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Abstract:  
We introduce uncertainty and risk aversion to the study of international environmental 
agreements. We consider a simple model with identical agents and linear payoffs. 
We show that a stable treaty with positive action always exists. While uncertainty 
lowers the action of signatories, we find that it may increase participation. In addition, 
uncertainty may generate multiple equilibria. A treaty with low action and low 
participation may coexist with one with high action and high participation. Overall, 
and despite risk aversion, the impact of uncertainty on welfare may be positive. A 
reduction in uncertainty may hurt international cooperation. 
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1 Introduction

In this paper, we study how uncertainty and risk aversion affect the formation of international

environmental agreements. Scientific uncertainty is a fundamental aspect of global environmental

issues, climate change being a prime example. A common hope is that reductions in uncertainty

about the effects of pollution through, for instance, better measurements and scientific progress,

will help determine appropriate responses. While this hope is well-grounded in contexts where

a single agent takes decisions, its validity in a strategic setting is less clear. Establishing and

maintaining cooperation between sovereign states is difficult, as the heated debates surrounding

the Kyoto protocol and what should happen after it illustrate. Does a reduction in uncertainty

actually help international cooperation, or could it hinder its emergence? Through what mecha-

nisms may uncertainty affect the incentives to join, or to quit, an international coalition trying

to curb emissions? How does uncertainty affect welfare in a second-best context characterized by

endogenous and partial cooperation? We seek to provide formal answers to these questions.

To do so, we extend the model of treaty formation with linear payoffs due to Barrett (1994,

2003). Agents face a n-player prisoner’s dilemma and can join a coalition trying to take collective

action. We introduce two new assumptions. First, pollution damages, and hence the social

benefits from effort, are subject to uncertainty. Second, agents are risk-averse. We analyze how

these two assumptions affect the outcomes of the game. We notably study comparative statics

with respect to the levels of risk and of risk aversion, see Gollier (2001).

We find that uncertainty has strong qualitative and quantitative impacts on treaty formation.

Our three main results can be summarized as follows. First, holding participation constant,

uncertainty tends to reduce signatories’ efforts. This negative effect is due to risk aversion.

Decreasing effort allows signatory countries to reduce the variability of their payoffs. Second, and
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counteracting the previous effect, uncertainty may increase participation in the treaty and improve

welfare in equilibirum. The decrease in effort and the increase in participation are, in fact, related.

In these models, a treaty becomes stable only when a critical mass of participating countries has

been reached. The effect of one country leaving on the actions of the remaining signatories must

be strong and highly non-linear around the stable level. Our previous result means that this

critical mass is shifted to the right under uncertainty. The increase in participation has a positive

effect on welfare, which can overcome the negative effect of uncertainty. Third, uncertainty may

generate multiple equilibria. We find that a treaty with low action and low participation may

coexist with one with high action and high participation. Overall, we make use of both analytical

results and simulations to clarify the conditions under which these results hold.

Our paper contributes to two branches of the literature. First, an active research agenda

has studied international environmental agreements, see Barrett (2003). Uncertainty is mostly

ignored in this literature, however, except for a few papers studying the effect of learning under

risk-neutrality.1 These papers usually contrast different timings for the resolution of uncertainty.

For instance, Kolstad (2007) shows in a static framework that it may be better to negotiate after

uncertainty is resolved rather than before. In contrast, Ulph (2004) finds that, in a model with

two periods, the positive effects of learning may not be robust to the introduction of renego-

tiation between periods.2 We do not look at learning here. Rather, we relax the assumption

of risk-neutrality. We provide the first analysis of the effect of risk aversion on international

environmental agreements.

Second, a growing literature examines the effect of uncertainty and risk aversion in strategic

1See Kolstad (2007, 2005), Ulph (2004), Ulph and Maddison (1997), Na and Shi (1998).
2Also, it may be easier to reach an agreement before the “veil of uncertainty” has been pierced. Kolstad (2005)

and Na and Shi (1998) provide some supporting arguments, under risk-neutrality.
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settings.3 Bramoullé and Treich (2006) notably look at a model of global pollution. They find that

uncertainty may decrease emissions and increase welfare in equilibrium. Our study complements

their analysis. While they consider a more complicated payoff function, they assume that no

cooperation is possible. In contrast, we adopt a simple, well-understood, linear formulation for the

payoffs, and focus on treaty formation and on the emergence of partial cooperation. Interestingly,

we also find that uncertainty may have a positive impact on welfare, although the mechanism

behind this result is very different.

The applicability of our results relies on the validity of the assumption of risk aversion. In

usual applications, economists tend to view countries and large organizations as risk-neutral. This

view typically relies on possibilities to pool independent risks and on the law of large numbers.

However, these standard arguments do not apply to the case of climate change. The magnitude

of the effects involved and the global nature of the climate put strong limits on risk-sharing

possibilities. Climate risks are highly correlated within and across communities.4 Heal and

Kriström (2002) defend a similar point of view, and urge economists to incorporate uncertainty

and risk aversion in their analysis of climate change. In their empirical exercise, they find a

relatively strong effect of risk aversion on optimal policy decisions.5 Their analysis, however, is

grounded in models with a single decision-maker and neglects the externality dimension of climate

change. We take both issues seriously in this paper. We study how uncertainty and risk aversion

affect the emergence of cooperation in a strategic setting.

The remainder of the paper is organized as follows. The model is set up in section II. We

3See e.g. Gradstein et al. (1992), Sandler and Sterbenz (1990) on the exploitation of a renewable resource, Eso
and White (2004) on auctions, and White (2004) on bargaining.

4Opportunities to share risk within and across countries certainly exist. However, even if they are fully exploited,
the remaining level of risk borne by countries and individuals will still be very high.

5“The point is that uncertainty, risk and our attitudes towards risk really do matter in making policy decisions.
They should be taken explicitly into account in formulating policy on climate change. Our final policy analysis
may be as sensitive to attitudes towards risk as to some aspects of the scientific data which we work so hard to
generate. Yet we have done little to introduce these issues into the policy debate.”, Heal and Kriström (2002, p.16).
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study the effect of uncertainty and risk aversion on signatories’ actions in section III. We analyze

stable treaties in section IV, and discuss the robustness of our findings and conclude in section

V.

2 The Model

In this section, we introduce uncertainty and risk aversion to the model of Barrett (2003). Con-

sider n identical countries who face a global public good problem. Each country i exerts some

costly effort qi which benefits to all other countries. More precisely, individual payoff is equal to

b(
∑n

j=1 qj)−cqi where b represents the marginal benefit from overall effort, while c is the marginal

cost from individual effort. Under global pollution, effort is identified with pollution abatement,

and the benefits correspond to the reduced damages from pollution. Since payoff is linear, we

assume that qi ∈ [0, qmax]. The maximum level of effort qmax originates from economic or tech-

nological constraints. Clearly, under global pollution, qmax is always lower than the business as

usual level of emissions.

Our main assumption is that the marginal benefit b is subject to uncertainty. For simplicity,

we suppose that b can take two values. (Some of our results are valid for any distribution of the

parameter). Marginal benefit b is equal to bL with probability p and to bH > bL with probability

1 − p. It is useful to introduce the expected marginal benefit b̄ = pbL + (1 − p)bH . In contrast,

uncertainty does not affect the marginal cost of effort c.6

Preferences of countries towards risk are identical, and represented by a strictly increasing

and concave Von-Neumann Morgenstern utility function U . Thus, country i seeks to maximize

6This assumption reflects the fact that scientific uncertainty little affects private abatement costs, but is a main
source of uncertainty regarding the effects of greenhouse gas emissions and climate change.
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his expected utility:

EU(qi, q−i) = pU [bL(

n
∑

j=1

qj) − cqi] + (1 − p)U [bH(

n
∑

j=1

qj) − cqi]

Since countries are ex-ante identical, we define social welfare W as the sum of the expected

utilities of all countries. As in the model with certainty, we consider two restrictions on the

parameters. First, bH < c, so that playing qi = 0 is a strictly dominant strategy for all countries

in the game without treaty. Second, nbL > c, so that the first-best outcome requires qi = qmax

for all i. Without treaty, there is severe underprovision of the public good.

To study the formation of an international environmental agreement, we adopt the approach

pioneered by Barrett (1994). Countries have to decide whether to join an international agreement

before contributing to the global public good. More precisely, the game with treaty unfolds in

three stages:

Stage 1 Simultaneously and independently, all countries decide to sign or not to sign the agreement.

In what follows, we denote by k, the number of signatories.

Stage 2 Signatories choose their effort in order to maximize their collective payoff.

Stage 3 Non-signatories independently choose the effort maximizing their individual payoff.

A key feature of our approach is that uncertainty is resolved after stage 3. Therefore, countries

are uncertain about the state of the world when deciding whether to sign the agreement. Our

main objective is to study how uncertainty and risk aversion affects this decision, and hence the

existence and properties of a stable treaty. We make use of the usual notion of stability.

Definition 1. A treaty is stable when signatories have no incentive to quit and non-signatories

have no incentive to join.
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Conditions for stability can be formally summarized with a unique function ∆. Given sym-

metry and concavity, non-signatories will play identical actions, and this holds for signatories as

well. Therefore, we denote by qs(k) and qn(k) the optimal levels of effort exerted respectively by a

signatory and a non-signatory country when the number of signatories is equal to k, and by U s(k)

and Un(k) their expected utilities. We introduce ∆(k) = U s(k)−Un(k− 1) which represents the

net benefit to a signatory of staying in the agreement. The fact that a non-signatory country

does not want to join at k∗ is equivalent to the fact that a signatory country wants to quit at

k∗ + 1. Thus, a treaty is stable at k∗ ∈ [2, n − 1] if and only if ∆(k∗) ≥ 0 and ∆(k∗ + 1) ≤ 0.7

When there is no uncertainty, bL = bH = b̄ and the analysis of Barrett (2003) applies. Non-

signatories always play qn = 0. The collective payoff of signatories is k(kb̄−c)qs, hence signatories

play qs = 0 if k < c/b̄ and qs = qmax if k > c/b̄. Signatories must reach a critical mass before

action becomes worthwile. Linearity of the payoff function induces a bang-bang solution. A

treaty is stable if and only if c/b̄ ≤ k∗ ≤ c/b̄+1. This usually pins down a unique number. Social

welfare in the stable treaty is W = k∗(nb̄ − c)qmax which provides a strict improvement on the

equilibrium without treaty where W = 0. Observe that this can still be far from the optimal

level where all countries play qi = qmax and W = n(nb̄− c)qmax. Interestingly, the analysis under

certainty also covers the case where countries are risk-neutral. This justifies the introduction of

risk aversion, which we assume in the remainder of the paper.

We next analyze the treaty game under uncertainty. We start with Stage 3. Since bL < bH < c,

a non-signatory country always plays qn = 0, no matter the number or the actions of signatories.

In the next section, we study Stage 2 and the actions of signatories. This study is critical to

understand when a treaty is stable. The analysis under certainty illustrates how the shape of

7A treaty with n signatories is stable if and only if ∆(n) ≥ 0. In that case, all countries are signatories, and the
condition on non-signatory countries disappears.
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qs determines stability. Under certainty, qs is a step function and k∗ is the first integer situated

just above the step. On the one hand, qs(k∗) = qmax and qs(k∗ − 1) = 0. If a signatory quits,

the drop in collective action is very large, hence a signatory does not want to quit. On the other

hand, qs(k∗ +1) = qs(k∗). If a non-signatory joins, the other signatories do not change what they

do, which gives no incentives for non-signatories to join. The general intuition carries over to the

situation with uncertainty. A signatory does not want to quit if he expects that his departure

would induce a high drop in the actions of the remaining signatories. In contrast, a non-signatory

does not want to join if he anticipates his decision to yield little increase, or even a decrease, in

overall effort. In Section 4, we make use of our study of qs to analyze Stage 1, and the existence

and properties of stable treaties.

3 Signatories’ actions

In this section, we study the actions of signatories qs(k). We have five results. First, we find

that the bang-bang property which characterizes qs under certainty partially disappears under

uncertainty. Effort may take intermediate values in situations where action is desirable in one

state of the world (i.e., when pollution damages are high), but not in the other (when pollution

damages are low). In that case, signatories trade-off the benefit of action in one state against its

cost in the other. Second, we show that the monotonicity of qs with respect to k is ambiguous.

While we expect qs to be generally increasing, we show that it can be locally decreasing. Third,

we find that uncertainty unambiguously lowers qs. Holding k constant, an increase in uncertainty

always leads to a decrease in signatories’ efforts. Fourth, we show that an increase in risk aversion

has a similar effect, and also lowers signatories’ actions. Fifth, we derive analytical expressions

for qs for three standard classes of utility functions: quadratic, CARA, and CRRA, and study
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the properties of qs in more details in these three cases.

3.1 General utility functions

Recall, signatories jointly decide how to maximize their collective welfare, defined as the sum of

their expected utilities. It means that qs is the solution of the following program:

max
0≤q≤qmax

EU [(kb − c)q] (1)

We first describe when the solution is at a corner. Observe that the objective function is strictly

concave. Marginal expected utility is equal to E(kb − c)U ′[(kb − c)q]. At q = 0, this reduces

to (kb̄ − c)U ′(0). Since U ′ > 0, qs = 0 when k ≤ c/b̄. This notably covers the case where

kbH − c ≤ 0, and signatories prefer to exert no effort in both states of the world. In contrast,

when k ≥ c/bL, the marginal expected utility is always strictly positive. Signatories prefer to

play qmax in both states of the world. Thus, qs = qmax when k ≥ c/bL. When k lies between

c/b̄ and c/bL, kbL − c < 0 while kbH − c > 0, and the solution may be interior. The first-order

condition of program (1) can be written as follows:

p(c − kbL)U ′ [(kbL − c)qs] = (1 − p)(kbH − c)U ′ [(kbH − c)qs] (2)

This condition says that marginal utilities are equal in both states of the world. It expresses a

trade-off between the positive marginal utility from action when b = bH and the negative marginal

utility when b = bL. Then, qs is equal to the solution of this first-order condition if this solution

is lower than qmax, and to qmax otherwise. In any case, qs(k) is continuous over [0, n] when k is

allowed to take values on the real line. In summary,

Proposition 1. The effort qs exerted by a signatory country when k countries have signed the
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treaty is such that:

(1) qs(k) = 0 if k ≤ c/b̄ and qs(k) = qmax if k ≥ c/bL.

(2) If c/b̄ < k < c/bL, qs is equal to the smaller of qmax and of the solution to equation (2).

Observe that when bL = b̄, there is no uncertainty and Proposition (1) reduces to the result

described in the previous section.

Given that qs varies continuously between 0 and qmax, it is natural to ask whether qs is

increasing in k over [c/b̄, c/bL]. Algebraic manipulations lead to the following condition, derived

in the Appendix. Let A(π) = −u′′(π)/u′(π) denote the level of absolute risk aversion. Introduce

πL = (kbL − c)qs and πH = (kbH − c)qs > πL. Then, qs is increasing over [c/b̄, c/bL] if and only

if:

qs(k) (bLA(πL) − bHA(πH)) ≥ −c(bH − bL)

(kbH − c)(c − kbL)
(3)

While the interpretation of this condition is not obvious, we can deduce from it a relatively

simple sufficient condition. If A(πH) ≤ (bL/bH)A(πL), then condition (3) is satisfied. This

means that the level of absolute risk aversion at πH is sufficiently lower than the level of absolute

risk aversion at πL. In other words, if U is sufficiently DARA, qs is increasing. In general,

however, monotonicity of qs with respect to k is ambiguous. We will see below that when U is

CARA or CRRA, qs can be locally decreasing in k.

We next study the effect of uncertainty on qs(k). Proposition (1) implies that qs(k) is lower

under uncertainty than under certainty. Our next result shows that this property holds more

generally for any increase in uncertainty in the sense of Rothschild and Stiglitz (1974). Let b and

b′ be two binary distributions of marginal benefit values with the same mean b̄ = b̄′. Observe that

b′ is more risky than b if and only if b′L ≤ bL and b′H ≥ bH . In the next section, we will consider

separately the effects of a decrease in bL and an increase in bH on stable treaties.
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Proposition 2. Suppose that b′ is more risky than b. Then ∀k ∈ [0, n], qs(k, b′) ≤ qs(k, b). An

increase in uncertainty always reduces signatories’ actions.

The intuition behind this result can be seen by looking at the expected value and the variance

of ex-post payoffs π for signatories. Here, π̄ = (kb̄− c)qs and V ar(π) = p(1−p)(bH − bL)2k2(qs)2.

When k ≥ c/b̄, an increase in q increases the expected value and also increases the variance.

One is desirable, but the other is not under risk aversion. The optimal choice of q results from a

trade-off between these two motives.8 Then, holding q and k constant, an increase in uncertainty

leads to an increase in the payoff’s variance while leaving its expected value unchanged. The

marginal effect of a decrease in q on the variance is greater when uncertainty is greater, hence

signatories’ action will be lower.

This effect is confirmed by looking at an increase in risk aversion. Recall that utility function

V represents more risk-averse preferences than U if there is an increasing and concave function

Φ such that V = Φ(U). In our context, the effect of risk aversion is similar to the effect of

uncertainty

Proposition 3. Suppose that agents with utility V are more risk-averse than agents with utility

U . Then ∀k ∈ [0, n], qs(k, V ) ≤ qs(k,U).

For a given participation level, uncertainty and risk aversion tend to reduce signatories’actions.

Signatories exert less effort in order to diminish the variability of their payoffs. While this effect

may seem to be purely negative (lower level of collective action), we will see in the next section

that it can have a positive indirect consequence. Lower action at all participation levels may

increase the participation level that is sustainable in equilibrium. We next look at specific utility

functions.

8In contrast, when k < c/b̄, an increase in q decreases the expected value and increases the variance, and there
is no trade-off. This provides another explanation for the fact that qs = 0.
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3.2 Specific utility functions

3.2.1 Quadratic utility functions

Consider first a quadratic utility function U(π) = π − λπ2. We need to impose (nbH − c)qmax ≤

1/(2λ) to ensure that utility is strictly increasing over the strategy space. Signatories’ action is

equal to:9

qs(k) =
1

2λ

kb̄ − c

p(kbL − c)2 + (1 − p)(kbH − c)2

We show in the Appendix that qs is always increasing in k when U is quadratic. This tells us that

qs may be increasing even when the utility function is IARA, and that the sufficient condition

derived in the previous section is not necessary.

3.2.2 CARA utility functions

Consider next a CARA utility function U(π) = −e−Aπ where A denotes the level of absolute risk

aversion. We obtain the following analytical expression for qs (see the Appendix):

qs(k) =
1

Ak(bH − bL)
ln

[

(1 − p)(kbH − c)

p(c − kbL)

]

We also study whether qs is increasing in k. We find that two cases appear. Either qs is increasing,

or it is first increasing, then decreasing, and again increasing over [c/b̄, c/bL]. Also, qs is more

likely to be increasing when p is higher. Figure 1 illustrates.

9More precisely, we give in this section the analytical expressions for the solution to the first-order condition
(2). The precise value for qs can then be obtained by applying Proposition 1.
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Picture 1 : Effort with uncertainty, CARA function

0 c/bH c/bL

qmax

p = 0.8

p = 0.000001

n = 100, c = 15, bH = 12, bL = 5, A = 1, p = {0.000001, 0.001, 0.2, 0.8}, qmax = 3.5

3.2.3 CRRA utility function

Finally, consider a CRRA utility function U(π) = 1
1−γ (π0 + π)1−γ if γ 6= 1, and ln(π0 + π) if

γ = 1. Introducing a baseline payoff π0 is necessary to ensure that ex-post payoffs are always

positive. We obtain the following analytical form for qs(k) :

qs(k) = π0
(1 − p)1/γ(kbH − c)1/γ − p1/γ(c − kbL)1/γ

p1/γ(c − kbL)1/γ(kbH − c) + (1 − p)1/γ(kbH − c)1/γ(c − kbL)

Especially, when γ = 1 this reduces to qs = π0[
1−p

p(c−kbL) −
p

(1−p)(kbH−c) ], which is clearly increasing

in k. This may not necessarily be the case, however, when γ 6= 1. Our simulations in the next

section are based on the CRRA utility functions.
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4 Stable treaties

In this section, we study the existence and properties of stable treaties. We first analyze existence.

We show that a stable treaty with positive action always exists. It is easy to see that in any stable

treaty where some effort is sustained, c/b̄ ≤ k∗ < c/bL +1. We provide two results that give some

information on the equilibrium level of participation. First, if qs is decreasing in k over some

range of values, a stable treaty always exists with participation below this range. Second, if qmax

is large enough, there exists a stable treaty with c/bL ≤ k∗ < c/bL +1. Going further analytically

is difficult. Even with the specific utilities analyzed in the previous section, stability conditions

yield complicated expressions without closed-form solutions.

Therefore we use simulations to investigate, in a second stage, the properties of stable treaties.

We emphasize three outcomes of this analysis. First, we find that multiple equilibria may emerge.

A stable treaty with low participation and low action may coexist with one with high participation

and high action. To our knowledge, this is the first instance in the literature where a model

of international environmental agreement generates multiple equilibria. Second, we find that

uncertainty may increase participation. This is partly due to the negative effect of uncertainty

on qs. Signatories need to be in greater number to be willing to exert a high level of effort. This

increases the critical number of countries above which the addition of a new signatory has little

effect. And third, even though countries are risk-averse, the positive effect of uncertainty on

participation may lead to an increase in welfare in equilibrium. We clarify the conditions under

which uncertainty may improve overall welfare.

4.1 Existence

We first show that a stable treaty with positive action always exists.
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Proposition 4. There exists a stable treaty with k∗ signatories such that qs(k∗) > 0.

Our proof relies on the study of the function ∆. Recall, ∆(k) = U s(k) − Un(k − 1). On the

one hand, U s = Un = 0 on [0, c/b̄]. This means that ∆(k) = 0 if k ∈ [1, c/b̄] and ∆(k) > 0 if

k ∈]c/b̄, c/b̄ + 1]. On the other hand, qs = qmax on [c/bL, n]. This implies that ∆(k) < 0 on

[c/bL + 1, n]. If we define k∗ as the greatest integer such that ∆(k∗) > 0, we have: ∆(k∗) > 0,

∆(k∗ + 1) ≤ 0, and k∗ > c/b̄, which means that qs(k∗) > 0.

If the number of signatory countries lies just above c/b̄, an additional country has a strictly

positive incentive to join. If he does not join, signatories do no exert any effort. If he joins, all

signatories start exerting positive effort. The number of signatories increases til an additional

country does not want to join, at which point the treaty is stable.

Clearly, in any stable treaty with positive action, c/b̄ ≤ k∗ < c/bL + 1. We next derive

two further results on the participation level. First, if qs is locally decreasing and such that for

some integer k, qs(k) < qs(k − 1), we have U s(k) < Un(k − 1), hence ∆(k) < 0. Applying the

previous argument shows that there exists a stable treaty with k∗ ≤ k. Second, we show that an

equilibrium around c/bL is generally guaranteed if qmax is large enough. More precisely, let [π]

denote the smallest integer greater than or equal to π.

Proposition 5. Suppose that either c/bL is not an integer, or limπ→+∞ U(π) = +∞. Then,

there is a q̄ > 0 such that if qmax ≥ q̄, a treaty with k∗ = [c/bL] is stable.

The intuition behind this result lies in the fact that qs(k) becomes very steep when k is close

to c/bL. Recall that at c/bL, action becomes desirable in both states of the world, hence, given

linearity of the payoffs, should be as high as possible. If qmax is large, the drop in collective action

if one country quits is large, which gives an incentive for signatories to stay in the treaty.10

10Either technical condition stated in the Proposition ensures that an arbitrarily large drop in collective action
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We next discuss the possible effects of uncertainty on a stable treaty. In this model, uncertainty

can affect welfare in three different ways. First, holding qs and k fixed, it has a direct negative

effect resulting from risk aversion. Second, holding only k fixed, it has an indirect negative effect

through its impact on qs(k) (Proposition 2). We see these two effects in the simulations below.

We also see a third, countervailing effect. Uncertainty can have a positive impact on participation,

which may overcome the two other effects and lead to an increase in welfare.

4.2 Simulations

We next provide a detailed analysis of the effect of uncertainty on stable treaties through sim-

ulations. We assume in this section that the utility function satisfies Constant Relative Risk

Aversion. We first look at a relatively low level of risk aversion: γ = 0.5. Baseline values for the

other parameters are set as follows: n = 100, c = 755, b̄ = 450, π0 = 250, qmax = 300. In the

baseline case, prospects for cooperation in the absence of risk are bleak: only 2 countries among

100 sign the treaty in equilibrium.

Table 1 and Picture 2 depict the effect of uncertainty on the number of signatory countries

in equilibria with positive action, while Table 2 and Picture 3 report the levels of welfare in

equilibrium. (A value of 100 corresponds to the level of welfare in the equilibrium under certainty).

We consider separately the effects of a decrease in bL or an increase in bH , and adjust the

probability p in order to hold b̄ constant. Two numbers in a cell indicate the presence of two

equilibria.

We observe the emergence of multiple equilibria. Participation in the low equilibrium is equal

to k = [c/b̄] = 2, as under certainty, and is much lower than participation in the high equilibrium.

indeed translates into an incentive not to quit. The result may not hold, however, if c/bL is an integer and U is
bounded.
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We can check that participation in the high equilibrium is always equal to [c/bL] in Table 1,

which is the level predicted by Proposition 5. While the high equilibrium always exists, the low

equilibrium emerges only when the level of risk is high enough. Welfare in the low equilibrium is

much lower than under certainty. In contrast, welfare in the high equilibrium is usually higher

than under certainty. More generally, changes in welfare reflect the three effects mentioned

above. When participation is constant, welfare decreases. Thus, an increase in uncertainty

reduces welfare in the low equilibrium. Similarly, when bH increases or when bL decreases without

affecting participation, welfare in the high equilibrium decreases. In contrast, a decrease in bL

that increases participation always leads to an increase in welfare in Table 2.

Thus, when risk aversion is relatively low, an increase in uncertainty can strongly improve the

prospects for cooperation. A decrease in bL increases the critical mass of countries at which coop-

eration becomes sustainable, and this increase in participation can yield an increase in welfare.11

This positive effect of uncertainty is mitigated by the existence of multiple equilibria. Countries

can also be trapped in a low participation equilibrium, where participation is not affected by risk

and welfare is much lower.

We next look at the effect of risk aversion. Table 3 and Picture 4, and Table 4 and Picture 5

replicate the previous tables and pictures for γ = 1. Other parameters are set at baseline values,

and tables look at similar levels of bL and bH . Table 5 and Picture 6, and Table 6 and Pictures

7 and 8 do the same for γ = 2.5.12

Conditional on existence, participation in both equilibria is unchanged. However, risk aversion

affects the existence of either equilibrium. When risk aversion is relatively high (Table 5), the

11Observe also that the difference between the first-best and the equilibrium levels of welfare is even more reduced,
given that the first-best level of welfare decreases when uncertainty increases.

12When γ > 1, utility becomes negative. Welfare under certainty now corresponds to a value of −100. Picture 8
depicts variations in welfare using a logarithmic scale, which is more appropriate to examine the high equilibrium.
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low equilibrium emerges more easily. On welfare, we find, not surprisingly, a reducing effect of

risk aversion. When γ = 1, we now see that even when uncertainty increases participation, it can

decrease welfare (e.g. Table 4, bH = 695, bL going from 15 to 10). The indirect, positive effect of

participation may not be high enough to overcome the direct negative effect of uncertainty. This

effect is exacerbated when risk aversion is higher, and when the initial level of risk is higher.

Overall, the three main outcomes seem to be robust to an increase in risk aversion. Risk

aversion makes a positive impact of uncertainty less likely. To further study the robustness of

these results, we check the properties of stable treaties for a large number of parameter values.

We next report some results of this exercise.13 Specifically, we set n, π0 and qmax at baseline

values, and vary γ, c, b̄, bL, bH . Overall, we look at 3,970,008 admissible parameter values.14

There are either one or two equilibria, and multiple equilibria appear in 47.35% of the cases. Risk

aversion tend to increase this proportion: it ranges from 39.26% when γ = 0.3 to 53.87% when

γ = 3. Among all possible equilibria, the level of participation is either [c/b̄] or [c/bL] in 93.94%

of the cases, [c/b̄]+1 in 5.86% of the cases, and takes a value lying between [c/b̄]+2 and [c/bL]−1

in the remaining 0.20%. We also look at the behavior of qs(k). We find that qs is decreasing for

some k only in 0.88% of the cases, and this tends to happen more when risk aversion is higher.

We look at the effect of uncertainty on welfare. Since participation appears essentially unaf-

fected by bH , we focus on the effect of a decrease in bL. In all our simulations, we count the number

of times where participation and welfare in the higher equilibrium increase following a marginal

decrease in bL. Overall, we make 3,860,136 such comparisons. We find that participation in the

higher equilibrium stays unchanged after a decrease in bL in 60.01% of the cases, and decreases

13More disaggregated results are available upon request.
14More precisely, γ varies between 0.3 and 3 by steps of 0.1, c between 100 and 900 by steps of 100, b̄ between ε

and 9

10
c + ε by steps of 1

10
c, bH between b̄ + ε and c − ε by steps of 1

100
c, and bL between b̄ − ε and ε by steps of

−
1

100
c.
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in 0.93% of the cases. Welfare decreases, of course, in either situation. In contrast, participation

increases in the remaining 39.07%.15 Conditional of having an increase in participation, welfare

increases in 70.94% of the cases, and decreases otherwise. This last proportion tends to decrease

with γ, ranging from 99.06% when γ = 0.3 to 57.76% when γ = 3. Overall, welfare increases

following a decrease in bL in 27.71% of the cases.

5 Conclusion

We conclude with a discussion of some limitations of our analysis, and of promising directions for

future research. In this paper, we introduced uncertainty and risk aversion to a simple model of

international environmental agreements. We find that uncertainty significantly affects the analysis

of treaty formation. Uncertainty yields qualitative changes as well as first-order quantitative

changes on the outcomes of the game.16 This complexity provides some justification, ex-post,

for the study of a simple benchmark model. It also raises the question of the robustness of our

results. Three features of the model especially deserve attention: the fact that the risk is binary,

linearity of the payoffs, and homogeneity of the agents.

The assumption of a binary risk may not be too problematic. Some of our results directly

extend to an arbitrary risk. For instance, the argument behind Proposition 1 holds in general. If

marginal benefit b is subject to an arbitrary risk with mean b̄ and lowest value bL, we still have

that qs(k) = 0 if k ≤ c/b̄ and qs = qmax if k ≥ c/bL. Similarly, our existence results Propositions

4 and 5 hold for any risk. On the other hand, signing the effects of risk and risk aversion may be

15The effect of risk aversion on these proportions is slight and non-monotonic. The proportion of cases where
participation increases first decreases from γ = 0.3 (40.06%) to γ = 1.4 (37.71%) and then increases til γ =
3.(40.32%). The other two proportions follow an opposite pattern, first increasing and then decreasing, although
effects are quantitatively small.

16Qualitative changes include the fact that signatories’ actions can take intermediate values and the emergence
of multiple equilibria. On quantitative changes, simulations show that participation level and welfare may be much
higher under uncertainty than under certainty.
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more complicated. Comparative statics may be ambiguous, and may involve conditions based on

the third and higher derivatives of the utility function, see Gollier (2001).

Linearity of the payoffs is a critical assumption. Under certainty, non-linear payoffs may

lead to very different equilibria, see Barrett (2003). An interest of the model with linear payoffs,

however, is that it neatly captures the idea of critical mass. Collective action becomes worthwile

only when enough countries have joined in, and once this threshold is reached, there is little

benefit from an additional signatory. As such, studies of models with linear payoffs may be useful

to understand what happens more generally. With any payoff function, stability captures a form

of local critical mass. A treaty is stable when the drop in collective action if one country is high

enough, and when the addition of one signatory has little effect. Thus, we conjecture that our

results may also be applicable, under conditions to be determined, to models with non-linear

payoffs. As soon as uncertainty lowers signatories’ actions, corresponding threshold levels may

increase, which may improve participation in equilibrium.

The effect of heterogeneity on international environmental agreements is not well understood

yet, even under certainty.17 Under heterogeneity, anonymity is lost. The idea of local critical

mass is still relevant, but the identity of the signatories and non-signatories matters. If anything,

we expect the effects of uncertainty and risk aversion to be exacerbated under heterogeneity,

given that countries may differ in the risk they face and in their degree of risk aversion. Trying

to understand the combined effects of arbitrary risks, general payoff functions, and heterogeneity

on international environmental agreements gives matter for much future research.

17See Barrett (2001) for an exception.
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APPENDIX

Proof of Condition 3. Condition (2) gives: pU ′
L(kbL − c) + (1 − p)U ′

H(kbH − c) = 0 where the

indices L and H stand for the function arguments (kbL − c)qs and (kbH − c)qs. Derivating with

respect to k yields:

pU ′
LbL + p(kbL − c)U ′′

L(kbL − c)∂qs

∂k (k) + bLqs(k)]

+(1 − p)U ′
HbH + (1 − p)(kbH − c)U ′′

H

[

(kbH − c)∂qs

∂k (k) + bHqs(k)
]

= 0

Rewriting using A = −U ′′/U ′ shows that qs(k) is increasing if and only if:

pU ′
L [−bL + (kbL − c)ALbLqs(k)] + (1 − p)U ′

H [−bH + (kbH − c)AHbHqs(k)] ≤ 0

From the f.o.c., we have
U ′

L

U ′

H

= (1−p)(kbH−c)
p(c−kbL) . Substituting, the previous expression becomes:

qs(k) (ALbL − AHbH) ≥ −c(bH − bL)

(kbH − c)(c − kbL)

Proof of Proposition 2. Consider qs as a function of bL and bH . We have p = (bH−b̄)/(bH−bL).

Substituting, condition (2) becomes: U ′
L(bH − b̄)(kbL − c) + U ′

H(b̄− bL)(kbH − c) = 0. Derivating

this last expression with respect to bH , we see that:

U ′
L(c − kbL) ≥ k(b̄ − bL)U ′

H =⇒ ∂qs

∂bH
(k, bH) ≤ 0

The left-hand side holds for k ∈ [c/b̄, c/bL]. Similarly, derivating with respect to bL, we have:

U ′
H(kbH − c) ≤ U ′

L(bH − b̄)k =⇒ ∂qs

∂bL
(k, bH) ≥ 0

where the left-hand side also holds when k ∈ [c/b̄, c/bL]. Thus, holding bH constant, qs decreases
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if bL decreases and holding bL constant, qs decreases if bH increases. This means that qs(b′L, b′H) ≤

qs(bL, b′H) ≤ qs(bL, bH).

Proof of Proposition 3. Denote by F (q) = EV [(kb − c)q] the objective function of the signa-

tories when agents have utility V . Since V = Φ(U), we have:

F ′(q) = pΦ′(U [(kbL − c)q])U ′ [(kbL − c)q] + (1 − p)Φ′(U [(kbH − c)q])U ′ [(kbH − c)q] .

At q = qs(U), pU ′ [(kbL − c)q] + (1 − p)U ′ [(kbH − c)q] = 0, and

F ′(qs(U)) = (1 − p)U ′ [(kbH − c)q] (Φ′(U [(kbH − c)q]) − Φ′(U [(kbL − c)q]). Since (kbH − c)q >

(kbL − c)q, U is increasing, and Φ′ is decreasing, we have. F ′(qs(U)) ≤ 0. Since F concave, F ′

decreasing, and F ′(qs(V )) = 0, we have: qs(V ) ≤ qs(U).

Computations for specific utilities.

Quadratic utility : Consider qs(k) = 1
2λ

kb̄−c
p(kbL−c)2+(1−p)(kbH−c)2

. Introduce b̄2 = pb2
L + (1 −

p)b2
H . Derivating qs with respect to k, we obtain:

∂qs(k)

∂k
=

−k2b̄b̄2 + 2kb̄2c − c2b̄

2λ(k2b̄2 − 2ckb̄ + c2)2
.

Then, qs is increasing iff −k2b̄b̄2+2kb̄2c−c2b̄ ≥ 0. In k = c/b̄, this expression becomes c2(b2−b̄2)/b̄,

which is always positive. In addition, we know that qs (c/bL) > qmax from proposition 1. Since the

previous condition is quadratic in k, there are two cases. Either qs is increasing over [c/b̄, c/bL], or

qs is first increasing and then decreasing, and max[c/b̄,c/bL] q
s > qmax. In either case, min(qs, qmax)

is increasing over [c/b̄, c/bL].

CARA utility : Let qs(k) = 1
Ak(bH−bL) ln

[

(1−p)(kbH−c)
p(c−kbL)

]

. Introduce the three following aux-

iliary functions: f(k) = (1−p)(kbH−c)
p(c−kbL) , g(k) = (kbH−c)(c−kbL)

k , and h(k) = ln[f(k)]g(k). Derivating

qs with respect to k, we obtain:
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∂qs

∂k
=

1

A(bH − bL)k

(− ln(f)

k
+

c(b̄ − bL)

(1 − p)(kbH − c)(c − kbL)

)

This means that qs is increasing iff c(b̄−bL)
(1−p)(kbH−c)(c−kbL) ≥ ln[f(k)]

k , which is equivalent to h(k) ≤

c(bH − bL). We next study the properties of h. We have : h′ = ln[f ]g′ + f ′

f g. Since k ≥ c/b̄,

f(k) ≥ 1 and ln[f(k)] ≥ 0. In addition, f ′(k) ≥ 0 and g′(k) = −bLbH + c2/k2. This means that ,

h′(k) > 0 if k ∈ [0, c/
√

bLbH ]. Looking at the second derivative of h gives:

∂2h

∂k2
(k) = ln[f(k)]g′′(k) +

c(bH − bL)

k2(c − kbL)(kbH − c)
[c(−k(bH + bL) + 2c)]

which is strictly negative for k ≥ c/
√

bLbH . Therefore, h is increasing over [0, c/
√

bLbH ] and

strictly concave over [c/
√

bLbH , c/bL]. In addition, we know that qs is increasing at c/b̄ and

becomes arbitrarily large when k gets close to c/bL. This implies that qs is either increasing

over [c/b̄, c/bL], or increasing, decreasing, and increasing again. Besides, ∂h/∂p ≤ 0, hence the

whole h function shifts downwards when p increases. Suppose that p1 > p2. If qs is increasing

for p1, then qs increasing for p2. If qs is increasing, decreasing, increasing for p1, then either qs is

increasing, or the interval on which it is decreasing is smaller.

Proof of Proposition 5. Let [x] denote the smallest integer greater than or equal to x. Let

k∗ = [c/bL]. Recall, ∆(k∗ + 1) < 0 since qs(k∗) = qs(k∗ + 1) = qmax. In addition, if a signatory

quits at k∗, he obtains (k∗ − 1)bqs(k∗ − 1). Thus,

∆(k∗) = p [U((k∗bL − c)qmax) − U((k∗ − 1)bLqs(k∗ − 1)]

+(1 − p) [U((k∗bH − c)qmax) − U((k∗ − 1)bHqs(k∗ − 1)]

Since qs(k
∗− 1) < c/bL, if qmax is large enough, qs(k

∗− 1) < qmax. Since k∗bH − c > 0, if qmax

is large enough, (k∗bH − c)qmax > (k∗ − 1)bHqs(k∗ − 1). If k∗ 6= c/bL, we also have k∗bL − c > 0,
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hence (k∗bL−c)qmax > (k∗−1)bLqs(k∗−1) if qmax is large enough. In this case, since U increasing,

∆(k∗) > 0. This result also holds if k∗ = c/bL, and limπ→∞ U(π) = +∞.
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Table 1 : Effects of Uncertainty on Participation (γ = 0.5)

bL\bH 455 515 575 635 695

445 - 2 - 2 - 2 - 2 - 2

345 - 3 - 3 - 3 - 3 - 3

245 - 4 - 4 - 4 - 4 - 4
195 - 4 - 4 - 4 - 4 - 4

145 2 6 2 6 2 6 2 6 3 6

95 2 8 2 8 2 8 2 8 2 8

70 2 11 2 11 2 11 2 11 2 11

45 2 17 2 17 2 17 2 17 2 17

20 2 38 2 38 2 38 2 38 2 38

15 2 51 2 51 2 51 2 51 2 51

10 2 76 2 76 2 76 2 76 2 76

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 0.5

Picture 2 : Effects of Uncertainty on Participation (γ = 0.5)
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n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 0.5
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Table 2 : Effects of Uncertainty on Welfare (γ = 0.5)

bL\bH 455 515 575 635 695

445 - 100 - 99,98 - 99,96 - 99,94 - 99,93

345 - 122,64 - 122,09 - 121,61 - 121,18 - 120,8

245 - 141,61 - 140,18 - 138,93 - 137,82 - 136,84
195 - 141,55 - 139,5 - 137,74 - 136,19 - 134,82

145 5,23 173,36 4,87 170,14 4,54 167,35 4,31 164,9 6,27 162,72

95 4,92 200,08 4,59 194,9 4,31 190,46 4,1 186,58 3,95 183,15

70 4,8 234,55 4,49 227,49 4,21 221,44 4,02 216,17 3,89 211,52

45 4,69 291,45 4,39 280,83 4,14 271,78 3,96 263,93 3,83 257,03

20 4,59 435,34 4,31 414,74 4,07 397,33 3,9 382,34 3,78 369,25

15 4,58 504,19 4,3 478,63 4,06 457,07 3,89 438,56 3,77 422,42

10 4,56 615,17 4,28 580,66 4,04 551,66 3,88 526,85 3,76 505,3

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 0.5

Picture 3 : Effects of Uncertainty on Welfare (γ = 0.5)
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n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 0.5
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Table 3 : Effects of Uncertainty on Participation (γ = 1)

bL\bH 455 515 575 635 695

445 - 2 - 2 - 2 - 2 - 2

345 - 3 - 3 - 3 - 3 - 3

245 - 4 - 4 - 4 - 4 - 4
195 - 4 - 4 - 4 - 4 - 4

145 2 6 2 6 2 6 2 6 2 6

95 2 8 2 8 2 8 2 8 2 8

70 2 11 2 11 2 11 2 11 2 11

45 2 17 2 17 2 17 2 17 2 17

20 2 38 2 38 2 38 2 38 2 38

15 2 51 2 51 2 51 2 51 2 51

10 2 76 2 76 2 76 2 76 2 76

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 1

Picture 4 : Effects of Uncertainty on Participation (γ = 1)
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n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 1
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Table 4 : Effects of Uncertainty on Welfare (γ = 1)

bL\bH 455 515 575 635 695

445 - 100 - 99,99 - 99,98 - 99,98 - 99,98

345 - 103,33 - 103,18 - 103,05 - 102,94 - 102,84

245 - 105,64 - 105,27 - 104,96 - 104,7 - 104,48
195 - 105,62 - 105,01 - 104,52 - 104,1 - 103,75

145 52,41 108,87 49,7 108,11 48,36 107,49 47,55 106,96 47,01 106,5

95 51,46 111,13 48,96 109,79 47,76 108,71 47,06 107,81 46,59 107,04

70 51,06 113,66 48,66 112,09 47,53 110,81 46,86 109,74 46,42 108,83

45 50,71 117,1 48,4 114,92 47,32 113,14 46,69 111,67 46,28 110,42

20 50,4 123,39 48,17 119,51 47,14 116,37 46,55 113,79 46,15 111,61

15 50,34 125,7 48,13 121,28 47,11 117,73 46,52 114,79 46,13 112,33

10 50,28 128,73 48,09 122,54 47,08 117,58 46,49 113,51 46,11 110,1

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 1

Picture 5 : Effects of Uncertainty on Welfare (γ = 1)
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Table 5 : Effects of Uncertainty on Participation (γ = 2.5)

bL\bH 455 515 575 635 695

445 - 2 - 2 - 2 - 2 - 2

345 - 3 - 3 - 3 - 3 - 3

245 - 4 - 4 - 4 - 4 - 4
195 2 4 2 4 2 4 2 4 2 4

145 2 6 2 6 2 6 2 6 2 6

95 2 8 2 8 2 8 2 8 2 8

70 2 11 2 11 2 11 2 11 2 11

45 2 17 2 17 2 17 2 17 2 17

20 2 38 2 38 2 38 2 38 2 38

15 2 51 2 51 2 51 2 51 2 51

10 2 76 2 76 2 76 2 76 2 76

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 2.5

Picture 6 : Effects of Uncertainty on Participation (γ = 2.5)

0
20

40
60

80
k*

0 100 200 300 400 500
bl

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 2.5
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Picture 7 : Effects of Uncertainty on Welfare (γ = 2.5)
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Picture 8 : Log-Effects of Uncertainty on Welfare (γ = 2.5)
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Table 6 : Effects of Uncertainty on Welfare (γ = 2.5)

bL\bH 455 515 575 635 695

445 - -100,23 - -101,64 - -102,20 - -102,52 - -102,73

345 - -45,91 - -50,95 - -54,42 - -56,99 - -58,97

245 - -29,85 - -39,48 - -46,46 - -51,75 - -55,91
195 -7,11E+5 -41,91 -1,45E+6 -167,37 -1,77E+6 -254,11 -1,97E+6 -317,71 -2,10E+6 -366,36

145 -8,62E+5 -17,90 -1,61E+6 -41,65 -1,92E+6 -59,28 -2,10E+6 -72,87 -2,21E+6 -83,68

95 -9,95E+5 -176,70 -1,74E+6 -1867,23 -2,03E+6 -3135,46 -2,19E+6 -4122,07 -2,29E+6 -4911,45

70 -1,06E+6 -54,80 -1,80E+6 -552,82 -2,07E+6 -932,71 -2,22E+6 -1232,03 -2,32E+6 -1473,97

45 -1,11E+6 -126,28 -1,85E+6 -1398,78 -2,11E+6 -2383,27 -2,26E+6 -3167,59 -2,35E+6 -3807,15

20 -1,16E+6 -652,92 -1,89E+6 -7449,08 -2,15E+6 -12775,83 -2,28E+6 -17063,24 -2,37E+6 -20588,47

15 -1,17E+6 -342,59 -1,90E+6 -3912,83 -2,15E+6 -6718,03 -2,29E+6 -8980,32 -2,38E+6 -10843,38

10 -1,19E+6 -1273,87 -1,91E+6 -14589,16 -2,16E+6 -25076,47 -2,30E+6 -33550,14 -2,38E+6 -40539,53

n = 100, c = 755, b̄ = 450, bh = 695, π0 = 250, qmax = 300, γ = 2.5
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