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Abstract:  
The usefulness of SVARs for developing empirically plausible models is actually 
subject to many controversies in quantitative macroeconomics. In this paper, we 
propose a simple alternative two step SVARs based procedure which consistently 
identifies and estimates the effect of permanent technology shocks on aggregate 
variables. Simulation experiments from a standard business cycle model show that 
our approach outperforms standard SVARs. The two step procedure, when applied to 
actual data, predicts a significant short-run decrease of hours after a technology 
improvement followed by a delayed and hump-shaped positive response. 
Additionally, the rate of inflation and the nominal interest rate displays a significant 
decrease after a positive technology shock. 
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Introduction

Structural Vector Autoregressions (SVARs) have been widely used as a guide to evaluate and

develop dynamic general equilibrium models. Given a minimal set of identifying restrictions,

SVARs represent a helpful tool to discriminate between competing theories of the business

cycle. For example, Gaĺı (1999) uses long–run restrictions à la Blanchard and Quah (1989) in a

SVAR model of labor productivity and hours and shows that the response of hours worked to

a positive technology shock is persistently and significantly negative. This negative response of

hours obtained from SVARs is then implicitly employed to discriminate among business cycle

models (see Gaĺı, 1999, Gaĺı and Rabanal, 2004, Francis and Ramey, 2005a and Basu, Fernald

and Kimball, 2006).1

The usefulness of SVARs for building empirically plausible models has been subject to many

controversies in quantitative macroeconomics (see Cooley and Leroy, 1985, Bernanke, 1986 and

Cooley and Dwyer, 1998). More recently, the debate about the effect of technology improvements

on hours worked has triggered the emergence of several contributions concerned with the ability

of SVARs to adequately measure the impact of technology shocks on aggregate variables.

Using Dynamic Stochastic General Equilibrium (DSGE) models estimated on US data as

their Data Generating Process (DGP), Erceg, Guerrieri and Gust (2005) show that the effect of

a technology shock on hours worked is not precisely estimated with SVARs. They suggest that

part of their results originate from the difficulty to disentangle technology shocks from other

shocks that have highly persistent, if not permanent, and sizeable effects on labor productivity.2

For example, they show that when the persistence of the non–technology shock decrease – and

thus the persistence of hours –, for a given standard error of this shock, the estimated response

of hours is less biased. Their results indicate that SVARs with long–run restriction deliver more

reliable results when the non–technology component in SVARs displays lower persistence. Their

findings also suggest to include in SVARs other variables with lower serial correlation.

Chari, Kehoe and McGrattan (2007b) simulate a prototypical business cycle model estimated

by Maximum Likelihood on US data with structural shocks as well as measurement errors. They

show that the SVAR model with a specification of hours in difference (DSVAR) or in quasi–

difference (QDSVAR) leads to a negative response of hours under a business cycle model in which

hours respond positively. Moreover, they show that a level specification of hours (LSVAR) does
1This paper focuses only on the identification of permanent technology shocks. Another branch of the SVARs

literature is devoted to the identification of shocks to monetary policy using short–run restrictions. See Christiano,
Eichenbaum and Evans (1999) for a survey. These monetary SVARs are widely used to develop equilibrium models
with real and nominal frictions. See Rotemberg, and Woodford (1997) and Christiano, Eichenbaum and Evans
(2005), among others

2By highly persistent and sizeable effect, we mean that the transitory component of the variable is highly
persistent and explains a substantial fraction of its variance.
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not uncover the true response of hours and implies a large upward bias. Their findings echo

some empirical evidences since LSVAR and DSVAR models deliver conflicting responses of hours

(see Gaĺı, 1999 and Christiano, Eichenbaum and Vigfusson, 2004). A significant part of their

results originates from the inability of SVARs with a finite number of lags to properly capture

the true dynamic structure of the model. According to them, the auxiliary assumption that the

stochastic processes for labor productivity and hours are well approximated by an VAR model

with a finite number of lags does not hold (see also Ravenna, 2007). They show that this problem

can be eliminated if a relevant state variable is introduced in the SVAR model. Unfortunately,

the lack of observability of such a variable (for example, capital stock and shocks) makes its

use impossible. However, even if such a meaningful variable is virtually unobserved, we can

always think about observable relevant instrumental variables that share approximatively the

same dynamic structure.

Christiano, Eichenbaum and Vigfusson (2006) argue that SVARs are still a useful guide for

developing models. They find that most of the disappointing results with SVARs in Chari, Kehoe

and McGrattan (2007b) come from the values assigned to the standard errors of shocks in their

economy. They notably show that when the model is more properly estimated, the standard

error of the non–technology shocks is twice lower than the standard error of the technology

shock. In such a case, the bias in SVARs with labor productivity and hours is strongly reduced.

Their findings show that the behavior of hours is closely related to the non–technology shock

and the reliability of SVARs is thus highly sensitive to the volatility of this shock. Evidence from

their simulation experiments implicitly suggests using other variables which are less sensitive

to the volatility of non–technology shocks and/or which contains a sizeable part of technology

shocks.

In light of the above quantitative findings, we propose a simple alternative method to con-

sistently estimate technology shocks and their short–run effects on aggregate variables. As an

illustration and a contribution to the current debate, we concentrate our analysis on the res-

ponse of hours worked. However, our empirical strategy can be easily implemented to other

variables of interest.3 Although imperfect, we maintain the labor productivity variable as a way

to identify technology shocks using long–run restrictions. We argue that SVARs can deliver

accurate results if more efforts are made concerning the choice of the stationary variables. More

precisely, hours (or other highly persistent variables subject to empirical controversies about

their stationarity) must be excluded from SVARs and replaced by any variable which presents

better stochastic properties. The introduction of a highly persistent variable as hours worked

in the SVARs confounds the identification of the permanent and transitory shocks and thus
3In the empirical part of the paper, we investigate the dynamic responses of the rate of inflation and the

short–term nominal interest rate.
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contaminates the corresponding impulse response functions. Following the previous quoted con-

tributions which use simulation experiments, the selected variable must satisfy the following

stochastic properties. First, the variable must display less controversies about its stationarity.4

Second, the variable must behave more as a capital (or state) variable than hours worked do, so

that a VAR model with a finite number of lags can more easily approximate the true underlying

dynamics of the data. Third, the variable must contain a sizeable technology component and

present less sensitivity to highly persistent non–technology shocks. The consumption to output

ratio (in logs) is an promising candidate to fulfil these three requirements.5 The ratio is station-

ary and consequently displays less persistence than hours worked. Moreover, the consumption

to output ratio represents probably a better approximation of the state variables than hours

worked and appears less sensitive to transitory shocks. The first requirement can be directly

found with actual data, since standard unit root tests reject the null hypothesis of an unit

root. The two other requirements can be quantitatively (through numerical experiments) and

analytically deduced from equilibrium conditions of dynamic general equilibrium models which

satisfactory fit the data. In addition, Cochrane (1994) has already shown in SVARs that the con-

sumption to output ratio allows to suitably characterize permanent and transitory components

in GNP. The intuition for this result is obtained from simple permanent income model. Indeed,

in this model, permanent (technology) shocks can be separated from other (non–technology and

non–permanent) shocks because these latters do not modify the consumption plans. The joint

observation of output growth and consumption to output ratio allows the econometrician to

properly identify permanent and transitory shocks.

The proposed approach consists in the following two steps. In a first step, a SVAR model

which includes labor productivity growth and consumption to output ratio is considered to

consistently estimate technology shocks using a long–run restriction. In the second step, the

impulse response functions of hours (or any other aggregate variable under interest) at different

horizons are obtained by a simple regression of hours on the estimated technology shock for

different lags. We show that the impulse response functions are consistently estimated whether

hours worked are projected in level or in difference in the second step. Consequently, our

approach does not suffer from the specification choice of hours as in the standard SVAR approach.

Our method can be viewed as a combination of a SVAR approach in the line of Blanchard and

Quah (1989), Gaĺı (1999) and Christiano, Eichenbaum and Vigfusson (2004) and the regression

equation used by Basu, Fernald and Kimball (2006) in their growth accounting exercise.

To evaluate this proposed two step approach, we perform simulation experiments using a
4Pesavento and Rossi (2005) and Francis, Owyang and Roush (2005) propose other methods to deal with the

presence of highly persistent process.
5Another promising candidate is the log of investment to output ratio.
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standard business cycle model with a permanent technology shock and stationary preference

and government consumption shocks. The results show that our approach, denoted CYSVAR,

performs better than the DSVAR and LSVAR models. In particular, the bias of the estimated

impulse response functions is strongly reduced. In contrast with the results for the DSVAR and

LSVAR models, we also show that the specification of hours (in level or in difference) does not

matter. Moreover, the estimated technology shock using CYSVAR model is strongly correlated

with the true technology shock while weakly with the non–technology shock. In other words, the

estimated technology shock is not contaminated by other shocks that drive up or down hours

worked. Consequently, the estimated response of hours obtained in the second step displays small

bias. Conversely, existing approaches (DSVAR and LSVAR) perform poorly. In particular, their

estimates of the technology shock are contaminated by the non–technology shock. We also find in

the three shock version of the model that the CYSVAR approach which consider two variables

in the SVAR model at the first step outperforms SVARs with three variables (productivity

growth, hours and consumption to output ratio). This result stems from the fact that, although

the three variable SVAR nests the two variable SVAR, finite autoregressions cannot properly

approximate the time series behavior of hours. Consequently, hours contaminate the estimation

of the technology shock in the three variable SVAR. This supports the use a parsimonious SVARs

in the first step to consistently estimate technology shocks.

We then apply our two–step approach with US data. As a contribution to the current debate,

we first investigate the dynamic responses of hours. The DSVAR and LSVAR specifications

deliver conflicting results. In the DSVAR specification, hours significantly decrease in the short–

run whereas they display a positive hump pattern with the level specification. In contrast, the

two step approach provides the same dynamic responses whatever the specification of hours in

the second step. Hours worked significantly decrease in the short–run after a positive technology

shock but display a positive and significant hump–shaped response. Our results are in line with

the previous empirical findings which show that hours fall significantly on impact (see Gaĺı,

1999, Basu, Fernald and Kimball, 2006, Francis and Ramey, 2005b) and display a positive hump

pattern during the subsequent periods (see Christiano, Eichenbaum and Vigfusson, 2004 and

Vigfusson, 2004). We also apply this methodology to the rate of inflation and the nominal

interest rate and we find that these two nominal variables significantly decrease in the short–run

after a positive technology shock.

The paper is organized as follows. In a first section, we present our two step approach. The

second section is devoted to the exposition of the business cycle model. Section 3 discusses in

details our simulation experiments. In section 4, we present the empirical results. The last

section concludes.

5



1 The Two Step Approach

The goal of our approach is to accurately identify the technology shocks in the first step using an

adequate stationary variable in the SVAR model. A large part of the performance of the two step

approach depends on the time series properties of this variable. This latter can be interpreted as

an instrument allowing to retrieve with more precision the true technology shock. The variable

choice is motivated in part by simulation results in Erceg, Guerrieri and Gust (2005), Chari

Kehoe and McGrattan (2007b) and Christiano, Eichenbaum and Vigfusson (2006). They show

that, when hours worked are contaminated by an important persistent transitory component,

the SVAR performs poorly in their experiments.

Chari, Kehoe and McGrattan (2007a) propose a method in order to account for economic

fluctuations based on the measurement of various wedges. They assess what fraction of the

output fluctuations can be attributed to each wedge separately and in combinations. For the

postwar period, the efficiency and labor wedges are proeminent to explain output movement.

Investment wedge plays a minor role in the postwar period and especially at low frequencies of

output fluctuations. They also find that the government consumption component accounts for

an insignificant fraction of fluctuations in output, labor, consumption and investment which is

compatible with the results in Burnside and Eichenbaum (1996). The results in Chari Kehoe

and McGrattan (2007a) suggest that the observed fluctuations and persistence of hours worked

depend on an important portion of the labor wedge. In contrast, in their prototypical economy,

the consumption-output ratio is less dependent on labor wedge and is much more sensitive to the

government consumption wedge. However, this wedge appears to be negligible in the dynamic of

real variables such as consumption and output. As a consequence, the transitory component of

the consumption-output ratio is then probably less important than the one corresponding to the

permanent shock. According to this, the consumption-output ratio is a more promising variable

to use in a SVAR model for identifying technology and non-technology and the associated

dynamic responses than hours worked.

Cochrane (1994) also argues that the consumption to output ratio contains useful information

to disentangle the permanent to the transitory component. This result can receive a structural

interpretation using a simple permanent income model. This model implies that consumption

is a random walk and that consumption and total income are cointegrated. Consequently, it

follows from the intertemporal decisions on consumption that any shock to aggregate output that

leaves consumption constant is necessary a transitory shock. The joint observation of output

growth and the log of consumption to output ratio allows the econometrician to separate shocks

into permanent and transitory components, as perceived by consumers. Moreover, in data, we

can reject the unit root for this ratio and the empirical autocorrelation function is clearly less
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persistent that the one for hours.6 So we decide to introduce this ratio as instrument to identify

the technology shocks. With this identified shocks at the first step, we can then evaluate the

impact of these shocks on a variable of interest (for example, hours) in the second step.

Step 1: Identification of technology shocks

We consider a VAR model which includes productivity growth and consumption to output

ratio (in logs). We start by specifying a VAR(p) model in these two variables:

(
∆(yt − ht)

ct − yt

)
=

p∑

i=1

Bi

(
∆(yt−i − ht−i)

ct−i − yt−i

)
+ εt (1)

where εt = (ε1,t, ε2,t)′ and E(εtε
′
t) = Σ. Under usual conditions, this VAR(p) model admits a

VMA(∞) representation (
∆(yt − ht)

ct − yt

)
= C(L)εt

where C(L) = (I2 −
∑p

i=1 BiL
i)−1. The SVAR model is represented by the following VMA(∞)

representation (
∆(yt − ht)

ct − yt

)
= A(L)

(
ηT

t

ηNT
t

)

where ηt = (ηT
t , ηNT

t )′. ηT
t is period t technology shock, whereas ηNT

t is period t composite

non–technology shock.7 By normalization, these two orthogonal shocks have zero mean and

unit variance. The identifying restriction implies that the non–technology shock has no long–

run effect on labor productivity. This means that the upper triangular element of A(L) in the

long run must be zero, i.e. A12(1) = 0. In order to uncover this restriction from the estimated

VAR(p) model, an estimator of the matrix A(1) is obtained as the Choleski decomposition of

the estimator for C(1)ΣC(1)′ resulting from the VAR. The structural shocks are then directly

deduced up to a sign restriction:
(

ηT
t

ηNT
t

)
= C(1)−1A(1)

(
ε1,t

ε2,t

)

Step 2: Estimation of the responses of hours to a technology shock
6The introduction of a less persistent variable in level in the VAR also allows to minimize the problem of weak

instruments raised by Christian, Eichenbaum and Vigfusson (2004) and Gospodinov (2006).
7See Blanchard and Quah (1989) and Faust and Leeper (1997) for a discussion on the conditions for valid

shock aggregation in the small SVAR models.
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The structural infinite moving average representation for hours worked as a function of the

technology shock and the composite non–technology shock8 is given by:

ht = a1(L)ηT
t + a2(L)ηNT

t . (2)

The coefficient a1,k (k ≥ 0) measures the effect of the technology shock at lag k on hours worked,

i.e. a1,k = ∂ht+k/∂ηT
t .

According to the debate on the right specification of hours worked, we examine three speci-

fications to measure the impact of technology on this variable. In the first specification, hours

series is projected in level on the identified technology shocks while in the second specification,

hours series is projected in difference. Finally, in the third specification, the hours series is

projected on its own first lag and the identified technology shocks.

Let us now present in more details the three specifications. In the first one, we regress the

logs of hours worked on the current and past values of the identified technology shocks η̂T
t in

the first-step:

ht =
q∑

i=0

θiη̂
T
t−i + νt (3)

where q < +∞ and η̂T
t denotes the estimated technology shocks obtained from the SVAR model

in the first step. νt is a composite error term that accounts for non–technology shocks and the

remainder technology shocks.

A standard OLS regression provides the estimates of the population responses of hours to

the present and lagged values of the technology shocks, namely:

â1,k = θ̂k.

Hereafter, we refer to this approach as LCYSVAR. According to the debate on the appropriate

specification of hours, this variable is regressed in first difference on the current and past values

of the identified technology shocks. Hereafter, we refer to this approach as DCYSVAR. The

response of hours worked to a technology shock is now estimated from the regression:

∆ht =
q∑

i=0

θ̃iη̂
T
t−i + ν̃t. (4)

As hours are specified in first difference, the estimated response at horizon k is obtained from

the cumulated OLS estimates:

̂̃a1,k =
k∑

i=0

̂̃
θi

8In typical DSGE models, non–technology shocks correspond to preference, taxes, government spending, mon-
etary policy shocks and so on. When the number of stationary variables in the SVAR model is small respective to
the number of these shocks and without additional identification schemes, these shocks are not identifiable. For
our purpose, this identification issue does not matter since we only focus on the dynamic response of hours to a
(permanent) technology shock.
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Finally, an interesting avenue is to adopt a more flexible approach by freely estimating the

autoregressive parameter of order one for hours. This lets the data discriminate between the

presence of an unit root in the stochastic process of hours worked. Hereafter, we refer to this

approach as CYSVAR–AR(1). The response to a technology shock is now estimated from the

regression of hours on one lag of itself and lags of the technology shock:

ht = ρht−1 +
q∑

i=0

˜̃
θiη̂

T
t−i + ˜̃νt. (5)

The estimated response at horizon k is obtained from the OLS estimates of ρ and θi (i = 1, ..., q):

̂̃̃a1,k =
k∑

i=0

ρ̂i ̂̃̃
θk−i.

This last specification calls various comments. First, equation (5) is more flexible than (3)

and (4) since it allows to freely estimate the autoregressive parameter of order one for hours.

Therefore, it lets the data select the appropriate time series representation of hours worked. The

LCYSVAR and DCYSVAR specifications are in fact restricted versions of the third specification

with the autoregressive parameter ρ fixed to zero or to one. Second, it imposes that the dynamic

responses of hours to various aggregates shocks shares the same root. It does not mean that

the shape of IRFs are the same since they are obtained from the autoregressive parameter and

the MA(q) representation of these shocks. Notice that this is the case in most of DSGE models

where the variables of interest share the same dynamics implied by the state variables (for

example, the capital stock in the simple model), but differs in their sensitivity to shocks that

hit the economy. The regression equation (5) simply accounts for these features. In the sequel,

we will consider the simulation and empirical results obtained with the three specifications (3),

(4) and (5).

In the following proposition, we show that the OLS estimators of the effect of technology

shocks are consistent estimators of the true ones for the three specifications.

Proposition 1 Assume the infinite moving average representation (2) for hours worked and

consider the estimation of the finite VAR in the first step as defined in (1) and the three pro-

jections (3), (4) and (5) in the second step. The OLS estimators â1,k, ̂̃a1,k and ̂̃̃a1,k converge in

probability to a1,k for the three specifications, ∀k.

The proof is given in Appendix A.

In Proposition 1, the property of consistency is derived under the assumption that hours

worked follow a stationary process. While the specification of hours in difference could provide

a good statistical approximation of this variable in small sample, hours worked per capita are
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bounded and therefore the stochastic process of this variable cannot have a unit root asymptot-

ically. By definition, the consistency property of an estimator is an asymptotically concept so

only the asymptotic behavior of hours worked is of interest. Consequently, the consistency of

the OLS estimators for the three specifications is derived only under the assumption that hours

worked per person is a stationary process. It is worth noting that the specification of hours

(level or first difference) does not asymptotically matter. However, the small sample behavior

of the three estimators associated to the three specifications can differ.

Finally, the two step procedure is not only used to measure the effect of technology shocks

on hours worked (or any other variable of interest) but also to hypothesis testing about the

significance of these responses. The approach raises two practical econometric issues. First,

confidence intervals in the second step must account for the uncertainty resulting from the first

step estimation. This is usually called the generated regressors problem.9 Second, the residuals

in the second step can be serially correlated in practice. This is especially true for the regression

(3) with hours in level. Confidence intervals of IRFs are computed using a consistent estimator

of the asymptotic variance-covariance of the second step parameters. The consistent estimator

that we use is borrowed from Newey (1984). Indeed, our two step procedure can be represented

as a member of the method of moments estimators. With this representation in hand, we can

derive the asymptotic variance-covariance matrix of the second step estimator.10

2 A Business Cycle Model

We consider a standard business cycle model that includes three shocks. The utility function of

the representative household is given by

Et

∞∑

i=0

βi (log (Ct+i) + ψ χt+i log (1−Ht+i))

where β ∈ (0, 1) denotes the discount factor and ψ > 0 is a time allocation parameter. Et is the

expectation operator conditional on the information set available at time t. Ct and Ht represent

consumption and labor supply at time t. The labor supply Ht is subjected to a preference shock

χt, that follows a stationary stochastic process.

log(χt) = ρχ log(χt−1) + (1− ρχ) log χ̄ + σχεχ,t

where χ̄ > 0, |ρχ| < 1, σχ > 0 and εχ,t is iid with zero mean and unit variance. As noted by

Gaĺı (2005), this shock can be an important source of fluctuations as it accounts for persistent
9Basu, Fernald and Kimball (2006) face the same problem of generated regressors and correct for it.

10In Appendix B, we provide more details on the implementation and computation of the consistent estimator
adapted from Newey (1984).
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shifts in the marginal rate of substitution between goods and work (see Hall, 1997). Such shifts

capture persistent fluctuations in labor supply following changes in labor market participation

and/or changes in the demographic structure. Additionally, this preference shock allows us to

simply account for other distortions on the labor market, labelled labor wedge in Chari, Kehoe

and McGrattan (2007a). For example, they show that a sticky-wage economy or a real economy

with unions will map it into a simple model economy with this type of shock. Note that this

shock is observationally equivalent to a tax shock on labor income.

The representative firm use capital Kt and labor Ht to produce a final good Yt. The technol-

ogy is represented by the following constant returns–to–scale Cobb–Douglas production function

Yt = Kα
t (ZtHt)

1−α

where α ∈ (0, 1). Zt is assumed to follow an exogenous process of the form

log(Zt) = log(Zt−1) + γz + σzεz,t

where σz > 0 and εz,t is iid with zero mean and unit variance. In the terminology of Chari,

Kehoe and McGrattan (2007a), Z1−α
t in the production function corresponds to the efficiency

wedge. This wedge may capture for instance input-financing frictions. Capital stock evolves

according to the law of motion

Kt+1 = (1− δ) Kt + It

where δ ∈ (0, 1) is a constant depreciation rate. Finally, the final output good can be either

consumed or invested

Yt = Ct + It + Gt

where Gt denotes government consumption. We assume that gt = Gt/Zt evolves according to

log(gt) = ρg log(gt−1) + (1− ρχ) log ḡ + σgεg,t

where ḡ > 0, |ρg| < 1, σg > 0 and εg,t is iid with zero mean and unit variance. This shock,

labelled government consumption wedge, is for example equivalent to persistent fluctuations in

net exports in an open economy. The model is thus characterized by three time varying wedges,

i.e. the efficiency, labor and government consumption wedges, that summarize a large class of

mechanisms without having to explicitly specify them.

To analyze the quantitative implications of the model, we first apply a stationary–inducing

transformation for variables that follow a stochastic trend. Output, consumption, investment

and government consumption are divided by Zt, and the capital stock is divided by Zt−1. The

approximate solution of the model is computed from a log–linearization of the stationary equi-

librium conditions around the deterministic steady state.
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The parameter values are familiar from business cycle literature (see Table 1). We set the

capital share to α = 0.33 and the time allocation parameter ψ = 2.5. We choose the discount

factor so that the steady state annualized real interest rate is 3%. We set the depreciation rate

δ = 0.015. The growth rate of Zt, namely γz, is equal to 0.0036. The share of government

consumption in total output at steady state is either 0 or 20%, depending on the version of

the model we consider. The parameters of the three forcing variables (Zt, Gt, χt) are borrowed

from previous empirical works with US data. The standard–error σz of the technology shock is

equal to 1% (see Prescott, 1986, Burnside and Eichenbaum, 1996, Chari, Kehoe and McGrattan,

2007b and Christiano, Eichenbaum and Vigfusson, 2006). Following Christiano and Eichenbaum

(1992) and Burnside and Eichenbaum (1996), the autoregressive parameter ρg of government

consumption is set to 0.95. The standard error σg is set to 0.01 or 0.02. These two values

include previous estimates. We choose alternative values (0.90;0.95;0.99) for the autoregressive

parameter ρχ of the preference shock. Previous estimations (see Chari, Kehoe and McGrattan,

2007b and Christiano, Eichenbaum and Vigfusson, 2006) suggest value between 0.95 and 0.99,

but we add ρχ = 0.90 for a check of robustness. Finally, the standard error of this shock

σχ takes three different values (0.005;0.01;0.02). These values roughly summarize the range of

previous estimates (see Erceg, Guerrieri and Gust, 2005, Chari, Kehoe and McGrattan, 2007b,

and Christiano, Eichenbaum and Vigfusson, 2006). The alternative calibrations summarize

previous estimates which use different datasets and estimation techniques. They allow us to

conduct a sensitivity analysis and to evaluate the relative merits of different approaches for

various calibrations of the forcing variables.

3 Simulation Results

In our Monte–Carlo study, we generate 1000 data samples from the business cycle model. Every

data sample consists of 200 quarterly observations and corresponds to the typical sample size

of empirical studies. In order to reduce the effect of initial conditions, the simulated samples

include 100 initial points which are subsequently discarded in the estimation. For every data

sample, we estimate VAR models with four lags as in Erceg, Guerrieri and Gust (2005), Chari,

Kehoe and McGrattan (2007b), and Christiano, Eichenbaum and Vigfusson (2006). We con-

sider two versions of the model, depending on the number of shocks included. The two shocks

version includes technology shock and preference shocks, whereas the three shocks version adds

government consumption. The two shocks version is used so as to evaluate various SVARs with

two variables. The three shocks version allows to assess the reliability of three variable SVARs.

Moreover, we want to verify if our two step approach properly uncovers the true response of

hours when a stationary shock to government consumption affects persistently the consumption

12



to output ratio.

For each experiment, we investigate the reliability of different SVARs approaches to identify

of technology shocks and their aggregate effects: a DSVAR models with labor productivity

growth and hours in first difference; a LSVAR model with labor productivity growth and hours

in level; a LCYSVAR approach in which the SVAR model includes labor productivity growth and

consumption to output ratio in the first step and hours in level are regressed on the estimated

technology shock in the second step. The DCYSVAR and CYSVAR–AR(1) approaches are the

same in the first step, but they consider hours in first difference and lagged hours in the second

step. In the second step of the CYSVAR approach, we consider current and twelve lagged values

of the identified (in the first step) technology shocks.11

3.1 Results from the two shock model

In these experiments, government consumption is excluded (Ḡ/Ȳ = 0). Figures 1 and 2 display

the responses of hours for each SVARs in our baseline calibration (ρχ = 0.95 and σz = σχ = 0.01).

The solid line represents the response of hours in the model, whereas the dotted line corresponds

to the estimated response from SVARs.

The response of hours obtained from the DSVAR model displays a large downward bias

(see figure 1–(a)), and it is persistently negative. This result is similar to Chari, Kehoe and

McGrattan (2007b) who show that the difference specification of hours adopted by Gaĺı (1999),

Gaĺı and Rabanal (2004) and Francis and Ramey (2005a) can lead to mistaken conclusions

about the effect of a technology shock. Note that a DSVAR model is obviously misspecified

under the business cycle model considered here, as it implies an over–differentiation of hours.

The first difference specification of hours can create distortions and lead to biased estimated

responses. However, Chari, Kehoe and McGrattan (2007b) show that SVARs with hours in

quasi–difference, consistent with the business cycle model, display similar patterns.

The responses of hours obtained from a LSVAR model displays a large upward bias, as the

estimated response on impact is almost twice the true response and is persistently above the

true response (see Figure 1–(b)). These results are again in the line with those of Chari, Kehoe

and McGrattan (2007b) and to a lesser extent similar with those of Christiano, Eichenbaum and

Vigfusson (2006). As reported by Chari, Kehoe and McGrattan (2007b), confidence intervals

with the LSVAR model are very large and therefore not informative. The LSVAR cannot

discriminate between a model with a positive or a negative effect of the technology shock on

impact.12

11We also investigate different lagged values of the technology shock and the main results are left unaffected.
12These very large confidence intervals are not surprising, as long run effects of shocks involve a reliable estimate

of the sum of the VAR parameters. The convergence of the least-squares estimator for the VAR does not imply
an accurate approximation of the long run effect (see Sims 1972, Faust and Leeper, 1996 and Pötscher, 2002).
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Consider now the LCYSVAR approach. Figure 2–(a) shows that this approach delivers

reliable estimates of the response of hours. The bias is small, especially in comparison with

the ones from the DSVAR and LSVAR. Another interesting result is that the three CYSVAR

approaches deliver very similar results (see Figures 2–(a), (b) and (c)). Therefore, our two step

approach does not suffer from the specification of hours, contrary to the DSVAR and LSVAR. It is

worth noting that these small sample experiments support the asymptotic results of Proposition

1. As for the LSVAR, the confidence intervals for LCYSVAR are large. Interestingly, the

confidence intervals for DCYSVAR and CYSVAR–AR(1) are narrower on impact than for the

LSVAR model. In particular, an one-sided test rejects the hypothesis that the response on

impact is negative at the 5% level. These two specifications can then reject an alternative model

in which hours decreases on impact after a technology improvement. In contrast, as mentioned

by Chari, Kehoe and McGrattan (2007b), the LSVAR is incapable of differentiating between

alternative models with starkly different impulse response functions.

To evaluate the size of the bias, Table 2 reports the cumulative absolute bias between the

average response in SVARs and the true response over different horizons.13 In this table, we

report only simulation results with the CYSVAR–AR(1) approach since these results are invari-

ant to the specification of hours. Our benchmark calibration corresponds to the second panel in

Table 2 when ρχ = 0.95 and σχ/σz = 1. We also obtained a large bias with DSVAR and LSVAR

models (both on impact and for different horizons). However, The CYSVAR–AR(1) delivers

very reliable results compared with DSVAR and LSVAR. We also investigate other calibration

of (ρχ, σχ). When the standard error σχ of the non–technology shock is smaller, the accuracy

of the LSVAR and DSVAR models increases (see the cases where σχ/σz = 0.5) and the LSVAR

model and the CYSVAR–AR(1) approach deliver very similar results. Conversely, when the

standard error σχ of the preference increases, the LSVAR and DSVAR models poorly identify

the effect of a technology shock on hours (see the cases σχ/σz = 2). In this latter case, the

CYSVAR approach tends to over–estimate the true effect of the technology shock, but the cu-

mulative absolute mean bias remains small compared to the LSVAR and DSVAR models. Table

2 displays another interesting result: when the persistence of the preference shock increases from

0.9 to 0.99, the bias decreases. For the DSVAR model, this result can be partly explained by

a decrease in distortions created by over–differentiation. For the CYSVAR approach, the bias

reduction mainly originates from the effect of the preference shock on hours and consumption

to output ratio.

The lack of precision of the estimated long run effect is then translated to the impulse response functions.
13This measure is defined as cmd(k) =

Pk
i=0 |irfi(model) − irfi(svar)| where k denotes the selected horizon,

irfi(model) the RBC impulse response and irfi(svar) = (1/N)
PN

j=1 irfi(svar)j the mean of impulse responses
over the N simulation experiments obtained from a SVAR model. In fact, the cmd measures the area of the bias
up to the horizon k.
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To better understand these last results, we investigate the effect of ρχ and σχ on the structural

autoregressive moving average representation of hours and consumption to output ratio. For

our baseline calibration (ρχ = 0.95, σz = σχ = 0.01), we obtain:

log(Ht) = cst + 0.3536
1

(1− 0.9622L)
σzεz,t − 1.5240

(1− 0.9759L)
(1− 0.9622L)(1− 0.95L)

σχεχ,t

log(Ct)− log(Yt) = cst− 0.4220
1

(1− 0.9622L)
σzεz,t + 0.8180

(1− 0.9928L)
(1− 0.9622L)(1− 0.95L)

σχεχ,t,

where cst is an appropriate constant. The non–technology component is larger for hours than

for consumption to output ratio. In this case, the preference shock accounts for 91% of variance

of hours, whereas it represents 63% of the variance of the ratio. Moreover, the persistence

of hours generated by the preference shock is more pronounced. This can be seen from the

ARMA(2,1) representation of hours and consumption to output ratio. The two series display

the same autoregressive parameters, which are associated to the dynamics of capital and the

persistence of the preference shock. However, the moving average parameter differs. In the case

of hours, the parameter is equal to −0.976, whereas it is −0.993 for the consumption to output

ratio. Figure 3 illustrates this property and reports the autocorrelation function of these two

variables due to the preference shock. We see that the autocorrelations of the consumption to

output ratio are smaller than the ones of hours. The labor wedge has therefore a greater impact

in terms of volatility and persistence on hours than on consumption to output ratio. When the

standard error of the preference shock is reduced (σχ = 0.005), its contribution to the variance

decreases, it becomes 73% for hours and 30% for the consumption to output ratio. In this

case, SVARs have less difficulty to disentangle technology shocks from other shocks that have

highly persistent, if not permanent effects on labor productivity. This explains why SVARs can

properly uncover the true IRFs of hours to a technology shock.

To assess the effect of a highly persistent preference shock, we now set ρχ = 0.99. This

situation is of quantitative interest as Christiano, Eichenbaum and Vigfusson (2006) obtain

values for this parameter between 0.986 and 0.9994. In this case, the ARMA representation

becomes:

log(Ht) = cst + 0.3536
1

(1− 0.9622L)
σzεz,t − 1.2710

(1− 0.9737L)
(1− 0.9622L)(1− 0.99L)

σχεχ,t

log(Ct)− log(Yt) = cst− 0.4220
1

(1− 0.9622L)
σzεz,t + 0.5167

(1− 0.9960L)
(1− 0.9622L)(1− 0.99L)

σχεχ,t.

The roots of moving average and the autoregressive parameters related to the preference shock

in the expression of the consumption to output ratio are very similar,14 so its dynamics can be
14When we set ρχ = 0.999, this finding is strengthened. Regarding only the effect of the preference shock, the
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approximated by a first order autoregressive process:

(log(Ct)− log(Yt)) ' cst + 0.9622(log(Ct−1)− log(Yt−1))− 0.4220σzεz,t + 0.5167σχεχ,t.

The consumption to output ratio behaves like the deflated capital. Conversely, hours do not share

this property and finite autoregressions cannot properly uncover its true dynamics. This is illus-

trated in Figure 4 which reports the autocorrelation function of hours, consumption to output

ratio and capital deflated by the total factor productivity. As emphasized by Chari, Kehoe and

McGrattan (2007b), one of the problem with a SVAR model is that it does not included capital–

like variable. In the model, the corresponding relevant state variable is log(Kt/Zt−1). Since Zt

is not observable in practice and Kt is measured with errors, we cannot include log(Kt/Zt−1) in

SVARs. As can be seen from Figure 4, the autocorrelation functions of (C/Y ) and (K/Z) are

very close, but the ones of hours differ sharply.

This latter result suggests that the consumption to output ratio can be a good proxy of

the relevant state variable when shocks to labor supply are very persistent or non-stationary.

Conversely, hours cannot display this pattern. Highly persistent or non–stationary labor supply

shocks is of course debatable but empirical works support this specification in small sample

(see Gali, 2005, Christiano, Eichenbaum and Vigfusson, 2006 and Chang, Doh and Schorfheide,

2005). To better understand the results under a close to non–stationary labor supply, we report

in appendix C some calculations about the dynamic behavior of the consumption to output ratio

and hours for an economy with non stationary labor supply shocks. We notably show that when

preference shocks follow a random walk (and thus hours are non–stationary), the consumption

to output ratio follows an autoregressive process of order one with an autoregressive parameter

exactly equal to the one of the deflated capital. Conversely, the growth rate of hours follows an

ARMA process which can be poorly approximated by finite autoregressions. Note that a SVAR

model with long–run restrictions that includes labor productivity growth and the consumption

to output ratio is valid whatever the process (stationary or non-stationary) of the hours series.

The CYSVAR approach allows us to abstract from the very sensitive specification choice of

hours in SVARs.

Simulation results for the cumulative absolute bias are completed with a measure of uncer-

tainty about the estimated effect of the technology shocks. We thus compute the cumulative

Root Mean Square Errors (RMSE) at various horizons.15 The RMSE accounts for both bias and

dispersion of the estimated IRFs. The results are reported in Table 3. Simulation experiments

reduced form of the consumption to output ratio is log(Ct)− log(Yt) = 0.3733(1− 0.9993L)(1− 0.9622L)−1(1−
0.999L)−1σχεχ,t.

15This measure is defined as crmse(k) =
Pk

i=0 rmsei where k denotes the selected horizon, rmsei =

((1/N)
PN

j=1(irfi(model) − irfi(svar)j)2)1/2 the RMSE at horizon i, irfi(model) the RBC impulse response

function of hours and irfi(svar)j the SV AR impulse responses function of hours for the jth draw and N is the
number of simulation experiments.
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for different calibrations show again that the CSVAR approach provides smaller RMSE than the

LSVAR and DSVAR models. This result comes essentially from the smaller bias with CSVAR.

The large RMSE of DSVAR mainly originates from the large bias. In consequence, DSVAR

model displays IRFs that are strongly biased but more precisely estimated. In contrast, LSVAR

model displays smaller bias of IRFs but larger dispersion than DSVAR. The CSVAR approach

presents the smallest bias on estimated IRFs and the estimated responses are more precisely

estimated in comparison with LSVAR. These results from RMSE suggest favoring CYSVAR to

LSVAR and DSVAR.

Finally, to judge the identification of the structural shocks, we compute the correlation

between the estimated shock and the true shock of the various version of the business cycle

model. More precisely, we first compute the correlation between the estimated (from SVARs)

and the true technology shocks, namely: Corr(εz, η̂
T ), where εz denotes the true technology

shock and η̂T is the estimated technology shock from SVARs in the first step. We also compute

Corr(εχ, η̂T ), the correlation between the estimated technology shock and non–technology shock

εχ of the business cycle model. The idea is that if any method is able to consistently estimate the

technology shock, we must obtain Corr(εz, η̂
T ) ≈ 1 and Corr(εχ, η̂T ) ≈ 0. These correlations

are reported in Table 4. The CYSVAR approach always delivers the highest Corr(εz, η̂
T ). This

correlation is relatively high, as it always exceeds 0.9 and it is not very sensitive to changes

in (σz, ρχ, σχ). Conversely, this correlation is lower in the case of the DSVAR model and it

decreases dramatically with the volatility of the preference shock. For example, when σχ = 2σz

and ρχ = 0.99, the correlation is 0.65 for the DSVAR model, in comparison with 0.91 for

the CYSVAR approach. The LSVAR delivers better results that the DSVAR, but it never

outperforms the CYSVAR approach.

Let us now examine the correlation between the identified technology shocks of the true

preference shocks, namely: Corr(εχ, η̂NT ). The CYSVAR approach always delivers the lowest

correlation (in absolute value). In the case of the DSVAR model, this correlation becomes large

(Corr(εχ, η̂T ) ≈ 0.72) when the variance of the preference shock increases. The large correlation

allows to explain why the DSVAR model estimates a negative response of hours to a technology

shock. Indeed, the estimated technology shock is contaminated by the preference shock. Hours

worked persistently decrease after this shock in the model. It follows that the DSVAR model

erroneously concludes that hours drop after a technology shock. A similar result applies in the

case of the LSVAR model: the correlation between the estimated technology shock and the

true non–technology shock is negative.16. This explains why the LSVAR model over–estimates

the effect of a technology shock. In contrast, the CYSVAR approach does not suffer from this
16When σχ = 2× σz, the LSVAR model provides Corr(εχ, bηT ) ≈ −0.40.
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contamination.

3.2 Results from the three shock model

We now add government consumption shocks in the model (ḠȲ = 0.2 and σg > 0). We first

investigate the reliability of SVARs which include two variables (labor productivity and hours

for LSVAR and DSVAR models; labor productivity and consumption to output ratio for our

two step approach). Figure 5 displays the responses of hours for each SVAR using our baseline

calibration (ρχ = ρg = 0.95, σz = σχ = σg = 0.01). As in the case of two shocks, the response of

hours obtained from the DSVAR model is downward biased (see Figure 5–(a)) and persistently

negative. The response of hours from the LSVAR model is upward biased and the CYSVAR

approach delivers again more reliable results. This is confirmed in the first panel of Table 5.

For the two values of σg = (0.01; 0.02), the CYSVAR approach outperforms the DSVAR and

LSVAR models. Notice that increasing the size of the government consumption shock does not

deteriorate the reliability of the two step approach.

From our three shock model, we assess the DSVAR and LSVAR models when they include

three variables (labor productivity, hours and consumption to output ratio). Figure 6 reports

the responses of hours for the three approaches. Figures 6–(a) and 6–(b) show that SVAR

models that include three variables deliver better results. The downward bias of the DSVAR

is reduced, as the response on impact becomes positive. Moreover, the upward bias of the

LSVAR decreased. However, the DSVAR and LSVAR models do not uncover the true response

of hours. These results are in the line with those of Chari, Kehoe and McGrattan (2007b). In

our experiments, the CYSVAR approach largely outperforms the DSVAR and LSVAR models

(see Table 5). This result is at a first glance surprising, as a three variable SVAR nests a two

variable SVAR. Our findings mainly originate in the fact that finite order autoregression cannot

properly represent the time series behavior of hours as implied by the model. It follows that

hours in SVAR contaminates the estimation of IRFs, even if the consumption to output ratio is

included in the VAR model. These results suggest eliminating hours from SVAR models if the

objective is to consistently identify technology shocks.

We also report in Table 6 the correlation between the estimated technology shock and the true

shock of the business cycle model. We do not report the correlation with individual stationary

shocks as we cannot separately identify each of them. The CYSVAR approach delivers again the

highest Corr(εz, η
T ). This correlation is relatively high, as it always exceeds 0.9 and it is not

very sensitive to changes in σg. Conversely, the LSVAR model with three variables provides the

lowest correlation, around 0.83. Interestingly, the DSVAR model with three variables performs

better than the DSVAR with two variables as the correlation increases from 0.77 to 0.91.

Finally, we evaluate the relative performance of our approach in comparison with the LSVAR
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and DSVAR models which use the alternative nonparametric estimator of the long-run covariance

matrix proposed by Christiano, Eichenbaum and Vigfusson (2006). In most cases, the CYSVAR

approach still outperforms the LSVAR and DSVAR models.17

4 Application of the Two Step Approach

We now apply the two-step methodology with US data. The data used in the SVARs are reported

in Figure 7 in appendix. Except for the Federal Fund rate, the data cover the sample period

1948Q1-2003Q4. We first study the dynamic responses of hours work to technology shocks.

Second, we investigate the effects of these shocks on the rate of inflation and the nominal

interest rate.

4.1 The Dynamic Responses of Hours Worked

We first present results for the IRFs of hours to technology shocks. In the first step, the VAR

model includes the growth rate of labor productivity and the log of consumption to output ratio.

Labor productivity is measured as the non farm business output divided by non farm business

hours worked. Consumption is measured as consumption on nondurables and services and

government expenditures. The consumption to output ratio is obtained by dividing the nominal

expenditures by nominal GDP. In the second step, the log level ht (see equations (3) and (5))

and the growth rate of hours ∆ht (see equation (4)) are projected on the estimated technology

shocks. Hours worked in the non farm business sector are converted to per capita terms using

a measure of the civilian population over the age of 16. The period is 1948Q1-2003Q4.

We also compare the estimation results with our two–step approach to those obtained from

the estimation of SVAR models. These SVAR models include growth rate of labor productivity,

the log of consumption to output ratio and either the log level of hours (LSVAR) or the growth

rate of hours (DSVAR). In each of the SVAR models, we identify technology shocks as the only

shocks that can affect the long-run level of labor productivity. The lag length p for each VAR

model (1) is obtained using the Hannan–Quinn criterion. For each estimated model, we also

apply a LM test to check for serial correlation. The number of lags p is 4. For the two-step

procedure, we include in the second step the current and twelve past values of the identified

technology shocks in the first step, i.e. q = 13 in (3), (4) and (5).

In order to assess the dynamic properties of hours worked and consumption to output ratio

(in logs), we first compute their autocorrelation functions (ACFs). Figure 8 reports these ACFs

for lags between 1 and 15. As this figure makes clear, the autocorrelation functions of hours

worked always exceed those of the consumption to output ratio. Additionally, these ACFs
17We decide not to report those results to save space but they are available upon request.
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decay at a slower rate. We also perform Augmented Dickey Fuller (ADF) test of unit root. For

each variable, we regress the growth rate on a constant, lagged level and four lags of the first

difference. The ADF test statistic is equal to -2.74 for hours and -2.93 for the consumption to

output ratio. This hypothesis cannot be rejected at the 5 percent level for hours, whereas it is

rejected at the 5 percent level for the consumption to output ratio. These findings suggests that

the consumption to output ratio is less persistent than hours.

The estimated IRFs of hours after a technological improvement are reported in Figure 9.

The upper left panel shows the well known conflicting results of the effect of a technology

shock on hours worked between LSVAR and DSVAR specifications.18 The LSVAR displays a

positive hump–shaped response whereas DSVAR implies a decrease in hours. We obtained wide

confidence intervals (not reported) in the LSVAR specification, such that the estimated IRFs

of hours are not significantly different from zero at any horizon. For the DSVAR specification,

the impact response is significant, but as the horizon increase the negative response is not

significantly different from zero. In these SVARs, including the consumption to output ratio

does not help to reconcile the two specifications.

In contrast, the two-step approach delivers the same picture whether hours are specified in

level, first difference or included a lagged term in the regression (see the upper right panel of

Figure 9). In the very short run, the IRFs of hours are very similar and when the horizon

increases the positive response is a bit more pronounced when hours are taken in level rather

than in first difference or with the lagged hours. On impact, hours worked decrease, but after

five periods the response becomes persistently positive and hump–shaped.

The bottom panel of Figure 9 reports also the 95 percent asymptotic confidence interval.

As previously mentioned, these confidence intervals account for the generated regressor problem

and the serial correlation of the errors term in equations (3), (4) and (5). The confidence

interval is wide when we consider hours in level (LCYSVAR specification). Consequently, these

response cannot be used to discriminate among business cycle theories and for model building.

In contrast, when hours are projected in first difference (DCYSVAR specification), the dynamic

response are very precisely estimated. On impact, hours significantly decrease. Moreover, the

positive hump–shaped response after 8 quarters is precisely estimated. The case of CYSVAR–

AR(1) in the second step delivers intermediate results. On impact, the negative response is

significant. When the horizon increase, the IRFs are less precisely estimated.

Our findings are in line with those of previous empirical papers which obtain that hours fall

significantly on impact (see Gaĺı, 1999, Basu, Fernald and Kimball, 2006, Francis and Ramey,

2005b), but display a hump–shaped positive response during the subsequent periods (see Vig-

fusson, 2004).
18Christiano, Eichenbaum and Evans (2004) also obtain conflicting results in larger SVARs.
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4.2 The Dynamic Responses of Inflation and Nominal Interest Rate

We now illustrate the potential of our two–step approach by looking at the dynamic responses

of the inflation rate and the short–term nominal interest rate after a technology shock. These

two variables are known to display high level of serial correlation and some empirical studies

have found that they can be characterized by an integrated process of order one.19 Therefore,

we use these two variables to illustrate the consequence of the specification choice (level versus

first difference) in SVARs.

We first investigate the response of the inflation rate. The measure of inflation is obtained

using the growth rate of the GDP deflator. The estimated IRFs of the inflation rate after

a technological improvement are reported in Figure 10. As previously, the upper left panel

reports the estimated dynamic responses obtained from LSAVR and DSVAR specifications. The

DSVAR model includes labor productivity growth, the inflation rate in first difference and the

log of consumption to output ratio. The LSVAR model includes the same variables but inflation

is considered in level. As this figure shown, the specification of the inflation rate matters. In the

DSVAR specification, the rate of inflation responds very little to identified technology shocks.

Conversely, the response of inflation in the LSVAR model is persistently negative.

The two-step approach provides similar IRFs according to the specification of the inflation

rate in the second step (see the upper right panel of Figure 10). With the LCYSVAR specifi-

cation, the dynamic responses are more pronounced but the three specifications of the inflation

rate in the second step provide the same shape for the responses. In all cases, the inflation rate

decreases on impact and steadily goes back to its long run value. The bottom panel of Figure

10 reports also the 95 percent asymptotic confidence interval. Contrary to hours worked, the

confidence interval appears less sensitive to the specification of inflation in the second step. In

each regression, the inflation rate significantly decreases in the short run. Note that the effect

of a technology improvement has no long–lasting effect on inflation since the response is almost

zero after two years. Our finding are again in the line of Basu, Fernald and Kimball (2006). It

also complement their results by providing dynamic responses at quarterly frequency.

We now investigate the effect of technology shocks on the short–run nominal interest rate,

measured with Federal Fund rate. This rate is available for a shorter sample 1954Q1–2003Q4.

Since much of business cycle literature is concerned with post–1959 data, we follow Chris-

tiano, Eichenbaum and Vigfusson (2004) and therefore consider a second sample period given
19The empirical results offered in the literature are mixed, depending on the the econometric technique used.

Recent contributions on trend inflation specifies actual inflation as a sum of a random walk and a stationary noise
(see Stock and Watson, 2007, Cogley and Sargent, 2007). In Juselius (2006), cointegrated VAR models include
the inflation rate and the nominal interest rate in first difference. In the context of permanent technology shocks,
Gaĺı (1999) considers a DSVAR model with the inflation rate in first difference and a cointegration between the
nominal interest rate and the inflation rate. See also King, Plosser, Stock and Watson (1991) for further evidence
of the non–stationarity of these two nominal variables in cointegrated VAR models.
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by 1959Q1–2003Q4. The dynamic responses of the nominal interest rate after a technological

improvement are reported in Figure 11. In the upper left panel, we report the IRFs obtained

from LSVAR and DSVAR specifications. The DSVAR model includes now labor productivity

growth, the nominal interest rate in first difference and the log of consumption to output ratio.

The LSVAR model includes the same variables but the nominal interest rate is now specified in

level. We obtain that the specification of the nominal interest rate modify the dynamic responses

of this variable. Notably, the DSVAR specification implies a permanent long run decrease in

the nominal interest rate, whereas it steadily goes back to its long run value in the LSVAR

specification.

With the two-step approach, the shape of the IRFs is not altered by the specification of

the nominal interest rate in the second step (see the upper right panel of Figure 10). However,

the dynamic responses with the LCYSVAR specification are more pronounced than the ones

of the DCYSVAR and CYSVAR–AR(1) (as for the rate of inflation). In the bottom panel of

Figure 11, we report the 95 percent asymptotic confidence interval. For the three specifications

in the second step, we obtain a persistent and significant decrease in the Fed Fund rate. These

empirical results with quarterly frequency data are again similar to those of Basu, Fernald and

Kimball (2006).

5 Conclusion

This paper proposes a simple two step approach to consistently estimate a technology shock

and the response of aggregates variables that follows a technology improvement. In a first step,

a SVAR model with labor productivity growth and consumption to output ratio allows us to

estimate the technology shock. In a second step, the response of hours is obtained by a sim-

ple regression of hours on the estimated technology shock. Our approach is motivated by the

dynamics of labor productivity and hours which are poorly approximated by finite autoregres-

sions. This leads to a large bias in the estimated structural shocks and misleading conclusions

about the aggregate effect of a technology shock. When applied to artificial data generated

by a standard business cycle model, our approach replicates more closely the model impulse

response functions. The estimated technology shock is highly correlated with the true one and

the correlation with the non–technology shock is very small. Moreover, the results are invari-

ant to the specification of hours in the second step. The two step approach, when applied on

actual data, predicts a short–run decrease of hours after a technology improvement, as well as a

delayed and hump–shaped positive response. In addition, the rate of inflation and the nominal

interest rate displays a significant decrease after a positive technology shock. These findings are

in accordance with those of Basu, Fernald and Kimball (2004).
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Appendix

A Proof of Proposition 1

The consistency of the second step estimators depends on the consistency of the autoregressive coefficients in
the first step. The consistency of the the autoregressive coefficients ensures the consistency of the estimated
technology shocks. Two cases are of interest: i) the data are generated by a finite VAR or ii) the data are
generated by an infinite VAR. When the data are generated by a finite VAR, the VAR estimators in the first step
are consistent for a number of lags included in the VAR greater or equal to the true ones. For data generated
by an infinite VAR, Lewis and Reinsel (1985) show that a finite order k fitted VAR to a realization T provides
consistency and asymptotic normality of the estimated autoregressive coefficients assuming that k →∞ at some
rate as T →∞. In particular, they show the consistency for k function of T such that k2/T → 0 as k, T →∞.

Now, consider the first specification in the second step. The convergence in probability is established by
standard arguments. First, the estimator ba21,k is centered to the true value by direct straightforward implications
of the orthogonality of the permanent and the transitory shocks and by the fact that those shocks are serially
uncorrelated. Second, it is easy to show that the variance of the OLS estimator converges to zero. The convergence
in probability follows.

Let us now examine the second and the third specifications. One can always rewrite the infinite moving
average representation as follows:

ht − ρ̃ht−1 = (a1(L)− ρ̃a1(L)L) ηT
t +

sX

l=1

(a2,l(L)− ρ̃a2,l(L)L) ηNT
l,t (6)

= θ1(L)ηT
t + θ2(L)ηNT

t . (7)

The structural moving average coefficients corresponding to the impact of the technology shocks on hours can
thus be retrieved by the following relationship a1,k =

Pk
j=0 ρ̃jθ1,k−j . First, consider the AR(1) specification for

our second step. We can easily show for this case that the OLS estimators of θ̂1,k converges in probability to θ1,k.
For a given estimator bρ, a consistent estimator ba1,k is thus guaranteed by the consistency of θ̂1,k. In fact, we only
needs to suppose that the OLS estimator of ρ̃ is bounded in probability, namely

√
T (ρ̂− ρ̃) = Op(1) for some

ρ̃ ∈ R (see Andrews and Mohanan (1992) for a similar argument in a different context). Finally for the case with
the hours in difference, this corresponds to fix ρ̃ to 1. The OLS estimator of θ1,k is

θ̂1,k =

PT
t=q+1 ηT

t−k∆ht

PT
t=q+1

�
ηT

t−k

�2

The estimator â1,k is given by the cumulative sum of the θ̂1,k, namely:

â1,k =

PT
t=q+1

�
ηT

t ht − ηT
t ht−1 + ηT

t−1ht − ηT
t−1ht−1 + · · ·+ ηT

t−kht − ηT
t−kht−1

�
PT

t=q+1

�
ηT

t−k

�2

By the stationarity hypothesis for ht,
1
T

P
ηT

t−kht
p−→ γk for all k not depending on t where γk is the covariance

function between ηT
t and ht. Moreover, 1

T

P
ηT

t ht−1
p−→ 0 and 1

T

PT
t=q+1

�
ηT

t−k

�2 p−→ 1, the consistency result
follows.

B Computation of the estimator for the asymptotic covariance
matrix in our two step approach

Following Newey (1984), our sequential two step estimators can be rewritten as a set of moment conditions with
a recursive structure. First consider a method of moment estimator based on the population moment conditions

E [f(xt, β0)] = 0.

The corresponding empirical moment conditions

1

T

TX
t=1

[f(xt, β)] ,
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can be used to obtain a method of moments estimator bβ by setting these sample moments as close as possible to
zero (see Hansen, 1982). Now, consider the partition of the parameter vector β as β = (θ′, λ′)′ so that

f(xt, β) =
�
g(xt, θ)

′, h(xt, θ, λ)′
�′

where g(xt, θ) and h(xt, θ, λ) are respectively the corresponding population moment conditions of the first and the
second step estimations. In our application, g(xt, θ) is given by the orthogonality conditions of the VAR model
(1), namely:

g(xt, θ) = Zt−1 ⊗ εt(θ)

where Zt−1 is a vector which includes a constant and the lagged values up to order p of labor productivity in
difference and the set of relevant stationary variables (consumption to output ratio, investment to out ratio,...).
The second set of moment conditions h(xt, θ, λ) corresponds to the orthogonality conditions of the OLS estimation
(equations (3) and (4) in our setup) given by

h(xt, θ, λ) = Wt(θ)× νt(θ, λ)

where the vector Wt(θ) contains a constant and the identified technology shocks in the first-step which depends
on θ.

Let now defines F = E [fβ(xt, β0)] as the derivative of the population moment conditions respective the the
true parameter vector β0 and V = E [f(xt, β0)f(xt, β0)

′] as the covariance matrix of the population moment
conditions evaluated at the true value β0. Let partition F and V be conformable with β and f(xt, β), so that,

F =

�
Gθ 0
Hθ Hλ

�

and

V =

�
Vgg Vgh

Vhg Vhh

�
,

with, for example, Hθ = E [∂h(xt, θ0, λ0)/∂θ] and Vgh = [g(xt, θ0)h(xt, θ0, λ0)
′].

Newey (1984) shows that the asymptotic covariance matrix of the second step estimator is given by the
following expression:

Ωλ = H−1
λ VhhH−1

λ ′+ H−1
λ Hθ

�
G−1

θ VggG−1
θ ′�Hθ′H−1

λ ′ −H−1
λ

�
HθG

−1
θ Vgh + VhgG−1

θ ′Hθ′
�
H−1

λ ′.
The first term of this expression corresponds to the usual covariance matrix of second step estimators. The second
and the third terms correct for the generated regressors problem involved in the first step estimation.

A consistent estimator of the asymptotic covariance matrix can be obtained with a consistent estimator
of each terms. For the VAR model at the first step with a sufficient number of lags, the moment conditions
corresponding to this step are serially uncorrelated, the variance covariance matrix is thus given by an estimator
of Σ⊗Z ′t−1Zt−1. We can also easily show that the estimator of the terms Vgh and Vhg does not need be adjusted
for serial correlation. A consistent estimator of the asymptotic covariance matrix of the second step moments
conditions Vhh which are probably serially correlated can be obtained with the usual Newey and West (1994)
estimator.

C A Business Cycle Model with Non–Stationary Hours

In this appendix, we present a simple business cycle model wherein hours are non–stationary due to permanent
preference shocks (see Chang, Doh and Schorfheide, 2005).

C.1 The Model

The model includes a random walk in productivity (Zt) and non-stationary hours, due to a permanent preference
shock (Bt). The intertemporal expected utility function of the representative household is given by

Et

∞X
i=0

βi {log(Ct+i)− χ(Ht+i/Bt+i)} ,

where χ > 0, β ∈ (0, 1) denotes the discount factor and Et is the expectation operator conditional on the
information set available as of time t. Ct is the consumption at t and Ht represents the household’s labor supply.
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The labor supply is subjected to a preference shock Bt, that follows the stochastic process ∆ log (Bt) = σbεb,t,
where σb > 0, and εb,t is iid with zero mean and unit variance. The representative firm uses capital Kt and
labor Ht to produce the homogeneous final good Yt. The technology is represented by the following constant
returns–to–scale Cobb–Douglas production function

Yt = Kα
t (ZtHt)

1−α ,

where α ∈ (0, 1). Zt is assumed to follow an exogenous process of the form ∆ log(Zt) = σzεz,t, where εz,t is iid
with zero mean and unit variance. The capital stock evolves according to the law of motion

Kt+1 = (1− δ) Kt + It,

where δ ∈ (0, 1) is the constant depreciation rate. Finally, the final good can be either consumed or invested

Yt = Ct + It.

In this model, the labor supply shock Bt induces a stochastic trend into hours as well as into output, consumption,
and capital. In addition, Zt has a long-run impact on Yt, Ct, Kt, and It. Accordingly, to obtain a stationary
equilibrium, these variables must be detrended as follows

h̆t =
Ht

Bt
, y̆t =

Yt

ZtBt
, c̆t =

Ct

ZtBt
, ĭt =

It

ZtBt
, k̆t+1 =

Kt+1

ZtBt
.

With these transformations, the approximate solution of the model is computed from a log–linearization of the
stationary equilibrium conditions around this deterministic steady state. It is important to notice that in our
model, Bt has a long-run impact on Ht, as well as on Yt and the above trending variables. At the same time,
Zt alone can have a long-run effect on labor productivity. Hence, this model is perfectly compatible with the
identification assumptions used by Gaĺı (1999).

C.2 Approximate Solution

The log–linearization of equilibrium conditions around the deterministic steady state yields

b̆
kt+1 = (1− δ)(

b̆
kt − σzεz,t − σbεb,t) +

y

k
b̆yt −

c

k
b̆ct (8)

b̆
ht = b̆yt − b̆ct (9)

b̆yt = α(
b̆
kt − σzεz,t − σbεb,t) + (1− α)

b̆
ht (10)

Et
b̆ct+1 = b̆ct + αβ

y

k
Et(b̆yt+1 − b̆kt+1 − σzεz,t+1 − σbεb,t+1) (11)

where y/k = (1− β(1− δ))/(αβ) and c/k = y/k − δ. After substitution of (9) into (10), one gets

b̆yt − b̆kt = −σzεz,t − σbεb,t − 1− α

α
b̆ct

Now, using the above expression, (8) and (11) rewrite

Et
b̆ct+1 = ϕb̆ct with ϕ =

α

1− β(1− α)(1− δ)
∈ (0, 1) (12)

b̆
kt+1 = ν1

b̆
kt − ν1(σzεz,t + σbεb,t)− ν2

b̆ct

with ν1 =
1

βϕ
> 1 and ν2 =

1− β(1− δ(1− α2))

α2β
(13)

As ν1 > 1, (13) must be solved forward

b̆
kt = σzεz,t + σbεb,t +

�
ν2

ν1

�
lim

T→∞
Et

TX
i=0

�
1

ν1

�i

b̆ct+i + lim
T→∞

Et

�
1

ν1

�T b̆
kt+T

Excluding explosive pathes, i.e. limT→∞Et (1/ν1)
T b̆kt+T = 0, and using (12), one gets the decision rule on

consumption:

b̆ct =

�
ν1 − ϕ

ν2

��
b̆
kt − (σzεz,t + σbεb,t)

�
(14)
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After substituting (14) into (13), the dynamics of capital is given by:

b̆
kt+1 = ϕ

�
b̆
kt − (σzεz,t + σbεb,t)

�
(15)

The persistence properties of the model is thus governed by the parameter ϕ ∈ (0, 1). The decision rules of the
other (deflated) variables are similar to equation (14). The consumption to output ratio is given by

log(Ct)− log(Yt) = νcy

�
b̆
kt − (σzεz,t + σbεb,t)

�

= νcy

�
− ϕ

1− ϕL
(σzεz,t−1 + σbεb,t−1)− (σzεz,t + σbεb,t)

�

= νcy

�
− (σzεz,t + σbεb,t)

1− ϕL

�

where νcy = α(ν1−ϕ− ν2)/ν2. The latter expression shows that the consumption to output ratio follows exactly
the same stochastic process (an autoregressive process of order one) as the deflated capital log(Kt/(Zt−1Bt−1))
in equation (15). The consumption to output ratio is thus an exact representation of the relevant state variable of
the model. Notice than both shocks have a transitory effect on the ratio. Hours do not display a similar pattern.
Using (9) and the above expression, the growth rate of hours is given by:

(1− ϕL)∆ log(Ht) = νcyσz∆εz,t + (1 + νcy)

�
1−

�
ϕ + νcy

1 + νcy

�
L

�
σbεb,t

where ∆ log(Ht) = ∆
b̆
ht+εb,t. The technology shock has no long–run effect on hours, whereas the preference shock

increases hours permanently. More importantly, hours follow an ARMA(1,1) process, with an unit root in the
moving average representation of the technology shock. It follows that finite autoregressions may be problematic
in properly uncovering the true dynamics of hours.

29



Table 1: Calibrated Values

Deep Parameters Shocks Parameters Shocks Parameters
(benchmark) (alternative)

β 0.9926 σz 0.01 σχ/σz [0.5;1;2]

α 0.330 ρχ 0.95 ρχ [0.9;0.95;0.99]

δ 0.0150 σχ 0.01

γz 0.0036 ρg 0.95

ψ 2.500 σg 0.01 σg/(σz, σχ) [1;2]

Ḡ/Ȳ [0;0.20]
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Table 2: Simulation Results with two shocks: Cumulative Absolute Biais

Horizon
ρχ σχ/σz Model 0 0 to 4 0 to 8 0 to 12
0.90 0.5 DSVAR 0.321 1.527 2.582 3.477

LSVAR 0.046 0.151 0.267 0.563
CYSVAR–AR(1) 0.036 0.186 0.352 0.550

1 DSVAR 1.001 4.718 8.220 11.567
LSVAR 0.268 1.026 1.225 1.385
CYSVAR–AR(1) 0.106 0.379 0.456 0.527

2 DSVAR 2.614 12.327 21.688 30.911
LSVAR 1.073 4.227 5.755 6.302
CYSVAR–AR(1) 0.618 2.433 3.467 3.952

0.95 0.5 DSVAR 0.294 1.453 2.492 3.372
LSVAR 0.045 0.172 0.211 0.339
CYSVAR–AR(1) 0.045 0.217 0.387 0.569

1 DSVAR 0.917 4.493 7.923 11.202
LSVAR 0.290 1.250 1.827 2.101
CYSVAR–AR(1) 0.097 0.412 0.613 0.709

2 DSVAR 2.405 11.789 20.988 30.051
LSVAR 1.170 5.120 7.851 9.632
CYSVAR–AR(1) 0.622 2.742 4.332 5.471

0.99 0.5 DSVAR 0.221 1.118 1.915 2.555
LSVAR 0.001 0.009 0.024 0.049
CYSVAR–AR(1) 0.090 0.421 0.724 1.006

1 DSVAR 0.703 3.511 6.212 8.763
LSVAR 0.196 0.926 1.552 2.073
CYSVAR–AR(1) 0.046 0.196 0.309 0.405

2 DSVAR 1.943 9.687 17.332 24.842
LSVAR 0.926 4.397 7.404 9.948
CYSVAR–AR(1) 0.241 1.185 2.067 2.856
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Table 3: Simulation Results with two shocks: Cumulative Root Mean Square Errors

Horizon
ρχ σχ/σz Model 0 [0:4] [0:8] [0:12]
0.90 0.5 DSVAR 0.346 1.683 2.895 3.970

LSVAR 0.224 0.989 1.605 2.163
CYSVAR–AR(1) 0.207 0.962 1.655 2.285

1 DSVAR 1.029 4.899 8.560 12.076
LSVAR 0.500 2.119 3.167 3.915
CYSVAR–AR(1) 0.381 1.708 2.872 3.886

2 DSVAR 2.645 12.540 22.077 31.477
LSVAR 1.327 5.460 7.877 9.301
CYSVAR–AR(1) 0.944 4.049 6.498 8.515

0.95 0.5 DSVAR 0.318 1.610 2.815 3.889
LSVAR 0.239 1.123 1.865 2.492
CYSVAR–AR(1) 0.208 1.001 1.782 2.516

1 DSVAR 0.944 4.670 8.271 11.729
LSVAR 0.545 2.495 3.993 5.123
CYSVAR–AR(1) 0.384 1.833 3.213 4.490

2 DSVAR 2.434 11.993 21.379 30.633
LSVAR 1.434 6.459 10.193 12.907
CYSVAR–AR(1) 0.969 4.489 7.600 10.362

0.99 0.5 DSVAR 0.245 1.277 2.254 3.111
LSVAR 0.265 1.299 2.254 3.110
CYSVAR–AR(1) 0.203 1.010 1.840 2.671

1 DSVAR 0.729 3.685 6.567 9.313
LSVAR 0.551 2.680 4.621 6.349
CYSVAR–AR(1) 0.338 1.674 3.051 4.443

2 DSVAR 1.969 9.878 17.715 25.423
LSVAR 1.3011 6.300 10.782 14.740
CYSVAR–AR(1) 0.706 3.841 6.305 9.137
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Table 4: Simulation Results with two shocks: Correlation

ρχ σχ/σz Model Corr(εz, η
T ) Corr(εχ, ηT )

0.90 0.5 DSVAR 0.908 0.325
LSVAR 0.937 -0.085
CYSVAR 0.943 0.030

1 DSVAR 0.796 0.528
LSVAR 0.923 -0.181
CYSVAR 0.942 -0.053

2 DSVAR 0.625 0.707
LSVAR 0.879 -0.340
CYSVAR 0.928 -0.177

0.95 0.5 DSVAR 0.909 0.326
LSVAR 0.921 -0.097
CYSVAR 0.937 0.044

1 DSVAR 0.799 0.531
LSVAR 0.898 -0.215
CYSVAR 0.931 -0.047

2 DSVAR 0.626 0.716
LSVAR 0.834 -0.404
CYSVAR 0.912 -0.189

0.99 0.5 DSVAR 0.921 0.297
LSVAR 0.882 -0.068
CYSVAR 0.929 0.116

1 DSVAR 0.827 0.498
LSVAR 0.853 -0.197
CYSVAR 0.917 0.065

2 DSVAR 0.650 0.708
LSVAR 0.793 -0.395
CYSVAR 0.908 -0.045
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Table 5: Simulation Results with Three Shocks

Average Cumulative Absolute Biais
Horizon

Variables σg/(σz, σχ) Model 0 0 to 4 0 to 8 0 to 12
(y − h, h) 1 DSVAR 1.037 5.081 8.930 12.568

LSVAR 0.286 1.208 1.692 1.832
CYSVAR–AR(1) 0.046 0.224 0.413 0.623

2 DSVAR 1.071 5.243 9.216 12.980
LSVAR 0.278 1.175 1.652 1.794
CYSVAR–AR(1) 0.072 0.343 0.605 0.873

(y − h, h, c− y) 1 DSVAR 0.112 0.555 1.200 2.091
LSVAR 0.197 0.805 1.251 1.585
CYSVAR–AR(1) 0.046 0.224 0.413 0.623

2 DSVAR 0.151 0.741 1.501 2.468
LSVAR 0.198 0.808 1.248 1.560
CYSVAR–AR(1) 0.072 0.343 0.605 0.873

Cumulative Root Mean Square Errors
Horizon

Vairables σg/(σz, σχ) Model 0 0 to 4 0 to 8 0 to 12
(y − h, h) 1 DSVAR 1.064 5.254 9.269 13.084

LSVAR 0.531 2.416 3.8547 4.9571
CYSVAR–AR(1) 0.392 1.887 3.343 4.688

2 DSVAR 1.097 5.416 9.557 13.499
LSVAR 0.544 2.472 3.949 5.083
CYSVAR–AR(1) 0.402 1.936 3.436 4.829

(y − h, h, c− y) 1 DSVAR 0.502 2.435 4.261 6.042
LSVAR 0.603 2.673 4.190 5.340
CYSVAR–AR(1) 0.392 1.887 3.343 4.688

2 DSVAR 0.534 2.575 4.487 6.332
LSVAR 0.574 2.570 4.064 5.209
CYSVAR–AR(1) 0.402 1.936 3.436 4.829
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Table 6: Simulation Results with three shocks: Correlation

Variables σg/(σz, σχ) Model Corr(εz, η
T )

(y − h, h) 1 DSVAR 0.774
LSVAR 0.904
CYSVAR 0.928

2 DSVAR 0.767
LSVAR 0.904
CYSVAR 0.914

(y − h, h, c− y) 1 DSVAR 0.908
LSVAR 0.827
CYSVAR 0.928

2 DSVAR 0.898
LSVAR 0.817
CYSVAR 0.914
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Figure 1: True (dashed line) and Estimated IRFs of hours with DSVAR and LSVAR: Two
shocks and benchmark calibration

(a) DSVAR
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Figure 2: True (dashed line) and Estimated IRFs of hours with CYSVARs: Two shocks and
benchmark calibration

(a) LCYSVAR
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(b) DCYSVAR
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Figure 3: Autocorrelation function (preference shock)

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hours
C/Y

Figure 4: Autocorrelation function (technology and preference shock)

0 2 4 6 8 10 12
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Hours
C/Y
K/Z

38



Figure 5: True (dashed line) and Estimated IRFs of hours with DSVAR, LSVAR and CYSVAR-
AR(1): Three shocks, two variables and benchmark calibration
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(b) LSVAR
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(b) CYSVAR-AR(1)
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Figure 6: True (dashed line) and Estimated IRFs of hours with DSVAR, LSVAR and CYSVAR-
AR(1): Three shocks, three variables and benchmark calibration
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(b) LSVAR
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(b) CYSVAR-AR(1)
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Figure 7: Variables used in SVARs
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Note: NFB Sector data and Sample Period 1948Q1–2003Q4, except for Federal Fund rate.

41



Figure 8: ACFs of Hours and Consumption to Output Ratio
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Note: NFB Sector data and Sample Period 1948Q1–2003Q4. All variables in logs.
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Figure 9: IRFs of Hours to a Technological Improvement
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Note: DSVAR, LSVAR and two–step identification. The DSVAR model includes labor produc-
tivity growth, the log of hours in first difference and the log of consumption to output ratio. The
LSVAR model includes labor productivity growth, the log of hours and the log of consumption
to output ratio. For the two–step procedure, the SVAR model in the first step includes labor
productivity growth and the log of consumption to output ratio. In the second step, the dynamic
responses of hours are obtained from equations (3), (4) and (5). Top left panel, IRFs computed
from DSVAR and LSVAR specifications. Top right panel, IRFs computed from two–step proce-
dure (equations (3) and (4)). Bottom left panel, IRFs obtained with the log of hours in level in
the second step. Bottom middle panel, IRFs obtained with the log of hours in first difference in
the second step. Bottom right panel, IRFs obtained with the lagged log of hours in the second
step. Non Farm Business Sector data and sample period 1948Q1–2003Q4. The selected horizon
for IRFs is 13. 95 percent asymptotic confidence interval shown.
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Figure 10: IRFs of the Inflation Rate to a Technological Improvement
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Note: DSVAR, LSVAR and two–step identification. The DSVAR model includes labor pro-
ductivity growth, the inflation rate in first difference and the log of consumption to output
ratio. The LSVAR model includes labor productivity growth, the inflation rate and the log of
consumption to output ratio. For the two–step procedure, the SVAR model in the first step
includes labor productivity growth and the log of consumption to output ratio. In the second
step, the dynamic responses of the inflation rate are obtained from equations (3), (4) and (5)
after replacement of hours by the inflation rate. Top left panel, IRFs computed from DSVAR
and LSVAR specifications. Top right panel, IRFs computed from two–step procedure (equations
(3) and (4)). Bottom left panel, IRFs obtained with the inflation rate in level in the second step.
Bottom middle panel, IRFs obtained with the inflation rate in first difference in the second step.
Bottom right panel, IRFs obtained with the lagged inflation rate in the second step. Non Farm
Business Sector data and sample period 1948Q1–2003Q4. The selected horizon for IRFs is 13.
95 percent asymptotic confidence interval shown.
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Figure 11: IRFs of the Nominal Interest Rate to a Technological Improvement
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Note: DSVAR, LSVAR and two–step identification. The DSVAR model includes labor produc-
tivity growth, the nominal interest rate in first difference and the log of consumption to output
ratio. The LSVAR model includes labor productivity growth, the nominal interest rate and the
log of consumption to output ratio. For the two–step procedure, the SVAR model in the first step
includes labor productivity growth and the log of consumption to output ratio. In the second
step, the dynamic responses of the nominal interest rate are obtained from equations (3), (4)
and (5) after replacement of hours by the nominal interest rate. Top left panel, IRFs computed
from DSVAR and LSVAR specifications. Top right panel, IRFs computed from two–step proce-
dure (equations (3), (4) and (5)). Bottom left panel, IRFs obtained with the nominal interest
rate in level in the second step. Bottom middle panel, IRFs obtained with the nominal interest
rate in first difference in the second step. Bottom right panel, IRFs obtained with the lagged
nominal interest rate in the second step. Non Farm Business Sector data and sample period
1959Q1–2003Q4. The selected horizon for IRFs is 13. 95 percent asymptotic confidence interval
shown.
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