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1 Introduction

The controversy that opposed Borda (1784) and Condorcet (1785) is well known; indeed,

recent articles by Saari (2003, 2006) and Risse (2005)1 suggest that it is still very much alive.

The aggregation rules proposed by these two eighteenth-century scholars are very different

in nature. The Borda rule is a scoring method that yields a unique ranking, although not

necessarily strict. The Condorcet binary procedure may yield a cyclic binary (majority)

relation, but when it does produce an unambiguous ranking - more precisely, an order - the

Condorcet rule is a maximum likelihood estimator of the true order, under the assumptions

that there is indeed a true order and that all judges or voters are able to order any two

alternatives as they are in the true order with the same probability. Young (1988) extends

the Condorcet result to the case where the majority relation is cyclic, by showing that the

most likely orders are the Kemeny orders.

Condorcet made a distinction between the most likely ranking and the alternative most

likely to be the best; so he was apparently aware that the alternative with the largest

probability of being the best is not necessarily the top alternative in the most likely ranking.

Young (1988) shows that indeed with a constant probability close to one half, the alternative

most likely to be the best is the Borda winner, which may be different from the top alternative

in the most likely ranking.

Drissi and Truchon (2004) extend the above analyses by relaxing the assumption that

the probability of correctly ordering two alternatives is the same for all pairs of alternatives.

They let this probability increase with the distance between the two alternatives in the true

order, to reflect the intuition that a judge or voter is more prone to errors when confronted

to two comparable alternatives than when confronted to a good alternative and a bad one.

They make a thorough study of the case of three alternatives, using the class of logistic

probability functions defined by

p (k;α, β) =
eα+β(k−1)

1 + eα+β(k−1)
, with α > 0 and β ≥ 0, (1)

where k is the distance between two alternatives in the true order.

With {a, b, c} as the set of alternatives, and restricting themselves to the polls for which
abc is the unique Kemeny order, Drissi and Truchon show that abc is also the most likely

1See also the references within these articles.



order when α is sufficiently large with respect to β. Otherwise, the most likely order may

be acb or bac. They also identify a subset of polls for which the Borda ranking turns out to

be the most likely order for all values of α and β. However, they did not realize that this

identity also holds for all polls when α = β. The purpose of this note is to prove this result2,

which is interesting in itself since it puts the Borda rule on the same footing as the maximum

likelihood rule, for a particular probability function. A parallel can also be drawn between

this result and Young’s result on the alternative most likely to be the best. Finally, in as

much as the Condorcet procedure belongs to the maximum likelihood tradition (Condorcet

approach was in fact one of the first application of the maximum likelihood approach), this

result may be seen as a reconciliation of the Borda and Condorcet methods.

2 The social choice problem

Let A = {1, 2, . . . ,m} be a set of alternatives or candidates to be ranked. Let us denote
the subset of complete weak orders or rankings (reflexive and transitive binary relations)

on A by R and the subset of (linear) orders (complete, transitive and asymmetric binary

relations) on A by L.3 A complete weak order on A can be represented in a rank form, that

is, by a vector r = (r1, r2, r3, . . .) , where r1 is the rank of alternative 1, r2 the rank of 2,

and so on. A complete weak order on A can also be represented in a sequence form, that is,

by a sequence s1s2 . . . , where s1 and s2 are the alternatives with ranks 1 and 2 respectively,

etc. In this form, parentheses are used to identify alternatives with the same rank, as in

ab(cde)fg.

To complete the problem, there is a set I = {1, 2, . . . , n} of voters or judges. Each is asked
to compare the alternatives pair by pair, as in the Condorcet procedure. His or her vote is

summarized in a matrix X i = [xist]s,t∈A . For any pair of alternatives (s, t) ∈ A2, xist = 1 if

voter i chooses s over t and xist = 0 otherwise, and xist = 0 if s = t. Alternatively, we can

2Actually, the result is proved for an extension of the maximum likelihood rule that consists in replacing
multiple most likely orders by a single weak order in a sort of averaging process.

3I depart somewhat from Drissi and Truchon (2004) by introducing weak orders as well as linear orders.
I also allow aggregation rules to produce weak orders instead of linear orders. This happens quite often with
the Borda rule.
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ask each voter i to fill in X i according to the previous convention. Since only the aggregate

information will be needed, we define a poll by:

X =
nX
i=1

X i

Once voters or judges have expressed their opinions in a poll, the problem is to aggregate

these opinions in order to select a final ranking. The Borda rule and the maximum likelihood

rule are the two methods considered here to accomplish this aggregation.

The Borda rule is a scoring method with the vector of scores (m− 1,m− 2, . . . , 2, 1, 0).
An alternative s receives m − 1 points if it is ranked first by a voter, m − 2 if it is ranked
second, ..., and 0 points if it is last. These points are then aggregated across voters to give

the Borda score bs (X) of s.4 Alternatives are ordered according to these scores. Thus, the

ranking s1s2s3 . . . such that

bs1 (X) ≥ bs2 (X) ≥ bs3 (X) ≥ · · ·

is the Borda ranking. It is unique but it admits ties. Alternatively, given a poll X, the Borda

ranking is the weak order B (X) such that:

∀s, t ∈ A : Bs(X) ≤ Bt(X)⇔ bs (X) ≥ bt (X)

where Bs(X) it the rank of alternative s. B (·) is the Borda rule.
The maximum likelihood approach to vote aggregation, which was initiated by Condorcet

(1785), starts from the point of view that there exists a true order r ∈ L on the set of
alternatives. The true order, however, is not known. The role of voters or judges is to

provide an opinion as to what should be considered the true order. Their opinions are

collected in X i, i = 1, . . . , n. The vote of expert i on a pair of alternatives (s, t) is a random

variable xist ∈ {0, 1} , conditional on the true order r. Condorcet assumed that the votes are
independent between voters and pairs of alternatives. Moreover, each voter has the same

probability, say p̄ ∈ ¡1
2
, 1
¢
, of ordering correctly two alternatives and this probability is the

same for all pairs of alternatives. Now, given an order r and a poll X, let:

K (r;X) =
X
s,t∈A
rs<rt

xist

4Since bs (X) =
Pm

t=1 xst, it is legitimate to define the score of s as a function of the aggregate matrix X.
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Young (1988) shows that a most likely order is an order r∗ such that:

K (r∗;X) = max
r∈L

K (r;X)

Such an order is also known in the literature as a Kemeny order, after the contribution

of Kemeny (1959, 1962). The value of K (r;X), called the Kemeny score of r given X, is

the total number of agreements between r and the individual rankings making up profile X.

Drissi and Truchon (2004) maintain the assumption that votes are independent and that

each voter has the same probability of ordering correctly two alternatives. They also assume

that this probability is the same for any two couples of alternatives (s, t) , (u, v) ∈ A2 such

that rs− rt = ru− rv. However, this probability is a non-decreasing function of the distance

between the two alternatives in the true order. More precisely, they consider the class Pm

of non-decreasing functions p : {1, . . . ,m− 1}→ ¡
1
2
, 1
¢
, where the domain is the set of the

possible distances between alternatives in the true order. Thus, given a true order r and two

alternatives s, t ∈ A such that rs < rt, the probability that a judge orders correctly these

two alternatives is given by p (rt − rs) .

Now, given a probability function p ∈ Pm, let

Lp (k) = ln

µ
p (k)

1− p (k)

¶
∀k ∈ {1, . . . ,m− 1} (2)

and for every order r and every poll X, consider the function:

Mp(r;X) =
m−1X
k=1

Lp (k)
X
s,t∈A

rt=rs+k

xst


As shown by Drissi and Truchon (2004), the most likely or most probable orders are the

elements of the set:

rp(X) = argmax
r∈L

Mp(r;X)

Clearly, rp (·) is another aggregation rule, the maximum likelihood rule with respect to the

function p.

Now, if p is defined by (1), we have:

p (k;α, β)

1− p (k;α, β)
= eα+β(k−1)

Thus, the function Lp defined in (2) takes the form:

L (k;α, β) = α+ β (k − 1)
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3 The result

Before stating and proving the result of this paper, the possibility of multiple most likely

orders must be addressed. One instance of this is when rp(X) contains two orders say r1 and

r2 that are identical except that, in the sequence form, r1 contains the subsequence s t while

r2 contains the subsequence t s. Since Mp(r
1;X) = Mp(r

2;X), it makes sense to declare s

and t ex aequo, that is, to replace both r1 and r2 by a single weak order r in which s t and

t s become (s t) . This means rs = rt in the rank form.

More generally, suppose that, for some κ ≥ 2 and 0 ≤ k ≤ m− κ, the set rp(X) contains

the order

s1 s2 . . . sksk+1sk+2 . . . sk+κsk+κ+1 . . . sm

as well as the orders obtained by permuting the κ alternatives in the subsequence

sk+1sk+2 . . . sk+κsk+κ+1,

for a total of κ! orders. Then, across these κ! orders, each alternative in {sk+1, sk+2, . . . , sk+κ}
occupies each rank from k + 1 to k + κ exactly (κ− 1)! times. Thus, it makes sense to
“average” these κ! orders, that is, to replace them by the single weak order

s1 s2 . . . sk (sk+1sk+2 . . . sk+κ) sk+κ+1 . . . sm

in which the alternatives sk+1, sk+2, . . . , sk+κ tie. In the rank form, one would have rsk+1 =

rsk+2 = · · · = rsk+κ.
5

The result to be proved assumes that the above averaging process is applied in due

circumstances. More precisely, let N be the set of all profiles and rwp : N → R be the

extension of rp obtained by replacing every maximal subset of orders in rp(X) that differ

only by the permutation of adjacent alternatives, by a single weak order in which these

alternatives tie. This extension is the object of the proposition that follows.

Proposition 1 The extension rwp of the maximum likelihood rule rp, with p defined by (1)

and α = β, coincides with the Borda rule.

Proof. Without loss of generality, let r = (1, 2, . . . ,m) be a ranking from rwp (X) and let

α = β = 1. Then, Lp (k) = k and

Mp(r;X) =
m−1X
u=1

mX
v=u+1

(v − u)xuv

5For more on the multiplicity of most likely orders, see Truchon (2004).
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Next, consider an alternative s < m and another ranking r̂ obtained from r by simply

interchanging the position of s and s+1.6 I shall show thatMp(r;X)−Mp(r̂;X) = bs (X)−
bs+1 (X) . Since Mp(r;X) −Mp(r̂;X) ≥ 0, it will follow that bs (X) − bs+1 (X) ≥ 0 and, by
transitivity of ≥, that bs (X) ≥ bt (X) ∀s, t ∈ A : s < t. Thus, r is the Borda ranking. In

particular, if Mp(r;X) −Mp(r̂;X) = bs (X) − bs+1 (X) = 0, then, by definition of rwp , we

have r̂ = r, that is, alternatives s and s+1 tie in r̂ = r. This is consistent with the tieing in

the Borda ranking.

For the remaining of the proof, let t = s + 1. To ease reading, I shall use t instead of

s+ 1 as a subscript. The only difference between Mp(r;X) and Mp(r̂;X) is that the terms

xus are replaced by xut for u = 1, . . . ,m. Although tedious, it is easy to check that:

Mp(r;X)−Mp(r̂;X) =
s−1X
u=1

((s− u) (xus − xut) + (t− u) (xut − xus)) + (xst − xts)

+
mX

v=s+2

(v − s) (xsv − xtv) +
mX

v=s+2

(v − s− 1) (xtv − xsv)

=
s−1X
u=1

(xut − xus) + (xst − xts) +
mX

v=s+2

(xsv − xtv)

=
s−1X
v=1

(xsv − xtv) + (xst − xts) +
mX

v=s+2

(xsv − xtv)

=
mX
v=1

xsv −
mX
v=1

xtv

= bs (X)− bt (X)

The second equality results from the simplification of the first term. The third equality

follows from the fact that xus+ xsu = m. The fourth equality holds under the assumption

xss = xtt = 0. The last equality uses the well known, and easily checked, fact that bs (X) =Pm
v=1 xsv.

A priori, nothing guarantees that rwp (X) is a singleton. However, since the Borda ranking

is unique, we get the single-valuedness of rwp (X) as a corollary to the theorem.

Corollary 2 Consider the extension rwp of the maximum likelihood rule rp, with p defined

by (1) and α = β. Then, for any profile X, rwp (X) is a singleton.

6In this case, r and r̂ can be seen as both the rank and the sequence forms of the respective orders.
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