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RÉSUMÉ 

 

 Nous considérons une approche probabiliste au problème de répartition de k objets 

identiques à un ensemble d’agents avec des préférences unimodales. Utilisant l’extension 

ordinale des préférences, nous caractérisons les classes de lois de probabilités uniformes 

par l’efficacité au sens de Pareto, la non-manipulation et l’absence d’envie. Nous 

montrons aussi que l’anonymat ne peut pas être remplacé par l’absence d’envie. Quand 

les agents ont une fonction d’utilité Von-Neumann-Morgenstern strictement adverse au 

risque, nous ramenons le problème de répartition de k objets identiques au problème 

d’allocation d’une quantité k d’un bien infiniment divisible. 

 

Mots clés : lois de probabilité, préférences unimodales, absence de manipulation, 

allocation uniforme 

 

 

 

 

ABSTRACT 

 

We consider a probabilistic approach to the problem of assigning k indivisible 

identical objects to a set of agents with single-peaked preferences. Using the ordinal 

extension of preferences, we characterize the class of uniform probabilistic rules by 

Pareto efficiency, strategy-proofness, and no-envy. We also show that in this 

characterization no-envy cannot be replaced by anonymity. When agents are strictly risk 

averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of 

assigning k identical objects to a problem of allocating the amount k of an infinitely 

divisible commodity. 

 

Key words : probabilistic rules, single-peaked preferences, strategy-proofness, uniform 

allocations 

 

 



1 Introduction

We consider economic environments where a set of indivisible identical objects have to be

assigned to a set of individuals with single-peaked preferences. As an example, take the

assignment of the number of courses a professor in an economics department has to teach.

Each professor has a number of courses he �nds optimal (probably somewhere between 0 to

4) and preferences are decreasing when moving away from that optimal amount in either

direction. If we are interested in \fair allocations", for instance allocations that respect

equal treatment of equals (if two individuals have the same preference relation, then they

should be indi�erent between each other's allotments), then the indivisibility assumption

may induce an impossibility. For simplicity, assume that we have to assign a course and none

of the professors in the department wants to teach it. Obviously there is no deterministic

way to do so that respects equal treatment of equals. However, allowing the rule to be

probabilistic solves our problem at least in an ex-ante sense: if each professor has to teach

the course with equal probability, then equal treatment of equals is satis�ed (ex-ante).

The probabilistic allocation or rationing of indivisible objects has received recent atten-

tion. Two main models should be distinguished. In the �rst one there are n objects and n

agents and each agent receives exactly one object. Any two objects are distinct and each

agent has a strict preference relation over the set of objects. For example, the agents are

workers and each object is a full-time job at a di�erent company. The random assignment

of the objects to the agents is the subject of papers by Abdulkadiro�glu and S�onmez (1998,

2000), Bogomolnaia and Moulin (1999), and Cr�es and Moulin (1998).

In the second model there are k identical indivisible objects and n agents. Each agent

receives a certain number of objects and each object is assigned to some agent (free disposal

is not allowed). For instance, the objects are identical (non full-time) jobs that have to be

allocated among workers. This model is studied by Moulin (2000), Moulin and Stong (2000),

Sasaki (1997), and Kureishi (2000). In the �rst two papers each agent demands a certain

number of objects and the total demand is greater than the number of objects available.

In the last two papers each agent has a single-peaked preference relation over the number

of objects he may receive. That is, there is a most preferred number of objects, called the

agent's peak, and preferences are strictly decreasing in either direction away from the peak.

A probabilistic rule chooses for each pro�le of preferences a probability distribution over

the set of allocations. The interpretation is that the �nal allocation that we implement is

drawn according to this distribution. An agent compares two distributions over the set of

allocations by evaluating the marginal distributions that are induced over his allotments.
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We consider the same model as Sasaki (1997) and Kureishi (2000), but we do not

only consider preferences that can be represented by von-Neumann-Morgenstern utility

functions. First, we use the ordinal extension of preferences over allotments to probability

distributions over allotments. An agent prefers a distribution over his allotments to another

if the �rst distribution places on each weak upper contour set at least the same probability

that is placed on it by the second distribution. The ordinal extension of preferences is

incomplete over the set of distributions. However, it is equivalent to the following. If

an agent prefers one distribution to another, then for each utility representation of his

preference relation the expected utility with respect to the distribution is greater than or

equal to the expected utility of the second one.1

Using this extension we formulate the requirements of Pareto e�ciency, strategy-proofness

(no agent can gain by misrepresenting his preference relation), and no-envy (each agent

prefers his marginal distribution to each other agent's marginal distribution). Contrary to

the model with distinct objects (Bogomolnaia and Moulin, 1999) it turns out that in our

model Pareto e�ciency is equivalent to ex-post e�ciency. Using the uniform rule (Benassy,

1982), where k units of an in�nitely divisible commodity are rationed as equally as possible,

we de�ne uniform probabilistic rules (Sasaki, 1997) in terms of their \uniform marginal

distributions".2

We call a probabilistic rule a uniform probabilistic rule if for each pro�le the marginals

of the chosen distribution are equal to the uniform marginal distributions at this pro�le.

Our main result is that the class of uniform probabilistic rules is characterized by Pareto

e�ciency, strategy-proofness, and no-envy. This result is the probabilistic analogue to the

result of Sprumont (1991). He shows that when rationing k units of an in�nitely divisi-

ble commodity among a set of individuals with single-peaked preferences, the uniform rule

is the only deterministic rule satisfying the above combination of properties. Sprumont's

characterization remains valid if we replace no-envy by anonymity (Sprumont, 1991) or

equal treatment of equals (Ching, 1994). However, in our probabilistic setting this con-

clusion is not true. For example, any random dictatorship rule satis�es Pareto e�ciency,

strategy-proofness, and anonymity. It is an open question what the class of probabilistic

rules satisfying these properties looks like.

1A considerable number of papers considers the ordinal extension of preferences, e.g., Abdulkadiro�glu and

S�onmez (2000), Bogomolnaia and Moulin (1999), Ehlers (1998), Ehlers and Klaus (2001), Ehlers, Peters,

and Storcken (2000), and Gibbard (1977).
2Independently, Moulin (2000) also used this trick in de�ning the uniform probabilistic rule of Sasaki

(1997).
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In two related papers (Sasaki, 1997; Kureishi, 2000) agents are assumed to be strictly risk

averse von-Neumann-Morgenstern utility maximizer, i.e., each agent evaluates distributions

on the basis of the expected utility relative to his utility function. They show that for a given

pro�le of utility functions, if a distribution is Pareto e�cient, then each agent's marginal

distribution places probability 1 on two allotments that di�er only by one unit. Using this

observation we show that then, the problem can be reduced to the problem of allocating

k units of an in�nitely divisible commodity among n agents with single-peaked preferences

over [0; k]. Then we apply the characterization of the (deterministic) uniform rule by Ching

(1994) and show that in the probabilistic model with strictly risk averse agents, the class

of uniform probabilistic rules is characterized by Pareto e�ciency, strategy-proofness, and

equal treatment of equals. Therefore, the results of Sasaki (1997) and Kureishi (2000) can

be interpreted as corollaries of Ching (1994).

The organization of the paper is as follows. In Section 2 we introduce the model and

basic properties. In Section 3 we de�ne the class of uniform probabilistic rules and present

our main result. In Section 4 we prove the characterization. Finally, in Section 5 we focus

on strictly risk averse agents with von-Neumann-Morgenstern utility functions.

2 The Model and Basic Properties

We consider the problem of assigning k indivisible identical objects to a set of agents

N = f1; : : : ; ng. Each agent i 2 N is equipped with a \single-peaked" preference relation

Ri de�ned over the number of objects he receives; i.e., Ri is de�ned over K � f0; 1; : : : ; kg

and there exists a number of objects p(Ri) 2 K, called the peak of Ri, with the following

property: for all xi; yi 2 K, if xi < yi � p(Ri) or xi > yi � p(Ri), then yi Pi xi. As usual,

xi Ri yi means \xi is weakly preferred to yi", and xi Pi yi means \xi is strictly preferred to

yi". By R we denote the class of all single-peaked preference relations over K. By RN we

denote the set of all (preference) pro�les R = (Ri)i2N such that for all i 2 N , Ri 2 R.

We call x 2 KN a feasible allocation if
P

i2N xi = k. Let X denote the set of all feasible

allocations. Note that jXj =
�
k+n�1

k

�
. A deterministic (allocation) rule � is a function that

selects for every R 2 RN a feasible allocation �(R) 2 X. Each agent i 2 N only cares

about his own allotment �i(R) 2 K.

We extend the original analysis of deterministic rules by considering \probabilistic"

rules. A probabilistic (allocation) rule ' is a function that selects for every R 2 RN a

(probability) distribution over the set of feasible allocations X, denoted by '(R). Given
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X 0 � X, we denote by '(R)(X 0) the probability that the distribution '(R) places on the set

X 0. Since the set of feasible allocations X is �nite, a distribution over X can be interpreted

as a lottery, or a simple gamble, on X. For X = fx1; : : : ; xjXjg we denote such a distribution

over the set of feasible allocationsX by [p1�x1; : : : ; pjXj�xjXj] where for all l 2 f1; : : : ; jXjg,

pl 2 [0; 1] and
PjXj

l=1 p
l = 1. For notational convenience, when formalizing distributions, we

will only denote feasible allocations xl that occur with strictly positive probability pl > 0,

e.g., instead of [12 � x
1; 12 � x

2; 0 � x3; : : : ; 0 � xjXj] we write [12 � x
1; 12 � x

2].

For each agent i 2 N , let 'i(R) denote the marginal distribution induced by '(R) over

his allotments in K. Each agent i 2 N only cares about his marginal distribution 'i(R) on

K. A deterministic rule is a probabilistic rule that selects for every R 2 RN a distribution

placing probability 1 on a single allocation in X.

The following example demonstrates that two distributions having the same marginal

distributions need not be equal.

Example 1 Let N = f1; 2; 3g, k = 9, Q = [13 � (3; 6; 0);
1
3 � (0; 3; 6);

1
3 � (6; 0; 3)], and

Q0 = [13 � (3; 0; 6);
1
3 � (6; 3; 0);

1
3 � (0; 6; 3)]. Then for all i 2 N , Qi = Q0

i, but Q 6= Q0: �

Remark 1 Let Q be a distribution on X. Then,
Pn

i=1

Pk
xi=0Qi(xi)xi = k. Equivalently

to
Pn

i=1

Pk
xi=0Qi(xi)xi we also use the notation

R
X
xidQi. �

We extend preferences on agents' allotments in K to marginal distributions on K. Our

extension is based on the concept of weak upper contour sets.

Given xi 2 K and Ri 2 R, the weak upper contour set of xi at Ri is de�ned as

B(xi; Ri) � fyi 2 K j yi Ri xig. Given a preference relation Ri 2 R and two marginal

distributions Qi; Q
0
i on K, agent i weakly prefers Qi to Q

0
i, if Qi assigns to each weak upper

contour set at least the probability that is assigned to this set by Q0
i. For notational conve-

nience we use the same symbols Ri and Pi to de�ne preferences over marginal distributions.

Ordinal Extension of Preferences: For all Ri 2 R and all marginal distributions

Qi; Q
0
i on K, Qi Ri Q

0
i if and only if

for all xi 2 K, Qi(B(xi; Ri)) � Q0
i(B(xi; Ri)): (1)

Furthermore, Qi Pi Q
0
i if and only if Qi Ri Q

0
i and

for some yi 2 K, Qi(B(yi; Ri)) > Q0
i(B(yi; Ri)): (2)
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Inequality (1) is a �rst order stochastic dominance condition; in particular it requires

that the marginal distributions Qi and Q
0
i are comparable in that respect. Therefore, our

extension is not complete on the set of all marginal distributions on K.

Our extension of preferences is equivalent to the following. Assume that each agent's

preference relation over lotteries can be represented by a utility function in the sense that

it can be used to compare two marginal distributions via the expected utilities relative to

this representation. Then (1) is equivalent to the fact that the expected utility relative to

any utility function representing Ri is at Q greater or equal than at Q0. Thus, regardless

which utility function represents an agent's preference relation, he will weakly prefer Q to

Q0. For a further discussion of utility representation of preferences we refer to Section 5.

We are interested in Pareto e�ciency. Following the de�nition of Pareto e�ciency for

deterministic rules, a probabilistic rule is Pareto e�cient if it only assigns \Pareto e�cient

distributions on X"; i.e., a distribution assigned by the probabilistic rule cannot be changed

in such a way that no agent is worse o� and some agent is better o�.

Let Q, Q0 be distributions on X. If for all i 2 N , QiRiQ
0
i and for some j 2 N , Qj PjQ

0
j ,

then we call Q a Pareto improvement over Q0.

Pareto E�ciency: For all R 2 RN , there exists no Pareto improvement over '(R).

Remark 2 (Same-Sidedness) A deterministic rule � satis�es Pareto e�ciency if and

only if � satis�es same-sidedness; i.e., for all R 2 RN ,

(i) if
P

i2N p(Ri) � k, then for all i 2 N , �i(R) � p(Ri) and

(ii) if
P

i2N p(Ri) � k, then for all i 2 N , �i(R) � p(Ri). �

A similar result holds for probabilistic rules: ex-post e�ciency is equivalent to same-

sidedness. Given xi; yi 2 K such that xi � yi, let [xi; yi] � fxi; xi + 1; : : : ; yig.

Lemma 1 (Pareto E�ciency) A probabilistic rule ' satis�es Pareto e�ciency if and

only if it satis�es same-sidedness; i.e., for all R 2 RN ,

(i) if
P

i2N p(Ri) � k, then for all i 2 N , 'i(R)([0; p(Ri)]) = 1 and

(ii) if
P

i2N p(Ri) � k, then for all i 2 N , 'i(R)([p(Ri); k]) = 1.

Proof. It is straightforward to show that if ' satis�es Pareto e�ciency, then (i) and (ii)

hold. To show the converse, suppose ' satis�es same-sidedness. Suppose that ' violates
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Pareto e�ciency for some R 2 RN . Thus, there exists a distribution Q over X such that

for all i 2 N , Qi Ri 'i(R) and for some j 2 N , Qj Pj 'j(R). Without loss of generality,

let k �
P

i2N p(Ri) and for all i 2 N , Qi(R)([0; p(Ri)]) = 1. Given i 2 N , the function

f i : X ! K denotes the projection of X onto i's coordinate, i.e., for all x 2 X, f i(x) = xi.

Since Q and '(R) satisfy same-sidedness and for all i 2 N , Qi Ri 'i(R), it follows for all

i 2 N , Z
X

f idQ =

Z
[0;p(Ri)]

xidQi �

Z
[0;p(Ri)]

xid'i(R) =

Z
X

f id'(R):

Thus, for all i 2 N ,
R
X
f idQ �

R
X
f id'(R), and for some j 2 N ,

R
X
f jdQ >

R
X
f jd'(R).

Hence, Z
X

X
i2N

f idQ =
X
i2N

Z
X

f idQ >
X
i2N

Z
X

f id'(R) =

Z
X

X
i2N

f id'(R): (3)

Note that for all x 2 X,
P

i2N f
i(x) = k. Hence,Z

X

X
i2N

f idQ = k and

Z
X

X
i2N

f id'(R) = k:

Now, the previous two facts contradict (3). �

Conditions (i) and (ii) in Lemma 1 imply that an allocation chosen by the probabilistic

rule ' satis�es same-sidedness and therefore Pareto e�ciency. Hence, Lemma 1 states that

Pareto e�ciency and ex-post Pareto e�ciency are equivalent in our model. Bogomolnaia

and Moulin (1999) show that this equivalence is not valid when assigning heterogenous

indivisible objects to individuals.

Next we introduce strategy-proofness for probabilistic rules. By strategy-proofness no

agent can ever bene�t by misrepresenting his preference relation.3

Given R 2 RN and M � N , the restriction (Ri)i2M 2 RM of R to M is denoted by

RM . We also use the notation R�i = RNnfig. For example, ( �Ri; R�i) denotes the pro�le

obtained from R by replacing Ri by �Ri.

Strategy-Proofness: For all R 2 RN , all i 2 N , and all �Ri 2 R, 'i(R) Ri 'i( �Ri; R�i).

3In game theoretical terms, a rule satis�es strategy-proofness if in its associated direct revelation game

form, it is a weakly dominant strategy for each agent to announce his true preference relation.
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Note that our notion of strategy-proofness also requires that the marginal distributions

that are assigned by the probabilistic rule before and after any unilateral deviation are

comparable.

By anonymity the names of the agents do not matter. More precisely, an anonymous

probabilistic rule is symmetric in its arguments.

Let �N be the class of all permutations on N . Then for all R 2 RN and all � 2 �N , by

R� we mean (R�(i))i2N .

Anonymity: For all R 2 RN , all � 2 �N , and all i 2 N , '�(i)(R) = 'i(R�).

No-envy states that no agent strictly prefers the marginal distribution of another agent

to his own.

No-Envy: For all R 2 RN and all i; j 2 N , 'i(R) Ri 'j(R).

No-envy also requires that the agents' marginal distributions that are assigned by the

probabilistic rule are comparable.

Equal treatment of equals, a weakening of no-envy and of anonymity, requires that if

two agents have the same preference relations, then each of them is indi�erent between his

marginal distribution and the other agent's marginal distribution.

Equal Treatment of Equals: For all R 2 RN and all i; j 2 N , if Ri = Rj , then

'i(R) Ii 'j(R).

3 The Uniform Probabilistic Correspondence

In identifying probabilistic rules that satisfy a certain combination of properties, we will

not be able to determine the exact distribution for each pro�le. All requirements are

formulated with respect to marginal distributions and as demonstrated in Example 1 those

do not uniquely determine the original distribution. We will only be able to show that a

probabilistic rule satis�es a certain list of requirements if and only if for each pro�le the

marginal distributions are of a certain form. Therefore, we introduce correspondences that

assign to each pro�le a set of distributions.
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The following \uniform correspondence" assigns to each pro�le exactly the distributions

that induce \uniform marginal distributions" on each agent's allotments: for each pro�le of

peaks (p(Ri))i2N calculate the so-called uniform allocation for R. Denote this allocation by

~U(R). Without loss of generality, suppose that R is in excess demand, i.e.,
P

i2N p(Ri) > k

(the de�nition for the excess supply case is similar). Thus, for some � 2 [0; k], we have

that for all i 2 N , ~Ui(R) = min(p(Ri); �). For each agent we choose the following uniform

marginal distribution fi(R) over his allotments. If ~Ui(R) = p(Ri), then fi(R) places proba-

bility 1 on p(Ri). Otherwise, calculate x� 2 f0; 1; : : : ; kg such that � belongs to the interval

with endpoints x� and x�+1. Then calculate weights � and (1��) on the endpoints such

that � equals the convex combination of the two endpoints according to the weights, i.e.,

� = �x� + (1� �)(x� + 1) where � 2 [0; 1]. Then, the uniform marginal distribution fi(R)

places probability � on x� and probability 1� � on x� + 1.

Uniform Probabilistic Correspondence, U : Let R 2 RN and Q be a distribution

over X. Then Q 2 U(R) if and only if the following holds.

(i) Excess Demand:
P

i2N p(Ri) > k.

Let ~Ui(R) = min(p(Ri); �) where � 2 R+ solves
P

i2N
~Ui(R) = k.

Determine x� 2 K such that � 2 [x�; x� + 1[. Then for all i 2 N ,

(a) if p(Ri) � x�, then Qi(p(Ri)) = 1 and

(b) if p(Ri) � x� + 1, then Qi(x� + 1) = �� x� and Qi(x�) = 1� (�� x�).

(ii) Balanced Demand:
P

i2N p(Ri) = k. Then for all i 2 N , Qi(p(Ri)) = 1.

(iii) Excess Supply:
P

i2N p(Ri) < k.

Let ~Ui(R) = max(p(Ri); �) where � 2 R+ solves
P

i2N
~Ui(R) = k.

Determine x� 2 K such that � 2 ]x�; x� + 1]. Then for all i 2 N ,

(a) if p(Ri) � x� + 1, then Qi(p(Ri)) = 1 and

(b) if p(Ri) � x�, then Qi(x� + 1) = �� x� and Qi(x�) = 1� (�� x�).

We say that a probabilistic rule ' is a uniform probabilistic rule if for all R 2 RN , '(R) 2

U(R). The following example of a probabilistic rule proves that the uniform correspondence

is non-empty.

8



Example 2 We de�ne the uniform probabilistic rule U as follows (Sasaki, 1997; in de�ning

the uniform probabilistic rule U Moulin (2000) uses the same trick as we do4 in de�ning

the correspondence U). Let R 2 RN .

(i) Excess Demand:
P

i2N p(Ri) > k.

Without loss of generality, let �N = fi 2 N j p(Ri) � x� + 1g = f1; : : : ; �ng and

~N = fi 2 N j p(Ri) � x�g = f�n+1; : : : ; ng. Then we obtain U(R) as follows: in each

allocation that occurs at U(R) with positive probability, each agent in ~N receives his

peak amount and each agent in �N receives either x� or x� + 1. Note that for each

i 2 �N , (x� + 1) Pi x� and that exactly �n(� � x�) agents in �N can receive x� + 1.

We obtain U(R) by placing equal probability on all allocations where all agents in ~N

receive their peak amounts, �n(�� x�) agents in �N receive x� + 1, and the remaining

agents in �N receive x�. Hence, U(R) is obtained by placing equal probabilities on

exactly
� �n
�n(��x�)

�
allocations. Note that

(a) if p(Ri) � x�, then Ui(R)(p(Ri)) = 1 and

(b) if p(Ri) � x� + 1, then Ui(R)(x� + 1) = �� x� and Ui(R)(x�) = 1� (�� x�).

(ii) Balanced Demand:
P

i2N p(Ri) = k. Then, U(R) = [1 � (p(R1); : : : ; p(Rn))].

(iii) Excess Supply:
P

i2N p(Ri) < k.

Without loss of generality, let �N = fi 2 N j p(Ri) � x�g = f1; : : : ; �ng and ~N = fi 2

N j p(Ri) � x� + 1g = f�n + 1; : : : ; ng. Then we obtain U(R) as follows: in each

allocation that occurs at U(R) with positive probability, each agent in ~N receives his

peak amount and each agent in �N receives either x� or x� + 1. Note that for i 2 �N ,

x� Pi (x� + 1) and that exactly �n � �n(� � x�) agents in �N can receive x�. In other

words, �n(� � x�) of agents in �N will receive x� + 1. We obtain U(R) by placing

equal probability on all allocations where all agents in ~N receive their peak amounts,

�n(��x�) agents in �N receive x�+1, and the remaining agents in �N receive x�. Hence,

U(R) is obtained by placing equal probabilities on exactly
� �n
�n(��x�)

�
allocations. Note

that

(a) if p(Ri) � x� + 1, then Ui(R)(p(Ri)) = 1 and

(b) if p(Ri) � x�, then Ui(R)(x� + 1) = �� x� and Ui(R)(x�) = 1� (�� x�). �

4Moulin (2000) and we found this trick independently.
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Example 3 Let N = f1; 2; 3; 4g and k = 2. Let R 2 RN be such that for all i 2 N ,

p(Ri) = 1. Then, �N = N and

U(R) = [
1

6
� (1; 1; 0; 0);

1

6
� (1; 0; 1; 0);

1

6
� (1; 0; 0; 1);

1

6
� (0; 1; 1; 0);

1

6
� (0; 1; 0; 1);

1

6
� (0; 0; 1; 1)]:

Let Q = [12 � (1; 1; 0; 0);
1
2 � (0; 0; 1; 1)] and Q

0 = [12 � (1; 0; 0; 1);
1
2 � (0; 1; 1; 0)]. Then for all

i 2 N , Qi = Ui(R) = Q0
i (Q;Q

0; U(R) 2 U(R)), but U(R) 6= Q 6= Q0 6= U(R). �

Our main result is that, similarly as in the deterministic setting (Sprumont, 1991; Ching,

1992; Ehlers, 2000), Pareto e�ciency, strategy-proofness, and no-envy determine \uniform

allocations".

Theorem 1 Uniform probabilistic rules are the only probabilistic rules satisfying Pareto

e�ciency, strategy-proofness, and no-envy.

Remark 3 Theorem 1 is a tight characterization since we already know from the determin-

istic framework that all properties are logically independent (see Sprumont 1991 and Ching

1992). However, in contrast to the deterministic framework, we cannot replace no-envy

with anonymity or weaken it to equal treatment of equals (see Example 4). �

Example 4 Let N = f1; 2g and R 2 RN .

� If p(R1) + p(R2) 6= k, then

 (R) = [
1

2
� (p(R1); k � p(R1));

1

2
� (k � p(R2); p(R2))]:

� If p(R1) + p(R2) = k, then

 (R) = [1 � (p(R1); p(R2))]:

The probabilistic rule  satis�es Pareto e�ciency, strategy-proofness, and anonymity.

However, as we will demonstrate next,  violates no-envy.

Let k = 5, p(R1) = 5, p(R2) = 1 and 5 P2 0. Then,

 (R) = [
1

2
� (5; 0);

1

2
� (4; 1)];

and

 2(R)(B(5; R2)) =
1

2
< 1 =  1(R)(B(5; R2)):

Thus, we do not have that  2(R)R2  1(R), which contradicts no-envy ; more precisely, the

comparability condition that is incorporated in no-envy is violated. �

10



Example 4 can be easily extended to an arbitrary number of agents. More precisely, the

rule  is the random dictatorship rule for two agents. For an arbitrary number of agents,

the random dictatorship rule is Pareto e�cient, strategy-proof, and anonymous. Note that

all convex combinations of uniform probabilistic rules and the random dictatorship rule

satisfy Pareto e�ciency, strategy-proofness, and anonymity. It is an open question whether

there are other probabilistic rules that satisfy this list of properties.

4 Proof of the Characterization

It is straightforward to check that each uniform probabilistic rule satis�es Pareto e�ciency,

strategy-proofness, and no-envy. Conversely, let ' be a probabilistic rule satisfying Pareto

e�ciency, strategy-proofness, and no-envy. We have to show that for all R 2 RN , '(R) 2

U(R).

Pareto e�ciency and Lemma 1 imply that if demand is balanced, then (ii) in the de�-

nition of U holds. In the remainder of this section we prove that if R is in excess demand,

then (i) in the de�nition of U holds. The proof of (iii), i.e., excess supply, is similar.

Recall that for all xi; yi 2 K such that xi � yi, we have [xi; yi] � fxi; xi + 1; : : : ; yig.

Lemma 2 Let R 2 RN be such that
P

i2N p(Ri) > k. Then for all i 2 N ,

'i(R)([min(p(Ri); x�); p(Ri)]) = 1:

Proof. Let i 2 N . We consider two cases.

Case 1: p(Ri) � x� + 1. We have to show that 'i(R)([x�; p(Ri)]) = 1. Assume, by

contradiction, that

'i(R)([x�; p(Ri)]) < 1: (4)

Let R0
i 2 R be such that p(R0

i) = p(Ri) and for all xi 2 [p(Ri); k], B(xi; R
0
i) = [p(Ri); xi].

De�ne R0 � (R0
i; R�i). By (4), Pareto e�ciency (PE), and strategy-proofness (SP),

1
(4)
> 'i(R)([x�; p(Ri)])
PE
= 'i(R)(B(x�; Ri))
SP

� 'i(R
0)(B(x�; Ri))

PE
= 'i(R

0)([x�; p(Ri)]).

11



Thus,

'i(R
0)([x�; p(Ri)]) < 1: (5)

Hence, by Pareto e�ciency (PE), no-envy (NE), and the construction of R0
i, for all j 6= i,

1
(5)
> 'i(R

0)([x�; p(Ri)])
PE
= 'i(R

0)([x�; k]) = 'i(R
0)(B(x�; R

0
i))

NE

� 'j(R
0)(B(x�; R

0
i)) = 'j(R

0)([x�; k]):

Thus, for all j 2 N ,

'j(R
0)([x�; k]) < 1: (6)

Let S� � fj 2 N j p(Rj) � x�+1g. By the de�nition of � and
P

j2N p(R
0
j) =

P
j2N p(Rj) >

k, S� 6= ;.

For all T � S�, de�ne R
T = ((RT

j )j2T ; R
0
NnT ) as follows. For all j 2 T ,

� p(RT
j ) = x� and

� for all xj 2 [x�; k], B(xj ; R
T
j ) = [x�; xj ].

Let j 2 S�. If
P

l2N p(R
fjg
l ) > k, then by (6) and strategy-proofness (SP),

1
(6)
> 'j(R

0)([x�; k]) � 'j(R
0)(B(x�; R

0
j))

SP

� 'j(R
fjg)(B(x�; R

0
j)) � 'j(R

fjg)(x�)

= 'j(R
fjg)(p(R

fjg
j )) = 'j(R

fjg)([x�; k]):

(7)

By (7) and no-envy (NE), for all l 6= j,

1
(7)
> 'j(R

fjg)([x�; k]) = 'j(R
fjg)(B(k;R

fjg
j ))

NE

� 'l(R
fjg)(B(k;R

fjg
j )) = 'l(R

fjg)([x�; k]):

Thus, for all l 2 N , 'l(R
fjg)([x�; k]) < 1. Hence, by repeated application of the above

arguments, if for T � S�,
P

l2N p(R
T
l ) > k, then for all l 2 N ,

'l(R
T )([x�; k]) < 1: (8)

Now �x T0 � S� such that for some j 2 S�nT0,
P

l2N p(R
T0[fjg
l ) � k <

P
l2N p(R

T0
l ):

12



By the de�nition of �, T0 6= ;. Let �Rj 2 R be such that p( �Rj) = k �
P

l 6=j p(R
T0
l ).

De�ne �R � ( �Rj; R
T0
�j). Note that

x� � p( �Rj) < p(RT0
j ) and

X
l2N

p( �Rl) = k:

By Pareto e�ciency, 'j( �R)(p( �Rj)) = 1. Since p( �Rj) 2 B(x�; R
T0
j ), it follows that 'j( �R)(B(x�; R

T0
j )) =

1. But this implies a contradiction because by strategy-proofness (SP),

1
(8)
> 'j(R

T0)([x�; k]) � 'j(R
T0)(B(x�; R

T0
j ))

SP

� 'j( �R)(B(x�; R
T0
j )) = 1:

Therefore, (4) was wrong and the statement for Case 1 is proven.

Case 2: p(Ri) � x�. We have to show that 'i(R)(p(Ri)) = 1. Assume, by contradiction,

that

'i(R)(p(Ri)) < 1: (9)

Let R0
i 2 R be such that p(R0

i) = p(Ri) and for all xi 2 [p(Ri); k], B(xi; R
0
i) = [p(Ri); xi].

De�ne R0 � (R0
i; R�i). By strategy-proofness and (9), 'i(R

0)(p(Ri)) < 1. By Pareto

e�ciency (PE), no-envy (NE), and the construction of R0
i, for all j 2 N ,

1 > 'i(R
0)(p(Ri))

PE
= 'i(R

0)([p(Ri); k]) = 'i(R
0)(B(k;R0

i))
NE

� 'j(R
0)(B(k;R0

i)) = 'j(R
0)([p(Ri); k]):

Particularly, because p(Ri) � x�, for all j 2 N ,

'j(R
0)([x�; k]) < 1: (10)

However, for some j 2 N , p(R0
j) � x� + 1. Hence, in contradiction to (10), by Case 1 and

Pareto e�ciency (PE), 1 = 'j(R
0)([x�; p(R

0
j)])

PE
= 'j(R

0)([x�; k]). �

To complete the proof of Theorem 1, we prove that for all R 2 RN , if
P

i2N p(Ri) > k,

then for all i 2 N , 'i(R) = Ui(R); i.e.,

(a) if p(Ri) � x�, then 'i(R)(p(Ri)) = 1 = Ui(R)(p(Ri)) and

(b) if p(Ri) � x� + 1, then 'i(R)(x� + 1) = � � x� = Ui(R)(x� + 1) and 'i(R)(x�) =

1� (�� x�) = Ui(R)(x�).
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Let R 2 RN be such that
P

i2N p(Ri) > k. By Lemma 2, for all i 2 N , 'i(R)([min(p(Ri); x�); p(Ri)]) =

1. Thus, for all i 2 N , if p(Ri) � x�, then

'i(R)(p(Ri)) = 1: (11)

Hence, (11) implies (a); i.e., if p(Ri) � x�, then 'i(R) = Ui(R).

Next, we prove (b); i.e., if p(Ri) � x� + 1, then 'i(R) = Ui(R). We consider two cases.

Case 1: For some j 2 N , Rj 2 R is such that p(Rj) = x� + 1, and for all xj 2 [p(Rj); k],

B(xj; Rj) = [p(Rj); xj ].

By Pareto e�ciency (PE), no-envy (NE), and the structure of Rj , for all i 2 N such

that p(Ri) � x� + 1,

'j(R)(p(Rj))
PE
= 'j(R)(B(k;Rj))
NE

� 'i(R)(B(k;Rj))
PE
= 'i(R)([x� + 1; p(Ri)]):

Similarly, for all i 2 N such that p(Ri) � x� + 1,

'i(R)([x� + 1; p(Ri)])
PE
= 'i(R)(B(x� + 1; Ri))
NE

� 'j(R)(B(x� + 1; Ri))
PE
= 'j(R)(p(Rj)):

Hence, for all i 2 N such that p(Ri) � x� + 1,

'i(R)([x� + 1; p(Ri)]) = 'j(R)(p(Rj)): (12)

Thus, by Lemma 2, for all i 2 N such that p(Ri) � x� + 1,

'i(R)(x�) = 'j(R)(x�) = 1� 'j(R)(p(Rj)). (13)

We consider two subcases.

Case 1.1: For all i 2 N , p(Ri) � x� + 1.

Thus, by Pareto e�ciency, for all i 2 N , 'i(R)([x� + 2; k]) = 0. Then by Lemma 2 and

(13), for all i; l 2 N such that p(Ri) = p(Rl) = x� + 1,

'i(R)(x�) = 'l(R)(x�) and 'i(R)(x� + 1) = 'l(R)(x� + 1): (14)
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Recall that by Remark 1 and (a),

X
i2N such that
p(Ri)=x�+1

'i(R)(x�)x� +
X

i2N such that
p(Ri)=x�+1

'i(R)(x� + 1)(x� + 1) = k �
X

i2N such that
p(Ri)�x�

p(Ri):

(15)

Recall that by the de�nition of � and x�,

k =
X
i2N

min(p(Ri); �) =
X

i2N such that
p(Ri)�x�

p(Ri) +
X

i2N such that
p(Ri)=x�+1

�: (16)

Furthermore, note that for all i 2 N such that p(Ri) = x� + 1,

'i(R)(x�) + 'i(R)(x� + 1) = 1: (17)

Using (15), (16), and (17), it follows that

X
i2N such that
p(Ri)=x�+1

x� +
X

i2N such that
p(Ri)=x�+1

'i(R)(x� + 1) =
X

i2N such that
p(Ri)=x�+1

�:

This and (14) imply that for all i 2 N such that p(Ri) = x� + 1, 'i(R)(x� + 1) = �� x�.

Thus, for all i 2 N such that p(Ri) = x� + 1, 'i(R)(x�) = 1 � (� � x�). This proves (b);

i.e., if p(Ri) � x� + 1, then 'i(R) = Ui(R). This completes the proof for Case 1.1.

Case 1.2: For some l 2 N , p(Rl) � x� + 2.

If for all l 2 N such that p(Rl) � x� + 2, 'l(R)([x� + 2; k]) = 0, then similarly as in

Case 1.1 it follows that p(Rl) � x� + 1 implies 'l(R) = Ul(R). Assume, by contradiction,

that for some l 2 N such that p(Rl) � x� + 2,

'l(R)([x� + 2; k]) > 0: (18)

Let R0
l 2 R be such that R0

l = Rj and R0 � (R0
l; R�l). By Pareto e�ciency (PE) and

strategy-proofness (SP),

'l(R
0)(x� + 1)

PE
= 'l(R

0)([x� + 1; k]) = 'l(R
0)(B(k;R0

l))
SP

� 'l(R)(B(k;R
0
l)) = 'l(R)([x� + 1; k])

and

'l(R)([x� + 1; k])
PE
= 'l(R)(B(x� + 1; Rl))
SP

� 'l(R
0)(B(x� + 1; Rl))

PE
= 'l(R

0)(x� + 1):
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Hence,

'l(R
0)(x� + 1) = 'l(R)([x� + 1; k]) and (19)

'l(R
0)(x�) = 'l(R)(x�): (20)

Suppose that for all i 2 N such that p(R0
i) � x� +2, 'i(R

0)([x� +2; k]) = 0. Let N 0 � fi 2

N j p(Ri) � x� + 1g = fi 2 N j p(R0
i) � x� + 1g.

Consider pro�le R and recall from Case 1 that for all i 2 N 0, 'i(R)([x� + 1; p(Ri)]) =

'j(R)(p(Rj)) and 'i(R)(x�) = 'j(R)(x�). In particul, for all i 2 N 0,

'i(R)([x� + 1; p(Ri)]) = 'j(R)(p(Rj)) = 'l(R)([x� + 1; p(Rl)]) and (21)

'i(R)(x�) = 'j(R)(x�) = 'l(R)(x�): (22)

Consider pro�le R0 and recall from Case 1 that for all i 2 N 0, 'i(R
0)([x� + 1; p(R0

i)]) =

'j(R
0)(p(Rj)) and 'i(R

0)(x�) = 'j(R
0)(x�). In particular, for all i 2 N 0,

'i(R
0)(x� + 1) = 'j(R

0)(p(R0
j)) = 'l(R

0)(x� + 1) and (23)

'i(R
0)(x�) = 'j(R

0)(x�) = 'l(R
0)(x�): (24)

Hence, for all i 2 N 0,

'i(R
0)(x� + 1)

(23)
= 'l(R

0)(x� + 1)
(19)
= 'l(R)([x� + 1; k])
(21)
= 'i(R)([x� + 1; p(Ri)]):

(25)

Furthermore, for all i 2 N 0,

'i(R
0)(x�)

(24)
= 'l(R

0)(x�)
(20)
= 'l(R)(x�)
(22)
= 'i(R)(x�):

(26)

Since for all i 2 N such that p(R0
i) � x� + 2, 'i(R

0)([x� + 2; k]) = 0, (25) implies that for

all i 2 N 0,

kX
xi=x�+1

'i(R
0)(xi)xi = 'i(R

0)(x� + 1)(x� + 1) �
kX

xi=x�+1

'i(R)(xi)xi. (27)

In particular, by (18) and (19),

'l(R
0)(x� + 1)(x� + 1) <

kX
xl=x�+1

'l(R)(xl)xl. (28)

16



Hence, (26), (27), and (28) imply

X
i2N 0

�
'i(R

0)(x�)x� + 'i(R
0)(x� + 1)(x� + 1)

�
<
X
i2N 0

 
kX

xi=x�

'i(R)(xi)xi

!
: (29)

By Remark 1,X
i2N 0

�
'i(R

0)(x�)x� + 'i(R
0)(x� + 1)(x� + 1)

�
= k �

X
i2N such that

p(R0
i)=p(Ri)�x�

p(Ri)

and

X
i2N 0

 
kX

xi=x�

'i(R)(xi)xi

!
= k �

X
i2N such that
p(Ri)�x�

p(Ri):

Hence,

X
i2N 0

�
'i(R

0)(x�)x� + 'i(R
0)(x� + 1)(x� + 1)

�
=
X
i2N 0

 
kX

xi=x�

'i(R)(xi)xi

!
;

which contradicts (29). Thus, our assumption that for all i 2 N such that p(R0
i) � x� + 2

we have 'i(R
0)([x� + 2; k]) = 0 was wrong. Hence, for some h 2 N , p(R0

h) � x� + 2 and

'h(R)([x� + 2; k]) > 0. Similarly as before, we replace R0
h by Rj and show that for some

m 2 N , p(R0
m) � x� + 2 and 'm(R

0
�h; Rj)([x� + 2; k]) > 0. Since N is �nite and at each

step the number of agents having a peak greater than or equal to x� + 2 is smaller, we

�nally get a contradiction. Therefore, (b) holds for Case 1; i.e., if p(Ri) � x� + 1, then

'i(R) = Ui(R).

Case 2: There exists no j 2 N such that p(Rj) = x�+1 or for Rj such that p(Rj) = x�+1

there exists some xj 2 [p(Rj); k] such that B(xj ; Rj) 6= [p(Rj); xj ].

We have to show (b); i.e., if p(Ri) � x� + 1, then 'i(R) = Ui(R). First we show that

for all i 2 N such that p(Ri) � x� + 1,

'i(R)(x�) = Ui(R)(x�): (30)

Assume, by contradiction, that for some j 2 N such that p(Rj) � x� + 1, 'j(R)(x�) 6=

Uj(R)(x�).

Consider R0
j 2 R such that p(R0

j) = x� + 1, and for all xj 2 [p(R0
j); k], B(xj; R

0
j) =

[p(R0
j); xj ]. De�ne R

0 � (R0
j ; R�j). By strategy-proofness,

'j(R)([x� + 1; k]) = 'j(R)(B(x� + 1; Rj))
SP

� 'j(R
0)(B(x� + 1; Rj)) = 'j(R

0)([x� + 1; k])
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and

'j(R
0)([x� + 1; k]) = 'j(R

0)(B(k;R0
j))

SP

� 'j(R)(B(k;R
0
j))

= 'j(R)([x� + 1; k]):

Hence, 'j(R
0)([x� + 1; k]) = 'j(R)([x� + 1; k]). By Lemma 2,

'j(R
0)(x�) = 1� 'j(R

0)([x� + 1; k]) = 1� 'j(R)([x� + 1; k]) = 'j(R)(x�)

6= Uj(R)(x�) = Uj(R
0)(x�);

which contradicts Case 1. Thus, (30) is proven. Hence, by Lemma 2, for all i 2 N such

that p(Ri) � x� + 1,

'i(R)([x� + 1; k]) = 1� 'i(R)(x�)

= 1� Ui(R)(x�)

= Ui(R)(x� + 1):

If for all i 2 N such that p(Ri) � x� + 1, 'i(R)([x� + 2; k]) = 0, then for all i 2 N such

that p(Ri) � x� + 1, 'i(R) = Ui(R), which proves (b). Suppose, by contradiction, that for

some j 2 N such that p(Rj) � x� + 1, 'j(R)([x� + 2; k]) > 0. So,

Uj(R)(x� + 1)(x� + 1) <

kX
xj=x�+1

'j(R)(xi)xi. (31)

Let N 0 � fi 2 N j p(Ri) � x� + 1g. Since for all i 2 N 0, Ui(R)([x� + 2; k]) = 0,

Ui(R)(x� + 1)(x� + 1) �
kX

xi=x�+1

'i(R)(xi)xi. (32)

Hence, by (30), (31), and (32),

X
i2N0

(Ui(R)(x�)x� + Uj(R)(x� + 1)(x� + 1)) <
X
i2N 0

 
kX

xi=x�

'i(R)(xi)xi

!
: (33)

By Remark 1,

X
i2N0

 
kX

xi=x�

'i(R)(xi)xi

!
= k �

X
i2N such that
p(Ri)�x�

p(Ri)
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and

X
i2N0

(Ui(R)(x�)x� + Ui(R)(x� + 1)(x� + 1)) = k �
X

i2N such that
p(Ri)�x�

p(Ri):

Hence,

X
i2N0

(Ui(R)(x�)x� + Ui(R)(x� + 1)(x� + 1)) =
X
i2N0

 
kX

xi=x�

'i(R)(xi)xi

!
;

which contradicts (33) and �nishes the proof of (b); i.e., if p(Ri) � x� + 1, then 'i(R) =

Ui(R). �

5 Von-Neumann-Morgenstern Utility Functions

In this section we assume that agents have single-peaked preferences that satisfy the von

Neuman Morgenstern (vNM) expected utility property; i.e., for any preference relation Ri

(i) there exists a utility function ui that represents Ri and
5

(ii) each agent i evaluates marginal distributions via the expected utility relative to ui.

Thus, given Qi � [p0i � 0; p
1
i � 1; : : : ; p

k
i �k] where p

l
i denotes the probability that agent

i receives l 2 K objects,

ui(Qi) = ui([p
0
i � 0; p

1
i � 1; : : : ; p

k
i � k]) =

kX
l=0

pliui(l):

Furthermore, we assume that all agents are strictly risk averse; i.e., for all l 2 f1; : : : ; k�

1g,

ui(l)� ui(l � 1) > ui(l + 1)� ui(l):

Let V denote the class of all vNM-utility functions that exhibit strict risk aversion. Let

VN denote the set of all (vNM-utility) pro�les u = (ui)i2N such that for all i 2 N , ui 2 V.

Note that if a utility function exhibits strict risk aversion, then it is single-peaked. Given

5A utility function ui represents a preference relation Ri if and only if

x Ri y , ui(x) � ui(y):
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ui 2 V, there exists Ri 2 R such that ui represents Ri. We de�ne the peak p(ui) of ui by

p(ui) � p(Ri). Let �R denote the set of single-peaked preference relations such that there

exists some ui 2 V that represents Ri. Strict risk aversion implies that �R ( R.

Let D(X) denote the set of all distributions over X. Throughout this section a proba-

bilistic rule is a function ' : VN ! D(X). Next, we reformulate our central properties by

replacing preference relations by utility functions.

Let Q, Q0 be distributions over X. If for all i 2 N , ui(Qi) � ui(Q
0
i) and for some j 2 N ,

uj(Qj) > uj(Q
0
j), then we call Q a Pareto improvement of Q0.

Pareto E�ciency: For all u 2 VN , there exists no Pareto improvement of '(R).

Given u 2 VN and M � N , the restriction (ui)i2M 2 VM of u to M is denoted by uM .

Similarly as before, (�ui; u�i) denotes the pro�le obtained from u by replacing ui by �ui.

Strategy-Proofness: For all u 2 VN , all i 2 N , and all �ui 2 V, ui('i(u)) � ui('i(�ui; u�i)).

For all u 2 VN and all � 2 �N , by u� we mean (u�(i))i2N .

Anonymity: For all u 2 VN , all � 2 �N , and all i 2 N , '�(i)(u) = 'i(u�).

No-Envy: For all u 2 VN and all i; j 2 N , ui('i(R)) � ui('j(R)).

Equal Treatment of Equals: For all u 2 VN and all i; j 2 N , if ui = uj , then

ui('i(u)) = ui('j(u)).

Using strictly risk averse vNM-utility functions induces a stronger Pareto e�ciency

condition than using the ordinal preference extension. Same-sidedness is still implied, but

no longer su�cient. In order to characterize Pareto e�ciency we introduce the following

notation.

Let Q be a distribution and for all i 2 N , Qi = [p0i � 0; p
1
i � 1; : : : ; p

k
i � k] denotes the

induced marginal distribution. For all i 2 N , let

Gi(Qi) = fl 2 K j pli 6= 0g:

Hence, Gi(Qi) denotes all amounts that agent i can possibly receive at Q (or equivalently,

Gi(Qi) is the support of Qi).
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The following Lemma is due to Sasaki (1997), Lemma 6.3.

Lemma 3 (Sasaki, 1997) If a probabilistic rule ' : VN ! D(X) satis�es Pareto e�ciency

on VN , then for all u 2 VN and all i 2 N there exists a number of objects ai 2 K such that

Gi('i(u)) � fai; ai + 1g.

Using Lemma 3, we can derive a characterization of Pareto e�ciency on VN .

Lemma 4 A probabilistic rule ' : VN ! D(X) satis�es Pareto e�ciency on VN if and only

if

(i) ' satis�es ex-post Pareto e�ciency on VN and

(ii) for all u 2 VN and all i 2 N there exists a number of objects ai 2 K such that

Gi('i(u)) � fai; ai + 1g.

The only-if part of Lemma 4 follows from Lemma 3. We omit the proof of the if-part of

Lemma 4.6

Lemma 4 implies that any Pareto e�cient allocation can be represented as a vector of

nonnegative real numbers. Let Q be a distribution that is Pareto e�cient for some u 2 VN .

Then Q can be represented as follows. According to Lemma 4, for all i 2 N there exists a

number of objects ai 2 K such that Gi(Qi) � fai; ai + 1g. By �i we denote the probability

at Qi for agent i to receive ai. Thus, agent i receives ai + 1 at Qi with probability 1� �i.

Using these unique probabilities, we can represent the distribution Qi by a unique number

qi 2 [0; k]. Simply de�ne

qi � �iai + (1� �i)(ai + 1) = (ai + 1)� �i:

Note that we have
P

i2N qi = k. Thus, each distribution Q is identi�ed with a unique

allocation (q1; : : : ; qn) 2 [0; k]N of k units of an in�nitely divisible commodity. Let ~D(X)

denote the set of all distributionsQ 2 D(X) such that for all i 2 N there exists some ai 2 K

for which Gi(Qi) � fai; ai + 1g. Hence, a Pareto e�cient probabilistic rule is a function

' : VN ! ~D(X). Let X (N; k) denote the set of all allocations that are obtained via some

distribution belonging to ~D(X), i.e., X (N; k) � f(q1; : : : ; qn) j Q 2 ~D(X)g. Obviously, X (

X (N; k). Therefore, a Pareto e�cient rule ' essentially splits the amount k of a perfectly

divisible good among the agents in N . Conversely, each vector (q1; : : : ; qn) 2 X (N; k)

6The somewhat tedious proof of the if-part of Lemma 4 is available from the authors upon request.
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uniquely identi�es marginal distributions Qi and a (non-unique) distribution Q 2 ~D(X).

Note that single-peakedness on K implies single-peakedness on [0; k] if agents consider

assignments qi 2 [0; k] that correspond to marginal distributionsQi. Therefore, the problem

of assigning k identical objects to a set of agents with single-peaked preferences by using

a Pareto e�cient probabilistic rule reduces to the problem of dividing the amount k of a

perfectly divisible homogeneous commodity among a group of agents with single-peaked

preferences.

So, any Pareto e�cient probabilistic rule ' : VN ! ~D(X) induces a Pareto e�cient

deterministic allocation rule �: �RN ! X (N; k) for the problem of dividing the amount k of

a perfectly divisible homogeneous commodity among a group of agents with single-peaked

preferences. Furthermore, if the probabilistic rule also satis�es strategy-proofness and no-

envy, then the induced allocation rule satis�es these properties as well. Any probabilistic

rule with uniform marginal distributions induces the uniform allocation rule and vice versa.7

The domain �R satis�es the following \richness condition": given xi; yi 2 [0; k], if

]xi; yi[\K 6= ;, then for all zi 2 ]xi; yi[\K there exist preference relations Ri; �Ri 2 �R

such that p(Ri) = p( �Ri) = zi, xi Pi yi, and yi Pi xi. It can be checked that for example

for the proofs of Ching (1994) this condition su�ces to show that if a deterministic rule

� : �RN ! X (N; k) satis�es same-sidedness, strategy-proofness, and equal treatment of

equals, then it is the uniform rule restricted on this domain.

All characterization results obtained for Pareto e�cient deterministic rules � : �RN !

X (N; k) that divide a perfectly divisible homogeneous commodity among a group of agents

with single-peaked preferences also hold for probabilistic rules that assign indivisible iden-

tical objects to a set of strictly risk-averse agents with single-peaked preferences. Since the

marginal distributions of the uniform probabilistic rules in Section 4 only depend on the

peak pro�le, we de�ne these rules in the same way in the current context for pro�les of

utility functions.

Corollary 1 (Kureishi, 2000) When each agent is a strictly risk averse vNM-expected

utility maximizer, the uniform probabilistic rules are the only probabilistic rules satisfying

Pareto e�ciency, strategy-proofness, and equal treatment of equals.

7
Uniform Allocation Rule ~U : For all R 2 �RN , and all j 2 N ,

~Uj(R) �

(
min(p(Rj); �) if

P
N p(Ri) � k;

max(p(Rj); �) if
P

N p(Ri) � k;

where � solves
P

N
~Ui(R) = k.
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Since equal treatment of equals is implied by either anonymity or no-envy, in Corollary 1

we can replace equal treatment of equals either by anonymity (Sasaki, 1997) or by no-envy.
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