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Abstract:  
In this paper, we investigate the information content of implied probabilities (Back and 
Brown, 1993) to improve estimation in unconditional moment conditions models. We 
propose and evaluate two 3-step euclidian empirical likelihood estimators and their 
bias-correction versions for weakly dependent data. The first one is the time series 
extension of the 3S-EEL proposed by Antoine, Bonnal and Renault (2007). The 
second one is new and uses in contrast only an estimator of the weighting matrix at 
an efficient 2-step GMM estimator, while leaving unrestricted the Jacobian matrix. 
Both estimators use implied probabilities to achieve higher-order improvements 
relative to the traditional GMM estimator. A Monte-Carlo study reveals that the finite 
and large sample properties of the (bias-corrected) 3-step estimators compare very 
favorably to the existing approaches: the 2-step GMM and the continuous updating 
estimator. As an application, we re-assess the empirical evidence regarding the New 
Keynesian Phillips curve in the US. 
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1 Introduction

A number of studies have recently revealed that the efficient Generalized Method of Moments
(GMM) introduced by Hansen (1982) may have large bias for sample size typically encoun-
tered in applied economics.1 Alternative estimators based on a one-step procedure that are
first-order equivalent to GMM have been suggested to address this problem. Newey and
Smith (2004) have shown that these alternative estimators share a common structure, being
members of a class of generalized empirical likelihood (GEL) estimators. These alternative
estimators include the Continuous Updating Estimator (CUE) proposed by Hansen, Heaton
and Yaron (1996), the Empirical Likelihood (EL) estimator of Qin and Lawless (1994), and the
Exponential Tilting (ET) estimator of Kitamura and Stutzer (1997) and Imbens, Spady and
Johnson (1998). Newey and Smith (2004) in an i.i.d. context and Anatolyev (2005) for weakly
dependent data have shown that these one-step estimators achieve asymptotic higher-order
improvements relative to the traditional 2-step GMM estimator. However, these estimators
are more computationally demanding. Especially for the EL and ET estimators, this requires
the optimization of a saddle point problem. Moreover, recent studies on the finite sample
properties suggest that these estimators may have a larger root mean square error than the
traditional 2-step GMM estimator (see Guggenber and Hahn 2005).

In this paper, we investigate the information content of implied probabilities to improve es-
timation in unconditional moment conditions models. As introduced by Back and Brown
(1993), implied probabilities assign a weight to each observation in the sample such that mo-
ment conditions are satisfied. In particular, more (respectively less) weight is assigned to an
observation for which the moment restrictions are (respectively not) satisfied at the parameter
estimates. In that respect, as suggested by Back and Brown (1993), implied probabilities can
then provide a useful diagnostic device for model specification. Moreover, the information
content of implied probabilities can also be exploited to provide efficient moment estimators
as shown by Brown and Newey (1998) in an i.i.d. context, and Smith (2004) for weakly
dependent data. For instance, efficient estimators of the Jacobian and the optimal weight-
ing matrices can be obtained by using implied probabilities instead of the uniform weights,
1/T . Estimators based on moment conditions computed with such efficient estimators of the
Jacobian and optimal weighting matrices have shown to achieve an asymptotic higher-order
improvements with respect to the traditional 2S-GMM (Newey and Smith, 2004; Anatolyev,
2005).

Our objective is thus to improve the performance of the 2-step GMM estimator by using
implied probabilities. At the same time, we seek to preserve its computational simplicity. On
the one hand, we built on the work done by Antoine, Bonnal and Renault (2007)2 In an i.i.d
context, Antoine, Bonnal and Renault (2007) propose a 3S-EEL estimator based on a Chi-

1For instance, see the special number of Journal of Business and Economic Statistics, July, 1996.
2See also Bonnal and Renault (2001), and Smith (2007).
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square distance where the last step consists of solving the First Order Conditions (FOC) of the
EL estimator given some efficient estimators of the Jacobian and the optimal weighting ma-
trices evaluated at an efficient estimator (usually the traditional 2S-GMM estimator). Using
smoothed moment conditions, we show how to extend their estimator to time-series models.
On the other hand, we propose a new 3-step estimator (called 3SW-EEL) that only uses an
efficient optimal weighting matrix based on the 2S-GMM implied probabilities—the Jacobian
matrix is left unrestricted. Finally, an analytical bias correction, which also uses implied
probabilities, is provided for both estimators. These estimators have three appealing proper-
ties. First, in contrast to the (smoothed) Generalized Empirical Likelihood (GEL) estimator,
they avoid to solve a computationally demanding saddle point problem, which grows with the
number of moment conditions. Second, both estimators achieve a higher-order equivalence
to the SEL (up to an order Op(T−3/2)) and their bias-corrected versions are asymptotically
unbiased up to order T−1. Finally, the proposed bias correction has the advantage of being
computationally much simpler than the bootstrap or jackknife correction methods.

In order to evaluate our proposed estimators, we run extensive Monte Carlo simulations.
More specifically, we compare the finite and large sample properties of our estimators with
those of the 2S-GMM estimator and the CUE. We assume that the data generating process
is given by the reduced-form of a univariate linear rational expectations model. This class
of models is often used in applied macroeconomics, as for instance any log-linearized Euler
equation in a dynamic stochastic general equilibrium model. Therefore, our results are of
particular interest and can provide some useful guidelines in applied economics. Simulation
results provide evidence that our proposed estimators are very competitive with respect to
the 2S-GMM estimator and the CUE. More specifically, they almost always perform better
in terms of mean bias and root mean squared error than the 2S-GMM estimator. Among the
proposed smoothed 3S-EEL estimators, the 3SW-EEL estimator and its bias-corrected version
have generally better finite and large sample properties than the time-series extension of the
3S-EEL estimator.

Moreover, we also provide an empirical application regarding the New Keynesian Phillips
curve (NKPC) in the US. In doing so, we propose a new specification J-based test-statistic,
which measures the discrepancy between the euclidian implied probabilities and the uncon-
strained empirical probabilities 1/T . Moreover, as is well known by now, we take care of weak
identification by proposing two test-statistics that are robust to weak identification. Overall,
we find evidence that the inflation dynamics is mostly forward-looking and driven by the forc-
ing variable—the real marginal cost. However, weak identification cannot be ruled out and
misspecification is an issue with large instrument sets.

The rest of the paper is organized as follows. In Section 2, we define the concept of im-
plied probabilities as in Back and Brown (1993). Section 3 presents the two (bias-corrected)
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smoothed 3-step estimators. In Section 4, we provide Monte Carlo simulations. In section
5, we re-assess the empirical evidence regarding the new Keynesian Phillips curve in the US.
The last section concludes. All proofs are relegated to the Appendix.

2 Implied Probabilities

In this section, we define the concept of implied probabilities, which is used throughout the
paper. We consider models specified by a finite number of moment conditions. More precisely,
let {zt : t = 1, · · · , T} be Rl -valued time series data, where T denotes the sample size. Let
g(zt, θ): H × Θ → Rq, where H ⊂ Rl and Θ ⊂ Rp, and θ ∈ Θ denote respectively the
parameter space and the p-vector of unknown parameters. The number of moment conditions,
q, exceeds or is equal to the number of parameters, p. The true parameter vector θ0 satisfies
the unconditional moment conditions:

E
[
g(zt, θ

0)
]

= 0 (1)

where E[·] denotes the expectation operator with respect to the unknown distribution of zt.

To introduce the concept of implied probabilities, consider the optimal 2S-GMM estimator.
It minimizes the following objective function over θ ∈ Θ

θ̂2S
T = arg min

θ∈Θ

1
T

T∑
t=1

g(zt, θ)′Ω̂T (θ̂1S
T )−1 1

T

T∑
t=1

g(zt, θ) (2)

where θ̂1S
T is a first-step estimator, usually obtained with the identity matrix as a weighting

matrix, and Ω̂−1
T is an Op(1) positive definite weighting matrix, which is a consistent estimator

of the inverse of the variance-covariance matrix of the moments conditions.

The 2S-GMM estimator only uses information from the just-identified moment conditions.
However, as pointed out by the empirical likelihood literature (Baggerly, 1988; Owen, 1990,
1991, 2001; Qin and Lawless, 1994; Smith, 2000), over-identified moment restrictions can be
helpful to revise our empirical view about the DGP and to bring useful information about
some characteristics of the DGP. The main idea is to seek implied probabilities that precisely
afford an efficient use of the information content of estimating equations. In this respect, Back
and Brown (1993) propose a distribution function estimator of the data based on the moment
conditions for improving the estimation of an arbitrary measurable function. As defined by
Back and Brown (1993), the corresponding (2S-GMM) implied probabilities of the distribution
function are given by

pGMM
t (θ) =

1
T
− 1

T − p

[
JtT (θ)− JT (θ)

]′ Ω̂T (θ)−1gT (θ) (3)

with JT (θ) = 1
T

∑T
t=1 JtT (θ) and

JtT (θ) =
T∑

s=1

κ(|t− s|)g(zt−s, θ)
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where κ(|t− s|) is a real valued weighting function and gT (θ) = 1
T

∑T
l=1 g(zt, θ). It turns out

that a consistent and positive definite estimator of the variance-covariance matrix is given by

Ω̂T (θ) =
1

T − p

T∑
t=1

JtT (θ)g(zt, θ)′.

It has the usual form of a Heteroskedasticity and Autocorrelation Consistent (HAC) weighting
matrix for standard kernels κ(|t− s|) (Andrews, 1991; Newey and West, 1994). Note however
that some of the estimated probabilities may be negative in finite samples although these
probabilities are asymptotically positive. Antoine et al. (2007) propose a shrinkage procedure
defined as a weighted average of the standard 2S-GMM’s implied probabilities (1/T ) and the
computed implied probabilities in order to guarantee the non-negativity property in finite
samples.

In that respect, as shown by Brown and Newey (1998), Smith (2004) and Antoine et al.,
(2007), an efficient estimator for the expectation of a function h(zt) can be obtained using
implied probabilities. The usual estimator of Eh(zt) is given by 1

T

∑T
t=1 h(zt). Then an effi-

cient estimator, which makes use of the information content in the moment conditions, can
be achieved by replacing the unconstrained probabilities (1/T ) with the implied probabilities
(Eq. 3). The corresponding efficient estimator is

∑T
t=1 pGMM

t (θ)h(zt). As a result, a variance
reduction is achieved by removing the correlation between the function h(zt) and the mo-
ment conditions g(zt, θ) through the estimation of the expectation of h(zt) at the constrained
implied probabilities pGMM

t (θ):

T∑
t=1

pGMM
t (θ)h(zt) =

1
T

T∑
t=1

h(zt)−
1

T − p

T∑
t=1

h(zt)
[
JtT (θ)− JT (θ)

]′ Ω̂T (θ)−1gT (θ)

where 1
T−p

∑T
t=1 h(zt)

[
JtT (θ)− JT (θ)

]
is a consistent estimator of the covariance matrix be-

tween h(zt) and the moment conditions g(zt, θ) for standard kernels κ(|t− s|).3

As a final remark, it is worth noticing that the CUE, defined by4

θ̂CUE
T = arg min

θ∈Θ

1
T

T∑
t=1

g(zt, θ)′Ω̂T (θ)−1 1
T

T∑
t=1

g(zt, θ),

uses the relevant constrained estimator of the Jacobian matrix by taking into account implied
probabilities (Newey and Smith, 2004; Antoine et al., 2007)—the Jacobian matrix is replaced
by the residuals of its regression on the moment conditions.5

3In an i.i.d. setting, this estimator is semi-parametrically efficient (Chamberlain, 1987).
4The objective function is simultaneously minimized over θ and Ω̂(θ). In other words, the empirical variance-

covariance matrix of the moment conditions replaces the fixed metrics of the 2S-GMM objective function, in

which a norm of empirical moments is minimized. For further details, see Hansen, Heaton and Yaron (1996).
5The CUE has important advantages over the conventional 2S-GMM estimator. First, unlike the 2S-GMM

estimator, the CUE does not depend on the normalization of the moment conditions. Second, in contrast to
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3 Bias-corrected 3-step estimators

In this section, we present two smoothed 3S-EEL estimators as well as their bias-corrected
versions. Then we show that both 3-step (bias-corrected) smoothed estimators are asymp-
totically equivalent and share the same higher-order equivalence as the smoothed empirical
likelihood estimator up to an order Op(T−3/2)). Their bias-correction versions are asymptot-
ically unbiased up to order T−1.

The 3S-EEL estimator, proposed by Antoine et al. (2007) in the i.i.d. context, has the
two interesting properties of being efficient with minimal asymptotic higher-order bias, like
the EL estimator, and of preserving the user-friendly features of least squares. Unlike the
standard 2S-GMM estimator, it uses all information contained in the moments conditions to
estimate θ and thus improve the estimation of the optimal selection of estimating equations.
Generally speaking, these equations correspond to the FOC of the EL estimator in the i.i.d.
context (Newey and Smith, 2004) given some efficient estimators of the Jacobian and the op-
timal weighting matrices. Let θ̂T be an efficient GMM estimator, say the 2S-GMM estimator,
the 3S-EEL estimator is defined as the solution of the following p equations

[
G̃T (θ̂T )

]′ [
Ω̃T (θ̂T )

]−1 1
T

T∑
t=1

g(zt, θ̂
3S
T ) = 0 (4)

where G̃T (θ̂T ) and Ω̃(θ̂T ) are efficient estimators of the Jacobian and the variance-covariance
matrices of the moment conditions

G̃T (θ̂T ) = GT (θ̂T )− CovT

[
∂g

∂θ′
(zt, θ̂T ), g(zt, θ̂T )

]
Ω̂T (θ̂T )−1gT (θ̂T )

and
Ω̃T (θ̂T ) = Ω̂T (θ̂T )− CovT

[
g(zt, θ̂T )g(zt, θ̂T )′, g(zt, θ̂T )

]
Ω̂T (θ̂T )−1gT (θ̂T )

with GT (θ̂T ) = 1
T

∑T
t=1

∂g
∂θ′ (zt, θ̂T ), Ω̂T is a standard consistent estimator of the covariance

matrix of the moment conditions, and CovT (X, Y ) is a consistent estimator of the covariance
matrix between the matrices (or vectors) X and Y .

More precisely, these efficient estimators of the Jacobian and the covariance matrices of the
moment conditions g(zt, θ) are equivalent to

G̃T (θ̂T ) =
T∑

t=1

pCUE
t (θ̂T )

∂g

∂θ′
(zt, θ̂T ), (5)

the 2S-GMM estimator, Newey and Smith (2004) in the i.i.d. case and Anatolyev (2005) with dependent data

show that the higher-order asymptotic bias of the CUE does not increase with the number of over-identifying

restrictions. In addition, Newey and Smith (2004) and Anatolyev (2005) demonstrate that the CUE has the

same minimal higher-order bias as the EL estimator if the third moments of the moment conditions are null. At

the same time, it is more sensitive to initial conditions than the 2S-GMM estimator and it uses an unconstrained

estimator of the weighting matrix.
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and

Ω̃T (θ̂T ) =
T∑

t=1

pCUE
t (θ̂T )g(zt, θ̂T )g(zt, θ̂T )′ (6)

with

pCUE
t (θ) =

1
T
− 1

T − p
[g(zt, θ)− gT (θ)]′ Ω̂T (θ)−1gT (θ) (7)

where the pCUE
t ’s are the solution of the minimization problem between the constrained em-

pirical distribution and the unconstrained empirical distribution (1/T ) according to the Chi-
square distance—these implied probabilities being those of the CUE (see Antoine et al., 2007).

To derive our proposed estimators in the time-series context, we need to redefine Eq. (4),
(5), (6), and (7). Indeed moment conditions have to be smoothed with an appropriate kernel
to account for the presence of temporal dependence. Following Smith (2004), the smoothed
moment conditions are defined by

gtT (θ) =
1

ST

t−1∑
s=t−T

k

(
s

ST

)
g(zt−s, θ)

where t = 1, . . . , T , ST is a bandwidth parameter with S → ∞ as T → ∞, and k(·) is a
kernel function with kj =

∫∞
−∞ k(a)jda.6 Using the uniform kernel proposed by Kitamura and

Stutzer (1997), one has

gtT (θ) =
1

2KT + 1

KT∑
s=−KT

g(zt−s, θ),

and k1 = k2 = 1.

On the other hand, the smoothed derivatives of the moment conditions are given by

GtT (θ) =
1

ST

t−1∑
s=t−T

k

(
s

ST

)
∂g

∂θ′
(zt−s, θ).

Therefore our smoothed 3-step estimators proceed in the same way as the EL estimator, but for
its smoothed version—the Smoothed Empirical Likelihood (SEL) estimator. More specifically,
the FOC of the SEL estimator are shown to imply the following p equations (Smith, 2004;
Anatolyev, 2005)[

T∑
t=1

pSEL
t (θ̂SEL

T )GtT (θ̂SEL
T )

]′ [
ST

T∑
t=1

pSEL
t (θ̂SEL

T )gtT (θ̂SEL
T )gtT (θ̂SEL

T )′
]−1

1
T

T∑
t=1

gtT (θ̂SEL
T ) = 0. (8)

6Smith (2004) presents examples of appropriate kernels to smooth the moment conditions and their resulting

induced kernel for the estimation of the variance-covariance matrix of the moment conditions. For instance,

the uniform kernel proposed by Kitamura and Stutzer (1997) induces the Bartlett kernel for the estimation of

the variance-covariance matrix.

7



with pSEL
t (θ̂SEL

T ) = 1/
(
1− λ̂′gtT (θ̂SEL

T )
)

where λ̂ is the vector of the Lagrange multiplier
associated to the respective moment conditions (see Smith 2004). The evaluation of the Jaco-
bian at the implied probabilities pSEL

t (θ̂SEL
T ) allows to remove a component appearing in the

asymptotic bias formula of order T−1 for the 2S-GMM. This bias component originates from
the correlation between the Jacobian and the moment conditions. Newey and Smith (2004)
show for models estimated by instrumental variables in i.i.d. context that this bias component
grows linearly with the number of overidentifying restrictions. Note that this bias component
is also absent for the CUE. Moreover Anatolyev (2005) establishes that the evaluation of the
weighting matrix at the implied probabilities using an appropriate kernel removes the bias
component involved by the third moments of the moment conditions. This bias component
appears in the asymptotic bias formula of order T−1 for the 2S-GMM and the CUE.

Finally, implied probabilities have to be defined for weakly dependent data. Following Section
2, we draw from the property that implied probabilities have a closed form in an Euclidian
space for the CUE (Antoine et al., 2007). Therefore, using the smoothed moment conditions,
it is straightforward to obtain the following definition7

Definition 1 The implied probabilities corresponding to the smoothed CUE (SCUE) are given
by

pSCUE
t (θ) =

1
T
− 1

T − p

ST

k2
[gtT (θ)− gT (θ)]′ Ω̂T (θ)−1gT (θ) (9)

where gT (θ) = 1
T

∑T
t=1 gtT (θ) and Ω̂T (θ) = 1

T
ST
k2

∑T
t=1 gtT (θ)gtT (θ)′ is a consistent and positive

definite estimator of the variance-covariance matrix Ω, and k2 can be replaced by its empirical
counterpart (see Smith, 2004).

Consider again the estimation of the expectation for a scalar function h(zt) as in Section 2 but
in the time series context. The smoothed version of the scalar function, h(zt), is now given by

htT (zt) =
1

ST

t−1∑
s=t−T

k

(
s

ST

)
h(zt−s),

and an efficient estimator, which uses the information content of the moment conditions
g(zt, θ), has the following expression

T∑
t=1

pSCUE
t (θ)htT (zt) =

1
T

T∑
t=1

htT (zt)−
1

T − p

ST

k2

T∑
t=1

htT (zt) [gtT (θ)− gT (θ)]′ Ω̂T (θ)−1gT (θ)

where 1
T−p

ST
k2

∑T
t=1 h(zt) [gtT (θ)− gT (θ)]′ is a consistent estimator of the covariance matrix

between h(zt) and the moment conditions g(zt, θ) (Smith 2004, Theorem 3.1).
7These implied probabilities can be derived by using results in Smith (2004). In his notation, the smoothed

CUE corresponds to the SGEL criteria for ρ(v) = −(1+ v)2/2 for v = kλ′gtT (θ), k = k1/k2 and λ is a vector of

auxiliary parameters. The corresponding implied probabilities are then given by the expression (3.1) in Smith

(2004).
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Given Definition 1, we can now present the 3-step estimators based on the FOC of the SEL
(Eq. 8). The first smoothed 3-step estimator is the one proposed by Antoine et al. (2007)
but for weakly dependent data. As stated in Definition 2, the 3S-EEL estimator solves the p

equations (8) after evaluating the Jacobian and the weighting matrices at an efficient estimator
of θ, say the 2S-GMM estimator.

Definition 2 The smoothed 3S-EEL estimator, θ̂3S
T , is the solution of the following p equa-

tions:[
T∑

t=1

pSCUE
t (θ̂T )GtT (θ̂T )

]′ [
ST

T∑
t=1

pSCUE
t (θ̂T )gtT (θ̂T )gtT (θ̂T )′

]−1
1
T

T∑
t=1

gtT (θ̂3S
T ) = 0 (10)

where θ̂T is an efficient estimator of θ and pSCUE
t (·) is defined in eq. (9).

In contrast to the SEL estimator, the implied probabilities corresponding to the Chi-square
metric (evaluated at an efficient estimator of θ) are used to estimate the Jacobian and the
weighting matrices. The resulting estimator can then be computed much more easily than
other smoothed GEL estimators. The solution is quite straightforward whether the smoothed

moment conditions,
T∑

t=1
gtT (θ̂3S

T ), are either linear or nonlinear. At the same time, the use of an

efficient Jacobian matrix, which is evaluated at an efficient estimator resulting from a preceding
estimation step, might only lead to correct partially the finite sample bias component arising
from the correlation between the Jacobian and the moment conditions. It turns out that this
conjecture is confirmed by our simulation experiments below. In that respect, we propose an
alternative 3-step estimator, denoted θ̂3SW

T , where the Jacobian is left unrestricted and the
weighting matrix is computed with implied probabilities evaluated at an efficient estimator
resulting from a preceding estimation step (usually the 2S-GMM). Let us now define the
smoothed 3SW-EEL estimator.

Definition 3 The smoothed 3SW-EEL estimator, θ̂3SW
T , is the solution of the following p

equations:[
T∑

t=1

pSCUE
t (θ3SW

T )GtT (θ̂3SW
T )

]′ [
ST

T∑
t=1

pSCUE
t (θ̂T )gtT (θ̂T )gtT (θ̂T )′

]−1
1
T

T∑
t=1

gtT (θ̂3SW
T ) = 0.(11)

To some extent, this estimator is more in the spirit of the traditional 2-step GMM—only
the weighting matrix is evaluated at the estimator obtained at the preceding estimation step.
While this estimator is computational more demanding than the one in Definition 2, it remains
less demanding than the SEL estimator.

We now discuss the asymptotic properties of the estimator presented in Definitions 2 and
3. Both estimators are asymptotically higher-order equivalent to the SEL estimator up to
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order Op(T−3/2). Indeed, starting from Anatolyev (2005), we show that the second-order
asymptotic bias of our proposed estimators lacks some components with respect to the 2S-
GMM estimator. More specifically, both estimators remove the bias component resulting from
the correlation between the moment conditions and their derivatives and also remove the bias
component associated with third moments by using an appropriate choice of the kernel.8 Fi-
nally, even with moment conditions serially uncorrelated but not i.i.d. across time, Anatolyev
(2005) shows that the SEL tends to reduce the bias—a property shared by our smoothed
3-step EEL estimators.

In that respect, the next proposition sets forth the higher-order efficiency equivalence be-
tween the SEL estimator and the 3SW-EEL estimator.

Proposition 1 Under the Assumptions A1 to A7 in the Appendix, the smoothed three-step
estimator, θ̂3SW

T , defined as the solution of the p equations

θ̂3SW
T − θ̂SEL

T = Op(T−3/2)

and thus achieves the same higher-order efficiency as the smoothed empirical likelihood esti-
mator.

Proof: see Appendix.

This higher-order efficiency also holds for the time series extension of the 3S-EEL. The char-
acterization of the asymptotic higher-order properties of the smoothed 3-step estimators in
Proposition 1 leads to several remarks. In principle, these estimators can also be computed
with the unsmoothed moment conditions. In this case, the corresponding implied probabilities
are defined in Eq. (3)—they insure the consistency of the Jacobian and the variance-covariance
matrices estimators of the moment conditions. Second, the smoothed 3-step estimators share
the same higher-order asymptotic properties as the SEL estimator for certain class of kernels,
as for instance the uniform kernel proposed by Kitamura and Stutzer (1997). In the sequel,
our simulation experiments and the application are based on the uniform kernel. From a
practical view, the smoothing parameter KT is chosen according to the data-dependent proce-
dure proposed by Newey and West (1994).9 Third, the smoothed 3S-EEL, 3SW-EEL and the
SEL estimators have the same bias-order, namely O(T−1), so that the higher-order asymp-
totic derivations in Anatolyev (2005) allow us for proposing a bias-corrected version of these
estimators. The next proposition gives the corresponding expression for the smoothed 3SW-
EEL estimator (Definition 3). The same result applies for the smoothed 3S-EEL estimator
(Definition 2).

8The smoother proposed by Kitamura and Stutzer (1997) belongs to this class of appropriate kernels.
9More precisely, KT is chosen by using the relationship established by Smith (2004) between the truncated

kernel for the moment conditions and the corresponding induced Bartlett kernel. KT is thus fixed to the integer

value of (mT −1)/2 where mT is the lag length chosen by the data-driven procedure of Newey and West (1994).
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Proposition 2 Under Assumptions A1 to A7 in the Appendix, a consistent estimator of the
asymptotic bias of order T−1 is given by:

B̂ias(θ̂3SW
T ) = B̂GΞg/T + B̂∂2g/T

where B̂GΞg and B̂∂2g are consistent estimators of:

BGΞg = Ξ
∞∑

u=−∞
E

[
∂g

∂θ′
(zt, θ)Ξg(zt−u, θ)

]

B∂2g = Ξ
p∑

j=1

E

[
∂2g

∂θ′∂θj
(zt, θ)

Σ
2

ej

]

and ej is the jth column of the identity matrix of order p, Σ =
(
G′Ω−1G

)−1, Ξ = ΣG′Ω−1,

G = E
[

∂g
∂θ′ (zt, θ)

]
and Ω =

∑∞
s=−∞E [g(zt, θ)g(zt−s, θ)′]. The bias corrected smoothed three-

step estimators θ̂3SWc
T defined as θ̂3SWc

T = θ̂3SW
T − B̂ias(θ̂3SW

T ) are asymptotically unbiased up
to order T−1.

Proof: see Appendix.

These two terms represent the asymptotic bias for a GMM estimator based on the infea-
sible optimal combination of moment conditions. Consistent estimators of BGΞg and B∂2g

are obtained following an appropriate replacement of moment conditions or their derivatives
by their respective smoothed versions (see Lemmas 2 and 3 in Anatolyev, 2005). Thus,
G̃T =

∑T
t=1 pSCUE

t (θ̂3SW
T )GtT (θ̂3SW

T ), Ω̃T = ST
k2

∑T
t=1 pSCUE

t (θ̂3SW
T )gtT (θ̂3SW

T )gtT (θ̂3SW
T )′ and

a consistent estimator of
∑∞

u=−∞E
[

∂g
∂θ′ (zt, θ)Ξg(zt−u, θ)

]
is given by:

ST

k2

T∑
t=1

pSCUE
t (θ̂3SW

T )GtT (θ̂3SW
T )Ξ̃T gtT (θ̂3SW

T )

where Ξ̃T =
(
G̃′

T Ω̃−1
T G̃T

)−1
G̃′

T Ω̃−1
T (see Lemma 3b in Anatolyev (2005)). Finally, a consistent

estimator of the second bias term is obtained with Σ̃T =
(
G̃′

T Ω̃−1
T G̃T

)−1
and the second partial

derivative of the smoothed moment conditions with respect to the parameter vector θ. It is
worth noticing that the bias terms can also be estimated at the usual weigth 1/T instead
of the constrained implied probabilities. However such estimators are not efficient compared
with the ones proposed here. We conjecture that efficient estimators of the bias terms would
probably improve the small sample performances of each bias-corrected estimator.

4 Simulation experiments

In this section, we examine the finite sample properties of the CUE, the 2S-GMM, and the
smoothed (bias-corrected) 3S-EEL and 3SW-EEL estimators.
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4.1 The data generating process

We assume that the data generating process (DGP) is based on the (hybrid) quasi-structural
form of a univariate rational expectations model, as for instance any log-linearized Euler
equation in a dynamic stochastic stochastic general equilibrium model. Following Mavroiedis
(2004, 2005), and Nason and Smith (2005), the forcing variable is driven by an autoregressive
process of order p. The dynamic specification is thus given by

yt = γfEtyt+1 + γbyt−1 + λxt + εt

ρ(L)xt = vt

where ρ(L) = ρ1 + ρ2L + · · · ρpL
p, γf , γb and λ are generally nonlinear functions of some

structural (or deep) parameters, say θ ∈ Θ, εt is an exogenous shock with zero mean and
variance σε, and vt is the innovation process. The variance-covariance matrix of the error
terms is defined by

Σ =

(
σ2

ε σεv

σεv σ2
v

)
.

The estimation methods use the sample version of the following moment conditions

E [Zt (yt − λxt − γfyt+1 − γbyt−1)] = 0 (12)

where the vector Zt denotes the set of appropriate instruments.

As well-explained by Nason and Smith (2005), identification requires predictability of fu-
ture forcing variable values beyond that provided by the current ones, or current or lagged
endogenous variable. Since xt follow a p-order autoregressive process, p ≥ 2 is necessary for
identification and p ≥ 3 for over-identification.10 Consequently, for an AR(1) process, the
parameters of our DGP cannot be identified by GMM. In the sequel, we assume that the
forcing variable is driven by an AR(2) process and the reduced-form is thus

yt = δ1yt−1 + α0xt + α1xt−1 + αεεt

xt = ρ1xt−1 + ρ2xt−2 + vt

where δ1 =
1−
√

1−4γbγf

2γf
, α0 = λ

∆δ2γf
, α1 = α0

ρ2

δ2
, αε = 1

δ2γf
, and δ2 and ∆ are respectively

given by
1+
√

1−4γbγf

2γf
and 1− ρ1

δ2
− ρ1

δ2
2
.

However, even though the necessary condition of identification is respected, the strength of
10For an extensive discussion, see Mavroiedis (2004, 2005) and Nason and Smith (2005).
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identification should be studied more precisely.11 In particular, the model is under-identified
when λ = 0—the t-statistics for the hypothesis H0 : λ = 0 does not have an asymptotically
normal distribution under the null (Dufour, 1997, 2003). In that respect, we follow the ap-
proach developed by Mavroiedis (2004, 2005). Indeed Mavroieidis (2004, 2005) examines the
weak identification issue by determining the concentration parameter of the reduced form,
which depends both on the quasi-structural parameters λ, γf , γb, and σ2

ε , and on the nuisance
parameters ρi, σ2

v , and σvε. Moreover, it is argued that the concentration parameter is invari-
ant to re-scaling of the data so it depends only on σ2

v/σ2
ε and σvε. In particular, the strength of

identification is increasing in σ2
v/σ2

ε . Therefore, to shed some light on the weak identification
issue, we report in our Monte-Carlo experiments the value of the concentration parameter.12

4.2 Finite and large sample properties of the estimators

We report Monte Carlo evidence on the quasi-structural parameters, λ, γf , and γb. According
to the theoretical model, these parameters satisfy the restrictions γf , γb ≥ 0, γf + γb < 1 and
λ ≥ 0 (see Buiter and Jewitt, 1989, and Gaĺı and Gertler, 1999).13 These restrictions imply
that the reduced-form is determinate, and, thus, the backward- and forward-looking param-
eters are only partially identified when λ = 0. Three sets of parameters are of particular
interest. On the one hand, according to our empirical application in Section 5, our benchmark
parameters are the ones estimated by Gali and Gertler (1999, Table 2) in the case of the
NKPC. Hence, γf = .591,γb = .378, λ = .015. On the other hand, we assume that the DGP
of yt is mostly forward-looking (respectively backward-looking), e.g. γf = .850,γb = .100,
λ = .015 (respectively γf = .100,γb = .850, λ = .015).14 For each parameter set, two cases are
worth studying. The first case (Case I) assumes that the model is well-identified. The AR(2)
parameters for xt are set to ρ1 = .9(1−ρ2) and ρ2 = −.65. with σ2

v/σ2
ε = 8. The error terms εt

and vt are drawn from a bivariate normal distribution with standard deviations σε = .05 and
σv = .4. The correlation coefficient between the error terms takes respectively the values 0.5,
0, and -0.5. In the second case (Case II), the parameters of the AR(2) are determined such
that all DGPs are weakly identified. Those values are ρ1 = .9(1 − ρ2) and ρ2 = −.65/

√
(T )

where T denotes the sample size.

11It is worth noticing that the mapping from the structural parameters θ to (λ, γf , γb) is generally not

invertible, i.e. the structural parameters are not globally identified (Ma, 2002). In addition, there are regions

in the admissible space in which these structural parameters become locally unidentified. For instance, see

Dufour, Khalaf and Kichian (2005).
12The derivation of the concentration parameter is provided in the technical report available upon request.
13We also consider the case in which γf +γb = 1. Following Blanchard and Kahn (1980), two situations can be

encountered. When γf ≤ 0.5, the solution of the characteristic polynomial is unique, but yt is a non-stationary

process regardless the dynamics of xt. When γf > 0.5 and second-order stationary conditions on the forcing

variable hold, the existence of a stationary solution is guaranteed, but there are in fact infinitely many solutions

characterized by sunspot shocks. Results are not reported here but are available upon request.
14It turns out that the last set of parameters leads to a concentration nearby zero so that they are weakly

identified.
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To investigate the effects of the number of instruments regarding the small sample perfor-
mances of the estimators, we consider instrument sets including K/2 lags values of yt and
xt where K, the number of instruments, equals respectively 8, 16 and 24.15 The sample size
is 160, e.g. the sample size of our empirical application in Section 5. All results reported
below are based on 5,000 simulation repetitions. For each repetition, we calculate the CUE,
the 2S-GMM, the smoothed 3S-EEL, the smoothed (bias-corrected) 3SW-EEL (3SWc-EEL)
estimators of the quasi-reduced form parameters (γb, γf , λ).16 We then calculate the mean
bias and the root mean squared error (RMSE) of the estimators over the 5,000 samples.17

From a computational view, we use the numerical optimization routine fminsearch.m, which
is a part of the ”Optimization toolbox” in Matlab. We discard cases where the routine failed
to converge.18 Initial values were set to the true ones. While the smoothed (bias-corrected)
3S-EEL and the 2S-GMM estimators were immune to such an initialization, the CUE often
fails to converge or yields large implausible values of the parameters. This numerical instabil-
ity of GEL-based estimators is well-known in the literature and has been documented among
others by Guggenberger and Hahn (2005), Anderson and Kunitomo (2005). Consequently, the
CUE may display higher mean bias and RMSE, especially in finite samples. Note finally that
the variance-covariance matrix of the moment conditions is estimated using the automatic
lag procedure of Newey and West (1994). In unreported results, we also test the sensitivity
of our results with respect to the number of lags used in the computation of the variance-
covariance matrix of the moment conditions. In particular, we consider a fixed window up to
twelve lags and the procedure of West (1997). In the latter, if the model is correctly speci-
fied, the error term of yt follows an MA(1) process.19 Overall, results only marginally improve.

We now discuss the relative performance of each estimator under strong identification (case I)
and weak identification (case II). We also discuss the effect of T and K on the performance of
the estimators. Table 1 reports the small sample simulation results (T=160) for the first set
of parameter vector. Several points are worth discussing. First, the concentration parameter,
denoted cp, clearly shows that the parameters are well-identified irrespective of the correlation
coefficient, ρ, and the number of instruments, K.20 Second, the bias of all estimators increases

15Results for K = 4 and 12 are available upon request.
16Results are not reported for the smoothed 3Sc-EEL estimator since the bias correction only changes

marginally the results of the smoothed 3S-EEL estimator.
17We also calculate the median bias and the median absolute deviation. Results are not reported here but

are available upon request.
18A fine grid search approach is recommended by Hansen et al. (1996) and Guggenberger (2006) for the CUE

and the GEL estimator to circumvent the problem of numerical instability (or unreliability of minimization

routines) often encountered with these estimators even in the case of a scalar parameter.
19However, the West procedure cannot be implemented for our smoothed 3S-EEL estimators since this

requires to define the correct kernel in the smoothed moment conditions. We leave this issue for further

research.
20The parameters are considered well identified for a minimum eigenvalue (concentration parameter) superior

to 10.
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with the number of instruments, with a more sizeable effect for the 2S-GMM estimator. This
confirms that the Jacobian evaluated at the implied probabilities contributes to partially cor-
rect the effect of the number of overidentifying restrictions on the bias. This correction is
even more pronounced for the 3SW-EEL and 3SWc-EEL estimators and thus provides some
support of our conjecture in Section 3 (except for the backward-looking parameter in some
cases)—leaving unrestricted the Jacobian matrix improves the statistical performances of 3-
step estimators. Third, the smoothed 3-step estimators dominate the 2S-GMM estimator
and the CUE in terms of mean bias and RMSE. In addition, the CUE has a larger RMSE
than other estimators and performs rather poorly for the coefficient of the forcing variable.
This heavy tails problem for the CUE is well-known in the literature and has been shown,
among others, by Hansen, Heaton and Yaron (1996), Guggenberger and Hahn (2005), and
Guggenberger (2005). Fourth, the relative magnitude of the mean bias (with respect to the
true values) is far from being negligible for the forward-looking and the forcing variable pa-
rameters, except for, to some extent, when the number of instruments is small K = 8. This
suggests that this small-sample bias may significantly distort standard GMM estimates of
univariate (multivariate) rational expectations models in empirical applications. Finally, the
correlation parameter ρ does not change the ordering of the estimators in terms of bias and
RMSE.

[Insert Tables 1 and 2 around here]

Unsurprisingly, as the sample size increases (Table 2), T = 500, the mean bias and the RMSE
significantly reduce for all estimators. Noticeably, as to be expected from theory, the CUE
competes now very favorably in terms of mean bias with our proposed estimators—these being
only asymptotically equivalent to the CUE. It is however at the expense of a higher RMSE,
especially with respect to the 3SWc-EEL estimator. All in all, it turns out that our previous
conclusions remain valid in large samples. We now assess the robustness of our simulation
results using other parameters values.

Table 3 reports the small-sample simulation results when the DGP of yt is mostly forward-
looking, e.g. γf = .850,γb = .100, λ = .015. Three points are worth commenting. On the
one hand, the mean bias and the RMSE are higher, except for the forcing variable parameter,
than those reported in Tables 1 and 2 irrespective of the correlation parameter and the num-
ber of moment conditions. In other words, all estimators underestimate (overestimate) the
forward-looking (backward-looking) coefficient. To some extent, this result can be understand
by analyzing the reduced-form coefficients. The stable root of the characteristic polynomial of
the endogenous variable yt, δ1, is less persistent (0.11) than the one in the first set case (0.57)
whereas the coefficients of the current and the lagged forcing variable, α0 and α1, are roughly
the same (0.09 (respectively -0.06) instead of 0.11 (respectively -0.07) for α0 (respectively α1).
Consequently, ceteris paribus, the DGP is mainly driven by the statistical properties of the
forcing variable and the correlation coefficient. Therefore, when ρ = 0 or 0.5, the CUE gener-
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ally outperforms other estimators in terms of mean bias for γf , but still at the cost of a higher
RMSE and poor finite sample statistical properties for the coefficient of the forcing variable.
In contrast, when ρ = −0.5, the CUE is dominated by the 3-step estimators, especially the
3SW-EEL and the 3SWc-EEL estimators. At the same time, our proposed estimators often
have better finite sample properties for the backward-looking coefficient and λ than the CUE
and the 2S-GMM estimator. Finally, the smoothed 3SW-EEL estimator and its bias-corrected
version generally overrule the smoothed 3S-EEL estimator in terms of mean bias and RMSE.

[Insert Tables 3 and 4 around here]

This interpretation remains valid when the sample size increases (Table 4). In particular, the
large sample mean bias and RMSE of γb and γf is on average up to 2 times larger than those of
our benchmark case, especially for the 2S-GMM estimator. In contrast, the bias significantly
reduces for the coefficient of the forcing variable. Overall, the CUE performs better (in both
criteria) than other estimators for the forward-looking coefficient. This conclusion remains
valid for the backward-looking coefficient, except for the RMSE, and λ, when the number
of instruments equal 8 or 16. Otherwise, our proposed estimators outperforms the 2S-GMM
estimator and have an interesting bias-efficiency trade-off relative to the CUE.

Interestingly, the simulation results (Tables 5 and 6) differ when the DGP of yt is mostly
backward-looking, e.g. γf = .100,γb = .850, λ = .015. In contrast to previous Monte Carlo
experiments, the concentration parameter is closer to zero, suggesting that parameters could
be weakly identified. Moreover all estimators overestimate γf and underestimate λ and γb.
Looking at the reduced-form coefficients, the stable root of the characteristic polynomial of the
endogenous variable yt, δ1, is more persistent (0.94) than the one in our benchmark case (0.57)
whereas the coefficients of the current and the lagged forcing variable, α0 and α1, are nearby
zero (resp. 0.02 and -0.001). Therefore, ceteris paribus, the DGP assigns a small weight to
the forcing variable and thus slightly depends on the correlation coefficient. In that respect,
the CUE and the 3SW-EEL estimator have better finite and large sample properties than the
2S-GMM, the 3S-EEL, and the 3SWc-EEL estimators. While the CUE prevails asymptoti-
cally over the 3SW-EEL estimator (Table 6), the finite sample results show that the relative
performance of the 3SW-EEL estimator with respect to the CUE depends on the parameter
of interest and the number of instruments. Overall, the CUE has a large RMSE especially for
the forcing variable λ.

[Insert Tables 5 and 6 around here]

We now turn to the weakly identified case (case II).21 We report here the results when the DGP
is mostly forward-looking. This allows us to describe the consequences of weak identification
when we consider the most well-identified DGP in case I irrespective of the values of ρ and

21In contrast to Tables 5 and 6, weak identification arises here from the DGP of the forcing variable. In

particular, this leads to weak instruments.
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T and the necessary condition of identification stated in Section 4 is weakly respected. Since
results are qualitatively similar, we only discuss the case when ρ = 0. Table 7 clearly shows
that all estimators are significantly biased irrespective of the number of instruments (and
the correlation parameter). Second, the RMSE also significantly augments for all estimators
relative to the well-identified case. Moreover, the bias and the RMSE increase with the number
of instruments since instruments are weak and thus do not convey reliable information. Finally,
as to be expected from theory, the RMSE and the mean bias do not significantly fall with the
sample size, i.e. the estimators do not converge to their true values. This result is illustrated
in Table 8. This is in sharp contrast with the results reported in Table 3. We thus confirm
the results of Stock and Wright (2000), Kleibergen (2002) and Mavroeidis (2004, 2005). Even
if the comparison of the estimates is meaningless per se in the case of weak identification, it is
worth noticing that our preferred estimators, the smoothed 3SW-EEL estimator and its bias
corrected version, generally outperforms other estimators. Similar evidence is found in other
cases.22

[Insert Tables 7 and 8 around here]

As a last experiment, we analyze the robustness of our results when the error term εt is drawn
from a recentered χ2(1). In that respect, we seek to evaluate the bias component arising from
the third moments of the moment conditions. Table 9 presents the simulation results with
a mostly forward-looking but well-identified DGP (Table 3). As to be expected from theory
(Newey and Snith, 2004; Anatolyev, 2005), the bias and the RMSE grow in almost cases
respective to the case with symmetric errors. However, this increase is less pronounced for the
smoothed 3-step estimators than for the 2S-GMM estimator and the CUE.

[Insert Table 9 around here]

To sum up, our Monte Carlo simulations provide evidence that our proposed estimators are
very competitive with respect to the 2S-GMM estimator and the CUE. In particular, re-
sults suggest that they perform better in terms of mean bias and RMSE than the 2S-GMM
estimator. Second, among the proposed smoothed 3S-EEL estimators, the smoothed 3SW-
EEL estimator and its bias-corrected version, generally have better finite and large sample
properties than the time-series extension of the 3S-EEL estimator. In other words, leaving
unrestricted the Jacobian matrix further improves the statistical performances of this class of
estimators. Third, as T gets larger and larger, the CUE often performs very well However, as
is well known, it is often at the expense of a larger RMSE, especially for γb and λ. Fourth,
the finite sample bias encountered in univariate rational expectations models is far from being
negligible even when the DGP is well-identified. As a result, this may significantly distort
estimates and thus the corresponding interpretation (structural parameters).

22Results are available upon request.
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5 Application

In this section, we report the results of the hybrid NKPC using the original dataset of Gaĺı
and Gertler (1960Q1-1997Q4).23

Since it burst onto the scene of mainstream monetary economics, the NKPC has been the
focus of two important empirical debates. First, to what extent purely forward-looking pric-
ing behavior can be reconciled with observed inflation persistence. Second, to what extent
properly measured marginal costs affect inflation dynamics. Both issues are crucial for our
ability to understand and predict movements in prices. They have recently been hotly debated,
and for good reason. At the same time, some concerns have been raised on the methodology
of Gali and Gertler (1999), and Gali et al. (2001, 2005). For instance, Rudd and Whelan
(2005, 2006) or Lindé (2005) cast doubt on the validity of their GMM estimates. Dufour et al.
(2005) and Mavroiedis (2004, 2005) stress the identification problem. Jondeau and LeBihan
(2007) and Kurmann (2005) argue maximum likelihood estimator ought to be preferred. In
that respect, we re-estimate the NKPC using our proposed estimators.

Briefly speaking, the NKPC advocated by Gali and Gertler (1999) and Gali, et al. (2001,
2005) is derived as follows. In a monopolistic environment, price setting decisions are driven
by a modified version of the Calvo’s (1983) staggering mechanism. In each period, each firm
may have a fixed probability α not to adjust price. Among the firms facing a probability
1 − α to readjust prices, a proportion ω of firms does not optimally set their prices but do
so in a pure backward-looking manner. The remaining fraction chooses their optimal price to
maximize their expected discounted sum of profits.

The hybrid NKPC is then given by24

πt = λκmct + γfEtπt+1 + γbπt−1 + εt (13)

where λ = ((1− ω)(1− α)(1− αβ))φ−1, γf = βαφ−1, γb = ωφ−1, φ = α + ω [1− α(1− β)],
κ = 1

1−ηµ , and Etπt+1 is expected inflation at time t, mct represents real marginal costs, β is
the common subjective discount factor, µ is the firm’s demand elasticities, and η is the elas-
ticity of marginal cost. The constant, κ, represents a correction term of the forcing variable
cost—the real marginal cost is a function of the average real marginal cost across firms.25 All
variables are expressed as a percentage deviation with respect to its steady state value.

The corresponding moment conditions are

E [Zt (πt − γfπt+1 − γbπt − λmct)] = 0
23See Data Appendix.
24The purely forward looking NKPC is nested in this specification.
25GGLS report estimates with κ = 0.12 and κ = 1 (see Section 4 in GGLS). In the sequel, we use κ = 1.

The main conclusions relative to the estimation results do not change significantly with κ = .12
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where Zt is a vector of instruments dated t and earlier. We use two sets of instruments. The
first one (GG) includes four lags each of inflation, the labor income share, the output gap, the
long-short interest rate spread, wage inflation, and commodity price inflation, and corresponds
to the one used by Gaĺı and Gertler (1999). The second set (GGLS) reduces to four lags of
inflation and two lags of the labor income share, output gap and wage inflation (Gaĺı, Gertler
and López-Salido, 2001).26 In both cases, we use an automatic lag selection procedure as in
Newey and West (1994).27

Before presenting our results, two points are worth noticing. First, given Definition 1, we
perform a new specification test in addition to the usual J-statistic. Indeed, as suggested by
Back and Brown (1993), implied probabilities may provide a useful diagnostic device. We thus
define a statistic, which measures the discrepancy between the estimated probabilities and the
unconstrained empirical probabilities 1/T . The Implied Probability Statistic (IPST ) is given
by

IPST =
k2

k2
1ST

T∑
t=1

(
TpSCUE

t (θ̂3S
T )− 1

)2

where pSCUE
t (θ̂3S

T )’s are the implied probabilities defined in equation (9) but evaluated at the
(bias-corrected) smoothed 3S-EEL or 3SW-EEL estimator. Under usual regularity conditions,
in i.i.d. settings (ST =1), this statistic is asymptotically distributed as χ2(q − p) (see Theo-
rem 1 in Baggerly, 1998, and Ramalho and Smith, 2005). In the Appendix, we show in the
time-series context that this statistic is numerically equivalent to a J-statistic but computed
with smoothed moment conditions and a centered weighting matrix (see Smith 2005). The
IPST -statistic is then asymptotically first-order equivalent to the J-statistic computed with
the standard 2S-GMM. Nevertheless, they can differ in small samples.

On the other hand, we reconsider the problem of identification in view of our simulation
results. Obviously, we are far from the first ones to take interest in this problem. Especially
relevant contributions on this issue include Ma (2002), Mavroiedis (2004, 2005, and 2007),
Nason and Smith (2005), and Dufour, Khalaf and Kichian (2005). In that respect, we show
in a companion paper (Guay and Pelgrin, 2007) that robust identification test statistics can
be derived for the 2S-GMM and our proposed smoothed 3-step estimators in order to test
a simple hypothesis on all parameters or a subvector of the parameters.28. The first test-

26In contrast to Gaĺı and Gertler (1999), and Gaĺı, Gertler, and López-Salido (2001), we use a real-time

output-gap measure (quadratic trend) instead of a gap detrended using the full sample.
27As explained before, the error term is an MA(1) process (the one-step-ahead nature of the expected inflation

forecasts), if the model is correctly specified. In particular, as Mavroiedis (2004) discussed, the presence of

higher-order autocorrelation in the error term suggests that (i) the instruments used for estimation are invalid

or (ii) the model’s dynamic structure is misspecified, which adversely alters GMM estimation and inference. In

that respect, we implement the higher-order autocorrelation test of Cumby and Huizinga (1992) and find little

support to excess serial correlation.
28See the technical report
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statistic is a straightforward extension of the results in Kleibergen (2005). Indeed, we make
use of the results of Back and Brown (1993) and replace the unconstrained Jacobian matrix
by the Jacobian matrix evaluated at the implied probabilities. The test statistic is then given
as a quadratic form in the resulting score vector evaluated at the hypothesized parameter
vector, say θ, and re-normalized at the appropriate rate. As a result, the test-statistic is
asymptotically χ2 distributed. We proceed in the same way to derive the robust identification
statistics for our smoothed 3-step estimators. The equivalence between the LM -statistic de-
fined in Guggenberger and Smith (2007) and ours is then straightforward to show. Since both
test-statistics are asymptotically pivotal, the level of these tests should not vary too much in
small samples under weak identification. In the sequel, we use these test-statistics for the null
H0 : λ = 0.

We now discuss our empirical results. We only report estimates of the reduced-form parame-
ters (Tables 10 and 11). Several points are worth commenting. First, parameter estimates in
Tables 10 and 11 are broadly in line with the results reported by Gaĺı and Gertler (1999), and
Gaĺı, Gertler, and López-Salido (2001).29 Using the large instrument set (GG), results provide
significant support that the real marginal cost is the relevant forcing variable for the dynamics
of inflation. In contrast, the use of the small instrument set (GGLS) generally leads to the
statistical irrelevance of the forcing variable at the conventional 5% nominal size.30 Second,
estimates are quite similar among the proposed methods in Tables 10 and 11. However, as the
number of instruments further reduces, we find differences across the estimators. Especially,
the CUE and the smoothed 3-step estimators favor a more forward-looking dynamics than
the 2S-GMM estimator.31 Third, we cannot rule out weak-identification of the forcing vari-
able coefficient irrespective of the number of instruments. Indeed the p-values of the K-based
statistics provide strong evidence that we cannot reject the null, H0 : λ = 0, at the 5% or
10% level. In that respect, our results support those of Mavroiedis (2007) and Dufour et al.
(2006)—the forcing variable is weakly identified.32 All in all, we find that the forward-looking
component outweighs the backward dynamics and that weak identification is an issue for the
forcing variable.

Finally there is evidence that the over-identifying restrictions are not rejected at conven-
tional 5% level using either the JT or the IPST statistics for the GGLS instrument set.
However, these statistics differ greatly for the GG instrument set (e.g. with a large num-

29The estimation results are not exactly the same for two reasons. First, we use the Newey-West (1994) data

driven procedure for the estimation of the optimal weighting matrix instead of fixing arbitrarily the number of

lags to 12 as in Gaĺı and Gertler (1999), and Gaĺı, Gertler, and López-Salido (2001). Second, real-time output

gap is used in the instrument set instead of a detrended gap over the full sample.
30In both cases, we re-estimate the NKPC using the restriction γb + γf = 1. Results only marginally differ

and thus our conclusions are robust to this constraint. Results are available upon request.
31These results are consistent with those of Mavroeidis (2007, Table 1). Results are available upon request.
32We also test the null hypothesis H0 : γb = 0 and H0 : γf = 0. Evidence is mixed and depends on the set

of instruments.
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ber of instruments). On the one hand, the JT statistic reported for all 3-step estimators is
based on the smoothed moment conditions and an uncentered covariance matrix estimator.
On the other hand, the IPST makes use of a centered covariance matrix estimator and is
numerically equivalent to a ”recentered” JT statistic.33 In that respect, the IPST statistic
is in accordance with the contribution of Hall (2000), which advocates the use of a covari-
ance estimator in mean deviation in order to increase the power of the overidentifying test.
Hence the observed difference in Table 10 suggests a misspecification problem given that the
conventional JT statistic and the IPST statistic should be closed under the null that the mo-
ment conditions are not violated. To investigate more closely this issue, Figure 1 reports for
both instrument sets the implied probabilities evaluated at the 3S-EEL estimator and their
unconstrained counterparts.34 For the GG instrument set, implied probabilities display large
swings along the sample. In particular, we observe a substantial discrepancy between the
constrained and unconstrained (1/T ) implied probabilities in the seventies and the nineties.
Moreover, several values are negative. As pointed out by Schennack (2007), negative values
are more likely to occur in small sample and even asymptotically under misspecification. In
contrast, with the small instrument set, implied probabilities deviate less from unconstrained
probabilities and only few values are weakly negative. Therefore, misspecification is an issue
for large instrument sets.

6 Conclusion

In this paper, we investigate the information content of implied probabilities (Back and Brown,
1993) to improve estimation in unconditional moment conditions models. We propose two
smoothed (bias-corrected) 3S-EEL estimators for weakly dependent data. The first one is the
time series extension of the 3S-EEL proposed by Antoine, Bonnal, and Renault (2007) in the
i.i.d. context—it solves the FOC of the SEL estimator given the SCUE implied probabilities
and some efficient estimators of the Jacobian and the optimal weighting matrices. In contrast,
the second estimator only uses a weighting matrix computed with implied probabilities eval-
uated at an efficient estimator resulting from a preceding estimation step and the Jacobian
is left unrestricted. Both estimators achieve a higher-order equivalence to the SEL (up to an
order Op(T−3/2))—their bias corrected versions are asymptotically unbiased up to order T−1.
Finally, these estimators avoid to solve a computational demanding saddle point problem as
in the class of GEL estimators.

A Monte-Carlo study reveals that the finite sample properties of our new estimators are
very competitive with respect to the 2S-GMM estimator and the CUE. Moreover, among
the proposed smoothed 3-step estimators, the smoothed 3SW-EEL estimator and its bias-

33See the Appendix
34Implied probabilities computed with the other estimators (2S-GMM, CUE, 3Sc-EEL, 3SW-EEL and 3SWc-

EEL) are similar.
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corrected version generally have better finite and large sample properties than the time-series
extension of the 3S-EEL estimator. In other words, leaving unrestricted the Jacobian matrix
further improves the statistical performances of this class of estimators. As an application,
we re-estimate the NKPC in the US and find evidence that the inflation dynamics is mostly
forward-looking and driven by the real marginal cost. However, weak identification cannot be
ruled out and misspecification is an issue for a large set of instruments.
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Data Appendix

Definition of variables

All data are quarterly time series for the sample 1960(1)-1997(4).
Output gap is the deviation of the real GDP from its steady state, approximated by a se-
quential quadratic trend.
Price inflation is the quarterly growth rate of the total GDP deflator: πt = 100 (lnPt − lnPt−1).
Wage inflation is the quarterly growth rate of compensation of employees: wt = 100 (lnWt − lnWt−1).
Labor income share is the ratio of total compensation and nominal GDP: mct = wt + ht −
pt − yt, where ht is (the log of) total employment, and yt is (the log of) nominal GDP.

Data sources

The data for the United States are from the Bureau of Labor Statistics (BLS) and the Bureau
of Economic Analysis (BEA).

Implicit price deflator, non-farm business sector (NFB) = Q.PNF
Employment (persons) (NFB) = M.EEA
Real GDP (NFB) = Q.JQNF
Wage (compensation per hour) (NFB) = Q.JRWSSNF.
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Appendix

6.1 Assumptions

We suppose here the same assumptions as in Anatolyev (2005) since we need its results in the following.
In particular, parameters are supposed to be strongly identified (Assumption A2 below). To simplify,
let us denote gt = g(zt, θ), g∗t = g(zt, θ

∗) and the respective derivative of the function g relative to the
parameters as gθ,t and g∗θ,t.
Assumptions A

A1 The sequence zt is strictly stationary and strongly mixing with mixing coefficients αj satisfying∑∞
j=1 j2α

1−1/ν
j < ∞ for some ν > 1.

A2 The moment conditions (1) holds for unique θ ∈ int(Θ), where Θ ⊆ Rp is compact.

A3 The function g(zt, θ
∗) is Borel measurable for all θ∗ ∈ Θ and is twice continuously differentiable

in θ∗ for all θ∗ ∈ Θ and for zt in its support.

A4 Form some stationary series dt with finite E(d8
t ), supθ∗∈Θ max{‖ g∗t ‖, ‖ g∗θ,t ‖, ‖ ∂g∗θ,t/∂θj ‖, ‖

∂2g∗θ,t/∂θj∂θ′ ‖ ∀j = 1, · · · , p} ≤ dt and max{‖ g∗t − gt ‖, ‖ g∗θ,t − gθ,t ‖, ‖ ∂g∗θ,t/∂θj − ∂gθ,t/∂θj ‖
∀j = 1, · · · , p} ≤ dt ‖ θ∗ − θ ‖ for all θ∗ ∈ Θ.

A5 The matrices G = E(gθ,t) and Ω =
∑∞

s=−∞ E(gtgt−s) are of full rank.

A6 The kernel function k(x) : [−b, b] → [−k̄, k̄] for finite b and k̄ is symmetric, nonzero at 0,
continuous on (−b, b), continuously differentiable on (−b, b) except possibly at a finite number
of points, and normalized so that

∫ b

−b
k(x)dx = 1.

A7 ST →∞ as T →∞ and ST = o(T 1/3).

For Propositions 1, 2 and 3, we suppose that Assumptions A hold.

Proof of Proposition 1:
The proof is based on Theorem 1 in Robinson (1988) which allows to evaluate the order of magnitude
for the stochastic difference between two alternative estimators. The sketch of the proof is closely
related to the one in Antoine et al. (2007) but with smoothed moment conditions. The proof for the
other 3-step (3S-EEL) is similar and omitted for brevity. The p equations corresponding to the FOC
for the SEL are

fT (θ̂SEL
T ) =

[
T∑

t=1

pSEL
t

(
θ̂SEL

T

)
GtT

(
θ̂SEL

T

)]′ [
Ω̃SEL

T (θ̂SEL
T )

]−1 1
T

T∑
t=1

gtT (θ̂SEL
T ) = 0.

where Ω̃SEL
T (θ̂SEL

T ) = ST

∑T
t=1 pSEL

t

(
θ̂SEL

T

)
gtT (θ̂SEL

T )gtT (θ̂SEL
T )′ with pSEL

t

(
θ̂SEL

T

)
= 1/

(
1− λ̂′T gtT (θ̂SEL

T )
)

is the implied probability at the observation t for the SEL such defined in Smith (2004) with an appro-
priate definition of λ̂T . For the smoothed 3-step estimator with only the weighting matrix evaluated
at a second step efficient estimator θ̂T , the FOC are

hT (θ̂3SW
T ) =

[
T∑

t=1

pSCUE
t

(
θ̂3SW

T

)
GtT

(
θ̂3SW

T

)]′ [
Ω̃SCUE

T (θ̂T )
]−1 1

T

T∑
t=1

gtT (θ̂3SW
T ) = 0.

where Ω̃SCUE
T (θ̂T ) = ST

∑T
t=1 pSCUE

t

(
θ̂T

)
gtT (θ̂T )gtT (θ̂T )′and pSCUE

t

(
θ̂T

)
is defined in eq. (9) .
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The objective is to show that θ̂3S
T − θ̂SEL

T = Op(T−3/2). To apply the Theorem 1 in Robinson (1988)
two assumptions need to be fulfilled. Assumption A1 in Robinson (1988) is directly verified since
θSEL

T = θ0 + op(1). For Assumption A2 in Robinson, we also need that θ3SW
T = θ0 + op(1) which

is verified. Assumption A2 requires also that the derivative of hT (θ) with respect to θ is continuous
uniformly in large T with probability arbitrarily close to one in the neighborhood of θ0 which is guar-
anteed by Assumption A4 above.

Under these assumptions, Theorem 1 in Robinson implies that

θ̂3SW
T − θ̂SEL

T = Op

(
‖hT

(
θ̂SEL

T

)
− fT

(
θ̂SEL

T

)
‖
)

.

where

hT (θ̂SEL
T ) =

[
T∑

t=1

pSCUE
t

(
θ̂SEL

T

)
GtT

(
θ̂SEL

T

)]′ [
Ω̃SCUE

T (θ̂T )
]−1 1

T

T∑
t=1

gtT (θ̂SEL
T ) = 0.

By Therorem 3.1 in Smith (2004), the estimator
T∑

t=1
pSGEL

t

(
θ̂SGEL

T

)
GtT

(
θ̂SGEL

T

)
is an efficient esti-

mator of G = E∂g(zt, θ0)/∂θ′ for any SGEL estimator. In particular, the conclusion is valid for the
SEL and the smoothed CUE. As mentioned by Smith (2004), this result also holds if the SGEL esti-
mator is replaced by any first order equivalent estimator as the 2-step GMM estimator. This implies
that

pSEL
t

(
θ̂SEL

T

)
GtT

(
θ̂SEL

T

)
= pSCUE

t

(
θ̂T

)
GtT

(
θ̂T

)
+ op(1).

Consequently,

θ̂3SW
T − θ̂SEL

T = Op

(
‖hT

(
θ̂SEL

T

)
− fT

(
θ̂SEL

T

)
‖
)

≤ Op

∥∥∥∥∥∥
[

T∑
t=1

pSEL
t

(
θ̂SEL

T

)
GtT

(
θ̂SEL

T

)]′∥∥∥∥∥∥ ‖Ω̃SCUE
T (θ̂T )−1 − Ω̃SEL

T (θ̂SEL
T )−1‖

∥∥∥∥∥ 1
T

T∑
t=1

gtT (θ̂SEL
T )

∥∥∥∥∥


Since 1
T

T∑
t=1

gtT (θ̂SEL
T ) = Op(1/

√
T ) and

T∑
t=1

pSEL
t

(
θ̂SEL

T

)
GtT

(
θ̂SEL

T

)
p→ G, we only need to show

that: ∥∥∥Ω̃SCUE(θ̂T )−1 − Ω̃SEL(θ̂SEL
T )−1

∥∥∥ = Op(1/T ). (14)

Consider the smoothed CUE, namely θ̂SCUE
T , by virtue of the triangular inequality∥∥∥Ω̃SCUE(θ̂T )− Ω̃SEL(θ̂SEL

T )
∥∥∥ ≤ ∥∥∥Ω̃SCUE(θ̂T )− Ω̃SCUE(θ̂SCUE

T )
∥∥∥+

∥∥∥Ω̃SCUE(θ̂SCUE
T )− Ω̃SEL(θ̂SEL

T )
∥∥∥ .

The first expression at the right hand side is Op(1/T ) by an usual Taylor expansion and θ̂T − θ̂CUE
T =

Op(1/T ). The second expression is also Op(1/T ) by a direct implication of Theorem 3.1 in Smith
(2004) for efficient moment estimators of variance-covariance matrix of the moment conditions by CUE
and SEL. The result follows by noticing that M−1 −N−1 = M−1(N −M)N−1.
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Proof of Proposition 2:
Theorem 1 in Anatolyev (2005) provides the asymptotic bias of the SEL estimator. By Proposition 1,
the smoothed 3-step estimator achieves the same higher order efficiency, e.g. the asymptotic bias of
this estimator is the same as the one for the SEL estimator up to an order Op(T−3/2). The first term
appearing in the asymptotic bias of the SEL estimator (Theorem 1 in Anatolyev (2005)) is removed for
instance by the use of the uniform kernel proposed by Kitamura and Stutzer (1997). The asymptotic
bias at order T−1 of the 3SW-EEL estimator is then given by: BGΞg + B∂2g.

Proof of Proposition 3:
The implied probabilities evaluated at the (bias-corrected) smoothed 3S-EEL (or smoothed 3SW-EEL)
estimator are defined by Definition 1 as:

pSCUE
t (θ̂3S

T ) =
1
T
− 1

T

ST

k2

[
gtT (θ̂3S

T )− gT (θ̂3S
T )
]′

Ω̂T (θ̂3S
T )−1gT (θ̂3S

T )

or equivalently:

pSCUE
t (θ̂3S

T ) =
1
T
− 1

T

ST

k2
gT (θ̂3S

T )′Ω̂T (θ̂3S
T )−1

[
gtT (θ̂3S

T )− gT (θ̂3S
T )
]
.

Now we compute
∑T

t=1

(
pSCUE

t (θ̂3S
T )− 1

T

)2

, this yields:

T∑
t=1

(
pSCUE

t (θ̂3S
T )− 1

T

)2

=
1
T

ST

k2
gT (θ̂3S

T )′Ω̂T (θ̂3S
T )−1 1

T

ST

k2

T∑
t=1

[
gtT (θ̂3S

T )− gT (θ̂3S
T )
]

×
[
gtT (θ̂3S

T )− gT (θ̂3S
T )
]′

Ω̂T (θ̂3S
T )−1gT (θ̂3S

T )

An consistent estimator of Ω in mean deviation is obtained by:

1
T

ST

k2

T∑
t=1

[
gtT (θ̂3S

T )− gT (θ̂3S
T )
] [

gtT (θ̂3S
T )− gT (θ̂3S

T )
]′

.

This gives that:

1
T

T∑
t=1

(
TpSCUE

t (θ̂3S
T )− 1

)2

=
ST

k2
gT (θ̂3S

T )′Ω̂T (θ̂3S
T )−1gT (θ̂3S

T )

where the right hand side expression corresponds to the GMM criteria evaluated at the bias-corrected
smoothed 3S-EEL estimator. Multiplying by T , this yields:

k2

k2
1ST

T∑
t=1

(
TpSCUE

t (θ̂3S
T )− 1

)2

= TgT (θ̂3S
T )′Ω̂T (θ̂3S

T )−1gT (θ̂3S
T )/k2

1.

Hence, the IPST statistic is numerically equivalent to the J-statistic but for smoothed moment con-

ditions with a centered weighting matrix (see Smith 2005). This statistic is asymptotically equivalent

to the standard optimal GMM statistic J by Theorem 4.1 in Smith (2004) and Theorem 3.2 in Smith

(2005). The IPST statistic is then asymptotically distributed as χ2(q − p).
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Table 1: Finite sample properties in DGP1 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 160)

γf = .591 γb = .378 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 12.10 -.0887 .1204 .0003 .0429 .0085 .0120

3S-EEL 8 0 12.10 -.0796 .1202 -.0035 .0461 .0081 .0119

3SW-EEL 8 0 12.10 -.0782 .1290 -.0038 .0486 .0080 .0122

3SWc-EEL 8 0 12.10 -.0737 .1198 -.0002 .0468 .0068 .0111

CUE 8 0 12.10 -.0769 .1323 -.0024 .0548 -.0251 1.5958

2S-GMM 16 0 12.10 -.1121 .1350 .0062 .0431 .0101 .0133

3S-EEL 16 0 12.10 -.0989 .1290 .0044 .0472 .0089 .0128

3SW-EEL 16 0 12.10 -.0978 .1486 .0041 .0530 .0087 .0139

3SWc-EEL 16 0 12.10 -.0945 .1438 .0067 .0523 .0079 .0132

CUE 16 0 12.10 -.1020 .1793 -.0012 .0988 -1.1696 73.658

2S-GMM 24 0 12.10 -.1295 .1480 .0105 .0431 .0114 .0145

3S-EEL 24 0 12.10 -.1165 .1414 .0120 .0479 .0098 .0137

3SW-EEL 24 0 12.10 -.1160 .1631 .0132 .0557 .0095 .0151

3SWc-EEL 24 0 12.10 -.1137 .1604 .0150 .0558 .0089 .0147

CUE 24 0 12.10 -.1534 .2725 .0175 .1870 -5.5305 148.74

2S-GMM 8 .5 8.87 -.0899 .1227 -.0086 .0519 .0111 .0150

3S-EEL 8 .5 8.87 -.0765 .1194 -.0094 .0559 .0096 .0138

3SW-EEL 8 .5 8.87 -.0744 .1290 -.0085 .0587 .0092 .0139

3SWc-EEL 8 .5 8.87 -.0716 .1205 -.0043 .0556 .0081 .0129

CUE 8 .5 8.87 -.0752 .1399 -.0073 .0655 .0068 .1243

2S-GMM 16 .5 8.87 -.1219 .1437 -.0101 .0525 .0152 .0190

3S-EEL 16 .5 8.87 -.1048 .1342 -.0051 .0553 .0123 .0168

3SW-EEL 16 .5 8.87 -.0993 .1499 -.0008 .0636 .0105 .0163

3SWc-EEL 16 .5 8.87 -.0965 .1457 .0035 .0625 .0097 .0157

CUE 16 .5 8.87 -.0982 .1919 -.0052 .1163 -.4380 21.513

2S-GMM 24 .5 8.87 -.1430 .1602 -.0164 .0542 .0190 .0225

3S-EEL 24 .5 8.87 -.1264 .1500 -.0081 .0560 .0157 .0201

3SW-EEL 24 .5 8.87 -.1210 .1668 .0026 .0655 .0132 .0196

3SWc-EEL 24 .5 8.87 -.1190 .1643 .0045 .0650 .0126 .0191

CUE 24 .5 8.87 -.1374 .2890 -.0030 .2112 -282.425 1695.4

2S-GMM 8 -.5 16.35 -.0905 .1239 -.0023 .0409 .0079 .0114

3S-EEL 8 -.5 16.35 -.0850 .1257 -.0074 .0438 .0081 .0119

3SW-EEL 8 -.5 16.35 -.0831 .1311 -.0087 .0451 .0081 .0123

3SWc-EEL 8 -.5 16.35 -.0768 .1214 -.0051 .0435 .0069 .0111

CUE 8 -.5 16.35 -.0853 .1360 -.0056 .0481 .0096 .0783

2S-GMM 16 -.5 16.35 -.1101 .1370 .0051 .0414 .0084 .0118

3S-EEL 16 -.5 16.35 -.1019 .1356 .0011 .0458 .0083 .0121

3SW-EEL 16 -.5 16.35 -.1002 .1513 -.0027 .0491 .0087 .0136

3SWc-EEL 16 -.5 16.35 -.0958 .1457 -.0010 .0482 .0078 .0129

CUE 16 -.5 16.35 -.1121 .1862 -.0069 .0937 -.0247 1.5321

2S-GMM 24 -.5 16.35 -.1216 .1443 .0119 .0417 .0085 .0118

3S-EEL 24 -.5 16.35 -.1128 .1422 .0109 .0463 .0079 .0119

3SW-EEL 24 -.5 16.35 -.1128 .1622 .0076 .0516 .0084 .0139

3SWc-EEL 24 -.5 16.35 -.1100 .1590 .0093 .0515 .0078 .0136

CUE 24 -.5 16.35 -.1509 .2658 .0079 .1904 -1.1256 75.098
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Table 2: Large sample properties in DGP1 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 500)

γf = .591 γb = .378 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 37.48 -.0301 .0492 .0009 .0215 .0027 .0047

3S-EEL 8 0 37.48 -.0242 .0475 -.0016 .0221 .0025 .0046

3SW-EEL 8 0 37.48 -.0239 .0475 -.0016 .0221 .0025 .0046

3SWc-EEL 8 0 37.48 -.0238 .0460 -.0000 .0218 .0021 .0043

CUE 8 0 37.48 -.0224 .0467 -.0004 .0220 .0022 .0045

2S-GMM 16 0 37.48 -.0421 .0568 .0050 .0219 .0033 .0051

3S-EEL 16 0 37.48 -.0303 .0506 .0015 .0223 .0026 .0047

3SW-EEL 16 0 37.48 -.0291 .0504 .0014 .0224 .0025 .0047

3SWc-EEL 16 0 37.48 -.0289 .0494 .0027 .0222 .0022 .0045

CUE 16 0 37.48 -.0232 .0500 .0013 .0232 .0020 .0046

2S-GMM 24 0 37.48 -.0530 .0653 .0080 .0228 .0039 .0057

3S-EEL 24 0 37.48 -.0379 .0557 .0051 .0232 .0028 .0050

3SW-EEL 24 0 37.48 -.0361 .0551 .0050 .0233 .0027 .0050

3SWc-EEL 24 0 37.48 -.0357 .0539 .0061 .0234 .0024 .0048

CUE 24 0 37.48 -.0247 .0544 .0028 .0249 .0020 .0052

2S-GMM 8 .5 27.50 -.0319 .0507 -.0022 .0248 .0037 .0059

3S-EEL 8 .5 27.50 -.0243 .0477 -.0038 .0256 .0030 .0055

3SW-EEL 8 .5 27.50 -.0238 .0475 -.0038 .0256 .0030 .0055

3SWc-EEL 8 .5 27.50 -.0248 .0462 -.0018 .0248 .0027 .0052

CUE 8 .5 27.50 -.0215 .0465 -.0028 .0256 .0027 .0054

2S-GMM 16 .5 27.50 -.0474 .0607 .0013 .0243 .0048 .0068

3S-EEL 16 .5 27.50 -.0324 .0517 -.0003 .0251 .0034 .0058

3SW-EEL 16 .5 27.50 -.0309 .0509 -.0004 .0252 .0032 .0057

3SWc-EEL 16 .5 27.50 -.0314 .0498 .0012 .0248 .0029 .0055

CUE 16 .5 27.50 -.0217 .0486 -.0006 .0269 .0023 .0055

2S-GMM 24 .5 27.50 -.0616 .0727 .0030 .0245 .0062 .0081

3S-EEL 24 .5 27.50 -.0431 .0591 .0033 .0256 .0040 .0065

3SW-EEL 24 .5 27.50 -.0411 .0580 .0033 .0258 .0038 .0064

3SWc-EEL 24 .5 27.50 -.0411 .0571 .0046 .0256 .0035 .0061

CUE 24 .5 27.50 -.0230 .0550 .0020 .0290 .0021 .0059

2S-GMM 8 -.5 50.66 -.0311 .0513 -.0001 .0208 .0026 .0045

3S-EEL 8 -.5 50.66 -.0268 .0502 -.0026 .0214 .0026 .0045

3SW-EEL 8 -.5 50.66 -.0266 .0503 -.0026 .0214 .0025 .0045

3SWc-EEL 8 -.5 50.66 -.0254 .0484 -.0013 .0211 .0022 .0042

CUE 8 -.5 50.66 -.0259 .0499 -.0013 .0212 .0023 .0044

2S-GMM 16 -.5 50.66 -.0398 .0573 .0034 .0210 .0028 .0047

3S-EEL 16 -.5 50.66 -.0312 .0537 -.0002 .0215 .0026 .0047

3SW-EEL 16 -.5 50.66 -.0303 .0536 -.0003 .0216 .0025 .0046

3SWc-EEL 16 -.5 50.66 -.0293 .0520 .0009 .0214 .0022 .0044

CUE 16 -.5 50.66 -.0275 .0539 .0000 .0221 .0023 .0047

2S-GMM 24 -.5 50.66 -.0476 .0625 .0062 .0219 .0031 .0049

3S-EEL 24 -.5 50.66 -.0361 .0569 .0028 .0225 .0026 .0048

3SW-EEL 24 -.5 50.66 -.0348 .0566 .0026 .0226 .0025 .0048

3SWc-EEL 24 -.5 50.66 -.0338 .0551 .0037 .0226 .0022 .0045

CUE 24 -.5 50.66 -.0302 .0582 .0013 .0238 .0026 .0053
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Table 3: Finite sample properties in DGP2 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 160)

γf = .85 γb = .10 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 15.74 -.1910 .2225 .0295 .0709 .0029 .0055

3S-EEL 8 0 15.74 -.1431 .1850 .0213 .0699 .0021 .0051

3SW-EEL 8 0 15.74 -.1274 .1854 .0194 .0710 .0018 .0051

3SWc-EEL 8 0 15.74 -.1377 .1879 .0269 .0727 .0015 .0049

CUE 8 0 15.74 -.1295 .1792 .0241 .0741 -.0010 .1758

2S-GMM 16 0 15.74 -.2860 .3101 .0416 .0786 .0048 .0071

3S-EEL 16 0 15.74 -.2336 .2682 .0445 .0840 .0031 .0062

3SW-EEL 16 0 15.74 -.2008 .2687 .0449 .0903 .0022 .0062

3SWc-EEL 16 0 15.74 -.2032 .2684 .0497 .0925 .0018 .0061

CUE 16 0 15.74 -.1882 .2787 .0488 .1438 -1.5817 45.889

2S-GMM 24 0 15.74 -.3502 .3684 .0442 .0810 .0066 .0087

3S-EEL 24 0 15.74 -.3071 .3327 .0533 .0903 .0048 .0076

3SW-EEL 24 0 15.74 -.2735 .3272 .0608 .1019 .0033 .0075

3SWc-EEL 24 0 15.74 -.2730 .3259 .0641 .1038 .0030 .0073

CUE 24 0 15.74 -.2634 .3857 .0788 .2297 -8.7313 135.99

2S-GMM 8 .5 12.39 -.2309 .2674 .0582 .0967 .0017 .0055

3S-EEL 8 .5 12.39 -.1817 .2315 .0503 .0962 .0008 .0052

3SW-EEL 8 .5 12.39 -.1812 .2519 .0529 .1059 .0005 .0056

3SWc-EEL 8 .5 12.39 -.1917 .2531 .0625 .1097 -.0001 .0055

CUE 8 .5 12.39 -.1679 .2401 .0519 .1057 .1301 5.4078

2S-GMM 16 .5 12.39 -.3151 .3394 .0647 .1009 .0041 .0073

3S-EEL 16 .5 12.39 -.2618 .2977 .0795 .1092 .0019 .0064

3SW-EEL 16 .5 12.39 -.2532 .3216 .0801 .1269 .0006 .0066

3SWc-EEL 16 .5 12.39 -.2548 .3207 .0851 .1297 .0003 .0066

CUE 16 .5 12.39 -.2139 .2978 .0695 .0998 .0350 .0490

2S-GMM 24 .5 12.39 -.3756 .3938 .0615 .0990 .0066 .0092

3S-EEL 24 .5 12.39 -.3357 .3616 .0746 .1117 .0043 .0080

3SW-EEL 24 .5 12.39 -.3173 .3682 .0924 .1357 .0022 .0078

3SWc-EEL 24 .5 12.39 -.3162 .3663 .0953 .1376 .0020 .0077

CUE 24 .5 12.39 -.3028 .4305 .1295 .2788 -174.97 9135.9

2S-GMM 8 -.5 22.68 -.1610 .1878 .0125 .0612 .0032 .0056

3S-EEL 8 -.5 22.68 -.1190 .1540 .0077 .0617 .0026 .0051

3SW-EEL 8 -.5 22.68 -.0960 .1410 .0074 .0627 .0021 .0049

3SWc-EEL 8 -.5 22.68 -.1076 .1439 .0129 .0633 .0018 .0047

CUE 8 -.5 22.68 -.1085 .1461 .0139 .0654 .0022 .0051

2S-GMM 16 -.5 22.68 -.2540 .2756 .0217 .0658 .0048 .0069

3S-EEL 16 -.5 22.68 -.2012 .2300 .0242 .0698 .0035 .0061

3SW-EEL 16 -.5 22.68 -.1483 .2004 .0244 .0737 .0023 .0057

3SWc-EEL 16 -.5 22.68 -.1508 .2005 .0286 .0750 .0020 .0056

CUE 16 -.5 22.68 -.1578 .2326 .0279 .1173 -.0815 1.9622

2S-GMM 24 -.5 22.68 -.3183 .3367 .0245 .0673 .0061 .0080

3S-EEL 24 -.5 22.68 -.2731 .2993 .0334 .0752 .0046 .0071

3SW-EEL 24 -.5 22.68 -.2195 .2723 .0382 .0839 .0031 .0069

3SWc-EEL 24 -.5 22.68 -.2193 .2717 .0414 .0853 .0029 .0068

CUE 24 -.5 22.68 -.2315 .3427 .0497 .1961 -5.1795 134.35
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Table 4: Large sample properties in DGP2 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 500)

γf = .85 γb = .10 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 48.77 -.0706 .0914 .0062 .0461 .0012 .0030

3S-EEL 8 0 48.77 -.0442 .0755 -.0007 .0470 .0010 .0029

3SW-EEL 8 0 48.77 -.0430 .0752 -.0007 .0471 .0010 .0029

3SWc-EEL 8 0 48.77 -.0498 .0775 .0026 .0468 .0009 .0028

CUE 8 0 48.77 -.0442 .0759 .0022 .0475 .0009 .0029

2S-GMM 16 0 48.77 -.1144 .1296 .0167 .0489 .0016 .0032

3S-EEL 16 0 48.77 -.0659 .0921 .0080 .0496 .0009 .0030

3SW-EEL 16 0 48.77 -.0618 .0899 .0079 .0498 .0008 .0030

3SWc-EEL 16 0 48.77 -.0670 .0921 .0107 .0501 .0007 .0029

CUE 16 0 48.77 -.0430 .0807 .0061 .0519 .0006 .0031

2S-GMM 24 0 48.77 -.1552 .1683 .0241 .0526 .0022 .0037

3S-EEL 24 0 48.77 -.0980 .1194 .0189 .0542 .0010 .0032

3SW-EEL 24 0 48.77 -.0920 .1152 .0187 .0546 .0009 .0032

3SWc-EEL 24 0 48.77 -.0956 .1170 .0211 .0552 .0007 .0031

CUE 24 0 48.77 -.0462 .0896 .0111 .0586 -.0017 .0931

2S-GMM 8 .5 38.39 -.0864 .1089 .0197 .0555 .0006 .0031

3S-EEL 8 .5 38.39 -.0531 .0864 .0090 .0541 .0005 .0032

3SW-EEL 8 .5 38.39 -.0516 .0874 .0088 .0544 .0005 .0032

3SWc-EEL 8 .5 38.39 -.0622 .0912 .0142 .0548 .0003 .0031

CUE 8 .5 38.39 -.0505 .0847 .0110 .0553 .0004 .0032

2S-GMM 16 .5 38.39 -.1444 .1612 .0363 .0637 .0010 .0033

3S-EEL 16 .5 38.39 -.0871 .1134 .0238 .0607 .0002 .0033

3SW-EEL 16 .5 38.39 -.0810 .1088 .0228 .0607 .0002 .0033

3SWc-EEL 16 .5 38.39 -.0883 .1122 .0271 .0618 .0000 .0033

CUE 16 .5 38.39 -.0519 .0955 .0154 .0625 .0009 .0035

2S-GMM 24 .5 38.39 -.1930 .2073 .0466 .0709 .0016 .0038

3S-EEL 24 .5 38.39 -.1299 .1510 .0396 .0701 .0002 .0035

3SW-EEL 24 .5 38.39 -.1229 .1451 .0387 .0700 .0002 .0035

3SWc-EEL 24 .5 38.39 -.1270 .1470 .0418 .0714 .0000 .0035

CUE 24 .5 38.39 -.0605 .1096 .0232 .0716 -.0077 .2675

2S-GMM 8 -.5 70.27 -.0598 .0821 -.0025 .0433 .0014 .0029

3S-EEL 8 -.5 70.27 -.0384 .0701 -.0068 .0445 .0012 .0028

3SW-EEL 8 -.5 70.27 -.0375 .0699 -.0068 .0445 .0012 .0028

3SWc-EEL 8 -.5 70.27 -.0418 .0711 -.0046 .0441 .0010 .0027

CUE 8 -.5 70.27 -.0397 .0709 -.0041 .0445 .0011 .0028

2S-GMM 16 -.5 70.27 -.0948 .1108 .0038 .0441 .0018 .0032

3S-EEL 16 -.5 70.27 -.0544 .0817 -.0012 .0462 .0012 .0030

3SW-EEL 16 -.5 70.27 -.0514 .0803 -.0011 .0464 .0011 .0029

3SWc-EEL 16 -.5 70.27 -.0548 .0815 .0008 .0462 .0010 .0029

CUE 16 -.5 70.27 -.0418 .0763 -.0005 .0477 .0009 .0029

2S-GMM 24 -.5 70.27 -.1267 .1399 .0082 .0450 .0023 .0036

3S-EEL 24 -.5 70.27 -.0767 .0997 .0055 .0477 .0013 .0031

3SW-EEL 24 -.5 70.27 -.0720 .0969 .0058 .0480 .0012 .0030

3SWc-EEL 24 -.5 70.27 -.0748 .0981 .0075 .0481 .0011 .0030

CUE 24 -.5 70.27 -.0457 .0851 .0026 .0505 .0012 .0129
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Table 5: Finite sample properties in DGP3 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 160)

γf = .10 γb = .85 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 .66 .2859 .2962 -.2519 .2611 -.0085 .0091

3S-EEL 8 0 .66 .2512 .2722 -.2228 .2411 -.0073 .0083

3SW-EEL 8 0 .66 .2219 .2558 -.1978 .2270 -.0063 .0079

3SWc-EEL 8 0 .66 .2596 .2791 -.2298 .2461 -.0078 .0087

CUE 8 0 .66 .2212 .2623 -.1981 .2342 -.0010 .1722

2S-GMM 16 0 .66 .3276 .3322 -.2887 .2927 -.0100 .0103

3S-EEL 16 0 .66 .3092 .3178 -.2733 .2809 -.0092 .0097

3SW-EEL 16 0 .66 .2702 .2927 -.2402 .2595 -.0079 .0090

3SWc-EEL 16 0 .66 .2783 .2992 -.2474 .2646 -.0083 .0093

CUE 16 0 .66 .2240 .2835 -.2370 .2998 -.1997 4.3342

2S-GMM 24 0 .66 .3504 .3530 -.3091 .3115 -.0108 .0110

3S-EEL 24 0 .66 .3412 .3455 -.3017 .3057 -.0104 .0104

3SW-EEL 24 0 .66 .3119 .3252 -.2774 .2886 -.0094 .0094

3SWc-EEL 24 0 .66 .3144 .3271 -.2791 .2899 -.0095 .0101

CUE 24 0 .66 .2173 .3065 -.3096 .4027 -.3092 37.803

2S-GMM 8 .5 .57 .2808 .2900 -.2472 .2712 -.0083 .0088

3S-EEL 8 .5 .57 .2530 .2712 -.2224 .2392 -.0074 .0083

3SW-EEL 8 .5 .57 .2296 .2579 -.2035 .2277 -.0067 .0079

3SWc-EEL 8 .5 .57 .2628 .2795 -.2312 .2457 -.0078 .0086

CUE 8 .5 .57 .2288 .2647 -.2039 .2356 -.0064 .0109

2S-GMM 16 .5 .57 .3208 .3249 -.2823 .2859 -.0094 .0097

3S-EEL 16 .5 .57 .3091 .3162 -.2723 .2784 -.0091 .0095

3SW-EEL 16 .5 .57 .2770 .2962 -.2445 .2613 -.0081 .0090

3SWc-EEL 16 .5 .57 .2841 .3011 -.2505 .2651 -.0084 .0092

CUE 16 .5 .57 .2821 .3362 -.2505 .3094 -.0048 .0343

2S-GMM 24 .5 .57 .3358 .3383 -.2960 .2983 -.0097 .0100

3S-EEL 24 .5 .57 .3301 .3340 -.2910 .2945 -.0096 .0099

3SW-EEL 24 .5 .57 .3090 .3198 -.2731 .2825 -.0089 .0095

3SWc-EEL 24 .5 .57 .3110 .3214 -.2746 .2836 -.0090 .0096

CUE 24 .5 .57 .2296 .3245 -.3240 .4210 -2.2364 106.57

2S-GMM 8 -.5 .76 .2926 .3044 -.2594 .2701 -.0087 .0093

3S-EEL 8 -.5 .76 .2504 .2748 -.2244 .2458 -.0072 .0084

3SW-EEL 8 -.5 .76 .2189 .2571 -.1980 .2307 -.0062 .0079

3SWc-EEL 8 -.5 .76 .2625 .2846 -.2335 .2528 -.0080 .0088

CUE 8 -.5 .76 .2174 .2618 -.1970 .2353 -.0061 .0086

2S-GMM 16 -.5 .76 .3456 .3510 -.3070 .3118 -.0108 .0111

3S-EEL 16 -.5 .76 .3216 .3315 -.2872 .2961 -.0099 .0104

3SW-EEL 16 -.5 .76 .2716 .3001 -.2452 .2694 -.0082 .0095

3SWc-EEL 16 -.5 .76 .2826 .3076 -.2536 .2750 -.0087 .0099

CUE 16 -.5 .76 .2344 .2997 -.2380 .3000 .7305 20.000

2S-GMM 24 -.5 .76 .3715 .3746 -3310 .3340 -.0120 .0123

3S-EEL 24 -.5 .76 .3608 .3658 -.3225 .3273 -.0116 .0119

3SW-EEL 24 -.5 .76 .3261 .3413 -.2942 .3072 -.0104 .0110

3SWc-EEL 24 -.5 .76 .3288 .3435 -.2960 .3086 -.0106 .0112

CUE 24 -.5 .76 .2533 .3346 -.3125 .3940 -.7314 8.7797
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Table 6: Large sample properties in DGP3 (ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 500)

γf = .10 γb = .85 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 2.03 .2451 .2572 -.2146 .2251 -.0075 .0079

3S-EEL 8 0 2.03 .1924 .2199 -.1690 .1931 -.0057 .0067

3SW-EEL 8 0 2.03 .1730 .2093 -.1523 .1838 -.0051 .0065

3SWc-EEL 8 0 2.03 .2291 .2445 -.2004 .2138 -.0071 .0077

CUE 8 0 2.03 .1670 .2108 -.1469 .1845 -.0050 .0066

2S-GMM 16 0 2.03 .3066 .3112 -.2678 .2719 -.0095 .0097

3S-EEL 16 0 2.03 .2629 .2768 -.2301 .2422 -.0080 .0085

3SW-EEL 16 0 2.03 .2420 .2630 -.2119 .2302 -.0073 .0081

3SWc-EEL 16 0 2.03 .2650 .2785 -.2316 .2434 -.0082 .0087

CUE 16 0 2.03 .1641 .2300 -.1435 .2013 -.0048 .0072

2S-GMM 24 0 2.03 .3320 .3344 -.2898 .2921 -.0104 .0105

3S-EEL 24 0 2.03 .3083 .3144 -.2696 .2748 -.0095 .0097

3SW-EEL 24 0 2.03 .2976 .3065 -.2602 .2680 -.0092 .0095

3SWc-EEL 24 0 2.03 .3072 .3141 -.2683 .2744 -.0095 .0098

CUE 24 0 2.03 .1847 .2513 -.1629 .2213 -.0055 .0083

2S-GMM 8 .5 1.75 .2421 .2538 -.2121 .2221 -.0074 .0078

3S-EEL 8 .5 1.75 .1962 .2221 -.1723 .1946 -.0059 .0069

3SW-EEL 8 .5 1.75 .1782 .2137 -.1566 .1873 -.0053 .0067

3SWc-EEL 8 .5 1.75 .2292 .2448 -.2005 .2141 -.0071 .0077

CUE 8 .5 1.75 .1741 .2162 -.1530 .1893 -.0052 .0068

2S-GMM 16 .5 1.75 .3010 .3054 -.2631 .2669 -.0093 .0095

3S-EEL 16 .5 1.75 .2664 .2784 -.2332 .2436 -.0081 .0087

3SW-EEL 16 .5 1.75 .2481 .2669 -.2174 .2335 -.0075 .0083

3SWc-EEL 16 .5 1.75 .2681 .2802 -.2344 .2449 -.0082 .0087

CUE 16 .5 1.75 .1779 .2402 -.1563 .2102 -.0053 .0076

2S-GMM 24 .5 1.75 .3251 .3275 -.2841 .2862 -.0101 .0102

3S-EEL 24 .5 1.75 .3097 .3148 -.2707 .2751 -.0095 .0097

3SW-EEL 24 .5 1.75 .3019 .3093 -.2640 .2704 -.0093 .0096

3SWc-EEL 24 .5 1.75 .3092 .3150 -.2701 .2751 -.0095 .0098

CUE 24 .5 1.75 .2089 .2667 -.1844 .2351 -.0063 .0084

2S-GMM 8 -.5 2.36 .2504 .2626 -.2188 .2297 -.0076 .0080

3S-EEL 8 -.5 2.36 .1901 .2192 -.1670 .1925 -.0056 .0067

3SW-EEL 8 -.5 2.36 .1696 .2077 -.1492 .1824 -.0049 .0063

3SWc-EEL 8 -.5 2.36 .2297 .2454 -.2005 .2144 -.0071 .0077

CUE 8 -.5 2.36 .1631 .2093 -.1431 .1833 -.0048 .0065

2S-GMM 16 -.5 2.36 .3113 .2166 -.2718 .2762 -.0097 .0099

3S-EEL 16 -.5 2.36 .2549 .2711 -.2232 .2376 -.0077 .0083

3SW-EEL 16 -.5 2.36 .2317 .2556 -.2032 .2241 -.0070 .0079

3SWc-EEL 16 -.5 2.36 .2608 .2751 -.2278 .2406 -.0080 .0086

CUE 16 -.5 2.36 .1414 .2166 -.1244 .1901 -.0042 .0068

2S-GMM 24 -.5 2.36 .3402 .3429 -.2973 .2998 -.0107 .0108

3S-EEL 24 -.5 2.36 .3058 .3134 -.2678 .2746 -.0094 .0097

3SW-EEL 24 -.5 2.36 .2923 .3035 -.2561 .2660 -.0090 .0094

3SWc-EEL 24 -.5 2.36 .3053 .3138 -.2670 .2746 -.0095 .0098

CUE 24 -.5 2.36 .1604 .2385 -.1417 .2097 -.0048 .0075
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Table 7: Finite sample properties in DGP2 (ρ1 = .9(1− ρ2), ρ2 = −.65/
√

T and T = 160)

γf = .850 γb = .100 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 .0004 -.5559 .5772 .0300 .0722 .0526 .0557

3S-EEL 8 0 .0004 -.4828 .5238 .0280 .0739 .0456 .0506

3SW-EEL 8 0 .0004 -.4439 .4985 .0295 .0763 .0415 .0479

3SWc-EEL 8 0 .0004 -.4673 .5095 .0346 .0778 .0431 .0485

CUE 8 0 .0004 -.4487 .5122 .0304 .0779 .0214 .0662

2S-GMM 16 0 .0004 -.6000 .6141 .0368 .0761 .0563 .0588

3S-EEL 16 0 .0004 -.5419 .5693 .0397 .0832 .0501 .0542

3SW-EEL 16 0 .0004 -.4849 .5358 .0446 .0917 .0437 .0506

3SWc-EEL 16 0 .0004 -.4876 .5366 .0481 .0932 .0434 .0503

CUE 16 0 .0004 -.4762 .5544 .0439 .1333 -3.5342 109.09

2S-GMM 24 0 .0004 -.6311 .6417 .0373 .0744 .0594 .0616

3S-EEL 24 0 .0004 -.5865 .6054 .0433 .0830 .0542 .0576

3SW-EEL 24 0 .0004 -.5215 .5621 .0533 .0981 .0462 .0526

3SWc-EEL 24 0 .0004 -.5087 .5476 .0705 .0906 .0329 .0422

CUE 24 0 .0004 -.5019 .5816 .0630 .1922 -3.1929 114.73

Table 8: Large sample properties in DGP2 (ρ1 = .9(1− ρ2), ρ2 = −.65/
√

T and T = 500)

γf = .850 γb = .100 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 .0001 -.5566 .5815 .0097 .0432 .0570 .0600

3S-EEL 8 0 .0001 -.4605 .5099 .0071 .0443 .0473 .0528

3SW-EEL 8 0 .0001 -.4202 .4831 .0070 .0454 .0432 .0499

3SWc-EEL 8 0 .0001 -.4539 .4992 .0095 .0446 .0463 .0514

CUE 8 0 .0001 -.4388 .5061 .0085 .0459 .0449 .0522

2S-GMM 16 0 .0001 -.6005 .6168 .0139 .0452 .0609 .0630

3S-EEL 16 0 .0001 -.5005 .5386 .0114 .0468 .0508 .0552

3SW-EEL 16 0 .0001 -.4377 .4967 .0120 .0483 .0442 .0508

3SWc-EEL 16 0 .0001 -.4436 .4975 .0142 .0484 .0445 .0507

CUE 16 0 .0001 -.3904 .4875 .0114 .0509 .0394 .0502

2S-GMM 24 0 .0001 -.6284 .6411 .0159 .0465 .0636 .0654

3S-EEL 24 0 .0001 -.5403 .5682 .0151 .0492 .0546 .0580

3SW-EEL 24 0 .0001 -.4771 .5217 .0169 .0510 .0478 .0531

3SWc-EEL 24 0 .0001 -.4781 .5206 .0187 .0514 .0476 .0528

CUE 24 0 .0001 -.4121 .5109 .0147 .0540 .0413 .0524
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Table 9: Large sample properties in DGP2 (asymmetric error terms)

(ρ1 = .9(1− ρ2), ρ2 = −.65 and T = 160)

γf = .850 γb = .100 λ = .015

K ρ cp Bias RMSE Bias RMSE Bias RMSE

2S-GMM 8 0 15.74 -.2364 .2803 .0260 .0718 .0043 .0073

3S-EEL 8 0 15.74 -.1807 .2367 .0238 .0735 .0030 .0066

3SW-EEL 8 0 15.74 -.1719 .2330 .0240 .0741 .0028 .0065

3SWc-EEL 8 0 15.74 -.1817 .2344 .0290 .0757 .0025 .0062

CUE 8 0 15.74 -.1382 .2110 .0255 .0817 -.0014 .2930

2S-GMM 16 0 15.74 -.3425 .3749 .0345 .0078 .0068 .0093

3S-EEL 16 0 15.74 -.2674 .3137 .0429 .0087 .0043 .0078

3SW-EEL 16 0 15.74 -.2500 .3018 .0440 .0088 .0038 .0076

3SWc-EEL 16 0 15.74 -.2521 .3008 .0462 .0089 .0036 .0075

CUE 16 0 15.74 -.1801 .2820 .0568 .1483 -1.2616 54.238

2S-GMM 24 0 15.74 -.4238 .4378 .0365 .0789 .0089 .0111

3S-EEL 24 0 15.74 -.3543 .3882 .0503 .0905 .0064 .0095

3SW-EEL 24 0 15.74 -.3403 .3787 .0517 .0923 .0059 .0094

3SWc-EEL 24 0 15.74 -.3395 .3771 .0527 .0927 .0058 .0093

CUE 24 0 15.74 -.2749 .3934 .0956 .2366 -10.946 260.22
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Table 10: Estimation of the reduced-form of the Hybrid NKPC (GG instrument set)

Estimator λ γf γb JT -stat IPST -stat K-stat

2S-GMM 0.1338 0.5981 0.3703 13.6726 0.1611
(0.0483) (0.0350) (0.0328)
[0.0063] [0.0000] [0.0000] [0.9127] [0.6882]

CUE 0.1711 0.6544 0.2971 13.6710 0.4329
(0.0485) (0.0336) (0.0325)
[0.0006] [0.0000] [0.0000] [0.9127] [0.5106]

3S-EEL 0.1171 0.6117 0.3615 0.9512 55.2955 0.3027
(0.0417) (0.0299) (0.0290)
[0.0057] [0.0000] [0.0000] [0.9512] [0.0001] [0.5822]

3Sc-EEL 0.1108 0.6119 0.3627 0.9517 54.9047 0.3016
(0.0413) (0.0297) (0.0288)
[0.0082] [0.0000] [0.0000] [0.9517] [0.0001] [0.5829]

3SW-EEL 0.1220 0.6142 0.3551 0.9516 55.0016 0.2438
(0.0422) (0.0298) (0.0290)
[0.0045] [0.0000] [0.0000] [0.9516] [0.0001] [0.6215]

3SWc-EEL 0.1157 0.6144 0.3564 0.9519 54.6957 0.2422
(0.0418) (0.0296) (0.0288)
[0.0064] [0.0000] [0.0000] [0.9519] [0.0001] [0.6226]

Note: Standard errors appear in parentheses and p-values are in brackets for the null hypothesis that

the estimate is equal to zero. The values in the JT -stat (respectively JT -stat) column are respectively the

test-statistics and the corresponding p-value (in brackets). The last column describes respectively the K-test

statistics and their p-values (in brackets).The instrument set GG includes four lags each of inflation, the labor

income share, the output gap, the long-short interest rate spread, wage inflation, and commodity price inflation.
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Table 11: Estimation of the reduced-form of the Hybrid NKPC (GGLS instrument set)

Estimator λ γf γb JT -stat IPST -stat K-stat

2S-GMM 0.1267 0.6109 0.3721 5.5093 2.7838
(0.0658) (0.0573) (0.0566)
[0.0560] [0.0000] [0.0000] [0.7020] [0.0952]

CUE 0.1260 0.6203 0.3625 5.7576 0.3097
(0.0620) (0.0554) (0.0543)
[0.0441] [0.0000] [0.0000] [0.6744] [0.5778]

3S-EEL 0.1170 0.6120 0.3695 0.6548 7.6417 2.0212
(0.0613) (0.0469) (0.0479)
[0.0583] [0.0000] [0.0000] [0.6548] [0.4692] [0.1551]

3Sc-EEL 0.1077 0.6089 0.3749 0.6541 7.6523 2.0258
(0.0607) (0.0465) (0.0474)
[0.0781] [0.0000] [0.0000] [0.6541] [0.4682] [0.1546]

3SW-EEL 0.1250 0.6165 0.3633 0.6525 7.6751 2.1490
(0.0619) (0.0475) (0.0485)
[0.0454] [0.0000] [0.0000] [0.6525] [0.4658] [0.1427]

3SWc-EEL 0.1151 0.6132 0.3691 0.6557 7.6293 2.1586
(0.0612) (0.0470) (0.0480)
[0.0621] [0.0000] [0.0000] [0.6557] [0.4705] [0.1418]

Note: Standard errors appear in parentheses and p-values are in brackets for the null hypothesis that

the estimate is equal to zero. The values in the JT -stat (respectively JT -stat) column are respectively the

test-statistics and the corresponding p-value (in brackets). The last column describes respectively the K-test

statistics and their p-values (in brackets).The instrument set GGLS includes four lags each of inflation, and

two lags each of the output gap, the labor income share, and wage inflation.
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Figure 1: Implied probabilities evaluated at the 3S-EEL estimator
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