% quantiles
in col. 4 a) as well as sales in the negotiation phase based on those estimates (col. 4b).
“G,H&P”-Goeree, Holt and Palfrey (2003), “H&L”–Holt and Laury (2002), “C&O”–Cox and
Oaxaca (1996), “I&S”–Ivanova-Stenzel and Salmon (2004).
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