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RESUME

Nous considérons une approche probabiliste au probleme de répartition de k objets
identiques a un ensemble d’agents avec des préférences unimodales. Utilisant I'extension
ordinale des préférences, nous caracterisons les classes de lois de probabilités uniformes
par lefficacité au sens de Pareto, la non-manipulation et l'absence denvie. Nous
montrons aussi que I'anonymat ne peut pas étre remplacé par 'absence d’envie. Quand
les agents ont une fonction d'utilité Von-Neumann-Morgenstern strictement adverse au
risque, nous ramenons le probléeme de répartition de k objets identiques au probleme

d’allocation d’'une quantité k d’un bien infiniment divisible.

Mots clés: lois de probabilité, préférences unimodales, absence de manipulation,

allocation uniforme

ABSTRACT

We consider a probabilistic approach to the problem of assigning k indivisible
identical objects to a set of agents with single-peaked preferences. Using the ordinal
extension of preferences, we characterize the class of uniform probabilistic rules by
Pareto efficiency, strategy-proofness, and no-envy. We also show that in this
characterization no-envy cannot be replaced by anonymity. When agents are strictly risk
averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of
assigning k identical objects to a problem of allocating the amount k of an infinitely

divisible commodity.

Key words : probabilistic rules, single-peaked preferences, strategy-proofness, uniform

allocations



1 Introduction

We consider economic environments where a set of indivisible identical objects have to be
assigned to a set of individuals with single-peaked preferences. As an example, take the
assignment of the number of courses a professor in an economics department has to teach.
Each professor has a number of courses he finds optimal (probably somewhere between 0 to
4) and preferences are decreasing when moving away from that optimal amount in either
direction. If we are interested in “fair allocations”, for instance allocations that respect
equal treatment of equals (if two individuals have the same preference relation, then they
should be indifferent between each other’s allotments), then the indivisibility assumption
may induce an impossibility. For simplicity, assume that we have to assign a course and none
of the professors in the department wants to teach it. Obviously there is no deterministic
way to do so that respects equal treatment of equals. However, allowing the rule to be
probabilistic solves our problem at least in an ex-ante sense: if each professor has to teach
the course with equal probability, then equal treatment of equals is satisfied (ex-ante).

The probabilistic allocation or rationing of indivisible objects has received recent atten-
tion. Two main models should be distinguished. In the first one there are n objects and n
agents and each agent receives exactly one object. Any two objects are distinct and each
agent has a strict preference relation over the set of objects. For example, the agents are
workers and each object is a full-time job at a different company. The random assignment
of the objects to the agents is the subject of papers by Abdulkadiroglu and Sénmez (1998,
2000), Bogomolnaia and Moulin (1999), and Creés and Moulin (1998).

In the second model there are k identical indivisible objects and n agents. Each agent
receives a certain number of objects and each object is assigned to some agent (free disposal
is not allowed). For instance, the objects are identical (non full-time) jobs that have to be
allocated among workers. This model is studied by Moulin (2000), Moulin and Stong (2000),
Sasaki (1997), and Kureishi (2000). In the first two papers each agent demands a certain
number of objects and the total demand is greater than the number of objects available.
In the last two papers each agent has a single-peaked preference relation over the number
of objects he may receive. That is, there is a most preferred number of objects, called the
agent’s peak, and preferences are strictly decreasing in either direction away from the peak.
A probabilistic rule chooses for each profile of preferences a probability distribution over
the set of allocations. The interpretation is that the final allocation that we implement is
drawn according to this distribution. An agent compares two distributions over the set of

allocations by evaluating the marginal distributions that are induced over his allotments.



We consider the same model as Sasaki (1997) and Kureishi (2000), but we do not
only consider preferences that can be represented by von-Neumann-Morgenstern utility
functions. First, we use the ordinal extension of preferences over allotments to probability
distributions over allotments. An agent prefers a distribution over his allotments to another
if the first distribution places on each weak upper contour set at least the same probability
that is placed on it by the second distribution. The ordinal extension of preferences is
incomplete over the set of distributions. However, it is equivalent to the following. If
an agent prefers one distribution to another, then for each utility representation of his
preference relation the expected utility with respect to the distribution is greater than or
equal to the expected utility of the second one.

Using this extension we formulate the requirements of Pareto efficiency, strategy-proofness
(no agent can gain by misrepresenting his preference relation), and no-envy (each agent
prefers his marginal distribution to each other agent’s marginal distribution). Contrary to
the model with distinct objects (Bogomolnaia and Moulin, 1999) it turns out that in our
model Pareto efficiency is equivalent to ex-post efficiency. Using the uniform rule (Benassy,
1982), where k units of an infinitely divisible commodity are rationed as equally as possible,
we define uniform probabilistic rules (Sasaki, 1997) in terms of their “uniform marginal
distributions”.?

We call a probabilistic rule a uniform probabilistic rule if for each profile the marginals
of the chosen distribution are equal to the uniform marginal distributions at this profile.
Our main result is that the class of uniform probabilistic rules is characterized by Pareto
efficiency, strategy-proofness, and no-envy. This result is the probabilistic analogue to the
result of Sprumont (1991). He shows that when rationing & units of an infinitely divisi-
ble commodity among a set of individuals with single-peaked preferences, the uniform rule
is the only deterministic rule satisfying the above combination of properties. Sprumont’s
characterization remains valid if we replace no-envy by anonymity (Sprumont, 1991) or
equal treatment of equals (Ching, 1994). However, in our probabilistic setting this con-
clusion is not true. For example, any random dictatorship rule satisfies Pareto efficiency,
strategy-proofness, and anonymity. It is an open question what the class of probabilistic

rules satisfying these properties looks like.

! A considerable number of papers considers the ordinal extension of preferences, e.g., Abdulkadiroglu and
Sénmez (2000), Bogomolnaia and Moulin (1999), Ehlers (1998), Ehlers and Klaus (2001), Ehlers, Peters,

and Storcken (2000), and Gibbard (1977).
*Independently, Moulin (2000) also used this trick in defining the uniform probabilistic rule of Sasaki

(1997).



In two related papers (Sasaki, 1997; Kureishi, 2000) agents are assumed to be strictly risk
averse von-Neumann-Morgenstern utility maximizer, i.e., each agent evaluates distributions
on the basis of the expected utility relative to his utility function. They show that for a given
profile of utility functions, if a distribution is Pareto efficient, then each agent’s marginal
distribution places probability 1 on two allotments that differ only by one unit. Using this
observation we show that then, the problem can be reduced to the problem of allocating
k units of an infinitely divisible commodity among n agents with single-peaked preferences
over [0, k]. Then we apply the characterization of the (deterministic) uniform rule by Ching
(1994) and show that in the probabilistic model with strictly risk averse agents, the class
of uniform probabilistic rules is characterized by Pareto efficiency, strategy-proofness, and
equal treatment of equals. Therefore, the results of Sasaki (1997) and Kureishi (2000) can
be interpreted as corollaries of Ching (1994).

The organization of the paper is as follows. In Section 2 we introduce the model and
basic properties. In Section 3 we define the class of uniform probabilistic rules and present
our main result. In Section 4 we prove the characterization. Finally, in Section 5 we focus

on strictly risk averse agents with von-Neumann-Morgenstern utility functions.

2 The Model and Basic Properties

We consider the problem of assigning k& indivisible identical objects to a set of agents
N ={1,... ,n}. Each agent i € N is equipped with a “single-peaked” preference relation
R; defined over the number of objects he receives; i.e., R; is defined over K = {0,1,... ,k}
and there exists a number of objects p(R;) € K, called the peak of R;, with the following
property: for all z;,y; € K, if x; < y; < p(R;) or x; > y; > p(R;), then y; P; z;. As usual,
z; R; y; means “z; is weakly preferred to y;”, and x; P; y; means “x; is strictly preferred to
y;”. By R we denote the class of all single-peaked preference relations over K. By R"Y we
denote the set of all (preference) profiles R = (R;)ien such that for alli € N, R; € R.

We call + € K a feasible allocation if Y icn Ti = k. Let X denote the set of all feasible
allocations. Note that | X| = (k+zfl). A deterministic (allocation) rule ® is a function that
selects for every R € R a feasible allocation ®(R) € X. Each agent i € N only cares
about his own allotment ®;(R) € K.

We extend the original analysis of deterministic rules by considering “probabilistic”
rules. A probabilistic (allocation) rule ¢ is a function that selects for every R € RY a

(probability) distribution over the set of feasible allocations X, denoted by ¢(R). Given



X' C X, we denote by ¢(R)(X') the probability that the distribution ¢(R) places on the set
X'. Since the set of feasible allocations X is finite, a distribution over X can be interpreted
as a lottery, or a simple gamble, on X. For X = {z!,... ,x'X‘} we denote such a distribution
over the set of feasible allocations X by [p'oz!,...  pXloz!XI] where foralll € {1,... ,|X]|},
pl €[0,1] and Zy:('l p! = 1. For notational convenience, when formalizing distributions, we
will only denote feasible allocations z! that occur with strictly positive probability p' > 0,
e.g., instead of [ oz!, $022,0023,...,00 2] we write [§ oz, 5 0 2%

For each agent i € N, let ¢;(R) denote the marginal distribution induced by ¢(R) over
his allotments in K. Each agent i € N only cares about his marginal distribution ¢;(R) on
K. A deterministic rule is a probabilistic rule that selects for every R € R a distribution
placing probability 1 on a single allocation in X.

The following example demonstrates that two distributions having the same marginal

distributions need not be equal.

Example 1 Let N = {1,2,3}, k = 9, Q = [3 0 (3,6,0),% 0 (0,3,6), % o (6,0,3)], and
Q' =1[%0(3,0,6),%0(6,3,0),%0(0,6,3)]. Then for alli € N, Q; = Q}, but Q # Q. <

Remark 1 Let Q be a distribution on X. Then, > 7 | ZI;FO Qi(z;)x; = k. Equivalently
to >, ZI;FO Qi(z;)x; we also use the notation [ z;dQ;. <

We extend preferences on agents’ allotments in K to marginal distributions on K. Our
extension is based on the concept of weak upper contour sets.

Given z; € K and R; € R, the weak upper contour set of xz; at R; is defined as
B(z;,R;) = {y; € K | y; R; x;}. Given a preference relation R; € R and two marginal
distributions @Q;, Q) on K, agent ¢ weakly prefers Q; to Q', if Q; assigns to each weak upper
contour set at least the probability that is assigned to this set by @}. For notational conve-

nience we use the same symbols R; and P; to define preferences over marginal distributions.

Ordinal Extension of Preferences: For all R; € R and all marginal distributions
Qi, Q: on K, Q; R; Q) if and only if

Furthermore, Q; P; Q) if and only if Q; R; Q) and

for some y; € K, Qi(B(ys, Ri)) > Qi(B(yi, Ri)). (2)



Inequality (1) is a first order stochastic dominance condition; in particular it requires
that the marginal distributions @); and @)} are comparable in that respect. Therefore, our
extension is not complete on the set of all marginal distributions on K.

Our extension of preferences is equivalent to the following. Assume that each agent’s
preference relation over lotteries can be represented by a utility function in the sense that
it can be used to compare two marginal distributions via the expected utilities relative to
this representation. Then (1) is equivalent to the fact that the expected utility relative to
any utility function representing R; is at ) greater or equal than at @’. Thus, regardless
which utility function represents an agent’s preference relation, he will weakly prefer ) to
Q'. For a further discussion of utility representation of preferences we refer to Section 5.

We are interested in Pareto efficiency. Following the definition of Pareto efficiency for
deterministic rules, a probabilistic rule is Pareto efficient if it only assigns “Pareto efficient
distributions on X”; i.e., a distribution assigned by the probabilistic rule cannot be changed
in such a way that no agent is worse off and some agent is better off.

Let Q, Q' be distributions on X. If for all i € N, Q; R; Q; and for some j € N, Q; P; @,

then we call Q a Pareto improvement over Q.

Pareto Efficiency: For all R € RY, there exists no Pareto improvement over ¢(R).

Remark 2 (Same-Sidedness) A deterministic rule ® satisfies Pareto efficiency if and

only if ® satisfies same-sidedness; i.e., for all R € RV,
(i) if > ;e P(R;) > k, then for all i € N, ®;(R) < p(R;) and
(ii) if Y ;e yP(R;) < k, then for all i € N, ®;(R) > p(R;). <

A similar result holds for probabilistic rules: ex-post efficiency is equivalent to same-

sidedness. Given z;,y; € K such that z; <y;, let [z, y;] = {zi,z; + 1,... ,y;}.

Lemma 1 (Pareto Efficiency) A probabilistic rule ¢ satisfies Pareto efficiency if and

only if it satisfies same-sidedness; i.e., for all R € RY,
(i) if Sien p(B:) > K, then for all i € N, o;(R)(0,p(Ry)]) = 1 and
(i) if >ojen p(Ri) <k, then for alli € N, ¢i(R)([p(R;), k]) = 1.

Proof. It is straightforward to show that if ¢ satisfies Pareto efficiency, then (i) and (ii)

hold. To show the converse, suppose ¢ satisfies same-sidedness. Suppose that ¢ violates



Pareto efficiency for some R € R"™. Thus, there exists a distribution @ over X such that
for all i € N, Q; R; ¢;(R) and for some j € N, Q; P; ¢;j(R). Without loss of generality,
let £ < > ,cnp(R;) and for all i € N, Q;(R)([0,p(R;)]) = 1. Given i € N, the function
f': X — K denotes the projection of X onto 4’s coordinate, i.e., for all z € X, fi(z) = ;.
Since @ and ¢(R) satisfy same-sidedness and for all i € N, Q; R; ¢;(R), it follows for all
i€N,

/ FidQ = / Qi > / zidi(R) = / fido(R).
X [0,p(R;)] [0,p(R;)] X

Thus, for all i € N, [, f'dQ > [y f'dp(R), and for some j € N, [y f1dQ > [, fidp(R).

Hence,

/X > Q=) /X FldQ > /X fldp(R) = /X > fldp(R). (3)

1EN tEN 1EN 1EN

Note that for all z € X, >,y f*(%) = k. Hence,

/X > £dQ =k and /X > fldp(R) = k.

1EN 1eEN

Now, the previous two facts contradict (3). O

Conditions (i) and (ii) in Lemma 1 imply that an allocation chosen by the probabilistic
rule @ satisfies same-sidedness and therefore Pareto efficiency. Hence, Lemma 1 states that
Pareto efficiency and ex-post Pareto efficiency are equivalent in our model. Bogomolnaia
and Moulin (1999) show that this equivalence is not valid when assigning heterogenous
indivisible objects to individuals.

Next we introduce strategy-proofness for probabilistic rules. By strategy-proofness no
agent can ever benefit by misrepresenting his preference relation.?

Given R € RN and M C N, the restriction (Ri)iem € RM of R to M is denoted by
Ryr. We also use the notation R_; = Ry\(;3. For example, (R;, R_;) denotes the profile
obtained from R by replacing R; by R;.

Strategy-Proofness: For all R € RN, alli € N, and all R; € R, ¢;(R) R; ¢;(R;, R_;).

3In game theoretical terms, a rule satisfies strategy-proofness if in its associated direct revelation game

form, it is a weakly dominant strategy for each agent to announce his true preference relation.



Note that our notion of strategy-proofness also requires that the marginal distributions
that are assigned by the probabilistic rule before and after any unilateral deviation are
comparable.

By anonymity the names of the agents do not matter. More precisely, an anonymous
probabilistic rule is symmetric in its arguments.

Let IT"V be the class of all permutations on N. Then for all R € RY and all = € IV, by

Ry we mean (Ry;))ien-
Anonymity: For all Re€ R, all 7 € II"V, and all i € N, Pr(iy(R) = pi(Rr).

No-envy states that no agent strictly prefers the marginal distribution of another agent

to his own.
No-Envy: Forall Re RY and alli,j € N, ¢;(R) R; ¢;(R).

No-envy also requires that the agents’ marginal distributions that are assigned by the

probabilistic rule are comparable.

Equal treatment of equals, a weakening of no-envy and of anonymity, requires that if
two agents have the same preference relations, then each of them is indifferent between his

marginal distribution and the other agent’s marginal distribution.

Equal Treatment of Equals: For all R € RN and all i,j € N, if R; = j, then
¢i(R) Ii pj(R).

3 The Uniform Probabilistic Correspondence

In identifying probabilistic rules that satisfy a certain combination of properties, we will
not be able to determine the exact distribution for each profile. All requirements are
formulated with respect to marginal distributions and as demonstrated in Example 1 those
do not uniquely determine the original distribution. We will only be able to show that a
probabilistic rule satisfies a certain list of requirements if and only if for each profile the
marginal distributions are of a certain form. Therefore, we introduce correspondences that

assign to each profile a set of distributions.



The following “uniform correspondence” assigns to each profile exactly the distributions
that induce “uniform marginal distributions” on each agent’s allotments: for each profile of
peaks (p(R;))ien calculate the so-called uniform allocation for R. Denote this allocation by
U(R). Without loss of generality, suppose that R is in excess demand, i.e., Yien P(R;) >k
(the definition for the excess supply case is similar). Thus, for some A € [0, k], we have
that for all i € N, U;(R) = min(p(R;),\). For each agent we choose the following uniform
marginal distribution f;(R) over his allotments. If U;(R) = p(R;), then f;(R) places proba-
bility 1 on p(R;). Otherwise, calculate z) € {0,1,... ,k} such that A belongs to the interval
with endpoints z) and x) + 1. Then calculate weights @ and (1 — «) on the endpoints such
that A equals the convex combination of the two endpoints according to the weights, i.e.,
A=az)+ (1 —a)(zy + 1) where o € [0,1]. Then, the uniform marginal distribution f;(R)
places probability « on z) and probability 1 — « on x) + 1.

Uniform Probabilistic Correspondence, U: Let R € R and @Q be a distribution
over X. Then @ € U(R) if and only if the following holds.

(i) Excess Demand: ),y p(R;) > k.
Let U;(R) = min(p(R;), \) where A € R, solves YieN Ui(R) = k.
Determine z) € K such that A € [z),z) + 1[. Then for all i € N,
(a) if p(R;) <z, then Q;(p(R;)) =1 and
(b) if p(Ri) > zx + 1, then Qi(zx +1) = A —zy and Qi(z)) =1 — (A —z)).
(ii) Balanced Demand: ),y p(R;) = k. Then for all i € N, Q;(p(R;)) = 1.
(iii) Excess Supply: >,y p(Ri) < k.
Let U;(R) = max(p(R;),\) where X\ € R, solves doieN Ui(R) = k.
Determine z) € K such that A €]zy,z) + 1]. Then for all i € N,
(a) if p(R;) > x) + 1, then Q;(p(R;)) =1 and

(b) if p(R;) <z, then Qi(zx + 1) = A — ) and Qi(z)) =1 — (A —z)).

We say that a probabilistic rule ¢ is a uniform probabilistic rule if for all R € RN, ¢(R) €
U(R). The following example of a probabilistic rule proves that the uniform correspondence

is non-empty.



Example 2 We define the uniform probabilistic rule U as follows (Sasaki, 1997; in defining
the uniform probabilistic rule U Moulin (2000) uses the same trick as we do* in defining

the correspondence U). Let R € RY.

(i) Excess Demand: ),y p(R;) > k.

Without loss of generality, let N = {i € N | p(R;) > zx + 1} = {1,...,n} and
N={ie N |pR;) <z} ={A+1,... ,n}. Then we obtain U(R) as follows: in each
allocation that occurs at U(R) with positive probability, each agent in N receives his
peak amount and each agent in N receives either z) or z) + 1. Note that for each
i € N, (z) + 1) P; z) and that exactly #(\ — z)) agents in N can receive zy + 1.
We obtain U(R) by placing equal probability on all allocations where all agents in N
receive their peak amounts, (A — ) agents in N receive x, + 1, and the remaining
agents in N receive ). Hence, U(R) is obtained by placing equal probabilities on

exactly (ﬁ(/\fm)) allocations. Note that
(a) if p(R;) < zy, then U;(R)(p(R;)) = 1 and
(b) if p(R;) > x\ + 1, then U;(R)(xzx + 1) = A — z) and U;(R)(z)) =1 — (A — zy).
(ii) Balanced Demand: ), p(R;) = k. Then, U(R) = [1 o (p(Ry1),... ,p(Ry))].

(iii) Excess Supply: ),y p(R;) < k.

Without loss of generality, let N = {i € N | p(R;) <z)}={1,...,a} and N = {i €
N | p(R;)) > zx+ 1} = {n+1,... ,n}. Then we obtain U(R) as follows: in each
allocation that occurs at U(R) with positive probability, each agent in N receives his
peak amount and each agent in N receives either =) or z) + 1. Note that for i € N,
z\ P; () + 1) and that exactly n — n(\ — 7)) agents in N can receive 7). In other
words, (A — z)) of agents in N will receive z) + 1. We obtain U(R) by placing
equal probability on all allocations where all agents in N receive their peak amounts,
n(A—z)) agents in N receive z)+1, and the remaining agents in N receive . Hence,
U(R) is obtained by placing equal probabilities on exactly (ﬁ( )EIA)) allocations. Note
that

(a) if p(R;) > zx + 1, then U;(R)(p(R;)) = 1 and

(b) if p(R;) < zy, then U;(R)(zx + 1) = A —zy and U;(R)(zy) =1 — (A — zy). g

“Moulin (2000) and we found this trick independently.



Example 3 Let N = {1,2,3,4} and k = 2. Let R € R" be such that for all i € N,
p(R;) = 1. Then, N = N and

1
U(R) = [g °(1,1,0,0), = 0 (1,0,1,0), = 0 (1,0,0,1),

1

6
1

03 1,0, 1)3 6 o (0303 1? 1)]

—_
O

1
—0(0,1,1,0),60

(=]

Let Q = [0 (1,1,0,0),10(0,0,1,1)] and @' = [4 0 (1,0,0,1), 4 0 (0,1,1,0)]. Then for all
i €N, Qi =Ui(R) =Q; (Q,Q,U(R) eU(R)), but U(R) # Q # Q" # U(R). <

Our main result is that, similarly as in the deterministic setting (Sprumont, 1991; Ching,
1992; Ehlers, 2000), Pareto efficiency, strategy-proofness, and no-envy determine “uniform

allocations”.

Theorem 1 Uniform probabilistic rules are the only probabilistic rules satisfying Pareto

efficiency, strategy-proofness, and no-envy.

Remark 3 Theorem 1 is a tight characterization since we already know from the determin-
istic framework that all properties are logically independent (see Sprumont 1991 and Ching
1992). However, in contrast to the deterministic framework, we cannot replace no-envy

with anonymity or weaken it to equal treatment of equals (see Example 4). <
Example 4 Let N = {1,2} and R € RV.

e If p(Ry) + p(R2) # k, then
B(R) = 12 o (p(R1), k — p(R)), &

5 5° (k — p(R2),p(R2))]-

e If p(R;) + p(R2) =k, then
P(R) = [Lo (p(R1),p(R2))]-

The probabilistic rule v satisfies Pareto efficiency, strategy-proofness, and anonymity.
However, as we will demonstrate next, 1) violates no-envy.

Let k=5, p(R1) =5, p(R2) =1 and 5 P» 0. Then,

$(R) =[5 (5,0), 5 0 (4,1

and

PR)(B(5, B2)) = 5 < 1= 4a(R)(BG, Ra)).

Thus, we do not have that 2 (R) R 11 (R), which contradicts no-envy; more precisely, the

comparability condition that is incorporated in no-envy is violated. <
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Example 4 can be easily extended to an arbitrary number of agents. More precisely, the
rule 9 is the random dictatorship rule for two agents. For an arbitrary number of agents,
the random dictatorship rule is Pareto efficient, strategy-proof, and anonymous. Note that
all convex combinations of uniform probabilistic rules and the random dictatorship rule
satisfy Pareto efficiency, strategy-proofness, and anonymity. It is an open question whether

there are other probabilistic rules that satisfy this list of properties.

4 Proof of the Characterization

It is straightforward to check that each uniform probabilistic rule satisfies Pareto efficiency,
strategy-proofness, and no-envy. Conversely, let ¢ be a probabilistic rule satisfying Pareto
efficiency, strategy-proofness, and no-envy. We have to show that for all R € RY, p(R) €
U(R).

Pareto efficiency and Lemma 1 imply that if demand is balanced, then (ii) in the defi-
nition of ¢ holds. In the remainder of this section we prove that if R is in excess demand,
then (i) in the definition of ¢ holds. The proof of (iii), i.e., excess supply, is similar.

Recall that for all z;,y; € K such that z; < y;, we have [z;,y;] = {zs,z; + 1,... ,yi}.

Lemma 2 Let R € R be such that Y,y p(R;) > k. Then for all i € N,
pi(R)([min(p(R;), z), p(Ri)]) = 1.

Proof. Let : € N. We consider two cases.

Case 1: p(R;) > z) + 1. We have to show that ¢;(R)([zx,p(R;)]) = 1. Assume, by

contradiction, that

@i(R)([zx,p(Rs)]) < 1. (4)

Let R, € R be such that p(R]) = p(R;) and for all z; € [p(R;), k], B(zi, R}) = [p(R;), zi].
Define R’ = (R}, R_;). By (4), Pareto efficiency (PE), and strategy-proofness (SP),

1Y G (o p(R))
2 Li(R)(B(a, R)
L o(R)(B(o, B)
e ©i(R") ([za, p(Ri)])-



Thus,

@i(R)([zx,p(Ry)]) < 1. (5)
Hence, by Pareto efficiency (PE), no-envy (NE), and the construction of R}, for all j # 1,

(5)
L > @i(R)([zx,p(Ri)])

= wi(R)([zx, k]) = i(R) (B(2r, R))
> @i (R)(B(z, B))) = @i (R) ([, k).

Thus, for all j € N,

;i (R)([za, k]) < L. (6)

Let Sy = {j € N [ p(R;) > zx+1}. By the definition of Aand }>; n p(R}) = > ,;cn p(R)) >
k, Sx # 0.

For all T C Sy, define RT = ((R;F)jeTa R?V\T) as follows. For all j € T,

o p(R]T) =z and

o for all ; € [z, k], B(z;, RT) = [z),z;)].

Let j € Sy. If ZzeNp(Rz{j}) > k, then by (6) and strategy-proofness (SP),

1Y ) ([ K] > 03 (R)(B(ox, BY)

LRl ' (Rl (7)
> ¢ (RU)(B(ax, RB))) = 95 (RU) (12)
i (RUN (p(RYD)) = 0, (RUY) ([, K]).
By (7) and no-envy (NE), for all | # j,

1D G R ([, H]) = o (RV)(B(k, RV

> QR (B(, EY) = o (ROY)([ox, k).

Thus, for all I € N, ¢ (RU})([zx,k]) < 1. Hence, by repeated application of the above
arguments, if for T C Sy, Y ,cy p(R]) > k, then for all [ € N,

pu(RT)([z,k]) < 1. (8)

Now fix Ty C S) such that for some j € S)\Tp, ZleNp(RlTOU{j}) <k< ZleNp(RlTo).

12



By the definition of A, Ty # 0. Let R; € R be such that p(R;) = k — Y .; p(R/®)

Define R = (Rj,R:COj). Note that

zx <p(R;) <p(R°) and Y p(R;) = k.

leN

By Pareto efficiency, ;(R)(p(R;)) = 1. Since p(R;) € B(zy, R].TO), it follows that ¢;(R)(B(zx, R].TO))

1. But this implies a contradiction because by strategy-proofness (SP),
(8) To To To
L > gi(R)([zx, k]) = @ (R7)(B(za, R;°))
SP

i (R)(B(zx, R}*)) = 1.

Therefore, (4) was wrong and the statement for Case 1 is proven.

Case 2: p(R;) < z). We have to show that ¢;(R)(p(R;)) = 1. Assume, by contradiction,
that

ei(R)(p(R;)) < 1.

(9)
Let R, € R be such that p(R}) = p(R;) and for all z; € [p(R;), k], B(zi, R}) = [p(R;), zi].
Define R' = (R],R_;). By strategy-proofness and (9), ¢;(R')(p(R;)) < 1. By Pareto
efficiency (PE), no-envy (NE), and the construction of R, for all j € N,
1

> pi(R)(p(Ry))
= @i R)(p(Ra). K]) = @i(R) (B(k, R}))
N>E

@i (R)(B(k, R})) = ¢;(R)([p(Ri), k]).
Particularly, because p(R;) <z, for all j € N,

;i (R)([2a, k]) < L. (10)

However, for some j € N, p(R};) > z) + 1. Hence, in contradiction to (10), by Case 1 and
Pareto efficiency (PE), 1 = 3 (R') ([ p(R})]) 2Z 05(R) (o2, K]).

O

To complete the proof of Theorem 1, we prove that for all R € RY, if Yien P(R;) >k,
= Ui(R); i.e.,

then for all i € N, ¢;(R)

(a) if p(Ri) <z, then p;(R)(p(R;)) = 1

Ui(R)(p(R;)) and

(b) if p(Ri) > z) + 1, then ¢;(R)(zx + 1) = A — 2y = Ui(R)(zx + 1) and ¢;(R)(z))
1= (A =my) = Ui(R)(2»).
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Let R € R" be such that >,y p(R;) > k. By Lemma 2, for alli € N, ¢;(R)([min(p(R;), z»), p(R;)]) =
1. Thus, for all i € N, if p(R;) < z,, then

pi(R)(p(R;)) = 1. (11)

Hence, (11) implies (a); i.e., if p(R;) < xy, then p;(R) = U;(R).
Next, we prove (b); i.e., if p(R;) > =) + 1, then ¢;(R) = U;(R). We consider two cases.

Case 1: For some j € N, R; € R is such that p(R;) = z) + 1, and for all z; € [p(R;), k],

B(zj, Rj) = [p(R;), z;]-
By Pareto efficiency (PE), no-envy (NE), and the structure of R;, for all i € N such

that p(R;) > z) + 1,

pi(R)(p(R;)) = ¢;i(R)(B(k,Ry))
> pi(R)(B(k, Ry))
= @i(R)([zx + 1,p(R;)])-

Similarly, for all 7 € N such that p(R;) > z) + 1,

0i(R)([zr + Lp(R)]) 2 0i(R)(B(zy + 1, Ry))
NE
> 0i(R)(B(xx + 1, Ry))
L 0i(R)(p(Ry)).

Hence, for all i € N such that p(R;) > z) + 1,
oi(R)([zx + 1,p(Rs)]) = »;(R)(p(R;))- (12)
Thus, by Lemma 2, for all i € N such that p(R;) > z) + 1,
pi(R)(zx) = j(R)(zx) = 1 — ¢;(R)(p(R;)). (13)

We consider two subcases.
Case 1.1: For alli € N, p(R;) <z + 1.

Thus, by Pareto efficiency, for all i € N, ¢;(R)([x\ 4+ 2, k]) = 0. Then by Lemma 2 and
(13), for all 4,1 € N such that p(R;) = p(R;) = z) + 1,

@i(R)(z\) = @i(R)(zy) and @;(R)(z\ + 1) = @ (R)(z) + 1). (14)
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Recall that by Remark 1 and (a),

Yoo wi®@Nea+ Y, @R @+ D+ ) =k— Y p(R).

i€ N such that i€ N such that €N such that
p(R;)=x\+1 p(R;)=x\+1 p(R;)<zy
(15)
Recall that by the definition of A and z},
=Y min(pR),\)= Y pR)+ > A\ (16)
1EN t€N such that t€N such that
p(R;) <z p(Ri)=zx+1
Furthermore, note that for all i € N such that p(R;) = z) + 1,
@i(R)(zx) + wi(R)(zy +1) = 1. (17)

Using (15), (16), and (17), it follows that

Z )+ Z vi(R)(z)x+1) = Z A

1€ N such that t€N such that €N such that
p(R;)=wr+1 p(R;)=x\+1 p(R;)=w)+1

This and (14) imply that for all # € N such that p(R;) = zx + 1, pi(R)(z\ + 1) = XA — z).
Thus, for all # € N such that p(R;) = z) + 1, 9;(R)(z)x) =1 — (A — ). This proves (b);
i.e., if p(R;) >z + 1, then ¢;(R) = U;(R). This completes the proof for Case 1.1.
Case 1.2: For somel € N, p(R;) > x) + 2.

If for all [ € N such that p(R;) > =) + 2, ¢;(R)([zx + 2,k]) = 0, then similarly as in
Case 1.1 it follows that p(R;) > x) + 1 implies ¢;(R) = U;(R). Assume, by contradiction,
that for some [ € N such that p(R;) > z) + 2,

©1(R)([zy +2,k]) > 0. (18)

Let Rj € R be such that R = R; and R' = (R}, R_;). By Pareto efficiency (PE) and
strategy-proofness (SP),

PR (ax+1) = (R ([or + 1K) = @(R)(B(k, B}))
S R)(B(R)) = au(B)([or +1, K]
and
QR ([er + 1K) ZF @(R)(B(es +1,R))
S (R (Blor +1,R))
=3 @i(R")(zx +1).
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Hence,

@i(R)(zx +1) = pi(R)([zx + 1,k]) and (19)
wi(R)(z2) = @i(R) (). (20)
Suppose that for all i € N such that p(R}) >z +2, ¢;(R)([zx +2,k]) =0. Let N' = {i €
N |p(Ri) > zx+1} ={i € N | p(R}) > zx + 1}.
Consider profile R and recall from Case 1 that for all i € N’, o;(R)([zx + 1, p(R:)]) =
i (R)(p(R;)) and ¢;(R)(z2) = ¢;(R)(zy). In particul, for all i € N,
pi(R)([zx + 1, p(Ri)]) = @;(R)(p(R})) = @i(R)([zx + L, p(Ry)]) and (21)
@i(R)(z2) = pj(R)(22) = @i(R)(z)). (22)
Consider profile R’ and recall from Case 1 that for all i € N', @;(R')([zx + 1, p(RL)]) =
i (R (p(R;)) and @i(R')(z) = ¢;(R)(z»). In particular, for all i € N,
pi(R)(zx +1) = ;(R)(p(R])) = ¢u(R')(wx + 1) and (23)
ei(R)(2)) = ¢ (R)(z2) = oi(R)(z). (24)

Hence, for all i € N’,

pi(R)(zx+1) = @(R)(z\+1)
=" @u(R)([zx + 1,K]) (25)

Furthermore, for all 1 € N',

ei(R)(zx) = @(R)(2))

=" @(R)(zr) (26)
=" pi(R)(w).

Since for all i € N such that p(R}) > z\ + 2, ¢;(R)([zx + 2,k]) = 0, (25) implies that for
all i € N,

k k
> il B ()i = @i(R) (@ + D(za+1) < > @i R) (). (27)
r;=x)+1 zi=xx+1

In particular, by (18) and (19),

k
PR (ax+ V(@ +1) < > @u(R)(w)ar. (28)

T=x)\+1
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Hence, (26), (27), and (28) imply

k
> (iR (@r)za + i(R) (mx+ D(aa + 1)) < > ( > %‘(R)(ﬂﬂi)ﬂﬂi> . (29)

ieN’! iEN' \zi=z)
By Remark 1,
Z (pi(R) (z2)zr + @i(R) (zx + 1) (21 +1)) =k — Z p(R;)
1EN’ €N such that
p(1;)=p(R;)<z\
and
k
> ( > ‘Pi(R)(fL'i)fL'i> =k— Y pR).
tEN" \T;=2x) tEN such that
p(Ri)<z)
Hence,

k
> (@i B)(@a)zr + @i (R)(zr + D(za + 1)) = Y ( > %(R)(xz')xz) :

ienN’ iEN' \zi=z
which contradicts (29). Thus, our assumption that for all ¢ € N such that p(R}) > z) + 2
we have ¢;(R')([zx + 2,k]) = 0 was wrong. Hence, for some h € N, p(R}) > z\ + 2 and
on(R)([zx + 2,k]) > 0. Similarly as before, we replace R} by R; and show that for some
m € N, p(R;,) > zx + 2 and ¢, (R' ,,R;)([zx + 2,k]) > 0. Since N is finite and at each
step the number of agents having a peak greater than or equal to ) + 2 is smaller, we
finally get a contradiction. Therefore, (b) holds for Case 1; i.e., if p(R;) > z) + 1, then

¢i(R) = U;i(R).

Case 2: There exists no j € N such that p(R;) = z)+1 or for R; such that p(R;) = zy+1
there exists some z; € [p(R;), k] such that B(z;, Rj) # [p(R;), xj].

We have to show (b); i.e., if p(R;) > x\ + 1, then ¢;(R) = U;(R). First we show that
for all i € N such that p(R;) > =) + 1,

@i(R)(wy) = Ui(R)()- (30)

Assume, by contradiction, that for some j € N such that p(R;) > z\ + 1, ¢;(R)(z)) #
Uj(R)(2>)-
Consider R; € R such that p(R}) = z) + 1, and for all z; € [p(R}), k], B(z;, R}) =
[p(R}), ;). Define R' = (R}, R—j). By strategy-proofness,
@j(R)([zx + LE]) = ¢j(R)(B(zx + 1L, Ry))

2 0 (R (Bl + 1, Ry) = 0 (R) (s + 1, K]
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and

pi(R)([zx+ LK) = ¢;(R)(B(, Rj))
SP

> pj(R)(B(k, Rj))
= @i(R)([zx + 1,K)).

Hence, ¢;(R')([zx + 1,k]) = ¢;(R)([zx + 1,k]). By Lemma 2,

@j(R)(zx) = 1 = @j(R)([zx + 1,k]) = 1 — @ (R)([zx + 1,k]) = ¢;(R)(zx)
# Uj(R)(xx) = Uj(R')(x»),

which contradicts Case 1. Thus, (30) is proven. Hence, by Lemma 2, for all i € N such
that p(R;) > z\ + 1,

Pi(R)([zA + L,K]) = 1 — pi(R) ()
=1—-U;(R)(x))
=Ui(R)(zx +1).

If for all ¢ € N such that p(R;) > zx + 1, ¢;(R)([zx + 2,k]) = 0, then for all i € N such
that p(R;) > =) + 1, ¢;(R) = U;(R), which proves (b). Suppose, by contradiction, that for
some j € N such that p(R;) > zx + 1, ¢;(R)([zx + 2,k]) > 0. So,

k
Ui(R)(zx + D)(za+1) < Y @j(R) (). (31)

Tj=r\+1

Let N'={i € N | p(R;) > z) + 1}. Since for all i € N', U;(R)([zx + 2,k]) =0,

k
Ui(R)(zx+ D(za+1) < > @i R)(zi)zi. (32)

r;=r)+1

Hence, by (30), (31), and (32),

k
> (Ui R)(w)zx + Uj(R)(zr + 1)y +1) < Y ( > Wi(R)(fEi)fEi> : (33)

ieN! 1EN" \Z;=xx

By Remark 1,

€N such that
p(R;)<zy
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and

> (UR)(mA)zx + Ui(R)(ea+ D(ea+1) =k— > p(Ri).
i€EN’ €N such that
p(Ri)<zx

Hence,

k
> (UiB)(z2)zr + Ui(R)(ma + 1)(ma+1)) = > ( > %(R)(ﬂfz')xz) ;

which contradicts (33) and finishes the proof of (b); i.e., if p(R;) > ) + 1, then ¢;(R) =
Ui(R). O

5 Von-Neumann-Morgenstern Utility Functions

In this section we assume that agents have single-peaked preferences that satisfy the von

Neuman Morgenstern (vNM) expected utility property; i.e., for any preference relation R;

(i) there exists a utility function u; that represents R; and®

(ii) each agent i evaluates marginal distributions via the expected utility relative to w;.
Thus, given Q; = [pg 00, pzl ol,..., pf o k] where pé denotes the probability that agent

i receives | € K objects,
k
wi(Qi) = wi([p) 0 0,p} 0 1,... ,pf o k]) =Y piui(l).
=0
Furthermore, we assume that all agents are strictly risk averse; i.e., foralll € {1,... | k—
1},
ul(l) — uz(l — 1) > uz(l + 1) — ul(l)

Let V denote the class of all vINM-utility functions that exhibit strict risk aversion. Let
VN denote the set of all (vNM-utility) profiles u = (u;);en such that for all i € N, u; € V.

Note that if a utility function exhibits strict risk aversion, then it is single-peaked. Given

A utility function wu; represents a preference relation R; if and only if

T Riy < ui(z) 2 ui(y).
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u; € V, there exists R; € R such that u; represents R;. We define the peak p(u;) of u; by
p(u;) = p(R;). Let R denote the set of single-peaked preference relations such that there
exists some u; € V that represents R;. Strict risk aversion implies that R CR.

Let D(X) denote the set of all distributions over X. Throughout this section a proba-
bilistic rule is a function ¢: VY — D(X). Next, we reformulate our central properties by
replacing preference relations by utility functions.

Let @, Q' be distributions over X. If for all i € N, u;(Q;) > u;(Q}) and for some j € N,
uj(Q5) > uj(Q), then we call Q a Pareto improvement of Q.

Pareto Efficiency: For all u € VN, there exists no Pareto improvement of ¢(R).

Given v € VN and M C N, the restriction (u;)icnr € VM of u to M is denoted by wuyy.

Similarly as before, (@;,u—;) denotes the profile obtained from u by replacing u; by ;.

Strategy-Proofness: Forallu € VY, alli € N, and all@; € V, u;(p;(w)) > u;i(@i(Ti, u_;)).
For all w € VN and all 7 € IV, by u, we mean (Ur(s))ieN-

Anonymity: For allu € VN, all m € IV, and all i € N, Pr(iy(u) = pi(ur).

No-Envy: Forallu € VYN and all 4,j € N, u;(pi(R)) > ui(pj(R)).

Equal Treatment of Equals: For all v € VN and all 4,5 € N, if u; = uj, then
ui(pi(u) = ui(p;(u)).

Using strictly risk averse vNM-utility functions induces a stronger Pareto efficiency
condition than using the ordinal preference extension. Same-sidedness is still implied, but
no longer sufficient. In order to characterize Pareto efficiency we introduce the following
notation.

Let Q be a distribution and for all i € N, Q; = [pY 0 0,p} o 1,... ,pf o k] denotes the

induced marginal distribution. For all ¢ € N, let

Gi(Qi) ={l € K | p; # 0}
Hence, G;(Q;) denotes all amounts that agent i can possibly receive at @ (or equivalently,
G;(Q;) is the support of Q;).
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The following Lemma is due to Sasaki (1997), Lemma 6.3.

Lemma 3 (Sasaki, 1997) If a probabilistic rule p: VN — D(X) satisfies Pareto efficiency
on VN, then for all uw € VYN and all i € N there exists a number of objects a; € K such that

Gi(pi(u)) € {ai,a; + 1}.
Using Lemma 3, we can derive a characterization of Pareto efficiency on VV.

Lemma 4 A probabilistic rule p: VN — D(X) satisfies Pareto efficiency on VN if and only
if
(i) ¢ satisfies ex-post Pareto efficiency on VN and

(ii) for all w € VN and all i € N there exists a number of objects a; € K such that
Gi(pi(uw)) C{a;,a; + 1}.

The only-if part of Lemma 4 follows from Lemma 3. We omit the proof of the if-part of
Lemma 4.5

Lemma 4 implies that any Pareto efficient allocation can be represented as a vector of
nonnegative real numbers. Let QQ be a distribution that is Pareto efficient for some v € V.
Then @ can be represented as follows. According to Lemma 4, for all i € N there exists a
number of objects a; € K such that G;(Q;) C {a;,a; + 1}. By u; we denote the probability
at @; for agent 7 to receive q;. Thus, agent ¢ receives a; + 1 at @Q; with probability 1 — u;.
Using these unique probabilities, we can represent the distribution ); by a unique number

gi € [0, k]. Simply define
gi = piai + (1 — pg)(a; + 1) = (a; + 1) — s

Note that we have ), ¢ = k. Thus, each distribution @ is identified with a unique
allocation (qi,... ,qn) € [0,k]"N of k units of an infinitely divisible commodity. Let D(X)
denote the set of all distributions Q € D(X) such that for all i € N there exists some a; € K
for which G;(Q;) C {ai,a; + 1}. Hence, a Pareto efficient probabilistic rule is a function
@: VN = D(X). Let X(N,k) denote the set of all allocations that are obtained via some
distribution belonging to D(X), i.e., X (N, k) = {(q1,---,qn) | Q € @(X)} Obviously, X C
X (N, k). Therefore, a Pareto efficient rule ¢ essentially splits the amount k of a perfectly
divisible good among the agents in N. Conversely, each vector (qi,...,q,) € X(N,k)

5The somewhat tedious proof of the if-part of Lemma 4 is available from the authors upon request.
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uniquely identifies marginal distributions @Q; and a (non-unique) distribution Q € D(X).
Note that single-peakedness on K implies single-peakedness on [0, k] if agents consider
assignments ¢; € [0, k] that correspond to marginal distributions @;. Therefore, the problem
of assigning k identical objects to a set of agents with single-peaked preferences by using
a Pareto efficient probabilistic rule reduces to the problem of dividing the amount & of a
perfectly divisible homogeneous commodity among a group of agents with single-peaked
preferences.

So, any Pareto efficient probabilistic rule ¢ : VN — D(X) induces a Pareto efficient
deterministic allocation rule ®: RY — X (N, k) for the problem of dividing the amount & of
a perfectly divisible homogeneous commodity among a group of agents with single-peaked
preferences. Furthermore, if the probabilistic rule also satisfies strategy-proofness and no-
envy, then the induced allocation rule satisfies these properties as well. Any probabilistic
rule with uniform marginal distributions induces the uniform allocation rule and vice versa.”

The domain R satisfies the following “richness condition”: given z;,3; € [0,k], if
lzi, yi[N K # 0, then for all z; €]x;,y;[NK there exist preference relations R;, R; € R
such that p(R;) = p(R;) = z;, z; P y;, and y; P; ;. It can be checked that for example
for the proofs of Ching (1994) this condition suffices to show that if a deterministic rule
®: RN — X(N,k) satisfies same-sidedness, strategy-proofness, and equal treatment of
equals, then it is the uniform rule restricted on this domain.

All characterization results obtained for Pareto efficient deterministic rules ®: RY —
X (N, k) that divide a perfectly divisible homogeneous commodity among a group of agents
with single-peaked preferences also hold for probabilistic rules that assign indivisible iden-
tical objects to a set of strictly risk-averse agents with single-peaked preferences. Since the
marginal distributions of the uniform probabilistic rules in Section 4 only depend on the
peak profile, we define these rules in the same way in the current context for profiles of

utility functions.

Corollary 1 (Kureishi, 2000) When each agent is a strictly risk averse vNM-ezxpected
utility mazimizer, the uniform probabilistic rules are the only probabilistic rules satisfying

Pareto efficiency, strategy-proofness, and equal treatment of equals.

"Uniform Allocation Rule U: For all R € RY, and all jEN,

5, (R) = min(p(R;),\) if 3, p(Ri)
T max(p(Ry), N if Xy p(R:)

)

2
<

where A solves 3" Ui(R) = k.
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Since equal treatment of equals is implied by either anonymity or no-envy, in Corollary 1

we can replace equal treatment of equals either by anonymity (Sasaki, 1997) or by no-envy.
p q q Yy yImiILy s Yy Y.

References

Abdulkadiroglu, A., and T. Sonmez (1998): Random Serial Dictatorship and the Core

from Random Endowments in House Allocation Problems, Econometrica 66:689-701.

Abdulkadiroglu, A., and T. Sénmez (2000): Ordinal Efficiency and Dominated Sets of

Assignments, Working Paper, Northwestern University.

Benassy, J.P. (1982): The Economics of Market Disequilibrium, San Diego: Academic

Press.

Bogomolnaia, A., and H. Moulin (1999): A New Solution to the Random Assignment

Problem, Journal of Economic Theory, forthcoming.

Ching, S. (1992): A Simple Characterization of the Uniform Rule, Economics Letters
40:57-60.

Ching, S. (1994): An Alternative Characterization of the Uniform Rule, Social Choice and
Welfare 11:131-136.

Cres, H., and H. Moulin (1998): Random Priority: A Probabilistic Resolution of the
Tragedy of the Commons, Working Paper, Duke University.

Ehlers, L. (1998): Probabilistic Allocation Rules and Single-Dipped Preferences, Social
Choice and Welfare, forthcoming.

Ehlers, L. (2000): Indifference and the Uniform Rule, Economics Letters 67:303-308.

Ehlers, L., and B. Klaus (2001): Solidarity and Probabilistic Target Rules, Journal of
Public Economic Theory, 3:167-184.

Ehlers, L., H. Peters, and T. Storcken (2000): Strategy-Proof Probabilistic Decision
Schemes for One-Dimensional Single-Peaked Preferences, Journal of Economic The-

ory, forthcoming.

Gibbard, A. (1977): Manipulation of Schemes that Mix Voting and Chance, Econometrica
45:665—681.

23



Kureishi, W. (2000): A Simple Characterization of the Randomized Uniform Rule, Work-
ing Paper, Osaka University.

Moulin, H. (2000): The Proportional Random Allocation of Indivisible Units, Social Choice
and Welfare, forthcoming.

Moulin, H., and R. Stong (2000): Fair Queuing and Other Probabilistic Allocation Meth-
ods, Working Paper, Rice University.

Sasaki, H. (1997): Randomized Uniform Allocation Mechanism and Single-Peaked Prefer-
ences if Indivisible Good, Working Paper, Waseda University.

Sprumont, Y. (1991): The Division Problem with Single-Peaked Preferences: A Charac-
terization of the Uniform Rule, Econometrica 59:509-519.

24



