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Abstract:   
Consider a model of bargaining, in which two players, 1 and 2, share a pie of size y. 
The bargaining environment is described by a set of parameters λ that may affect 
agents' preferences over the agreement sharing, the status quo outcome, or both. 
The outcomes (i.e., whether an agreement is reached, and if so the individual shares) 
and the environment (including the size of the pie) are known, but neither the agents' 
utilities nor their threat points. Assuming that the agents adopt a Nash bargaining 
solution, we investigate the empirical content of this assumption. We first show that in 
the most general framework, any outcome can be rationalized as a Nash solution. 
However, if (i) the size of the pie y does not influence the players' threat points and 
(ii) there exist (at least) two parameters λ1 and λ2 that are player-specific, in the 
sense that λi does not influence the utility or the threat point of player j ≠ i, then Nash 
bargaining generates strong testable restrictions. Moreover, the underlying structure 
of the bargaining, i.e., the players' utility and threat point functions, can be recovered 
under slightly more demanding conditions. 
 
 
Keywords: Bargaining Game, Nash Solution, Testability, Identifiability, Cardinal 
Utility 
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I passed by his garden, and marked, with one eye,
How the Owl and the Panter were sharing a pie:
The Panther took pie-crust, and gravy, and meat,
While the Old had the dish as its share of the treat.
When the pie was all �nished, the Owl, as a boon,
Was kindly permitted to pocket the spoon:
While the Panther received knife and fork with a growl,
And concluded the banquet by...
Lewis Caroll (Alice�s Adventures in Wonderland, 1866)

1 Introduction

Consider an experiment in which two agents, 1 and 2, bargain about a pie
of size y. If the agents agree on some sharing (�1; �2) with �1 + �2 = y,
it is implemented. If not, each agent i receives some reservation payment
�i. Information is complete: each agent knows his opponent�s preferences as
well as the structure of the game. The interaction is repeated for di¤erent
pie sizes and di¤erent reservation payments. The outcomes (i.e., whether an
agreement is reached, and if so the individual shares), as functions of the
size of the pie and the payments �1; �2, are observable by an outside econo-
metrician; however, individual utilities are not. Assume, �nally, that the
econometrician has a prior theory about the agents�behavior; speci�cally,
she believes that it can be described using the concept of Nash bargaining
(Nash, 1950). Is this theory testable (i.e., is there a particular set of possible
outcomes that would violate the Nash bargaining property), or is it the case
that any outcome can be rationalized by a Nash-bargaining setting for well-
chosen individual preferences? And how much can be learned about the true
structure of the model (i.e., the utility individuals derive from the consump-
tion of either their share of the pie or their reservation payment) from the
sole observation of the outcomes? These two questions � the testability of
Nash bargaining models and the identi�ability of their underlying structure
from observed behavior � are the main topic of this paper.
A possible approach, which is often adopted in the empirical literature

on Nash bargaining, is to answer the �rst question by ignoring the second.
Indeed, many works arbitrarily assume a speci�c (usually linear) form for
individual utilities. Then the sharing function (�1 = �; �2 = y � �) solves the
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program:
max
�
(�� �1) (y � �� �2) ; (1)

giving the simple, linear form � = 1
2
�1 +

1
2
y � 1

2
�2. Convenient as it may be,

this solution totally relies on the linearity assumption; since the Nash bar-
gaining outcome depends on the cardinal representation of individual pref-
erences, any deviation from linear utilities will give a di¤erent form for the
resulting shares.1 This feature is clearly problematic, since the linearity as-
sumption is generally made for convenience rather than realism or theoretical
consistency.2 In particular, any test based on the form (1) is a joint test of
two assumptions, one general (Nash bargaining), the other very speci�c (lin-
ear utilities). A rejection is likely to be considered as inconclusive, since
the burden of rejection can always be put on the speci�c and often ad hoc
linearity assumption. For that reason, we believe preferable to adopt the
generally accepted rule in empirical economics, whereby preferences should
be recovered from the data rather than assumed a priori.
In the present paper, we address these issues in a general framework

where the environment is described by a set of parameters that may a¤ect
agents�preferences over the agreement sharing, the status quo outcome, or
both. A key role will be played by the econometrician�s prior information
on the structure of the model at stake. In a non-parametric spirit, this
information will be described by some (broad) classes to which the utility
or threat point functions are known to belong. We are mainly interested in
situations in which this prior information is limited. We thus do not assume
that the econometrician knows the parametric form of the utility and threat
point functions, but simply that these functions are known to satisfy some
exclusion restrictions.3 Our basic question can thus be precisely restated in
the following way: what is the minimum prior information needed to achieve
(i) testability of the Nash bargaining theory, and (ii) identi�ability of the
underlying structural model.
Regarding the identi�ability issue, an interesting aspect is that Nash so-

1In the exemple above, for instance, if the utility of agent 1 is U (x) =
p
x instead of

U (x) = x, the solution becomes � = 1
3y +

2
9�1 �

1
3�2 +

2
9

p
�1 (�1 + 3y � 3�2).

2See Farber (1986, pp. 1056-57) for a discussion of the linear utility framework in the
context of union-�rm bargaining.

3To put it in a Popperian perspective: we do not want the falsi�ability of Nash bargain-
ing to be entirely driven by ad hoc auxiliary hypotheses � such as particular functional
forms of individual utility functions.
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lutions are not invariant to monotonic transformations of utility functions.
It follows that one may, in principle, try to retrieve a cardinal representation
of preferences. While the identi�cation of cardinal preferences is a standard
problem in economics, our approach is original in that it does not involve
uncertainty. Whether concavity of utility functions matter in bargaining be-
cause of risk aversion (as might be suggested by the non cooperative founda-
tions of Nash bargaining) or for unrelated reasons is an interesting conceptual
problem, on which our �ndings shed a new light.
The empirical content of game theory is undoubtedly a topical issue as

illustrated by several recent contributions. For example, Sprumont (2001)
considers, from the revealed preferences viewpoint, a non-cooperative game
played by a �nite number of players, each of whom can choose a strategy
from a �nite set. Ray and Zhou (2001) adopt a similar set-up but focuses on
extensive-form games. Other related papers include Bossert and Sprumont
(2002, 2003), Carvajal (2002), Carvajal, Ray and Snyder (2004), Zhou (1999,
2002), Ray and Snyder (2003), Xu and Zhou (2004). Nonetheless, our con-
tribution di¤ers in many respects from what is generally made. Firstly, our
subject matter � the Nash solution � has never been investigated in spite
of the various applications of bargaining models in economics.4 Secondly,
our methodology is not based on revealed preferences. The inspiration of
the present paper, in fact, is more closely related to the work of Chiappori
(1988, 1992) and its numerous sequels (Chiappori and Ekeland, 2003, 2004),
on the empirical implications of Pareto e¢ ciency. This methodology is prob-
ably more appropriate for the empirical implementation of theoretical results.
Thirdly, the emphasis of this paper is largely on the identi�cation problem,
which is generally ignored by the authors cited above.
The organization of the paper is as follows. In the next Section, we

develop the general model and show that neither testability, nor identi�cation
obtain without a priori information on utility and threat point functions.
In Section 3, then, we introduce additional structure into the model, and
show that testability obtains under mild assumptions on utility and threat
point functions. In Section 4, we note that identi�cation requires stronger
assumptions, of which several examples are given. We show in particular that
in the simple example given above, identi�cation obtains provided that the

4See, for example, the applications of bargaining theory in models of household behav-
ior, trade-union negotiations, experimental economics, job matching/search, international
trade, oligopolistic competition.
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utility functions do not belong to the exponential family. In Section 5, the
possibility of disagreement between players is considered and some additional
restrictions on observable behavior are derived. In the concluding Section,
we discuss the potential applications of the results.

2 The general model

2.1 The framework

We consider a bargaining game where two players, 1 and 2, share a pie of size
y. The bargaining environment is described by a vector � of l parameters.
The outcome of the bargaining game, as a function of the size of the pie
and the parameters, is observed. Speci�cally, we assume that the relevant
parameters (y; �) vary within some convex, compact subset S of R+ � Rl.
Let N denote the subset of S on which one observes that no agreement is
reached (so that agents receive their reservation payment), and M = S �N
its complement.5 Over M, a sharing is observed, in which player i gets
�i (y; �), with �1 (y; �) + �2 (y; �) = y. For notational convenience, we de�ne
the sharing function � as the share of the pie allocated to member 1, i.e.,
� (y; �) = �1 (y; �) (then y � � (y; �) = �2 (y; �)); it is natural to assume
that � (y; �) 2 [ 0 ; y ] for all (y; �) 2 S. The agents�observed behavior is
de�ned by the partition fM;Ng of S and the function � (y; �) de�ned over
M. Let U i (�i; �) denote i�s utility when an agreement is reached and the
sharing � is implemented.6 Similarly, let T i (y; �) denote i�s threat point,
i.e., utility when no agreement is reached and the reservation payments are
made. The functions U i (�i; �) and T

i (y; �) may be, in general, di¤erent.
We assume throughout the paper that these functions have the following
regularity properties.

Assumption S1

(a) The functions U i (�i; �) are strictly increasing and concave in �i.

5If the players are indi¤erent between the agreement and the disagreement outcomes,
we adopt the convention that they always choose the agreement outcome.

6Note, in particular, that each player�s utility (in case of an agreement) depends on his
share and on the set of environmental parameters, but neither on the other player�s share
nor on the initial size of the pie.
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(b) The functions U i (�i; �) and T
i (y; �) are three times continuously dif-

ferentiable in all their arguments..

The set of all functions U i (�i; �) (resp. T i (y; �)) that are compatible
with the a priori knowledge of the econometrician is denoted by Ui (resp. Ti)
and 
 = U1�U2�T1�T2 is the information set of the econometrician. We
�rst introduce the following de�nition.

De�nition 1 Suppose a given set of prior information 
. The agents� (ob-
served) behavior (fM;Ng ; �) is compatible with Nash bargaining if and only
if there exist two utility functions U i 2 Ui and two threat point functions
T i 2 Ti, with i = 1; 2, such that:

� the parameters (y; �) belong toM if and only if there exists a sharing
(�1; �2), with �1 + �2 = y, such that

T i (y; �) � U i (�i; �) ; i = 1; 2;

i.e., an agreement is reached if and only if the allocation (T 1 (y; �) ;
T 2 (y; �)) lies within the Pareto frontier;

� in that case, the observed sharing (�1 = �; �2 = y � �) solves:

max
0� �� y

�
U1 (�; �)� T 1 (y; �)

�
�
�
U2 (y � �; �)� T 2 (y; �)

�
: (P)

Note that, in the present set-up, Pareto-e¢ ciency is an initial assumption
that cannot be tested. Indeed, our goal is to focus on the other properties
(independence of irrelevant alternatives, scale invariance and symmetry) that
characterize the Nash solution. Regarding tests of Pareto e¢ ciency (in a
di¤erent but related context), the reader is referred to previous papers by
Chiappori (1988, 1992) and Chiappori and Ekeland (2003, 2004).

2.2 A negative result

The answers to the two questions raised above � testability and identi�a-
bility � obviously depends on the prior information one is willing to exploit
in the framework at stake. A �rst result is that the fully general setting, in
which the form of utility and threat point functions is not restricted (except
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for Assumption S1-(a)), is simply too general. The answer to both ques-
tions is negative: Nash bargaining cannot generate testable predictions on
observed outcomes, and the observation of the outcome does not allow to
recover preferences. This is stated formally in the following Proposition.

Proposition 2 Let � (y; �) some function de�ned overM, and whose range
is included in [0; y]. Then, for any pair of utility functions U1; U2, satisfying
Assumption S1-(a), there exist two threat point functions T 1; T 2 such that
the agents�behavior is compatible with Nash bargaining.

Proof. For any given functions U1; U2, satisfying Assumption S1-(a),
one can de�ne T 1; T 2 by:

T i (y; �) = U i (�i (y; �) ; �) if (y; �) 2M,

T i (y; �) > U i (y; �) if (y; �) 2 N .

Then for any (y; �) in N , no agreement can be reached, whereas for any
(y; �) inM, the sharing (�1 (y; �) ; �2 (y; �)) is the only one compatible with
individual rationality; thus it is obviously the Nash bargaining allocation.

The intuition of this result is straightforward: it is always possible to chose
the status quo utilities (T 1; T 2) equal to the agents�respective utilities at the
observed outcome whenever an agreement is reached (so that, in practice, the
chosen point is the only feasible point compatible with individual rationality),
while making sure that (T 1; T 2) is outside the Pareto frontier when agents
are observed to disagree. Simple as it may seem, this argument still conveys
two important messages. One is that when threat points are unknown, Nash
bargaining has no empirical content (beyond Pareto e¢ ciency); any e¢ cient
outcome can be reconciled with Nash bargaining. Secondly, the observation
of the outcome brings no information on preferences (and in particular the
concavity of the utility functions): any utilities can be made compatible with
observed outcomes, using ad hoc threat points. Finally, it is important to
stress that these negative results are by no means speci�c to Nash bargaining.
The proof applies whatever the bargaining concept at stake, provided that it
satis�es individual rationality � a very mild requirement indeed.

2.3 Bargaining structure

The negative result above does not mean that Nash bargaining (or, for that
matter, bargaining theory altogether) cannot be tested, but simply that more
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structure is needed to achieve that goal. For example, the di¤erentiability of
U i and T i (such as required by Assumption S1-(b)) is su¢ cient to obtain some
restrictions on the sharing function. However, our interpretation of testabil-
ity is more demanding. We thus introduce the following �non-parametric�
assumptions on the bargaining structure.

Assumption S2 The threat points are independent of the size of the pie
y; i.e., @T i=@y = 0; i = 1; 2.

Assumption S3 There exists a partition � = (�1; �2; ��), with

�1 =
�
�11; :::; �

m
1

�
, �2 =

�
�12; :::; �

n
2

�
, �� =

�
��
1
; :::; ��

l�m�n
�

and m � 1; n � 1, l � m + n, such that neither U i nor T i depend on �j,
where i; j = 1; 2 and i 6= j; i.e., @U i=@�j = @T i=@�j = 0:

The additional structure given by these assumptions should a priori in-
crease the empirical content of the bargaining game. Assumption S2 is stan-
dard; it is typical, for instance, of situations where, in the absence of an
agreement, the opportunity at stake in the bargaining (the pie) is totally
lost. Assumption S3 is an exclusion restriction that provides the key struc-
ture needed for testability.7 It states that for each player, there exists one
parameter (at least) which does not a¤ect the preferences of this player.

3 Testability

We now study the properties of the Nash bargaining model under Assump-
tions S1�S3. For the sake of presentation, we �rst leave aside the situations
in which (a) the players disagree or (b) the players are indi¤erent between
agreeing and disagreeing. Formally, we thus make the simplifying assumption
(which will be relaxed in Section 5) that:

7Testable restrictions can be obtained without Assumption S2 provided that �1 and �2
are multi-dimensional vectors. For an investigation along those lines, see Chiappori and
Donni (2005).
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Assumption O1 For any (y; �) 2 S, there exists a sharing (�1; �2), with
�1 + �2 = y, such that U i(�i; �)� T i(y; �) > 0 for i = 1; 2:

Hence, an agreement is always reached, i.e., S =M. Moreover, we sup-
pose that when an agreement is reached, each player receives a positive share
of the pie. Formally:

Assumption O2 For any (y; �) 2 M, the solution � to Programme P is
interior, i.e., 0 < �i(y; �) < y.

Then, under Assumptions S1�S3, the sharing function � is de�ned as a
function of (y; �) over the entire space S, and solves the problem:

max
0� �� y

�
U1
�
�; �1; ��

�
� T 1

�
�1; ��

��
�
�
U2
�
y � �; �2; ��

�
� T 2

�
�2; ��

��
: (2)

The �rst order condition of this program is of the form:

F 1
�
�; �1; ��

�
= F 2

�
y � �; �2; ��

�
(3)

with

F i(�i; �i;
��) =

@U i=@�i
U i(�i; �i; ��)� T i(�i; ��)

. (4)

Our �rst result is that, under these additional speci�cations, the answer to the
testability question is now positive. There exist strong testable restrictions
on � generated by the Nash-bargaining approach. Speci�cally, a �rst, simple
result is the following:

Proposition 3 Under Assumptions S1�S2 and O1�O2, if the agents� be-
havior (fM;Ng; �) is compatible with Nash bargaining, then the function
� (y; �) is twice continuously di¤erentiable, with a range included in ]0; y[,
and satis�es:

0 <
@�

@y
< 1: (5)

Proof. If equation (3) is di¤erentiated with respect to y, one gets:

�@F
2

@�2
+

�
@F 1

@�1
+
@F 2

@�2

�
� @�
@y
= 0:
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It is easily shown that @F i=@�i < 0 for i = 1; 2 since the functions U i are
strictly increasing and concave in �i. Hence,

@�

@y
=

@F 2=@�2
@F 1=@�1 + @F 2=@�2

2 ]0; 1[;

with @F 1=@�1 + @F 2=@�2 < 0.

A Corollary of Proposition 3 is the following:

Corollary 4 The function � can be globally inverted in y on S; i.e., there
exists a function � (�; �), de�ned on the relevant space, such that

� (� (y; �) ; �) = y for all (y; �) in S:

Proof. The result is an immediate consequence of the implicit function
theorem.

In words, �(�; �) is the size of the pie that will, for given �, result in
member 1 receiving a share of size �; from an empirical perspective, observing
� as a function of (y; �) is exactly equivalent to observing y as a function � of
(�; �). It turns out that, from a theoretical viewpoint, many of the properties
derived below can be expressed in a much simpler way using the function �.
As an illustration, one can derive a second and much stronger testable

property of Nash-bargained sharing rules:

Proposition 5 Under Assumptions S1�S3 and O1�O2, if the agents� be-
havior (fM;Ng; �) is compatible with Nash bargaining, then the following,
equivalent conditions hold:

� the function � (�; �) satis�es:

@

@�t2

�
@ (� � �) =@�s1
@ (� � �) =@�

�
= 0, (6)

� the function � (y; �) satis�es:

@�

@�s1

�
@2�

@�t2@y

@�

@y
� @2�

@y2
@�

@�t2

�
+

�
1� @�

@y

��
@2�

@�s1@�
t
2

@�

@y
� @2�

@�s1@y

@�

@�t2

�
=0,

(7)
for all s = 1; :::;m and t = 1; :::; n:
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Proof. Since @F 2=@�2 < 0, equation (3) can be locally inverted as:

y � � = � (�; �)� � =  2
�
F 1
�
�; �1; ��

�
; �2; ��

�
: (8)

This condition implies that the function � (�; �)� � is separable:

@ (� � �) =@�s1
@ (� � �) =@�

=
@F 1

�
�; �1; ��

�
=@�s1

@F 1
�
�; �1; ��

�
=@�

for all s

which immediately implies condition (6). Expressing this conditions using
the function � gives condition (7). Finally, one can readily check that a
similar computation with F 2 instead of F 1 leads to the same equation.

In other words, Propositions 3 and 5 show that when the econometrician�s
information about the structure of the game is described by Assumptions 1�3,
the Nash bargaining solution can be falsi�ed (in Popper�s terms) by observ-
able behavior. Speci�cally, condition (5) states that any increase in the size
of the pie must bene�t both agents; it is a direct consequence of Assump-
tion S2. On the other hand, conditions (6) or (7) translate the particular
functional structure of equation (3) which de�nes the sharing function. Two
remarks are in order at this point.

Remark 1. The conditions stated in Proposition 5 are not speci�c to the
Nash solution. Indeed, from equation (3) one can see that any solution which
can be obtained by the maximization of an index of the form:

H
�
h1
�
U1 (�; �1)� T 1 (�1)

�
+ h2

�
U2 (y � �; �2)� T 2 (�2)

��
;

for some strictly increasing functions h1, h2 and H, will satisfy conditions (6)
(or (7)). The concepts leading to such a maximization include, besides Nash,
theWeighted Nash solution with constant bargaining weights, the Egalitarian
solution and the Utilitarian solution; interestingly, these concepts all satisfy
the independence of irrelevant alternatives (IIA) property. On the contrary,
conditions (6) (or (7)) are not satis�ed by the Kalai-Smorodinsky solution
or the Yu solution, which do not satisfy the IIA property.8

8See Thomson (1994) for a taxonomy of bargaining solutions.
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Remark 2. Even when either the threat point T i or the bargaining surplus
U i � T i is monotonic in �i, it does not follow in general that i�s share �i
increases (or decreases) with �i. The reason for that is that since U i also
depends on �, changing � a¤ects the marginal utility of income, which plays
a key role in the determination of the solution. It can actually be shown that
�i is increasing in �i if and only if the marginal utility of income @U

i=@�i is
more elastic with respect to �i than the bargaining surplus U i � T i.
The conditions stated in Propositions 3 and 5 can be exploited to test

whether players make use of the Nash solution. To do that, the simplest way
is to translate conditions (5) and (6) (or (7)) into parameter constraints of a
functional form. An illustration is provided by the following example.

Parametric example 1. For the sake of notational simplicity, we omit ��
and assume that the vectors �i are one dimensional. We then choose the
following, �semi-parametric�speci�cation for the sharing function:

� = y � L
�
a00 + a01�1 + a02�2 + a11�

2
1 + a22�

2
2 + a12�1�2

�
(9)

where
L(x) = 1

1 + exp(x)

is the logistic distribution function; in words, the respective shares �=y are
taken to be logistic transformations of a general second order approximation.
This form implies, as expected, that � (y; �1; �2) is necessarily comprises be-
tween 0 and y. Moreover, condition (5) is globally satis�ed and condition (6)
requires that:

a12 = 0:

If this restriction is satis�ed, the �rst order condition (3) gives:

� exp
�
a00 + a01�1 + a11�

2
1

�
= (y � �) exp

�
�
�
a02�1 + a22�

2
1

��
:

Hence an econometric test of the Nash solution, under Assumptions S1�S3,
boils down to testing that a12 = 0. Finally, note that this example can be
generalized with an approximation of any arbitrary order.
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4 Identi�cation

4.1 A non identi�ability result

We now consider the identi�cation problem; i.e., we ask whether the utility
and threat point functions can be retrieved from the observation of the shar-
ing function. Since Nash bargaining is invariant by a¢ ne transformation of
individual utilities, we say that utility functions U and U� (resp. threat-point
functions T and T �) are di¤erent if and only if there does not exist positive
scalars a and b such that U� = aU + b (resp. T � = aT + b).
The main conclusion, then, is that the model is not identi�ed; formally:

Proposition 6 Let �(y; �) be some twice continuously di¤erentiable func-
tion de�ned over S, that satis�es conditions (5) and (7), and whose range
is included in ]0; y[. Then there exists a continuum of di¤erent utility func-
tions U1; U2 and threat point functions T 1; T 2, such that Assumptions S1�S3
are satis�ed and the agents�behavior is compatible with Nash bargaining.

Proof. This proof is in two steps. The (non-)identi�cation of F 1; F 2 is
�rst examined. The (non-)identi�cation of U1; U2; T 1; T 2 then follows.

Part 1. Consider �rst the case of agent 1. If condition (6) is ful�lled, each
ratio

@ (� � �) =@�s1
@ (� � �) =@�

;

with s = 1; : : : ;m, can be written as some function �s of (�1; ��; �). Then,
the function F 1 de�ned in equation (4) must satisfy:

@F 1=@�s1
@F 1=@�

= �s
�
�; �1; ��

�
; (10)

with @F 1=@� 6= 0, where �s is a known function. Let �K be a level curve of
F 1; i.e.,

F 1
�
�; �1; ��

�
= K , � = �K

�
�1; ��

�
: (11)

The existence of �K is guaranteed by the implicit function theorem. The
system of equations (10) becomes:

@�K
�
�1; ��

�
@�s1

= ��s
�
�K ; �1; ��

�
, with s = 1; : : : ;m: (12)
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It can be shown, if one di¤erentiates this system with respect to �1 and ��,
that cross-derivatives restrictions of the form:

@2�K
�
�1; ��

�
@�s1@�

s0
1

=
@2�K

�
�1; ��

�
@�s

0
1 @�

s
1

;

are automatically satis�ed. Hence, this system of partial di¤erential equa-
tions has a solution for any initial value and the level curves can be recovered
(up to a function of ��) using equations (12). These are monotonic in the sense
that �K�

�
�1; ��

�
> �K

�
�1; ��

�
if K� < K. Clearly, from these curves and this

relation of monotonicity, the function F 1(�; �1; ��) is de�ned up to a trans-
form G(�; ��), increasing in its �rst argument. Symmetrically, the function
F 2(y��; �2; ��) for agent 2 is de�ned up to the same transform G(�; ��). That
is, assume that some �F 1(�; �1; ��) and �F 2(y � �; �2; ��) satisfy equation (3),
and de�ne �i(�i; �i; ��) = G � �F i(�i; �i; ��); then:

�1(�; �1; ��) = �
2(y � �; �2; ��):

Note, in particular, that @ �F i=@�i < 0 by construction.

Part 2. The arbitrary transform G is the only indetermination on F 1 and
F 2. Once the transform has been picked up, one can choose an arbitrary
function T i

�
�i; ��

�
, and consider the equation in U i(�i; �i; ��):

�i(�i; �i; ��) =
@ log

�
U i(�i; �i;

��)� T i(�i; ��)
�

@�i
(13)

where �i = G � �F i for some G. De�ning the function 	i(�i; �i; ��) by

	i(�i; �i;
��) =

Z �i

1

�i(�; �i; ��)d�;

the general solution to equation (13) is of the form:

U i(�i; �i;
��) = Ki

�
�i; ��

�
exp	i(�i; �i;

��) + T i
�
�i; ��

�
;

for an arbitrary, positive function Ki
�
�i; ��

�
, where @	i=@�i = �

i(x; z). The
constant Ki

�
�i; ��

�
does not a¤ect the concavity of utility with respect to

income, i.e., the condition above identi�es a cardinal representation of the
utility function (as a function of the share). Now, note that:

@U i

@�i
= Ki

�
�i; ��

�
exp	i(�i; �i; ��)� �i(�i; �i; ��):
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One can assume that �i > 0 over the domain at stake (it su¢ ces to de�ne
�i = exp �F i) so that the expression above is positive. Finally,

@2U i

@�i@�i
= Ki

�
�i; ��

�
exp	i(�i; �i; ��)�

�
@�i

@�i
+
�
�i(�i; �i; ��)

�2�
:

The selected G must be such that the term into brackets is negative. Since
S is bounded, that can be obtained by the transform �i = k exp �F i where
k > 0 is an arbitrary small constant.

A by-product of the proof is that the conditions stated in Proposition 3
and 5 are su¢ cient as well, in that any sharing rule satisfying these conditions
can be rationalized as a Nash bargaining solution for well-chosen utilities
and threat points satisfying Assumptions S1�S3. However, the framework
falls short of providing a uniqueness result; identi�cation requires still more
information. The intuition of this result is that, at best, the functions F 1

and F 2 in expression (3) are de�ned up to some (common) mapping G.

Parametric example 2. Coming back to our numerical example, with the
semi-parametric speci�cation for the sharing function:

� = y � L
�
a00 + a01�1 + a02�2 + a11�

2
1 + a22�

2
2

�
:

Let

g1(�1) = exp
�
a00 + a01�1 + a11�

2
1

�
;

g2(�2) = exp
�
�
�
a2�02 + a22�

2
2

��
:

Then, one can see that the functions F i are given by:

F 1 (�1; �1) = G (�1g1) ;

F 2 (�2; �2) = G (�2g2) ;

where G is an arbitrary function. For any choice of G, one can recover the
utility functions for arbitrary choices of the threat points. For instance, for
G (x) = x, we have that:

U1(�1; �1) = K1(�1) exp
�
1
2
g1�

2
1

�
+ T 1(�1);

U2(�2; �2) = K2(�2) exp
�
1
2
g2�

2
2

�
+ T 2(�2):
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where K1(�1) and K2(�2) are some positive functions. However, this trans-
form is not convenient because the resulting utility functions are not concave.
For G (x) = x�1, we have that:

U1(�1; �1) = K1(�1)�
1=g1
1 + T 1(�1);

U2(�2; �2) = K2(�2)�
1=g2
2 + T 2(�2):

Then, these expressions correspond to CRRA utility functions if g1; g2 > 1.
We now provide two examples of additional assumptions that enable to

recover the underlying structural model from observed behavior.

4.2 Case 1: one a¢ ne utility function

A �rst solution is to assume that the utility of one agent (say, agent 2) is an
a¢ ne function of the agent�s share of the pie. Formally:

Assumption S4. There exists functions � and � > 0 of
�
�2; ��

�
such that

the agent 2�s utility function can be written as U2 = �+ � � (y � �).

This may be the case, for instance, if agent 2 represents a risk-neutral
employer who bargains with a trade-union. If so, the Nash program becomes:

max
0� �� y

�
�
�2; ��

� �
U1
�
�; �1; ��

�
� T 1

�
�1; ��

��
�
�
(y � �)� 


�
�2; ��

��
; (14)

where 
 = (T 2 � �) =�, showing that only the ratio 
 is relevant in the
maximization programme. Hence � and � cannot be identi�ed. Equation
(3) becomes:

@U1=@�1
U1
�
�; �1; ��

�
� T 1

�
�1; ��

� = 1

(y � �)� 

�
�2; ��

� (15)

In this case, the sharing function has to satisfy additional restrictions. To
see why, note that the right-hand side of equation (15) should only depend
on �; �� and �1. Using the function � introduced in Corollary 4, we have that:

@

@�2

�
�
�
�; �1; �2; ��

�
� �� 


�
�2; ��

��
= 0:

Hence
@�

@�2

�
�; �1; �2; ��

�
=

@


@�2

�
�2; ��

�
:
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This equation pins down 
 up to some additive function of ��. More impor-
tantly, it implies that

@2�

@�1@�2
=

@2�

@�@�2
= 0

which further restricts the sharing function.
The most important result is stated in the following Proposition.

Proposition 7 Under Assumptions S1�S4 and O1-O2, the knowledge of the
sharing �i(�; y) identi�es player 1�s utility function U

1 up to an a¢ ne, in-
creasing transform, whose the coe¢ cients are functions of �1 and ��. In
particular, the cardinal representation of the utility of player 1 is exactly
identi�ed.

Proof. One has previously shown, in the Proof of Proposition 6 (Part 1),
that the functions F 1 and F 2 are de�ned up to the same transform G(�; ��),
increasing in its �rst argument. However, in the present context, the as-
sumption on U2 limits the set of such transforms to linear transforms. More
precisely, the function G is de�ned by:

G
�
�F 1(�1; ��; �); ��

�
=

1

(y � �)� 

�
�2; ��

�
where �F 1 is a known function. Thus,

�1
G2

@G

@F 1
=
(1� @�=@y)

@�=@y

�
@ �F 1

@�

��1
;

which identi�es G up to a function of ��. Then, using the same argument as
in the Proof of Proposition 6 (Part 2), the function U1 can be retrieved up
to an a¢ ne transformation, whose the coe¢ cients depend on �1 and ��.

4.3 Case 2: ��independent utility functions
The second particular case is a straightforward generalization of the exper-
iment described in Introduction, where �1 and �2 were interpreted as the
agents� reservation payments. The speci�c feature we shall keep from the
experiment is that �1 and �2 are only relevant for the threat points; they
have no direct impact on utilities. We now proceed to show that, in this
context, not only additional restrictions are generated on the shape of the
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sharing function, but both individual utilities and threat points are uniquely
recovered (up to the same a¢ ne transform).
Formally, we thus introduce the following assumption:

Assumption S40 The individual utilities are independent of the parameters
�1 and �2, i.e., @U i=@�i = 0; i = 1; 2: The vectors of parameters �1 and �2
are one dimensional and there is no vector of parameters ��.

The assumption on the dimensionality of �1 and �2 is made for notational
convenience and the parameters �� are omitted for the same reason. This
could be relaxed. Then, under Assumptions S1�S3, S40, the sharing function
� (y; �1; �2) thus solves the problem:

max
0� �� y

�
U1
�
�; ��

�
� T 1

�
�1; ��

��
�
�
U2
�
y � �; ��

�
� T 2

�
�2; ��

��
: (16)

We can now state the main result:

Proposition 8 Assume U i is not exponential (i.e., U i (�i) is not of the form
�e��i + � for some �; �; �). Then, under Assumptions S1�S3, S40 and O1�
O2, the knowledge of the sharing �i (y; �) identi�es U

i and T i up to an a¢ ne,
increasing transform.

The proof relies on the following Lemma:

Lemma 9 Let F (x; y) be a given function, and assume that for some func-
tions B;C;G the following equation is satis�ed:

G (F (x; y)) =
B0 (x)

B (x)� C (y)

Assume that F is such that @F (x; y) =@x 6= 0; @F (x; y) =@y 6= 0, and B (x)
is not exponential. Then B and C are identi�ed from F up to the same a¢ ne
transform.

Proof. The proof of the Lemma is in Appendix. We now show that the
Lemma implies Proposition 8. As before, de�ne F 1 and F 2 by

F i (�i; �i) =
@U i=@�i

U i (�i)� T i (�i)
:
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From the Proof of Proposition 6 (Part 1), we know that F i is identi�ed up
to some increasing transform; i.e., there exists some known function �F i such
that:

G
�
�F i (�i; �i)

�
= F i (�i; �i) =

@U i=@�i
U i (�i)� T i (�i)

for some G. It remains to be shown that given the particular form at stake,
the knowledge of F i up to an increasing transform is su¢ cient to identify U i

and T i. Clearly, Lemma 9 immediately implies the conclusion. Moreover, if
B and C are identi�ed up to the same a¢ ne transform, then G (F (x; y)) is
exactly identi�ed, hence G as well.

Again, additional testable restrictions are generated by this particular
form. These conditions are technical, and we omit them in the present paper.
It can be demonstrated, however, that the logistic-quadratic form used in
the empirical example above is not compatible with this setting. In other
words, an empirical model of bargaining that is using the logistic-quadratic
speci�cation must assume (at least implicitly) that individual utilities in case
of an agreement depend on the threat point payment � a strong assumption
indeed. This remark illustrates the relevance of a preliminary, theoretical
investigation. An empirical speci�cation based on the logistic-quadratic form
may be quite appealing (and �t the data); but it is internally inconsistent
with the model at stake, at least if one assumes (as it seems natural) that
agents care about their threat point utility only insofar as it a¤ects the
bargaining outcome.

5 The agreement frontier

In the previous Section, it is assumed that cooperation always generates a
positive surplus that can be shared between the players. From now on, we
consider a more general case : M� S so that the possibility of a disagree-
ment between the players, or an agreement along the boundary of M, can
no longer be excluded.
To begin with, it is worth noting that, when (y; �) 2 N , i.e., the players

do not agree about the sharing of the pie, the outside econometrician can
learn next to nothing about the underlying structure of the bargaining. In
particular, the utility functions cannot be identi�ed. The econometrician
can only infers from the observation of the disagreement that, whatever the
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sharing of the pie may be, and for one player at least, the utility obtained
from the reservation payment must be higher than what is obtained from the
share of the pie.
However, the study of the agreement frontier � the locus where the

players are indi¤erent whether the agreement is reached or not � is much
more interesting. Indeed, along this frontier, the econometrician observes
the sharing of the pie, as a function of the size of the pie and the set of
parameters, and knows that, by de�nition, the bargaining surplus is exactly
equal to zero. Formally, the agreement frontier is de�ned as follows:

De�nition 10 The agreement frontier F is the subset of (y; �) 2 S such
that each agent is indi¤erent between her share of the pie and her reservation
payment, i.e.,

F = f(y; �) 2 S such that U1 (�; �) = T 1 (�) , U2 (y � �; �) = T 2 (�) ;

for some �, with 0 � r � yg:

The observable agreement frontier F� is a subset of F de�ned byM\ cl(N ).

A �rst, trivial result is that the knowledge of the threat points uniquely
de�nes utilities (along the observable frontier). More importantly, the agree-
ment frontier, which generated by the structure of the bargaining, should
have some features that can be tested. Before examining that, we introduce
the following assumption that is used throughout this Section.

Assumption O3 There is some (y; �) 2 S such that each agent is indi¤er-
ent between her share of the pie and her reservation payment, i.e., F 6= ?.

The following Proposition presents a set of testable restrictions which are
based on the observation of the sole agreement frontier.

Proposition 11 Under Assumptions S1�S2 and O3, if the agents�behavior
(fM;Ng; �) is compatible with Nash bargaining, there exists a subset B in
Rl, and a three times continuously di¤erentiable function �(�) de�ned over
B, such that y = �(�) if and only if (y; �) 2 F , and
(i) if (y; �) 2M and � 2 B, then y � �(�);

(ii) if (y; �) 2 N and � 2 B, then y < �(�):

Moreover, under Assumption S3, the function �(�) is additive in the sense
that �(�) = �1(�1; ��) + �2(�2; ��) for some functions �1(�1; ��) and �2(�2; ��).
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Proof. Consider the system of equations,

U1
�
�; �1; ��

�
� T 1

�
�1; ��

�
= 0; (17)

U2
�
y � �; �2; ��

�
� T 2

�
�2; ��

�
= 0; (18)

which implicitly de�nes � and y as a function of �. Inverting (17) with respect
to � yields:

� = �1
�
�1; ��

�
: (19)

Hence, the sharing function is independent of �2 and y along the agreement
frontier. Similarly, inverting (18) with respect to y � � yields:

y � � = �2
�
�2; ��

�
: (20)

Then, substituting equation (19) into equation (20) proves that � (�) is ad-
ditive in the sense of Proposition 11.

In other words, the �rst part of the Proposition states that the agreement
frontier can be equivalently written as:

y = �(�):

The players will not agree about the sharing of a pie whose the size is less
than a reservation value, given by �(�); and an agreement will occur if the
size of the pie exceeds its reservation value. Note that, formally, y < �(�)
does not imply that (y; �) 2 N because the reservation value of y may well
be outside of S. The second part of the Proposition yields a very strong,
testable restriction on the form of the agreement frontier.
Since the results in Proposition 11 are based on the sole observation of the

agreement frontier, the econometrician can make a test of Nash bargaining
without observing the sharing of the pie (at least if F� 6= ?). However, more
can be obtained if the sharing of the pie is observed. This is formally stated
in the following Proposition:

Proposition 12 Under Assumptions S1�S3 and O2�O3, if the agents�be-
havior (fM;Ng; �) is compatible with Nash bargaining, then:

@�

@�s1
=

@�=@�s1
(1� @�=@y)

,
@�

@�t2
= �@�=@�

t
2

@�=@y
; for any (y; �) in F

and for any s = 1; : : : ;m and any t = 1; : : : ; n:
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Proof. As a direct consequence of equations (19), one has:

�1(�1; ��) = �(�1(�1; ��) + �2(�2; ��); �1; �2; ��):

Di¤erentiating this expression with respect to �s1 and �
t
2 gives the conditions

in Proposition 12

Finally, note that these conditions are not su¢ cient. Indeed, as previously
shown, the functions F i(�i; �i; ��) for i = 1; 2 are de�ned up to some increasing
function G. Remember now that

F i(�i; �i; ��) =
@U i=@�i

U i(�i; �i; ��)� T i(�i; ��)
:

Hence, any particular solution �F i(�i; �i; ��) has to satisfy a boundary condi-
tion, i.e., limy!
 �F

i(�i(y; �); �i;
��) =1:

6 Applications

Our main results leads to a signi�cant quali�cation of the widely accepted
views that �bargaining theory contains very few interesting propositions that
can be tested empirically�, to quote Hamermesh (1973, p. 1146). Admit-
tedly, testability and identi�ability do not obtain in the most general model.
If the econometrician knows nothing about the form of utility and threat
point functions, any sharing of the pie is compatible with Nash bargaining.
Nevertheless, whenever utility and threat point functions satisfy some spe-
ci�c exclusion property, Nash bargaining generates a set of strong restrictions
on observed behavior. An analogy with consumer theory is helpful at that
point. As is well-known, a system of demands must satisfy a set of testable
restrictions (homogeneity, symmetry, negativity). Still the maximization of
utility functions has an empirical content only if utility functions are, quite
naturally, assumed to be independent of prices and incomes. A similar condi-
tion of exclusion is required in the Nash bargaining context. The pertinence
of this condition cannot be judged a priori but depends on the bargaining
context.
Our results should be considered as a �rst step towards a better under-

standing of the empirical content of bargaining theory. Potential applications
are numerous. A non-exhaustive list of examples is given below.
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Trade-union negotiations The objectives of the union and those of the
�rms are to some extent in opposition to each other, and the observed out-
comes will not in general be precisely the most preferred outcome of either
party. This con�ict is often solved by assuming a Nash solution. Still the
latter has to be supported by empirical arguments. Hence there has been
several attempts to test the Nash solution in the sense of seeing if actual
negotiated agreements are consistent with the Nash model (see De Menil
(1971), Hamermesh (1973), Sevjnar (1980, 1986), Coles and Hildreth (2000)
for instance). However, these tests are relatively crude. The objective of the
�rm is simply assumed to maximize pro�t. The union is usually assumed to
be a rent-maximizer or to have a linear utility function. The message of our
paper is that, even without assumptions on the parametric form of utility
functions, Nash solutions have a strong empirical content. This sheds a new
light on this classical �eld of research.
Of particular interest, in this context, is Proposition 7. Indeed, in many

cases the linearity assumption makes sense on the �rm�s side. Pro�t max-
imization is a standard theoretical assumption, and risk neutrality can be
derived from speci�c assumptions on, say, �nancial markets. The same as-
sumption, however, is more debatable when made for the workers. Our
results show that the latter assumption is by no means necessary. Not only
can Nash bargaining be tested without this assumption, but the union�s
preferences (and in particular the degree of concavity of their utility) can in
principle be identi�ed from the outcome of the negotiation.

Household behavior During the last two decades, several models of house-
hold behavior accounting for the fact that spouses� goals may di¤er have
emerged. Speci�cally, Chiappori (1988a, 1992) relies on the sole assump-
tion that the intrahousehold decision process is e¢ cient, while Manser and
Brown (1980), McElroy and Horney (1981) and Lundberg and Pollak (1993)
refers to some cooperative equilibrium concept (typically Nash bargaining).
Since Nash-bargaining generates e¢ cient outcomes, the second approach is
a particular case of the �rst. An interesting problem is whether (and under
which conditions) the additional structure provided by Nash-bargaining re-
sults in either additional testable predictions on behavior, or a more accurate
identi�cation of individual preferences and decision processes.9

9See Chiappori (1988b, 1991) and McElroy and Horney (1990) for an exchange on this
issue.
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Our results suggest that the answer depends on the level of structure
one is willing to introduce into the model. Proposition 2 implies that the
Nash bargaining assumption, per se, implies very little beyond e¢ ciency �
a conclusion already conjectured by Chiappori (1991). More surprisingly,
however, Proposition 5 suggests that mild assumptions may be su¢ cient
to reverse this conclusion. For instance, in a model with purely private
consumption, in which the decision process can be decentralized, the form of
the so-called sharing rule may indeed be constrained by the Nash bargaining
context, even when the threat points are not explicitly speci�ed.10

Experimental economics The investigation of bargaining theory in ex-
perimental economics dates back to the seminal works by Siegel and Fouraker
(1960). A standard problem with experiments of this type is that the ob-
server does not know the players�preferences. As we said in Introduction,
assuming linear preferences may unduly restrict the scope of the test: a joint
test of Nash bargaining and linear preferences is likely to be rejected just
because preferences fail to be linear � and then the rejection tells very little
about the status of the Nash bargaining hypothesis.
A possible solution, introduced by Roth and Malouf (1979), is to consider

players who bargain about probabilities of a lottery. The idea, here, is that
linearity immediately follows from the expected utility hypothesis. Note,
however, that once again one jointly tests Nash bargaining and expected
utility. Given that expected utility tends to be rejected in experiments, once
again the status of the test (as a test of Nash bargaining) is ambiguous at
best.
From this point of view, the methodology developed in this paper opens

new and interesting directions for future research in this area. Consider again
the simple experiment discussed in Introduction. Our main conclusion is that
a cardinal representation of each agent�s utility function can be identi�ed
from it. This identi�cation does not require any form of uncertainty; in
particular, it does not rely on the assumption that utilities are of VNM type.
Moreover, the Nash bargaining structure generates strong testable properties
for the sharing function.
The possibility of identifying a cardinal representation of individual util-

ities in the absence of uncertainty raises interesting perspectives. The mere

10The application of our results to the context of household behavior raises however
speci�c problems. The interested reader is referred to Chiappori and Donni (2004).
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fact that Nash bargaining involves cardinal representations of individual util-
ities (i.e., concavity matters) even in the absence of uncertainty can be given
various interpretations. One of these relies on the non-cooperative foun-
dations of Nash bargaining, which do involve randomness.11 While inter-
esting, this interpretation raises however several problems. First, the non-
cooperative interpretation provided by Binmore, Rubinstein and Wolinsky
relies on expected utility. This requirement is somewhat problematic: it is
hard to see why the use of Nash bargaining should be restricted to prefer-
ences compatible with expected utility maximization, rather than more gen-
eral preferences under uncertainty. Recent progress have been made in this
direction by Rubinstein, Safra and Thomson (1992), who extend the inter-
pretation of Nash-bargaining to a family of non-expected utility preferences.
Still, why the de�nition of Nash bargaining should rely at all on preferences
on lotteries is not clear. After all, non cooperative models are not the only
justi�cation of Nash bargaining, and possibly not the most convincing one.
The initial de�nition of Nash bargaining was axiomatic; and none of the ax-
ioms used by Nash in his original contribution did rely on decision under
uncertainty in any manner. Moreover, Nash bargaining is used in a variety
of situations, most of which involve no uncertainty.12

In other words, the interpretation just described, based on the idea that
concavity of the utility function matters in Nash bargaining because Nash
bargaining should be viewed as a reduced form for some non cooperative game
that does involve randomness, needs not be the ultimate one. It should in
particular be put in perspective with a standard claim made by (some) ten-
ants of non expected utility approaches, and stating that concavity of utility
has little to do with risk aversion. Decreasing marginal utility of income, it
is argued, relates to psychological patterns of individual satisfaction that can
be understood independently of any risk. Risk aversion, in this perspective,
is a completely di¤erent issue, which is (at least in some versions) related to
transformations of the probability distribution.
The theoretical debate is both stimulating, challenging and intricate.

However, a very interesting question is whether there could be an empiri-

11See Binmore, Rubinstein and Wolinsky(1986), and Myerson (1990, Chapter 8) for a
very pedagogical presentation.
12Moreover, even in situations where the bargaining game is indeed non cooperative and

involves uncertainty, the game at stake may fail to �t the formal structure referred to by
the Binmore-Rubinstein-Wolinsky framework (alternative o¤ers, exogenous termination
probabilities, etc.)
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cal answer to the debate. In other words, could there be a way of directly
testing the relationship between decreasing marginal utility of income and
risk aversion? The obvious problem with such a program is that the decreas-
ingness of marginal utility of income is hard (or impossible, it is often argued)
to assess in a context of certainty. Our suggestion is that Nash bargaining
may actually provide such an assessment. We believe, in other words, that
it may be worth trying to take the theory literally and trying to recover the
concavity of individual utilities from the observation of negotiations between
agents in the absence of uncertainty. From this perspective, the tools pro-
vided by this paper may be useful precisely because they show how individual
utilities can be retrieved (up to an a¢ ne transform) in a bargaining context.
Whether the level of concavity implicit in the Nash bargaining outcome

is correlated with the individuals�attitude toward risk is an interesting em-
pirical question. After all, the same person may in principle be a tough
negotiator and a risk averse decision maker. At any rate, an experiment
should be easy to perform. It should go along the following lines:

1. face each individual of a given group with a standard choice between
lotteries, in order to assess her level of risk aversion

2. match randomly the agents by pairs, and let them play a two-sided
bargaining problem identical to the one discussed in Introduction; use
the theoretical approach described in this paper to recover their utility
functions

3. compare the two sets of results. According to the standard interpreta-
tion, more risk averse individuals, being characterized by more concave
VNM utilities, should perform poorly in the bargaining stage; an em-
pirical check of this prediction would be quite illuminating.

4. Interestingly enough, this approach has various by-products. For in-
stance, the idea that risk aversion has more to do with probability
transformation than with decreasing marginal utility of consumption
could be taken to data in a systematic way: if one believes that the
concavity retrieved from the second phase has general relevance, then
it can be plugged into the �rst stage to recover possible probability
transformations.

Experiments of this kind will be the topic of future work.
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A Appendix : Proof of Lemma 9

In this appendix, the notation fx stands for the di¤erential of function f with
respect to variable x; the notation f 0 is used when f has only one argument.
Note �rst that G (F (x; y)) is of the form:

G (F (x; y)) =
A (x)

B (x)� C (y)
;

where A (x) = B0(x). It follows that

Fx(x; y)

Fy(x; y)
=
A0(x) (B (x)� C (y))� A (x)B0(x)

A (x)C 0(y)
: (21)

De�ne:

� (x; y) =
Fx(x; y)

Fy(x; y)
:

Note that � is a known function, i.e., it does not depend on G, and is such
that

log � (x; y) = log

�
@F (x; y)

@x

�
� log

�
@F (x; y)

@y

�
:

Consider equation (21) as an equation in A = B0; B; C. We now show
that generically on �, this equation identi�es B;C up to an a¢ ne trans-
form. We now distinguish two cases, depending on whether log � (x; y) =
log (Fx (x; y))� log (Fy (x; y)) is additively separable in x and y or not.

CASE 1 (GENERAL CASE): log � (x; y) is not additively separable
in x and y. The proof goes in 3 steps

Step 1: De�ne v (x) = A0(x)=A (x) and w (x) = v (x)B (x) � B0(x), then
equation (21) becomes:

� (x; y)C 0(y) + v (x)C (y) = w (x) : (22)

Di¤erentiating with respect to x yields:

�x (x; y)C
0(y) + v0(x)C (y) = w0(x): (23)

If
�x (x; y) v (x)� � (x; y) v0 (x) = 0;
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then � (x; y) = D (y) v (x) for some function D and log � (x; y) is additively
separable in x and y which contradicts the assumption. Hence the expression
is non zero, and from equations (22) and (23) one gets:

C (y) =
�x (x; y)w (x)� � (x; y)w0 (x)

�x (x; y) v (x)� � (x; y) v0 (x)
; (24)

C 0 (y) =
v (x)w0 (x)� v0 (x)w (x)

�x (x; y) v (x)� � (x; y) v0 (x)
: (25)

A �rst necessary condition expresses the fact that the derivative of the right-
hand-side of equation (24) equals the right-hand-side of equation (25). This
gives either

w0 (x) v (x)� v0 (x)w (x) = 0

or

�x (x; y) v (x) + �y (x; y)�x (x; y)� �xy (x; y)� (x; y)� � (x; y) v0 (x) = 0:

If (w0 (x) v (x)� v0 (x)w (x)) = 0, then C 0 (y) = 0 and Fy (x; y) = 0, which
is excluded by assumption. Hence

�x (x; y) v (x)� � (x; y) v0 (x) = �xy (x; y)� (x; y)� �y (x; y)�x (x; y) : (26)

Step 2: Di¤erentiating equation (26) with respect to y gives

�xy (x; y) v (x)� �y (x; y) v
0 (x) = �xyy (x; y)� (x; y)� �yy (x; y)�x (x; y) :

(27)
If

�y (x; y)�x (x; y) = �xy (x; y)� (x; y) ;

then � (x; y) is of the form D (x) � E (y) and again log � (x; y) is additively
separable in x and y which contradicts the assumption. Hence the system
(26) and (27) allows to recover v:

v (x) =
�xyy�

2 + �2y�x � ��xy�y � ��yy�x
�xy�� �y�x

:

This de�nes A (x) up to some multiplicative constant a, and generate testable
conditions since the right hand side cannot depend on x.
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Step 3: In our case, A (x) = B0 (x), so B(x) is identi�ed from A(x) up to
some additive constant b :

B (x) = a �B (x) + b

where �B(x) is known; B(x) is thus identi�ed up to an a¢ ne transform.
Finally, since w (x) = v (x)B (x)�B0 (x) = a

�
�B (x) v (x)� �B0 (x)

�
+ bv (x),

equation (24) becomes

C (y) = a
�x
�
�Bv � �B0�� �

�
�B0v + �Bv0 � �B00�

�xv � �v0
+ b

and C (y) is identi�ed up to the same a¢ ne transform.

CASE 2 (PARTICULAR CASE): log � (x; y) is additively separable
in x and y. Then @2 log �(x;y)

@x@y
= 0; since

� (x; y) =
A0 (x)B (x)� A (x)B0(x)

A (x)

1

C 0 (y)
� A0 (x)

A (x)

C (y)

C 0 (y)

this implies either

C (y)

C 0 (y)
=

N

C 0 (y)
or

A0 (x)B (x)� A (x)B0(x) = 0

or

A0 (x) = 0

or
A0 (x)B (x)� A (x)B0 (x)

A (x)
= N

A0 (x)

A (x)

for some constant N . The �rst relation implies that C (y) = N , hence
Fy (x; y) = 0, a contradiction. The second, with the fact that A (x) = B0 (x),
implies that B is exponential or linear. The third implies that A(x) is con-
stant and B(x) linear. Finally, the fourth case gives

A0 (x) (B (x)�N) = A (x)B0 (x)
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hence
A (x) = a (B (x)�N)

for some constant a. Since A (x) = B0 (x), �nally

B (x) = �eax +N

and B(x) is exponential. Note that, in that case, identi�cation does not hold.
Indeed, if F (x) = ex= (ex + C (y)) and G (u) = a=

�
1 +

�
1�u
u

�a�
, then

G

�
ex

ex + C (y)

�
=

aeax

eax + C (y)a

and the right-hand-side is also of the required form with B(x) exponential
with a di¤erent coe¢ cient.
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